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1. Introduction

In a planar elasticity setting, the Griffith energy is defined by

G .u;K/ WD

ˆ
�nK

Ae.u/ W e.u/ dx CH1.K/;

where� � R2, which is bounded and open, stands for the reference configuration of a
linearized elastic body, and

A� D �.tr �/I C 2�� for all � 2M2�2
sym ;

where � and � are the Lamé coefficients satisfying � > 0 and � C � > 0. Here,
e.u/D .DuCDuT /=2 is the symmetric gradient of the displacement u W� nK!R2

which is defined outside the crack K � x�.
This energy functional is defined on pairs function/set

.u;K/ 2 A.�/ WD
®
K � x� is closed and u 2 LD.�0 nK/

¯
;

where �0 � x� is a bounded open set and LD is the space of functions of Lebesgue
deformation for which e.u/ 2 L2. Note that, by definition,K is a compact subset of x�
and u is defined in �0 nK, but we work in the ambient space � so as to build local
competitors.
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We say that .u;K/ is a minimizer for the Griffith energy if it is a solution to the
problem

inf
² ˆ

�

Ae.v/ W e.v/ dx CH1.K/ W .v;K/ 2 A.�/; v D  a.e. in �0 n x�
³

for some datum  2 W 1;1.
A lot of attention has been given on the Griffith functional these last years (see

[4–10,17]), and, in particular, it has been proved that a global minimizer .u;K/ 2A.�/

(with a prescribed Dirichlet boundary condition) does exist and that the crack set K
is H1-rectifiable and locally Ahlfors-regular in �. The latter means that there exists
C0 � 1 (depending on A) such that for all x 2 K and all r > 0 with B.x; r/ � �,

C�10 r � H1
�
K \ B.x; r/

�
� C0r:

In [4], it was proved that any isolated connected component of the singular setK of
a Griffith minimizer is C 1;˛ a.e. It also applies to a connected minimizer K (for, e.g.,
minimizer with connected constraints). In this paper, we slightly improve the Hausdorff
dimension of the singular set. We also prove some higher integrability property on the
symmetrized gradient.

The main results of this paper are the following.

Theorem 1.1. Let .u; K/ 2 A.�/ be a minimizer of the Griffith energy with K
connected. Then the following hold.

(1) There exist ˛ 2 .0; 1/ and a relatively closed set † � K \� with dimH .†/ < 1

such that K \� n† is locally a C1;˛ curve.

(2) There exist C � 1 and p > 1 (depending on A) such that for all x 2 � and r > 0
such that B.x; r/ � �,

ˆ
B.x;r=2/

ˇ̌
e.u/

ˇ̌2p dx � Cr2�p:

The proof of our main theorem follows from standard techniques that were already
used in the scalar context of the Mumford–Shah functional, but adapted to the vectorial
Griffith functional in a non-trivial manner. In particular, for (1) we follow the approach
of David [11] and Rigot [19], based on uniform rectifiability of the singular set and
Carleson measure estimates (see also [1,14] for an alternative approach). The idea is to
estimate to number of balls in which one can apply the "-regularity theorem contained
in [4]. But the latter needs a topological separating property that one has to control in
any initialized balls which is one of the main issues of the present work (Lemma 3.1).
We also need to control the 2-energy by a p-energy (Corollary 5.1) which also uses
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a topological argument (Lemma 5.3). The proof of (2) is based on a strategy similar
to what was first introduced by De Philippis and Figalli in [15] and also used in [18],
which easily follows from the porosity of the singular set together with elliptic estimates.
Since the elliptic estimates needed relatively for the Lamé system are not easy to find
in the literature, we have developed an appendix containing the precise results.

Let us stress that the famous Cracktip function, that arises as blow-up limits of
Mumford–Shah minimizers at the tip of the crack, has a vectorial analogue. This
was the purpose of the work in [3]. Since the vectorial Cracktip is homogeneous of
degree 1/2 (see [3, Theorem 6.4]), it is natural to conjecture that, akin to the standard
Mumford–Shah functional, the integrability exponent of je.u/j should reach every
p < 4, as asked by De Giorgi for the Mumford–Shah functional.

2. Preliminaries

Notation

The Lebesgue measure in Rn is denoted by Ln, and the k-dimensional Hausdorff
measure by Hk . If E is a measurable set, we will sometimes write jEj instead of
Ln.E/. If a and b 2 Rn, we write a � b D

Pn
iD1 aibi for the Euclidean scalar product,

and we denote the norm by jaj D
p
a � a. The open (resp., closed) ball of center x and

radius r is denoted by B.x; r/ (resp., xB.x; r/).
We write M2�2 for the set of real 2 � 2 matrices, and M2�2

sym for that of all real
symmetric 2 � 2 matrices. Given two matrices A;B 2M2�2, we recall the Frobenius
inner product A W B D tr.tAB/ and the corresponding norm jAj D

p
tr.ATA/.

