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1. AN ELLIPTIC EQUATION INVOLVING THE CRITICAL EXPONENT IN 3D
Let © be the unit ball in R3. Consider the equation

—Au=u’4+Au inQ,

(1.1)
u=20 on 012,

where the unknown u : Q — R is a smooth function and A € R is a parameter.

A natural question is whether (1.1) admits a non-trivial solution, u # 0. Note that
the exponent 5 corresponds to the critical Sobolev exponent (N + 2)/(N — 2) when
N = 3, which produces notorious difficulties. The answer, which depends on A, is
known for a large class of A’s; however, for one interval of A’s the answer has remained
undecided over the past forty years. Let A; = 72 be the first eigenvalue of —A on
with zero Dirichlet condition.

OpeN ProBLEM 1.1 (Implicit in [30]). Assume that
(1.2) 0< A <A/4.

Does there exist a solution u £ 0 of (1.1)?


https://creativecommons.org/licenses/by/4.0/

H. BREZIS 308

Several comments are in order:

(a) The answer is not known even if (1.2) is replaced by a sub-interval,e.g. 0 < A < §
with & small.

(b) When A < 0, the only solution of (1.1) is u = 0; this is a celebrated result of
Pohozaev (1965).

(c) When
A]/4 <A< kl,

there exists a radial solution ¥ > 0 in Q of (1.1). This is a central result from
Brezis—Nirenberg [30, Theorem 1.2] (see also [11,38]).

(d) When
0< A < A1/4,

any radial solution u of (1.1) must be u = 0 (see [30, proof of Lemma 1.4]). In
particular (via Gidas—Ni—Nirenberg) there exists no solution ¥ > 0 in €2 of (1.1).
Therefore, if (1.4) holds and a solution u = 0 of (1.1) exists, it must be non-radial
and sign-changing.

(e) When
A=A,

there exist sign-changing solutions of (1.1) — but no solution u > 0 of (1.1),
(see [37]). In the bifurcation diagram, branches of solutions emanate from the
eigenvalues associated with non-radial sign-changing eigenfunctions. It would be
interesting to decide whether such branches “reach” the interval (0, A1/4); they
might instead admit, e.g., vertical asymptotes at values of A > A, /4.

2. QUESTIONS OF UNIQUENESS AND RADIAL SYMMETRY ARISING FROM THE
GinzBURG-LANDAU (GL) SYSTEM

Let © be the unit disc in R2. Consider the system

2.1 —Au = Slzu(l —ul?) inQ,
ux) =x on 0€2,

where & > 0 is a given parameter and the unknown u maps  into R2.
It is easy to check that (2.1) admits a solution u of the form

(2.2) u(x) = %fe(lxl),
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where f. : [0, 1] — R satisfies the ordinary differential equation (ODE)

S f s = SO 1) .,
£(0)=0 and f(1)=1.

In fact, (2.3) admits a unique solution (see [3, Appendix II]). We will denote by
Ug(x) the solution of (2.1) given by (2.2)—(2.3), and we call it the radially symmetric
(or just the radial) solution of (2.1). A long-standing open problem is whether U, (x) is
also the unique solution of (2.1).

(2.3)

OpeN ProBLEM 2.1 ([3, Problem 10 in Chapter XI]). Is the radial solution U, the only
solution of (2.1)?

A positive answer would, in particular, imply that solutions of some specific nonlin-
ear systems of PDEs inherit the radial symmetry of the data — a property reminiscent of
the celebrated Gidas—Ni—Nirenberg result relative to positive solutions of some scalar
PDEs.

Note that (2.1) has a variational structure: the solutions of (2.1) are the critical
points of the GL energy,

1 1 2
Betiy =5 [ 19l + 15 [ (P =1)”

subject to the boundary condition u € H gl (R2;:R?), where g(x) = x on 3%2.

The answer to Open Problem 2.1 is known to be positive in two “opposite” cases.

(a) When ¢ is sufficiently large; more precisely € > 1/4/A1, where A, is the first
eigenvalue of —A under zero Dirichlet condition. Indeed, it is easy to check that E is
strictly convex when & > 1/4/A; and its unique minimizer is also its unique critical
point.

(b) When ¢ is sufficiently small: ¢ < g¢ for some appropriate g¢. This result is due
to Pacard—Riviere [56]. Their proof is highly non-trivial and fills a significant part of
the monograph [56]; it would be interesting to find a simpler proof.

The intermediate range g9 < & < 1/+/A1 is totally open. An easier question still
unresolved is the following.

OpeN ProBLEM 2.2. Is U, a minimizer of E, on Hy (Q2;R?) for any & > 0?

Note that a positive answer to Open Problem 2.1 implies a positive answer to Open
Problem 2.2, since any minimizer of E, on H é} (R2:R?) is a solution of (2.1), and by
uniqueness it would coincide with U;.
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The next result provides substantial evidence that the answer to Open Problem 2.2
is positive.

TraeorEM 2.1 (Mironescu [50], see also Lieb—Loss [49]). For every e > 0, U is a
local minimizer of E.; moreover D? E.(U,) is positive definite.

Following Brezis [13, Open Problem 6], one may ask similar questions when €2 is
the unit ball in RY, N > 3, and u : Q — R2; the counterpart of (2.3) is

—fr = WD Nl p = L= f2) in (0,1),
f(0)=0 and f(1)=1.

Ignat-Nguyen [42] established the analog of Theorem 2.1 in any dimension N > 3,
while Ignat-Nguyen—Slastikov—Zarnescu [43] proved that in dimension N > 7, Uy is
a global minimizer of E, on H g} (2;RY) for any & > 0; in fact U is the unique global
minimizer of E,.

One can also raise identical questions for the p-GL energy

1 1 2
E = Vul? 2_ )2,
e.p (1) p/;zl ul? + 122 Q(|”| - )

where p > 1, Q is the unit disc in R?, and u € ng’p(Q; R?), with g(x) = x on 9.
A somewhat related direction concerns the “asymptotic radial symmetry” as & — 0;
it is more specifically illustrated as follows.