Functions of Lebesgue deformation

Given a weakly differentiable vector field u, the symmetrized gradient of u is denoted
by

e.u/ WD
DuCDuT

2
:

The p-normalized energy

Let .u;K/ 2A.�/. Then for any x0 2� and r > 0 such that B.x0; r/ ��, we define
the normalized elastic energy by

!p.x0; r/ WD r
1� 4p

�ˆ
B.x0;r/nK

ˇ̌
e.u/

ˇ̌p dx
� 2
p

:
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The flatness

LetK be a relatively closed subset of�. For any x0 2K and r > 0 such thatB.x0; r/�
�, we define the (bilateral) flatness by

ˇK.x0; r/ WD
1

r
inf
L

max
®

sup
y2K\ xB.x0;r/

dist.y; L/; sup
y2L\ xB.x0;r/

dist.y;K/
¯
;

where L belongs to the set of lines passing through x0. When a minimizer .u;K/ 2
A.�/ is given, we write simply ˇ.x0; r/ for ˇK.x0; r/.

Remark 2.1. The flatness ˇK.x0; r/ only depends on the setK \ B.x0; 2r/. We have
that for all 0 < t � r ,

ˇK.x0; t / �
r

t
ˇK.x0; r/;

and for y0 2 K \ B.x0; r=2/ and 0 < t � r=2

ˇK.y0; t / �
2r

t
ˇK.x0; r/:

If K 0 D 1
r
.K � x0/, then

ˇK.x0; r/ D ˇK0.0; 1/:

In the sequel, we will consider the situation where x0 2 K, r > 0 are such that
B.x0; r/ � � and

ˇK.x0; r/ � ";

for " > 0 small. This implies, in particular, that K \ B.x0; r/ is contained in a narrow
strip of thickness "r passing through the center of the ball. Let L.x0; r/ be a line
passing through x0 and satisfying

(2.1) K \ B.x0; r/ �
®
y 2 B.x0; r/ j dist.y; L/ � rˇK.x0; r/

¯
:

We will often use a local basis (depending on x0 and r) denoted by .e1; e2/, where e1
is a tangent vector to the line L.x0; r/, while e2 is an orthogonal vector to L.x0; r/.
The coordinates of a point y in that basis will be denoted by .y1; y2/.

Provided (2.1) is satisfied with ˇK.x0; r/� 1=2, we can define two discsDC.x0; r/
andD�.x0; r/ of radius r=4 and such thatD˙.x0; r/�B.x0; r/ nK. Indeed, using the
notation introduced above, setting x˙0 WD x0 ˙

3
4
re2, we can check thatD˙.x0; r/ WD

B.x˙0 ; r=4/ satisfy the above requirements.
A property that will be fundamental in our analysis is the separation in a closed

ball.
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Definition 2.1. Let K be a closed set of R2, let x0 2 K, and let r > 0 be such
that ˇK.x0; r/ � 1=2. We say that K separates in B.x0; r/ if the balls D˙.x0; r/ are
contained into two different connected components of B.x0; r/ nK.

The following lemma guarantees that when passing from a ballB.x0; r/ to a smaller
one B.x0; t /, and provided that ˇK.x; r/ is relatively small, the property of separating
is preserved for t varying in a range depending on ˇK.x; r/.

Lemma 2.1 ([4, Lemma 3.1]). Let � 2 .0; 1=16/, letK �R2 be a closed set, let x0 2K,
and let r > 0 be such thatB.x0; r/�� and ˇK.x0; r/ � � . IfK separates inB.x0; r/,
then for all t 2 .16� r; r/, we have ˇK.x0; t / � 1=2 and K still separates in B.x0; t /.

3. Local separation in many balls in a connected uniformly
rectifiable set

The purpose of this section is the following general result on compact connected sets
which are locally Ahlfors-regular.

Lemma 3.1. LetK � x� be a compact connected set which is locally Ahlfors-regular in
�; that is, there existsC0 � 1 such that for all x 2K and for all r > 0withB.x; r/��,

C�10 r � H1
�
K \ B.x; r/

�
� C0r:

Then, for every 0 < " � 1
2
, there exists a 2 .0; 1=2/ small enough (depending on C0

and ") such that for all x 2K and r > 0 withB.x; r/��, one can find y 2 B.x; r=2/
and t 2 .ar; r=2/ satisfying

(3.1) ˇK.y; t/ � " and K separates in B.y; t/ in the sense of Definition 2.1:

Proof. The letter C is a constant � 1 that depends on C0 and whose value might
increase from one line to another but a finite number of times. Let K be as in the
statement of the lemma. For every " > 0, we denote by B."/ the bad set where ˇK is
large:

B."/ WD
®
.z; s/ j z 2 K; s > 0 and ˇK.z; s/ > "

¯
:

Let x 2K and let r > 0 be such that B.x; r/ ��. It is more convenient to assume that
B.x; 4r/ � � and r � diam.K/=4 and we are going to justify that we can make this
assumption without loss of generality. First, we draw from the local Ahlfors-regularity
that there exists a constant C1 � 1 (depending on C0) such diam.K/ � C�11 r . Let us
consider � WD 4C1,

r1 WD �
�1r � min

�
r=4; diam.K/=4

�
;
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and some a 2 .0; 1=2/. If we solve the problem in the ball B.x; r1/, that is, if we find
y 2 B.x; r1=2/ and t 2 .ar1; r1=2/ such that (3.1) holds true, then we have solved the
problem in B.x; r/ as well because y 2 B.x; r=2/ and t 2 .br; r=2/, where b D a��1.
This shows that it suffices to solve the problem in the ball B.x; r1/ which has all the
desired properties. To simplify the notations, we directly assume that B.x; 4r/ � �
and r � diam.K/=6.

In the sequel, we want to apply the results of [13], which work with sets of infinite
diameter. This explains why we need to slightly modify our setK to fit in the definition
of [13]. Precisely, given an arbitrary line L passing through x, one can check that the
set

(3.2) E D
�
K \ B.x; 3r/

�
[ @B.x; 3r/ [

�
L n B.x; 3r/

�
is connected and Ahlfors-regular in the exact sense of [13, Definition 1.13]; that is, E
is closed and there exists C � 1 (that depends on C0 as usual) such that for all y 2 E
and for all � > 0,

C�1� � H1
�
E \ B.y; �/

�
� C�:

As a consequence, it is contained in an (Ahlfors)-regular curve (see [13, (1.63)] and
the discussion below) and thus is uniformly rectifiable with a constant C � 1 that
depends on C0 [13, Theorem 1.57 and Definition 1.65]. In particular, it satisfies a
geometric characterization of uniform rectifiability called bilateral weak geometric
lemma [13, Definition 2.2 and Theorem 2.4]. It means that, for all " > 0, there exists
C."/ � 1 (depending on C0 and ") such that for all y 2 E and all � > 0,

ˆ
z2E\B.y;�/

ˆ �

0

1C."/.z; s/
ds
s

dH1.z/ � C."/�;

where

C."/ WD
®
.z; s/ j z 2 E; s > 0; and ˇE .z; s/ > "

¯
:

We are going to apply this property with y WD x and � WD r . We observe that for all
z 2 K \ B.x; r/ and for all 0 < s < r , we have K \ B.z; 2s/ D E \ B.z; 2s/ and
hence ˇK.z; s/ D ˇE .z; s/. Thus, (3.2) simplifies to

(3.3)
ˆ
z2K\B.x;r/

ˆ r

0

1B."/.z; s/
ds
s

dH1.z/ � C."/r:

We now return to the statement of the lemma. We fix " > 0. Let a 2 .0; 1/ be a
parameter that will be fixed later. Assume by contradiction that for all y 2K \B.x; r/
and t 2 .ar; r/, we have ˇK.y; t/ > ". This means that for such pairs .y; t/, we have
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1B."/.y; t/D 1. Moreover, we have by local Ahlfors-regularity that H1.K \B.x;r//�

C�10 r , soˆ
y2K\B.x;r/

ˆ
0<t<r

1B."/.y; t/
dt
t

dH1.z/

� H1
�
K \ B.x; r/

�ˆ r

ar

dt

t
� H1

�
K \ B.x; r/

�
ln
�
1

a

�
� C�10 r ln

�
1

a

�
:

Using now (3.3), we arrive at a contradiction, provided thata is small enough (depending
on C0 and ").

At this stage, we have proved that, for every x 2 K and r > 0 with B.x; r/ � �,
there exist y 2 B.x; r=2/ and t 2 .ar; r=2/ such that t � diam.K/=4 and

ˇK.y; t/ � ":

It remains to deal with the separation property. For that purpose, we will use the fact that
a compact connected set with finite length is arcwise connected (see [13, Theorem 1.8]).
Let us fix the coordinate system such that y D .0; 0/ and the line L that realizes the
infimum in the definition of ˇK.y; t/ is the x axis: L D R � ¹0º. This means that

K \ B.y; t/ �
®
.z1; z2/ j jz2j � "t

¯
:

Since t � diam.K/=4, there exist a point z 2 K n B.y; t/ and a curve � � K from
y to z. This curve touches @B.y; t/ at some point z0. Let � 0 � � be the piece of
curve from y to z0. The point z0 must lie either on @B.y; t/ \ ¹.z1; z1/ j z1 > 0º or
@B.y; t/ \ ¹.z1; z1/ j z1 < 0º. Let us assume that the first case occurs (for the second
case we can argue similarly). The curve � 0 stays inside the strip ¹.z1; z2/ j jz2j � "tº,
and runs from y (the center of the ball) to z0 (on the boundary). Let y0 WD y C t

2
e1.

Then we have ˇK.y0; 14 t / � 4" and, assuming that " � 1=8, the curve � 0 separates in
the ball B.y0; 1

4
t / (as in Definition 2.1), and so does K. This achieves the proof of the

proposition.

4. Carleson measure estimates on !p.x; r /

� WD
®
.x; r/ j x 2 K; r > 0 and B.x; r/ � �

¯
:

The purpose of this section is to state the following fact.

Proposition 4.1. Let .u;K/ 2 A.�/ be a minimizer of the Griffith functional. For
all p 2 Œ1; 2/, there exists Cp � 1 (depending on p and A) such thatˆ

y2K\B.x;r/

ˆ
0<t<r

!p.y; t/
dt
t

dH1.y/ � Cpr;

for all .x; 2r/ 2 �.
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Proof. The proof was originally performed by David and Semmes in the scalar context
of Mumford–Shah minimizers (see [12, Section 23]). It relies on the local Ahlfors-
regularity of Griffith minimizers; that is, there exists C0 � 1 (depending on A) such
that for all .x; r/ 2 �,

(4.1)
ˆ
B.x;r/

je.u/j2 dx CH1
�
K \ B.x; r/

�
� C0r

and

H1
�
K \ B.x; r/

�
� C�10 r:

The inequality (4.1) directly follows by taking .K nB.x; r//[ @B.x; r/ andu1�nB.x;r/
as a competitor, and the ellipticity of A. The proof in [12, Section 23] on Mumford–Shah
minimizers can be followed verbatim so we prefer to omit the details and refer directly
to [12].