OpeEN ProBLEM 2.3 ([26, Open Problem 30]). Assume p > 2 and let u, be any
minimizer (resp., critical point) of E, , on ng’p (2, R?). Does ug(x) — x/|x| in
Q\ {0} ase — 0?

Note that the answer to the same problem when p = 2 is positive (see [3] for mini-
mizers and [56] for critical points). When p < 2, the answer is positive for minimizers
(this is an immediate consequence of [26, Theorem 13.6]) and is open for general
critical points.

Entire solutions of the GL equation are also of interest. Consider the system

(2.4) —Au =u(l - |u|2) on R?,
and the condition at infinity

(2.5) lim |u(x)| =1,

|x|—00

where u is a smooth function from R? into R? ~ C. Here the parameter ¢ is irrelevant
since it can be scaled out.
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Property (2.5) allows to define the degree of u at infinity

u(Rx) 1 .
X ES for R sufficiently large.
}u(Rx)

deg(u, 00) := deg (

Given any g € Z, q # 0, there exists a distinguished solution u of (2.4)-(2.5) given
in polar coordinates by

u(r,0) = g, (r),

where g, : [0, 00) — [0, 1) satisfies the ODE

1 q>
P/ 1, = 1— 2 0’ ,
2.6) g -8+ 58 g(1—g") on(0,00)
g(0)=0 and lim g(r) =1.
r—00

In fact, (2.6) admits a unique solution denoted by g, (see [3, Appendix III]). When
qE€Z,q#0,weset Vy(r,0) = eiqegq(r). We also set Vy = 1. Note that

deg(V,;,00) =q Vg € Z.

A long-standing open problem is whether the functions V,, g € Z, are the only
solutions of (2.4)-(2.5); more precisely:

OpEN PrOBLEM 2.4 ([3, Problem 14], [13,25]). Let u be any solution of (2.4)-(2.5).
Does u coincide with V; modulo rotation and translation, where ¢ = deg(u, c0)? Le.,
is u(x) = aV4(x — xo) for some @ € C, |a| = 1, and xo € R??

Two partial results are known so far:
TrEOREM 2.2 ([25]). Assume that u is a solution of (2.4)-(2.5) such that
deg(u, 00) = 0,
and which satisfies in addition
2.7) /1;2 (Ju> = 1)? < oo,
Then u = Vy modulo rotation and translation; i.e., u is a constant of modulus 1.
THEOREM 2.3 ([51]). Assume that u is a solution of (2.4)-(2.5) such that
deg(u, 00) = =1,

and which satisfies in addition (2.7).
Then u = Vi1 modulo rotation and translation.
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Addressing Open Problem 2.4 when |deg(u, 0o)| > 2, Ovchinnikov and Sigal [55]
have devised a strategy to construct non-radial solutions of (2.4)-(2.5), thereby providing
a negative answer to Open Problem 2.4. However, their proposed construction has been
criticized (see Esposito [39] and Kurzke [47]), and the problem remains open.

In another direction, we point out that it is not known whether the conclusions of
Theorem 2.2 and Theorem 2.3 remain true if one removes assumption (2.7). That is
more generally the following.

OpPEN ProBLEM 2.5 ([25, Problem 2], [13, Open Problem 2]). Assume that u satisfies
(2.4) and (2.5). Does (2.7) hold?

Finally, we mention that property (2.7) appears quite naturally in connection with
solutions of (2.4). In particular, the functions V,, g € Z, satisfy (2.7); more precisely
(see, e.g., [60]), forany g € Z,

|V(x)|=l—i+oL as |x| - oo
! 2|x|? x| '

Also, one can show (see [25, 60]) that any solution of (2.4) satisfying (2.7) enjoys

the following properties:

(@) limjy|—»eo [u(x)| = 1, so that ¢ = deg(u, 0o) is well defined,

2
®) [u)| =1- 355 +o(5p) as x| — oo,

© Jg2(lu]* = 1)?* = 274>,

(d) limpy|»eo |u(x) —aVy(x)| = 0 for some o € C, |a| = 1.

3. HARMONIC MAPS FROM THE DISC TO S2

Let Q be the unit disc in R2. A harmonic map to S? is a smooth map u : Q — R3

satisfying
(3.1 —Au; =u;|Vu|?, i =123, in%Q,
(3.2) lu(x)| =1 inQ.

Given a smooth map g : 3Q — S2, we add the boundary condition
(3.3) u=g onoaiQ.

One could also define a concept of weak harmonic map, i.e.,amap u € H é} (2:S?)
satisfying (3.1) in the sense of distributions. A celebrated result of F. Hélein (1990)
asserts that weak harmonic maps are smooth.
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The solutions of (3.1)—(3.3) correspond to critical points of the energy
E(u) = / |Vul> on& = H}(Q:S?).
Q

It is easy to produce a solution of (3.1)—(3.3) by minimizing £ on &. Denote by u
such a minimizer (it need not be unique). A natural question is whether there are other
solutions. In fact, one might expect that problem (3.1)—(3.3) admits infinitely many
solutions. The reason is that & has infinitely many connected components classified by
a topological degree. More precisely, given u € &, let v : S — S? be defined by

u(x,y) if(x,y,z)€S?andz >0,
v(x,y,z) =
u(x,y) if(x,y,z) €S?andz <0.

Note that v € H!(S?;S?) since u = u on dK2. Hence deg v is well defined (see
[31]) and in fact

1 1
degv = — U Uy AUy, — — U-u, NU,,
g 471/9 U g Jom Y

by Kronecker’s formula. One may thus decompose & into its connected components

&= U &r, where & ={u € &; degv = k}.
keZ

It is tempting to minimize E in each class &x. However, Infg, E need not be achieved
(except when k = 0 since u € &), the reason being that the degree is not continuous
under weak convergence in H!. Thus, if (1,) is a minimizing sequence in & and
Up — Uoo Weakly in H'!, the limit uo, might “jump” to another class &g, £ # k, and
will not be a minimizer of E in &f. This scenario can really occur. For example, if
g = C is a constant, a result of Lemaire [48] asserts that u = C is the only solution of
(3.1)=(3.3). As a consequence, Infg, E is achieved only when k = 0.
Here is a general result in the positive direction.