5. Control of !2 by !p

The main "-regularity theorem uses an assumption on the smallness of!2. Unfortunately,
what we can really control in many balls (thanks to Proposition 4.1) is !p for p < 2,
which is weaker. This is why in this section we prove that !2 can be estimated from
!p , for a minimizer. This strategy was already used in [12, 19] for the Mumford–Shah
functional. The adaptation for the Griffith energy is not straightforward, but can be done
by following a similar approach as the one already used in [4, Section 4.1], generalized
with !p instead of only !2. Some estimates from the book [12] were also useful.

Lemma 5.1 (Harmonic extension in a ball from an arc of circle). Let p 2 .1; 2�,
0 < ı � 1=2, x0 2 R2, and r > 0. Let Cı � @B.x0; r/ be the arc of circle defined by

Cı WD
®
.x1; x2/ 2 @B.x0; r/ W .x � x0/2 > ır

¯
:

Then, there exists a constant C > 0 (independent of ı, x0, and r) such that every
function u 2 W 1;p.Cı IR

2/ extends to a function g 2 W 1;2.B.x0; r/IR2/ with g D u
on Cı and ˆ

B.x0;r/

jrgj2 dx � Cr2�
2
p

�ˆ
Cı

j@�uj
p dH1

� 2
p

;

where C D C.p/.

Proof. Let ˆ W Cı ! C0 be a bi-Lipschitz mapping with Lipschitz constants indepen-
dent of ı 2 .0; 1=2�, x0, and r > 0. Since u ıˆ�1 2 W 1;p.C0IR2/, we can define the
extension by reflection Qu 2 W 1;p.@B.x0; r/IR2/ on the whole circle @B.x0; r/, that
satisfies ˆ

@B.x0;r/

j@� Quj
p dH1

� C

ˆ
Cı

j@�uj
p dH1;
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where C > 0 is a constant which is independent of ı. We next define g as the harmonic
extension of Qu in B.x0; r/. Using [12, Lemma 22.16], we obtain

ˆ
B.x0;r/

jrgj2 dx � Cr2�
2
p

� ˆ
@B.x0;r/

j@� Quj
p dH1

� 2
p

� Cr2�
2
p

� ˆ
Cı

j@�uj
2 dH1

� 2
p

;

which completes the proof.

Lemma 5.2. Let .u; K/ 2 A.�/ be a minimizer of the Griffith functional, and let
x0 2 K and r > 0 be such that B.x0; r/ � � and ˇ.x0; r/ � 1=2. Let S be the strip
defined by

S WD
®
y 2 B.x0; r/ j dist.y; L/ � rˇ.x0; r/

¯
;

where L is the line passing through x0 which achieves the infimum in ˇK.x0; r/. Then
there exist a universal constantC > 0, � 2 .r=2; r/, and v˙ 2H 1.B.x0; �/IR2/, such
that v˙ D u on C˙, C˙ being the connected components of @B.x0; �/ n S , and

ˆ
B.x0;�/

ˇ̌
e.v˙/

ˇ̌2 dx � Cr2�
4
p

�ˆ
B.x0;r/nK

ˇ̌
e.u/

ˇ̌p dx
� 2
p

:

Proof. Let A˙ be the connected components of B.x0; r/ n S . SinceK \A˙ D ;, by
Korn inequality there exist two skew-symmetric matrices R˙ such that the functions
x 7! u.x/ �R˙x belong to W 1;p.A˙IR2/ and

ˆ
A˙
jru �R˙jp dx � C

ˆ
A˙

ˇ̌
e.u/

ˇ̌p dx;

where the constant C > 0 is universal since the domainsA˙ are all uniformly Lipschitz
for all possible values of ˇ.x0; r/ � 1=2. Using the change of variables in polar
coordinates, we infer that

ˆ
A˙
jru �R˙jp dx D

ˆ r

0

� ˆ
@B.x0;�/\A˙

jru �R˙jp dH1

�
d�

which allows us to choose a radius � 2 .r=2; r/ satisfying
ˆ
@B.x0;�/\AC

jru �RCjp dH1
C

ˆ
@B.x0;�/\A�

jru �R�jp dH1

�
2

r

ˆ
AC
jru �RCjp dx C

2

r

ˆ
A�
jru �R�jp dx �

C

r

ˆ
B.x0;r/nK

ˇ̌
e.u/

ˇ̌p dx:
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Setting C˙ WD @A˙ \ @B.x0; �/, in view of Lemma 5.1 applied to the functions
u˙ W x 7! u.x/ � R˙x, which belong to W 1;p.C˙IR2/ since they are regular, for
ı D ˇ.x0; r/ we get two functions g˙ 2 W 1;2.B.x0; �/IR2/ satisfying g˙.x/ D
u.x/ �R˙x for H1-a.e. x 2 C˙ and

ˆ
B.x0;�/

jrg˙j2 dx � C�2�
2
p

�ˆ
C˙
j@�u

˙
j
p dH1

� 2
p

� Cr2�
4
p

� ˆ
B.x0;r/nK

ˇ̌
e.u/

ˇ̌p dx
� 2
p

:

Finally, the functions x 7! v˙.x/ WD g˙.x/CR˙x satisfy the required properties.

Using the competitor above, we can obtain the following.