TueorEM 3.1 ([22,44]). Assume g # C, then Infg, E is achieved at least in one of
the classes &1 or E_1. As a consequence, problem (3.1)—(3.3) admits at least two
solutions (including u).

Little is known concerning the existence of additional solutions, even when g has a
simple form (see, however, works by Jie Qing, A. Soyeur, Morgan Pierre, L. Oswald,
and G. Paulik). Consider the boundary condition

(3.4 g(x,y) = (Rx,Ry,~1—R?) for(x,y) € 0Q,
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with 0 < R < 1. In this case, one can write down two explicit solutions of (3.1)—(3.3):

E(x’y)z/\z—_}_rz(x7yvk)+(0’07_l) for(x’y)egv
_ 21
M(X’Y)zﬁ(x,y,_ﬂ)“‘((),o’l) for(X,y)GQ,
we+r
where r2 = x>+ y2, A = g+ /gz —Landp = 5 — /7 — L.
It is not difficult to check that u is a minimizer of £ in & and that % is a minimizer

of Ein &_;.

More precisely, u is the unique minimizer of E in &y and u is the unique minimizer
of E in &_;. Moreover, Infg, E is not achieved when k # 0 and k # —1 (see [22,
Theorem 2]). This does not exclude the possible existence of other solutions of (3.1)—
(3.3) as follows.

OpPeN ProBLEM 3.1 ([22]). Assume that g is given by (3.4). Are there other solutions
of (3.1)—(3.3) besides u and u?

Either way, the answer to Open Problem 3.1 would be illuminating. A negative
answer might possibly shed some light on the important question whether solutions
of specific nonlinear systems inherit the symmetry of the data — assuming the first
step in the proof establishes that any solution is radially symmetric. A positive answer
(more than two solutions) might involve the development of new techniques for finding
non-minimizing critical points in variational problems with lack of compactness.

4. CONTINUOUS HARMONIC MAPS FROM B3 To S2

Let Q@ = B3 be the unit ball in R3. A (weak) harmonic map to S? is a map u €
H(Q2;R3) satisfying

4.1) —Au; =u;|Vu)* i =1,2,3,inQ,
(4.2) lu(x)| =1 inQ.

Given a smooth map g : 3Q ~ S? — S2, we add the boundary condition
(4.3) u=g onodQ.
Solutions of (4.1)—(4.3) correspond to critical points of the energy

E(u):/ [Vul> on Hg(Q:S?).
Q

Note that Hy (Q; S?) is always non-empty since u(x) = g(x/|x|) € Hg (Q:S?).
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It is, therefore, easy to produce solutions of (4.1)—(4.3), e.g. by considering mini-
mizers of the problem

(4.4) Min {E(u): u € Hg(Q:S%)}.

In contrast with the 2D case (see Section 3), weak harmonic maps need not be
smooth — and not even continuous. The optimal regularity result for minimizers is
known from the works of Schoen—Uhlenbeck [59] and Brezis—Coron-Lieb [23]: any
minimizer u of (4.4) is smooth in Q except at a finite number of points (a;) in 2, and
near each a;, u behaves like +(x — a;)/|x — a;| modulo a rotation.

When deg g # 0, {u € C(Q;S?); u = g on 2} = @, and thus singularities are
unavoidable. Since we will be concerned with the existence of continuous harmonic
maps satisfying (4.3), we assume throughout this section that

4.5) degg = 0.
Here is a long-standing open problem originally posed by R. Schoen in the mid-1980’s.

OpeN ProBLEM 4.1 ([40,41], [15, Open Problem 3]). Assume that (4.5) holds. Does
there exist a continuous harmonic map satisfying (4.1)—(4.3)?

Even in the absence of a topological obstruction (i.e., when (4.5) holds), minimizers
in (4.4) can still have singularities, and therefore will not provide a solution to Open
Problem 4.1. This is a consequence of a remarkable gap phenomenon discovered by
Hardt-Lin [40] (see also [12]): there exist smooth maps g : 32 — S? satisfying (4.5)
and such that

(4.6)  Min{E(u): u € Hy(Q;S?*)} <Inf{E(u); u € Hy(Q:S?*) N C(Q)}.
In order to solve Open Problem 4.1, it is tempting to tackle the following problem.
OpEN PrOBLEM 4.2 ([40,41]). Is the

4.7 Inf{E(u): u € Hy(Q;S*) N C(Q)}

achieved?

Clearly, a positive answer to Open Problem 4.2 would provide a solution to Open
Problem 4.1. But, in principle, it might happen that the answer to Open Problem 4.2 is
negative while the answer to Problem 4.1 is positive. (Can this scenario occur?)

A natural strategy to solve Open Problem 4.2 has been developed by Bethuel—
Brezis—Coron [2] via the concept of relaxed energy defined as follows.
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Fixu € Hg1 (2; S?). In general, there exist no sequence (1) in Hg1 (Q:S?)NC(Q)
such that u,, — u strongly in H'. (This is, e.g., a consequence of the gap phenomenon
(4.6).) However, there always exists a sequence (1) in H g} (2:S?) N C(RQ) such that
u, — u weakly in H'! (see [1]). Set
(4.8)

R(u) :=Inf{lim inf E(up); u, € Hé} (2;S?) N C(RQ) and u,, —u weakly in Hl},
n—>oo

where the first Inf is taken over all sequences (u,) as above. (R stands for relaxed).
The functional R is well defined on H é} (€2; S?) and it is weakly lower semi-
continuous. Therefore,

4.9) Min{R(u); u € H}(Q:S?)} is achieved.