Proposition 5.1. Let .u;K/ 2 A.�/ be a minimizer of the Griffith functional, and
let x0 2 K and r > 0 be such that B.x0; r/ � � and ˇ.x0; r/ � 1=2. Then there exist
a universal constant C > 0 and a radius � 2 .r=2; r/ such thatˆ
B.x0;�/nK

Ae.u/ W e.u/dxCH1
�
K \B.x0; �/

�
� 2�CC�

�
!p.x0; r/C ˇ.x0; r/

�
:

Proof. We keep using the same notation as used in the proof of Lemma 5.2. Let
� 2 .r=2; r/ and v˙ 2 H 1.B.x0; �/IR2/ be given by the conclusion of Lemma 5.2.
We now construct a competitor in B.x0; �/ as follows. First, we consider a “wall” set
Z � @B.x0; �/ defined by

Z WD
®
y 2 @B.x0; �/ j dist

�
y;L.x0; r/

�
� rˇ.x0; r/

¯
:

Note that K \ @B.x0; �/ � Z,

@B.x0; �/ D
�
@AC \ @B.x0; �/

�
[
�
@A� \ @B.x0; �/

�
[Z D CC [ C� [Z;

and that
H1.Z/ D 4� arcsin

�
rˇ.x0; r/

�

�
� 2�rˇ.x0; r/:

We are now ready to define the competitor .v;K 0/ by setting

K 0 WD
�
K n B.x0; �/

�
[Z [

�
L.x0; r/ \ B.x0; �/

�
;

and, denoting by V ˙ the connected components of B.x0; �/ nL.x0; r/ which intersect
A˙,

v WD

´
v˙ in V ˙;
u otherwise:
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Since H1.K 0 \ xB.x0; �// � 2�C 2�rˇ.x0; r/, we deduce that
ˆ
B.x0;�/nK

Ae.u/ W e.u/ dx CH1
�
K \ xB.x0; �/

�
�

ˆ
B.x0;�/nK

Ae.v/ W e.v/ dx CH1
�
K 0 \ xB.x0; �/

�
� Cr2�

4
p

�ˆ
B.x0;r/nK

ˇ̌
e.u/

ˇ̌p dx
� 2
p

C �
�
2C Cˇ.x0; r/

�
� 2�C C�

�
!p.x0; r/C ˇ.x0; r/

�
;

and the proposition follows.

The next lemma is of purely topological nature.

Lemma 5.3. Let K � R2 be a compact connected set with H1.K/ < C1. Assume
that, for some x 2 K and r 2 .0; diam.K//, we have ˇK.x; r/ � 1=2. Then

H1
�
K \ B.x; r/

�
� 2r � 3rˇK.x; r/:

Proof. Let " WD ˇK.x; r/. We can assume that x D .0; 0/ and that L WD L.x; r/ D
R � ¹0º so that K \ B.x; r/ is contained in the strip S defined by

S WD B.x; r/ \
®
.z1; z2/ 2 R2 j jz2j � "r

¯
:

Let�1 WR2!L be the projection defined by�1.z1; z2/D .z1; 0/. As�1 is 1-Lipschitz,
we know that

H1
�
K \ B.x; r/

�
� H1

�
�1
�
K \ B.x; r/

��
:

Let us denote E D �1.K \ B.x; r//. Now we define the constant

c" WD
p

1 � "2;

and we use that K is connected to claim that L \ Œ�rc"; rc"� n E is an interval (we
identify L with the real axis). Indeed, notice that even if K is connected, it may
be that K \ B.x; r/ is not. However, for each a 2 E, there exists jt j � "r such that
z0 WD .a; t/ 2K, and since r < diam.K/ there exists a curve� that connects z0 to some
point z1 2 K n B.x; r/. But then E has to contain �1.�/, and since ˇK.x; r/ � 1=10,
it means that either Œa; rc"� � E or Œ�rc"; a� � E. Indeed, the curve � is contained in
the strip S and has to “escape the ball” B.x; r/ either from the right or from the left.
The projection with minimal length would be when � escapes exactly at the corner of
S \ B.x; r/ which gives the definition of c" (see Figure 1).
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that z0 := (a, t) ∈ K, and since r < diam(K) there exists a curve Γ that connects
z0 to some point z1 ∈ K \ B(x, r). But then E has to contain π1(Γ), and since
βK(x, r) ≤ 1/10 it means that either [a, rcε] ⊂ E or [−rcε, a] ⊂ E. Indeed, the
curve Γ is contained in the strip S and has to “escape the ball” B(x, r) either from
the right or from the left. The projection with minimal length would be when Γ
escapes exactly at the corner of S ∩ B(x, r) which gives the definition of cε (see
the picture below).

This holds true for all a ∈ E, which necessarily imply that [−cεr, cεr] \E is an
interval, that we denote by I. As (I × [−εr, εr]) ∩K = ∅, we must have |I| ≤ 2εr
otherwise βK(x, r) > ε. All in all we have proved that

H1(K ∩B(x, r)) ≥ H1(π1(K ∩B(x, r))) ≥ 2rcε − 2εr.

Now, we estimate 2cεr − 2εr. We have

1−
√
1− ε2 =

ε2

1 +
√
1− ε2

≤ ε2 ≤ 1
2ε (5.4)

whence 2cε ≥ 2− ε and the result follows.

b

B(x, r)

x

L

K

I

rε
r(1 − cε)

Figure 1: estimating the length of K ∩B(x, r).

We now come to the interesting “reverse Hölder” type estimate that will be
needed later.