We claim that if the Inf in (4.7) is achieved, say by some u € Hg (;S?) N C(R), then
u is also a minimizer in (4.9).
Indeed, we clearly have

E(v) < R(v) Vv e Hg(Q:S?),
R(v) < E(v) Yve Hg(Q:S*)NC(Q)

(just take u, = v in (4.8)).
Therefore,

(4.10) R(v) = E(v) Yve H}(2:S*)NC(Q).
We also have
4.11) InfveHgl R() = InfveHglmC E).
Indeed, it is clear that
(4.12) InfveHé; R(v) < InfueHng R(v) = InfveHélmC E() by 4.10).

On the other hand, given any w € H gl (R2: S?), there exists (by definition of R) a
sequence (wy) in H} (Q:S?) N C(Q) such that w, — w weakly in H' and

4.13) E(w,) = R(w).
Thus
4.14) Il’lfveH&I’mC E() < E(w,) Vn.

Passing to the limit in (4.14) using (4.13) gives

Inf,cpinc E() < Rw) VYw e HI(2:S?),
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so that
(4.15) InfveHng E@) < InfveH; R(v).

Combining (4.12) and (4.15) yields (4.11).
We may now return to the above claim concerning (4.7). Assume that Inf, _ ;; 1nc E®)
is achieved, say by some u € Hg1 N C, then by (4.10) and (4.11)

R(u) =E@u) = InfvEHglﬂC E(w) = InfveHg R(v)

and hence u is a minimizer for the problem (4.9).
Therefore, prospective solutions of Open Problem 4.2 are to be found among the
minimizers of (4.9). This leads us to the following problem.

OpEN ProBLEM 4.3 ([2]). Are the minimizers of (4.9) continuous on Q? (Is it true for
at least one of the minimizers?)

If the answer to Open Problem 4.3 is positive and u € H; (Q:S%) N C(Q) is such
a minimizer, then u satisfies, by (4.10),

E(u) =Ru) = InfveHél, R(v) = InfveHémC E®),

and, therefore, we have solved Open Problem 4.2 since u is a minimizer for Open
Problem 4.2.

In tackling Open Problem 4.3, we have at our disposal explicit representation
formulas for R. We first need some notations. Given u € H'(Q; S?), consider the
D-field (introduced in [23])

D) det ou Ju det ou ou det ou Ju

u)= € U, —,-—1»,de —,u,—1],0¢ T —,Uu 5
sz 8X3 8)61 8)63 8x1 8)62

so that D(u) € L'(22;R?), and one can define the distribution

1
Ju = gdiv D(u) € D'(Q;R).

J stands for Jacobian because J u coincides with the usual Jacobian when u € C2(2; R3).
Since u takes its values in S2, it follows that Ju = 0 in the region where u is smooth.
As we are going to see below (in (4.18)), Ju carries important information about the
location of the topological singularities of u.

TueorREM 4.1 ([2]). For every u € Hg1 (R2:S?)

(4.16) R(u) =/ |Vul® + S(u),
Q
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where
(4.17) S(u>:=2Sup{ [ P ve- [ acosew=@ir), ||vz||Loo51},
Q 191

and Jac g denotes the Jacobian determinant of g : 02 ~ S? — S2.

As a consequence of (4.16) and (4.17), we see that R is continuous for the strong
topology of H! (it is even locally Lipschitz). Thus, it is helpful to know the value of R
on a dense subset of H é} (2; S?) for the strong topology, in particular on the class

Ez{ueHé} (2;S?); u is continuous on  except on a finite set (a;), 1 <i <k in Q}

which is dense in H S} (R2; S?) (by a classical result of Bethuel).
When u € €, we have (see [23]) the important formula

k
4r
Ju = 5 ;deg(u,ai)(‘iai,

where deg(u, a;) is the degree of u restricted to a small ball centered at a;. Relabeling
the points (a;) as P; and N;, 1 <i < £, including multiplicities, we may write

I
4
(4.18) Ju=— > (@8, — 8n,)-

i=1

(Here we use the fact that ) _; deg(u, a;) = deg g = 0.) Inserting (4.18) in (4.17) yields
(after integration by parts)

l
S(u) = 87 Sup { S [P — &N & € W and || V¢ oo < 1},

i=1

which implies (see [23]) that

12
(4.19) S(u) = 8n1\/£inz |Pi — Noy)
i=1
where the Min, is taken over all permutations o of the integers {1, ..., £}. This formula

is closely connected to optimal transport as explained in [19, 26].
Combining (4.16) and (4.19), we derive a remarkable explicit formula for R when
ueec:

L
Ru:/ Vu|? + 87Min P; — Ny .
() Q| | p l=21|l o (i)
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In fact, there is a similar formula, just slightly more complicated for a general
ue Hé} (2; S?). Namely, one can show (see [26]) that, for every u € Hg1 (R2; S?), there
exist sequences (P;) and (N;) such that > ;= | Pi — N;| < oo, and

dr &
= T Z(Spi - SN,)
i=1

Moreover,

S(u) =8n Inf{

5~ 8%) =D _(r, —sNi)}.

The relaxed energy consists, therefore, of the usual energy |, o IVu |2 plus an addi-

i=1

tional term involving the “interaction of singularities” — a quantity which may possibly
be of physical interest.

Some partial regularity results concerning the minimizers of the relaxed energy
have been obtained by Giaquinta—Modica—Soucek, Hardt-Lin—Poon and others, but
the answer to Open Problem 4.3 remains elusive. An easier question still unresolved is
the following.

OreN ProBLEM 4.4. Let u be aminimizer of (4.9). Isit true that S (1) = 0,i.e., Ju = 0?
or equivalently that there exists a sequence (4,) in H ; (22;S?) N C(RQ) such that u,
converges to u strongly in H'?

5. DEGREE, VMO, W1/P:P Anp FOURIER

Recall that
BMO(S?)

1
= {f e LY(SY0); | flemo := SLllpW/I[I |f(x)—f(y)|dxdy < oo},
where sup; is taken over all arcs of circle in St,
VMO(S!) = {f e BMO(SY); lim —//|f(x)—f(y)|dxdy _0}

Obviously, L*° € BMO and C C VMO; moreover, VMO is the closure of C in BMO.
Forany 1 < p < oo,
wl/p.p (S 1)

fx) = fm|”
:{feLl(Sl;@);|f|§V1/P,p. /SI/SI| Ty ‘dxdy<oo}.
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As usual, H'Y2 = W1/2:2 1t follows easily from Holder that
wl/PP(shy c VMO(S') Vp e (1, 00).

Clearly, the classes W1/7-2(S!; S1) increase with p on (1, 00); indeed if p > g,
|fx) = fD =277 (o) = f)|

Brezis—Nirenberg [31] have established that degree theory persists in VMO(S!; S1);
in particular, the new degree coincides with the classical degree on C(S';S!), and if
fn, f € VMO satisty f, — f in BMO, then deg f,, — deg f.

The starting point in this section is the following estimate for the degree.

THEOREM 5.1 ([8, Corollary 0.5]). For every 1 < p < oo, there exists a constant C,
(depending only on p) such that

(5.1) |deg f1 < Cpl f15,1/p, Y f €WVPP(SHSY.

Note that estimate (5.1) “deteriorates” as p \y 1 since | f|y1/p.p = 00 as p \( 1
unless f is a constant (see [14] and the beginning of Section 9). Therefore, it is tempting
to monitor the behavior of the constant C,, as p ™\ 1. A reasonable conjecture is the
following.

OreN ProBLEM 5.1 ([17, Remark 7]). Does there exist a (universal) constant ¢ such
that, forevery 1 < p <2,

p
(52) [degfl=c(p— 1)/Sl /Sl % Vfewl/rr(stisty

There is strong evidence in support of (5.2) as p N\ 1. Indeed, we have (as a
consequence of [28, Proposition 1]), when f is smooth,

B lf@=rol”
hm(p I/SI/SI x— 2 /Sl|f|,

|deg f| < — [ | /| by the Cauchy formula.

while

A far-reaching extension of (5.1) is the following striking estimate for the degree.

THEOREM 5.2. There exists a constant C such that for every f € C(S';S!)

(5.3) |deg f] < C // didy
stJst  |x—y]

1/ ()—fMI=V3]
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A weaker version of (5.3) where /3 is replaced by a small constant 8o > 0 was
originally announced in [8] and proved in [6, Theorem 4]. Subsequently, Bourgain—
Brezis-Nguyen [9] pushed the estimate up to §o = /2. Finally, Nguyen [53] established
that (5.3) holds and that /3 is optimal (see also [26, Section 12.5]); the current proof
is quite involved and it is natural to raise the following problem.

OpEN ProOBLEM 5.2 ([26, Open Problem 18]). Is there a simpler, more geometric proof
of Theorem 5.2? What is the best constant C in (5.3)? Is it achieved?

Given f € C(S';S') and § > 0, set

dxdy
O
()= f(»)1=8]

As a consequence of (5.3), we know that V f,
(5.4) |deg f| < CIs(f) V8 < V3.

Note that this estimate deteriorates as § \ 0 since I5(f) /" oo as § N\ O (unless f
is a constant). Therefore, it is natural to try to improve (5.4) by replacing C with a
constant Cg which tends to 0 as § \ 0. A reasonable conjecture is the following.

OpeN ProBLEM 5.3 ([17, Open Problem 3]). Does there exist a (universal) constant ¢
such that

(5.5) |deg f| < c8Is(f) Y f e C(ShSY) Vs < /32

There is strong evidence in support of (5.5) as § — 0. Indeed, when f is smooth,
we have limg_,¢ 8[5 (f) ~ fsl |f| (see [18, Theorem 3.1] and [29, Proposition 1]),
while |deg f] < 5& [q1 | /| by the Cauchy formula.

An SV -version of (5.5) was established by Nguyen [54] for any N > 2, but, sur-
prisingly, the case N = 1 remains elusive!

Nonlocal energies have become popular in recent years and it is of interest to study
the “least amount of W!/?-P_energy” necessary to produce a map f : S' — S! of
prescribed degree d (see [17, Remark 5]). More precisely, given 1 < p <ooandd € Z,
set

(5.6) mpq =MWf{|f|0,,,: feW/PP(S'Sh), deg f =d}.

From Theorem 5.1 above and [26, Theorem 12.9], we know that, for every 1 < p <
00, there exist two positive constants ¢ » and ¢, such that

cpld| <mpq <¢pld| Vd €Z.
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This suggests the following.
OpEN ProBLEM 5.4 ([26, Open Problems 22 and 23]). Let 1 < p < oo. Is it true that
(5.7 mpq =|dmp1 Vd eZ?
Is the Inf in (5.6) achieved?

The answer to both questions is positive for p = 2 (see [26, Theorems 12.9 and
12.10]). Assuming that (5.7) does not hold, is there an explicit formula for

. mMp.d .
lim —2£ = inf

mpad 9
d—+oo d d>0

Recall that the Fourier coefficients of a function f € L?(S!; C) are given, for every
n € Z, by

an=an(f) = 5- 0 7 e)e g = s /S fe)zar,

so that
7% = Spezane™®  in L?(0,27).

An elementary computation (see [17, Lemma 5] or [26, Lemma 12.5]) yields, for every

[ e HY2(SY),
|f|H1/2(S1) / /Sl |f()|2_){|(2y)’ dxdy = 4n’3,ez|nl|an|?.

The following striking formula connecting the degree of a map f € H'Y/2(S';S!)
and its Fourier coeflicients was brought to light by Brezis [17, Theorem 4] (see also
[26, Theorem 12.6]).