12

Figure 1. Estimating the length of K \ B.x; r/.

This holds true for all a 2 E, which necessarily imply that Œ�c"r; c"r� n E is an
interval, that we denote by I . As .I � Œ�"r; "r�/ \K D ;, we must have jI j � 2"r ,
otherwise ˇK.x; r/ > ". All in all, we have proved that

H1
�
K \ B.x; r/

�
� H1

�
�1
�
K \ B.x; r/

��
� 2rc" � 2"r:

Now, we estimate 2c"r � 2"r . We have

1 �
p

1 � "2 D
"2

1C
p
1 � "2

� "2 �
1

2
";

whence 2c" � 2 � " and the result follows.

We now come to the interesting “reverse Hölder” type estimate that will be needed
later.

Corollary 5.1. Let .u;K/ 2 A.�/ be a minimizer of the Griffith functional, and let
x0 2 K and r 2 .0; diam.K// be such that B.x0; r/ � � and ˇ.x0; r/ � 1=2. Then
there exist a universal constant C > 0 and a radius � 2 .r=2; r/ such that

!2.x0; �/ � C
�
!p.x0; r/C ˇ.x0; r/

�
:

Proof. By Proposition 5.1, we already know that there exist a universal constantC > 0
and a radius � 2 .r=2; r/ such thatˆ
B.x0;�/nK

Ae.u/ W e.u/dxCH1
�
K \B.x0; �/

�
� 2�CC�

�
!p.x0; r/C ˇ.x0; r/

�
:
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Now noticing that ˇ.x; �/ � 2ˇ.x; r/ � 1
5
, we can use Lemma 5.3 in B.x0; �/ which

yields
H1

�
K \ B.x0; �/

�
� 2� � 3ˇ.x0; r�/;

hence, ˆ
B.x0;�/nK

Ae.u/ W e.u/ dx � C�
�
!p.x0; r/C ˇ.x0; r/

�
:

Finally, by ellipticity of A we get
ˆ
B.x0;�/nK

Ae.u/ W e.u/ dx � r!2.x0; �/;

which finishes the proof.

6. Porosity of the bad set

Given 0 < ˛ < 1, x0 2K, and r > 0 such thatB.x; r/��, we say that the crack-setK
is C 1;˛-regular in the ballB.x0; r/ if it is the graph of a C 1;˛ function f such that, in a
convenient coordinate system, it holds that f .0/D x0, f 0.0/D 0 and r˛kf 0kC˛ � 1=4.

We recall the following "-regularity theorem coming from [4].

Theorem 6.1 ([4]). Let .u; K/ 2 A.�/ be a minimizer of the Griffith functional
with K connected and H1.K/ > 0. There exist constants a; ˛; "2 2 .0; 1/ (depending
on A) such that the following property holds true. Let x0 2 K and r > 0 be such that
B.x0; r/ � � and

!2.x0; r/C ˇ.x0; r/ � "2;

and K separates in B.x0; r/. Then K is C 1;˛-regular in B.x0; ar/.

Proof. Unfortunately, the above statement is not explicitly stated in [4], but it directly
follows from the proof of [4, Proposition 3.4]. Indeed, in the latter proof, some explicit
thresholds ı1 > 0 and ı2 > 0 and an exponent ˛ 2 .0; 1/ are given so that, provided
that

!2.x0; r/ � ı2; ˇ.x0; r/ � ı1;

and K separates in B.x0; r/, then

ˇ.y; t r/ � Ct˛

for all y 2 B.x0; r=2/ and t 2 .0; 1=2/. It implies that there exists a 2 .0; 1/ (which
depends on C and ˛) such that B.x0; ar/ is a C 1;˛ curve as well as a 10�2-Lipschitz
graph (thanks to [4, Lemma 6.4]). In addition, the graph is C 1;˛ with kf k1 � 10�2r
and [4, the estimate (6.8)] says moreover that kf 0kC0;˛ � C , from which we easily get
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.ar/˛kf 0kC0;˛ � C � 1=4 up to take a smaller radius r . The fact that ˛ and a depend
only on A follows from a careful inspection of the proof in [4].

We are now in a position to prove the following, which says that the singular set is
porus in K.

Proposition 6.1. Let .u;K/ 2 A.�/ be a minimizer of the Griffith functional withK
connected and H1.K/ > 0. There exist constants a 2 .0; 1=2/ (depending on A) such
that the following property holds true. For all x0 2K and r > 0 such thatB.x0; r/��,
there exists y 2 K \ B.x0; r=2/ such that K \ B.y; ar/ is C 1;˛-regular (where ˛ is
the constant of Theorem 6.1).

Proof. In view of Theorem 6.1, it is enough to prove the following fact: there exists
a 2 .0; 1=2/ such that for all x 2 K and r > 0 with B.x; r/ � �, there exist y 2
K \ B.x; r=2/ and ar < s < r=2 such that

!2.y; s/C ˇ.y; s/ � "2

andK separates in B.y; s/, where "2 is the constant of Theorem 6.1. We already know
from Lemma 3.1 how to control ˇ and the separation. We, therefore, need to add a
control on !2, and this will be done by applying successively Proposition 4.1 and
Corollary 5.1, but we need to fix carefully the constants so that it compiles well.