THEOREM 5.3. Forevery f € HY/2(S';S"), we have
(5.8) deg f = Speznlan(f)|*.

Equality (5.8) implies, in particular, that if f, g € HY/2(S';S!) satisfy |a,(f)| =
lan(g)| Vn € Z, then deg f = deg g. This formula has become the starting point of a
challenging direction of research labeled “Can one hear the degree?” in [17]. More
precisely,

(5.9) Given two maps f, g € VMO(S!; S!) such that |an(f)| = |a,,(g)|
' for all n € Z, can one conclude that deg f = deg g?

The answer to question (5.9) turns out to be negative in general.
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THEOREM 5.4 ([10]). There exist two functions f.g € C(S'; S) such that |a,(f)| =
lan(g)| Vn € Z, and deg [ # degg.

The construction of Bourgain—Kozma in [10] is quite elaborate and it would be
desirable to find a simpler one.

On the other hand, the answer is positive in some classes bigger than H/2(S'; S!)
as follows.

Tueorem 5.5 ([17, Corollary 2], [26, Corollary 12.3], and [45]). Assume that f, g €
W1/3:3(S1:SY) satisfy lan(f)| = |an(g)| Vi € Z, then deg f = deg g. In particular,
the conclusion holds if f,g € C%*(S';S!) witha > 1/3.

Note that the assertion in Theorem 5.5 is far from obvious since W 1/3:3(S1; S1) is
strictly bigger than H'/2(S';S') and thus the series Z,cz|n||a, (f)|? can be divergent
for a general f € W1/33(S!; S1). Note also that there is a wide “gap” between the
positive result in Theorem 5.5 and the counterexample by Bourgain—Kozma in Theorem
5.4. It is not known whether W1/3:3 is the sharp borderline.

OpEN ProBLEM 5.5. What happens to Theorem 5.5 when f, g € W1/7-2(S1; S1) with
p > 3 (resp., f.g € C%¥(S! : S!) with @ < 1/3)? The problem is open even under
the stronger assumption that f € W1/?-? with2 < p < 3 and g € W1/94 withq > 3
(resp., f € C%® witha > 1/3 and g € C%P with B < 1/3).

Theorem 5.5 is an immediate consequence of the following summation formula.

THeEOREM 5.6 ([17, Theorem 6], [26, Theorem 12.7], and [45]). For every f €
W1/3:3(S1:S1), we have

. sinne
(5.10) deg f = lim Eneznlan(f)|2 :
eNO0  n#0

ne
In particular, (5.10) holds if f € C%*(S'; Sy witha > 1/3.

It is not known whether different summation formulas might produce improvements
of Theorem 5.5, e.g., assuming that f belongs to a larger class W/P-P with p>1/3,
or C%® with o < 1/3.In fact, it is an open problem whether one can capture the degree
of any map f € VMO(S!;S') via a summation process involving only |a, ( f)|,n € Z.
More precisely, by a summation process we mean a family (0,,.),n € Z,0 < e < 1,
satisfying
(5.11) Ve e (0,1), sup|n|lonel < oo,

nez

(5.12) VneZ, limo,,=1.
e\(0
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Note that if (5.11)-(5.12) hold, then T, ez |an (f)|?0n ¢ is well defined Ve € (0,1)
and the question of interest is whether

(5.13) lim Epeznlan(f)|Pon,e = deg f?
&e\\0

OreN ProBLEM 5.6. Given any p > 3 (resp., « < 1/3), does there exist a summation
process (0y.¢), depending only on p (resp., &) such that (5.13) holds for every f €
W/P:p (resp., f € CO%)?

In the same vein one can raise the following problem.

OpEN PrOBLEM 5.7. Givenany f € C(S';S?!) (resp., f € VMO(S'; S1)), does there
exist a summation process (0y.¢) (depending on f') such that (5.13) holds?

We call attention to the following assertion.

CorOLLARY 5.1. Given any summation process (0y ¢ ), there exists some f € C(S';S!)
(depending on oy, ¢) such that X,czn|ay (f)lzon,a does not converge to deg f.

Corollary 5.1 is an immediate consequence (by contradiction) of Theorem 5.4. For
special summation processes, explicit f’s satisfying the conclusion of Corollary 5.1
have been constructed by Korevaar [46] and Kahane [45]; these are

{1 if |n| < [1/¢] (the integer part of 1/¢),
0if |n| > [1/¢],

(b) One = (1—g)",

(©) On,s := Y2 if n £ 0 and og,s = 1.

A stronger version of Corollary 5.1 is open:

(a) Op,e \=—

OpEN PrOBLEM 5.8. Does there exist some f € C(S';S?) (resp., f € VMO(S!;S!))
such that for any summation process (0, ¢), Znez|an(f)|*0n.c does not converge to

deg f?

Note that a negative answer to Open Problem 5.8 amounts to a positive answer to
Open Problem 5.7.

An interesting direction of research concerns the distance between the homotopy
classes of W/P-P(S';S!), 1 < p < oo, which are given by

€q ={f ew!/Pr(sl:SY)deg f =d}, deL.
There are two natural notions of distance:

diStwl/p.p(Sdl, gdz) = Inffegdl Infgegdz |f — g|W1/p,p
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and
DiStWU.I’-I) (8(11 ’ 8d2) = Supfegdl Infg€8d2 |f - ngl/.I’-I)-
It turns out (see [27,31]) that

diStW1/p,p(8dl,8d2) =0, Vdy,dyeZ.

On the other hand, Disty,1/5., (€4, , €4,) has an interesting interpretation.

Given fe€&y,,Infgce & | f —g|w1/p.» represents the least amount of energy required
to pass from the given f € &4, to a configuration in E4,, and Disty1/.»(E4,, E4,)
is the “highest price” one may have to pay as f runs in &;,. A remarkable result of
Shafrir asserts that this quantity depends only on |d; — d>]|.