Let us pick any p 2 .1; 2/ and let Cp be the constant of Proposition 4.1, and let C0
be the constant of Corollary 5.1. Then we define

b WD
1

4
e
�
8CpC0
"2 and "0 WD

b"2

8C0
^
1

2
:

We fix x 2 K and r > 0 such that B.x; r/ � �. As noticed at the beginning of the
proof of Lemma 3.1, we can assume without loss of generality that B.x; 2r/ � � and
r � diam.K/=4. We apply Lemma 3.1 with the previous definition of "0 and we get that
for some a 2 .0; 1=2/ (depending on A), there exist y 2 B.x; r=2/ and t 2 .ar; r=2/
satisfying

ˇ.y; t/ � "0 and K separates in B.y; t/ as in Definition 2.1:

Then we apply Proposition 4.1 in B.y; t/ which yields

(6.1)
ˆ
z2K\B.y;t/

ˆ
0<s<t

!p.z; s/
ds
s

dH1.z/ � Cpt:

From this estimate, we claim that we obtain the following fact:

(6.2) there exist z 2 B.y; t=2/ and s 2 .bt; t=2/ such that !p.z; s/ �
"2

4C0
:



improvement for the minimizers of the two-dimensional griffith energy 351

Indeed, remember that K is connected, y 2 K, and r � diam.K/=4; thus there exist
z 2 K n B.y; t=2/ and H1.K \ B.y; t=2// � H1

�
Œy; z�

�
� t=2. Therefore, if the

claim in (6.2) is not true, then
ˆ
z2K\B.y;t=2/

ˆ
bt<s<t=2

!p.z; t/
ds
s

dH1.z/

�
"2

4C0
H1

�
K \ B.y; t=2/

�ˆ t=2

bt

dt
t
�
t "2

8C0
ln
�
1

2b

�
:

Returning back to (6.1), we get

ln
�
1

2b

�
�
8C0

"2
Cp

which contradicts our definition of b. The claim is now proved.
Now let us check what we have got in the ball B.z; s/. We already know that s � cr

for some constant c 2 .0; 1=2/ (which depends on A) and !p.z; s/ � "2
4C0

. Concerning
ˇ, we have

ˇ.z; s/ �
2

b
ˇ.y; t/ �

2

b
"0 �

"2

4C0
:

Next, we apply Corollary 5.1 which says that there exists s0 2 .s=2; s/ such that

!2.z; s
0/ � C0

�
!p.z; s/C ˇ.z; s/

�
�
"2

2
:

The ball B.z; s0/ satisfies all the required properties because ˇ.z; s0/ � 2ˇ.z; s/ � "2
2

so that
!2.z; s

0/C ˇ.z; s0/ � "2;

as required.
It remains to see that K still separates in the ball B.z; s0/. But once ˇ.z; s0/ is

controlled and knowing thatK already separates inB.y; t/, it follows from Lemma 2.1.

We are now ready to state one of our main results about the Hausdorff dimension
of the singular set.

Corollary 6.1. Let .u;K/ 2 A.�/ be a minimizer of the Griffith functional with K
connected. Then there exists a closed set † � K such that dimH .†/ < 1 and K n†
is locally a C 1;˛ curve.

Proof. The proof is standard now that Proposition 6.1 is established. Indeed, we can
argue exactly as Rigot in [19, Remark 3.29] which we refer to for more details.
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7. Higher integrability of e.u/

Theorem 7.1. Let .u;K/ 2 A.�/ be a minimizer of the Griffith functional with K
connected and H1.K/ > 0. There exist C � 1 and p > 1 (depending on A) such that
the following property holds true. For all x 2 � and all r > 0 such that B.x; r/ � �,ˆ

B.x;r=2/

ˇ̌
e.u/

ˇ̌2p dx � Cr2�p:

We rely on a higher integrability lemma [18, Lemma 4.2] which is inspired by the
technique of [15]. We recall that given 0 < ˛ < 1, a closed set K, x0 2 K, and r > 0,
we say that K is C 1;˛-regular in the ball B.x0; r/ if it is the graph of a C 1;˛ function
f such that, in a convenient coordinate system, it holds that f .0/ D x0, rf .0/ D 0,
and r˛krf kC˛ � 1=4. We take the convention that the C 1;˛ norm is small enough
because we do not want it to interfere with the boundary gradient estimates for the
Lamé equations. It is also required by the covering lemma [18, Lemma 4.3] on which
[18, Lemma 4.2] is based.

Lemma 7.1. We fix a radius R > 0 and an open ball BR of radius R in Rn. Let K be
a closed subset of BR and vWBR ! RC be a non-negative Borel function. We assume
that there exist C0 � 1 and 0 < ˛ � 1 such that the following holds true.

(i) For all ball B.x; r/ � BR centered in K,

C0r
n�1
� Hn�1

�
K \ B.x; r/

�
� C0r

n�1:

(ii) For all ballB.x;r/�BR centered inK, there exists a smaller ballB.y;C�10 r/�

B.x; r/ in which K is C 1;˛-regular.