TueoreM 5.7 ([61]). We have
(5.14) DiStﬁ/l/p.p(gdlﬂgdz) = Mp.|d\—d>|> Vp e (1,00), Ydi,dy € Z,

where mp, 4 is defined in (5.6).
In particular (when p = 2), (5.14) becomes

Disty, 5 (84, 6a,) = 4m°|dy — ds|.

A similar conclusion when S1 is replaced by SN, with N > 2 or just N = 2,1is
widely open. Consider, e.g., H1(S?; S?) and its homotopy classes

6s=1{f € H' (S*:S?*);deg f =d}, deL.
The quantity of interest is
Disty1 (64,.64,) = Supseg,, Infgee,, IV(f =29,
OPEN PrOBLEM 5.9 ([27]). Is it true that
DistZ, (84,.64,) = 87|d1 — da| Vdy.d> € 27

The inequality < is known (see [27] and the references therein), but the reverse
inequality (>) has been established only when d, > d; > 0 (see [27, Proposition 7.3]).
Even a much easier problem is open:

is it true that Disty1(€4,, E4,) = Disty1(E4,.E4,) Vdi1.dr» € 77

In a totally different (but somewhat related) direction, one may ask whether a version
of the Brouwer fixed point theorem holds for VMO maps.

OpEN PrOBLEM 5.10. Let B be the closed unit ball in RY and let f be a VMO map
from B into itself. Is it true that for every € > 0, the set

{xeB; |f(x)—x| <8}

has positive measure?
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6. UNBOUNDED EXTREMAL SOLUTIONS
Consider the nonlinear elliptic equation
—Au=2Af(u) inQCRV,

6.1) u>0 in ,
u=20 on 092,

where € is a smooth bounded domain in R, A > 0 is a constant, and f:10,400) >
(0, +00) is a smooth function satisfying

(6.2) f(0) >0, fisincreasing and convex,
and
t
(6.3) lim & = 400
t—>o0 t

Some basic general results concerning problem (6.1) are summarized in the follow-
ing (see [16,34] and the references therein).
THEOREM 6.1. There exists a constant A* € (0, +00) such that the following hold.

(a) Forevery A € (0,A%), problem (6.1) admits a minimal smooth solution denoted
by u(A); moreover u(A) increases with A (for every x € 2).

(b) For A > A%, there is no solution of (6.1).

(¢) u* = limypp= u(A) is a weak solution of (6.1) in the sense that u* € L'(Q),
f(W*)8 € LY(Q), where §(x) = dist(x, Q) and

(6.4) —/Qu*A;“ =x*/gf(u*)§ Ve C*(RQ), . =00n0RQ.

It was originally established by Nedev [52] that u* € L°°(2) when N < 3. The
question whether the same conclusion holds when 4 < N < 9 for every f satisfying
(6.2)-(6.3) was a long-standing open problem raised by Brezis [16]. It was recently
solved in a splendid piece of work by Cabré-Figalli-Ros-Oton—Serra.

TuaeoreM 6.2 ([35]). Assume (6.2)-(6.3) and
N <9,
then u* € L*°(Q).

Assumption N < 9 is optimal since a celebrated result by Joseph—Lundgren (1973)
provides an explicit solution of (6.4) when N > 10, Q2 = Bj is the unit ball in R¥ and
f(u) = e*. Namely, A* = 2(N — 2) and u*(x) = log(1/|x|?), so that u* ¢ L>®(RQ).



SOME OF MY FAVORITE OPEN PROBLEMS 327

This completes the case N < 9. On the other hand, many interesting questions
remain open when N > 10. Here are some of them.

OpeN PrOBLEM 6.1 ([16,34]). Assume that Q is a bounded smooth convex set in RY,
N > 10. Let f(u) = e*.Is u™* unbounded? If the answer is negative for some domains
2, can one find other functions f satisfying (6.2)-(6.3) (possibly depending on £2)
such that u*™ ¢ L°°(Q2)?

OpreN PrOBLEM 6.2 ([16,34]). Assume u* ¢ L°°(2). What can be said about the
blow-up set of #*? Does it consist of a single point when €2 is convex?

7. ESTIMATES A LA BOURGAIN—-BREZIS

The starting point in the following (non-trivial) estimate for the phase of S!-valued
maps. For simplicity, we work on TV, N > 2.

Taeorem 7.1 ([4, Corollary 1]). Let ¢ : TN — R be a smooth function, and set
u := e'%. Then

(7.1) ”w—/w

A basic ingredient in the proof of Theorem 7.1 is the following.

< C(lulgin + [ul%)).
LN/(N—=1)

TuEOREM 7.2 ([4, Theorem 2)). Given any f € LN(TN) such that [ f =0, there
exists Y € WLN 0 L(TN:RN) satisfying

divY = f onTV
and
1Y lwi.n + 1Y lLee < CnIlfllLw-

It is easy to check that WLN <« HY2 and, therefore, Y € HY2 N L with the
corresponding weaker estimate

(7.2) 1Y llg172 + 1Y lee < Cn I fllw-

The assertion of Theorem 7.2 is equivalent via duality to the estimate

[~/

< CnIVYllw-1v/v-n4ppr VY,
LN/(N=1)
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while the weaker assertion (7.2) corresponds to the weaker estimate

E CN||V1/f||H—1/2+Ll .
LN/(N—=1)

(7.3) Hw—/w

Theorem 7.1 can be deduced easily from estimate (7.2). Indeed, we have
(7.4) Vo = —iuVu.
Multiplying (7.4) by Y and applying (7.2) yields

o | fos| | | [

< Clulgr2|uY |g12 < C|u|H1/2(|u|H1/2||Y||Loo + |Y|H1/2)
< Clulgi2(1+ lulgi2)Il fliw.

which implies (7.1).
It turns out that there is a substantial improvement of Theorem 7.1.

THEOREM 7.3 ([4, Theorem 4], [7, Theorem 3], and [26, Theorem 9.7]). With the same
notations as in Theorem 7.1, we have

(7.5) 'P—/¢

[Note that H1/2 ¢ LN/N=1 gpd Wil ¢ [N/(N-1) ]
If we try to establish (7.5) by the same method as above we would need to invoke a

< Cn(Julgiz + lulz ).

‘H1/2+W1.1

stronger version of (7.3); namely

o g

However, such an estimate is still undecided.

<C|V¥lg-12401 Y.

H]/2+w1,1

OreEN ProBLEM 7.1 ([4]). Does (7.6) hold?

. REGULARITY OF MINIMIZERS FOR FUNCTIONALS INVOLVING THE TOTAL VARIATION

Let Q be a smooth bounded domain in RY, N > 2. Assume (for simplicity) that f is
a smooth function on € and consider the functional

1
o) = [ (Vul+5 [ o= sP

defined for u € BV(Q2) N L?(R2). This functional has been extensively used, e.g., in
image processing following the classical work of Rudin—Osher—Fatemi.
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Standard functional analysis yields the existence and uniqueness of a minimizer
denoted by U € BV(2) N L2(R2) for the problem

(8.1) Min, cgy nz2 P(u).
So far the best regularity result is the following.

THeOREM 8.1 ([36,58]). The minimizer U satisfies VU € L*°(R2), but in general VU
Ls not continuous.

This still leaves room for improvement.
OreN ProBLEM 8.1 ([20, Open Problem 1]). Does VU belong to BV(£2)?

When N = 1, the answer to Open Problem 8.1 is positive (see [20, Theorem 1]).
The proof is based on a transformation relating the solution of (8.1) to the derivative
of the solution of an obstacle problem. One may then apply a result of [24] (valid in all
dimensions N ). Unfortunately, this transformation seems to be restricted to N = 1.

9. CHARACTERIZATIONS OF CONSTANT FUNCTIONS AND BEYOND

Let 2 be a smooth bounded connected domain in RV, N > 1. It is known (see [14],
[26, Corollary 6.4]) that any measurable function u : Q2 — R satisfying

[/ |u(x)_u(y)|pdxdy<oo,

lx — y|[p+N

for some 1 < p < oo, must be a constant (i.e., there exists a constant ¢ such that
u(x) = c a.e.). As was pointed out in [14], this fact is an immediate consequence of the
Bourgain—Brezis—Mironescu (BBM) formula [5]; alternative direct elementary proofs
are presented in [26].

A significant extension of this result goes as follows. Given A > 0, p > 1,and a
measurable function u# : Q — R, set

. Ju) —u)|”
D) pu) = meas{(x,y) e Q xQ; W > Ay,
THEOREM 9.1. Assume that a measurable function u satisfies

lim A®, ,(u) =0 forsomep >1,
A—00

then u must be a constant.

Theorem 9.1 is due to Brezis—Van Schaftingen—Yung [33] when p > 1 (with Q =
R¥ but the proof is unchanged when €2 is a ball) and to Poliakovsky [57, Corollary 1.1]
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when p = 1. Actually, Poliakovsky derives the result from a deeper assertion (see
below); as a consequence, the proof of Theorem 9.1 when p = 1 is quite intricate and
it would be desirable to find a more direct and elementary proof, possibly in the spirit
of [33].

Here is a natural question related to Theorem 9.1.

OpeN ProBLEM 9.1 ([33, Open Problem 1]). Assume that u satisfies
liminf A®y ,(u) =0 forsome p > 1.
A—00

Can one conclude that u is a constant?

A far-reaching version of this question is the following.

OpeN ProBLEM 9.2 ([32, Section 7.2]). Given any 1 < p < oo, is there a constant
C = C(p, N, Q) such that, for all measurable functions u,

9.1) [Vull?, <C laminfkcb,l,p(u)?
—00
in the sense that ||Vu|Lr = ccifu ¢ WHP(Q).

Similarly for p = 1, is there a constant C = C (N, 2) such that, for all measurable
functions u,

9.2) [Vullar <C lam inf A®; 1 (u)?

—>00
where || Vu|[ps denotes the total mass of Vu if u € BV(R2), and |Vul[y = oo if
u ¢ BV(Q).

Poliakovsky [57] gave a positive answer to Open Problem 9.2 under the stronger
assumption that lim inf is replaced by lim sup in (9.1) and (9.2).
Along the same lines one may even try to go one step further.

OpPEN ProBLEM 9.3 ([32, Section 7.3]). Does the family of functionals A®;_, converge
as A — 00, in the sense of ['-convergence, to the functional W defined, when p > 1, by

Y () cpl|Vull?, ifuewhr(Q),
u) =

+o0 ifu ¢ Whr(Q),
and when p = 1 by

c1|Vullyr  ifu € BV(Q),

Y(u) = {
400 ifu ¢ BV(Q),

for some positive constants ¢, and ¢1?

The three problems above are already interesting when N = 1!
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10. A SHARP RELATIVE ISOPERIMETRIC INEQUALITY FOR THE CUBE

Let Q be the unit cube in RN, N > 2. Given a measurable set S C @, denote by 1g
the characteristic function of S, by |S| = || 15|11 the volume of S, and by P(S) the
relative perimeter of S, i.e., taking into account only the part of the boundary of S
inside Q; in other words P (S) is the total mass of the measure V1g (possibly infinite
if S is not rectifiable). Consider the function fx (¢) defined for 0 <t < 1 by

(10.1)  fa (@) := inf{P(S); S is a measurable subset of Q such that |S| = t}.

Clearly, fx(t) = fn(1 —1t) Vt € [0, 1]; just replace S by Q \ S in (10.1). An
explicit formula for fu (¢) is known when N = 2.

Treorem 10.1 ([21]). We have
(10.2) fa(t) =

OpeN ProBLEM 10.1 ([21]). Is there a formula similar to (10.2) for fx (¢) when N > 3?
In particular, is it true that fx () = 1 neart = 1/2?
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