(iii) For all ball B.x; r/ � BR such that K is disjoint from B.x; r/ or K is C 1;˛-
regular in B.x; r/, we have

sup
B.x;r=2/

v.x/ � C0

�
R

r

�
:

Then there exist p > 1 and C � 1 (depending on n, C0) such that 
1
2BR

vp � C:

Proof of Theorem 7.1. We apply Lemma 7.1. More precisely, for all x 2 � and all
R > 0 such thatB.x;R/��, one can apply [18, Lemma 4.2] in the ballB.x;R/ to the
function v WD Rje.u/j2. Assumption (i) follows from the local Ahlfors-regularity ofK.
Assumption (ii) follows from the porosity (Proposition 6.1). Assumption (iii) follows
from interior/boundary gradient estimates for the Lamé equations and from the local
Ahlfors-regularity. In particular, the boundary estimate is detailed in Lemma A.1.
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Lamé’s equations

We work in the Euclidean space Rn (n > 1). For r > 0, Br denotes the ball of radius
r and centered at 0. We fix a radius 0 < R � 1, an exponent 0 < ˛ � 1, a constant
A > 0, and a C 1;˛ function f WRn�1 \BR ! R such that f .0/ D 0, rf .0/ D 0, and
R˛Œrf �˛ � A. We introduce

VR WD
®
x 2 BR j xn > f .x

0/
¯
;

�R WD
®
x 2 BR j xn D f .x

0/
¯
:

We denote by � the normal vector field to �R going upward. For 0 < t � 1, we write
tVR for VR \ Bt and t�R for �R \ Bt . For u 2 W 1;2.VRIRn/, we denote by u� the
trace of u in L2.@VRIRn/. For a function �WVR ! Rn�n, we define (formally) div.�/
as the vector field whose i th coordinate is given by div.�/i D

P
j @j �ij . We also recall

the notation for the linear strain tensor

e.u/ D
DuCDuT

2

and the stress tensor

Ae.u/ D � div.u/In C 2�e.u/;

where � and � are the Lamé coefficients satisfying � > 0 and �C � > 0. We denote
byW 1;2

0 .VR [ �RIRn/ the space of functions v 2 W 1;2.VRIRn/ such that v� D 0 on
@VR n �R.

Our object of study are the functions u 2 W 1;2.VR/ \ L
1.VR/ which are weak

solutions of

(A.1)

´
div

�
Ae.u/

�
D 0 in VR;

Ae.u/ � � D 0 on �R;

that is for all v 2 W 1;2
0 .VR [ �RIRn/,ˆ

VR

Ae.u/ W Dv dx D 0:

Remark A.1. As

Ae.u/ D .�C �/DuT C �DuC �
�

div.u/In �DuT
�

and the part div.u/In �DuT is divergence free, we can also write formally

div
�
Ae.u/

�
D .�C �/r div.Du/C ��u:
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We are going to justify the following estimate.

Lemma A.1. Let us assume that n D 2. There exists C � 1 (depending on ˛, A, �, �)
such that

sup
1
2VR

ˇ̌
e.u/

ˇ̌
� C

� 
VR

ˇ̌
e.u/

ˇ̌2 dx
� 1
2

:

Proof. It suffices to prove that for all solutions of (A.1), we have

(A.2) sup
1
2VR

jDuj � C

� 
VR

jDuj2 dx
� 1
2

:

Indeed, we observe first that je.u/j � jDuj, so (A.2) implies that

(A.3) sup
1
2VR

ˇ̌
e.u/

ˇ̌
� C

� 
VR

jDuj2 dx
� 1
2

:

By Korn inequality, there exists a skew-symmetric matrix R such thatˆ
VR

jDu �Rj2 dx �
ˆ
VR

ˇ̌
e.u/

ˇ̌2 dx;

so it is left to apply (A.3) to x 7! u.x/ �Rx, which also solves Lamé’s equations.
From now on, we deal with (A.2). The letter C plays the role of a constant � 1

that depends on �, � and ˛, A. We refer to the proof of [16, Theorem 3.18] which
itself refers to the proof of [2, Theorem 7.53]. We straighten the boundary �R via the
C 1;˛ diffeomorphism �W x 7! x0 C .xn � f .x

0//en. We observe that �.VR/ contains
a half-ball BC D xB.0; C�10 R/C, where C0 � 1 is a constant that depends on �, �, ˛.
The Neumann problem satisfied by u in VR is transformed into a Neumann problem
satisfied by a function v in xB.0; C�10 R/C. Then we symmetrize the elliptic system
to the whole ball B D B.0; C�10 R/ as in [16, Theorem 3.18]. Following the proof of
[2, Theorem 7.53] (in the special case where the right-hand side h is zero), we arrive to
the fact that there exists q > n D 2 (depending on �, �, ˛) such that for all x0 2 1

2
B

and 0 < � � r � C�1Rˆ
B�.x0/

ˇ̌
rv � .rv/x0;�

ˇ̌2 dx

� C

�
�

r

�q ˆ
Br .x0/

ˇ̌
rv � .rv/x0;r

ˇ̌2 dx C C�q
ˆ
B

jrvj2 dx:

In particular, by Poincaré–Sobolev inequality,ˆ
B�.x0/

ˇ̌
rv � .rv/x0;�

ˇ̌2 dx � C
�
�

r

�q ˆ
B

jrvj2 dx:
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According to the Campanato characterization of Hölder spaces,

Œrv�C0;� . 12B/
� C

�
R�.2C2�/

ˆ
B

jrvj2 dx
� 1
2

;

where � D q�2
2

, and this implies that

sup
1
2B

jrvj � C

� 
B

jrvj2 dx
�2
:

This property is inherited by u via the diffeomorphism �,

sup
C�1VR

jruj � C

�  
VR

jruj2 dx
�2
:

We can finally bound the supremum of jruj on 1
2
VR by a covering argument.
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