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Abstract. – In this paper, we generalize a classical comparison result for solutions to Hamilton–
Jacobi equations with Dirichlet boundary conditions, to solutions to Hamilton–Jacobi equations
with non-zero boundary trace.

As a consequence, we prove the isoperimetric inequality for the torsional rigidity (with Robin
boundary conditions) and for other functionals involving such boundary conditions.
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1. Introduction

Let� be a bounded, open, and Lipschitz set and let u 2 W 1;p.�/, for some p � 1, be
a non-negative function.

In this paper, we deal with the problem of comparing a function u 2 W 1;p.�/ with
a radial function having the modulus of the gradient equi-rearranged with jruj. Hence,
we aim to extend the results presented by Giarrusso and Nunziante in [11] to a more
general setting.

Throughout this article, j � j will denote both the n-dimensional Lebesgue measure
and the .n � 1/-dimensional Hausdorff measure; the meaning will be clear by the
context.

If A is a bounded and open set with the same measure as �, we say that a function
f ? 2 Lp.A/ is equi-rearranged to f 2 Lp.�/ if they have the same distribution
function; that is clear by the following definition.

Definition 1.1. Let f W �! R be a measurable function; the distribution function
of f is the function

�f W Œ0;C1Œ! Œ0;C1Œ

defined by
�f .t/ D

ˇ̌®
x 2 � W jf .x/j > t

¯ˇ̌
:

In order to state our results, we recall some definitions.
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Definition 1.2. Let f W �! R be a measurable function:
• the decreasing rearrangement of f , denoted by f �, is the distribution function of
�f . Moreover, we can write

f �.s/ D inf
®
t � 0 j �f .t/ < s

¯
I

• the increasing rearrangement of f is defined as

f�.s/ D f
�
�
j�j � s

�
I

• the spherically symmetric decreasing rearrangement of f , defined in �], i.e. the
ball centered at the origin with the same measure as �, is the function

f ].x/ D f �
�
!njxj

n
�
;

where !n is the measure of the n-dimensional unit-ball of Rn;
• the spherically symmetric increasing rearrangement of f , defined in �], is

f].x/ D f�
�
!njxj

n
�
:

Clearly, we can construct several rearrangements of a given function f , but the one
we will refer to is the spherically symmetric increasing rearrangement defined in �].

The starting point of our work, and many others, is [11, Theorem 2.2].

Theorem 1.1. Let p � 1, f W� ! R, H WRn ! R be measurable non-negative
functions and letKW Œ0;C1/! Œ0;C1/ be a strictly increasing real-valued function
such that

0 � K
�
jyj
�
� H.y/ 8y 2 Rn and K�1.f / 2 Lp.�/:

Let v 2 W 1;p
0 .�/ be a function that satisfies´

H.rv/ D f .x/ a.e. in �;

v D 0 on @�:

Then, denoting by Nv the unique decreasing spherically symmetric solution to8<:K
�
jr Nvj

�
D f].x/ a.e. in �];

Nv D 0 on @�];

it holds that

(1.1) kvkL1.�/ � kNvkL1.�]/:
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They give also a similar result for the spherically symmetric decreasing rearrange-
ment of the gradient, with an L1 comparison.

In recent decades, many authors studied this kind of problems, in particular, in
[4] Alvino, Lions, and Trombetti proved the existence of a spherically symmetric
rearrangement of the gradient of v which gives an Lq comparison as in (1.1) for a
fixed q.

Moreover, Cianchi in [8] gives a characterization of such rearrangement; clearly,
the rearrangement found by Cianchi is different both from the spherically symmetric
increasing and decreasing rearrangement if q 2 .1;1/.

Furthermore, in [9,10] the authors studied the optimization of the norm of a Sobolev
function in the class of functions with fixed rearrangement of the gradient.

Incidentally, let us mention that the case where the Lq;1 Lorentz norm (see Section
2 for its definition) takes the place of the Lq norm in (1.1) has been studied in [15]. In
particular, he stated the following theorem.

Theorem 1.2. Let u be a real-valued function defined in Rn. Suppose that u is nice
enough – e.g. Lipschitz continuous – and the support of u has finite measure. Let M
and V denote the distribution function of jruj and the measure of the support of u,
respectively.

Let v be the real-valued function defined in Rn that satisfies the following conditions:

(1) jrvj is a rearrangement of jruj;

(2) the support of v has the same measure of the support of u;

(3) v is radially decreasing and jrvj is radially increasing.

Then,
kukLp;1.�/ � kvkLp;1.�]/ if n D 1 or 0 < p �

n

n � 1
I

furthermore,

kvkLp;1.�]/ D
p2

!
1
n
n .nC p/

Z 1
0

�
V

1
pC

1
n �

�
V �M.t/

� 1
pC

1
n
�
dt:

On the other hand, the problem of studying the rearrangement of the Laplacian
has been widely studied by several authors. The bibliography is extensive; for the
sake of completeness, let us recall some of the works: [14] for the Dirichlet boundary
conditions, [1, 2, 5] for the Robin conditions.

As we already said, we focus on the case in which the functions do not vanish on
the boundary. Our main theorem is the following.

Theorem 1.3. Let��Rn be a bounded, open, and Lipschitz set and let u 2W 1;p.�/

be a non-negative function. If we denote by �] the ball centered at the origin with the
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same measure as �, then there exists a non-negative function u? 2 W 1;p.�]/ that
satisfies

(1.2)

8̂<̂
:
jru?j D jruj].x/ a.e. in �];

u? D

R
@�
udHn�1

j@�]j
on @�]

and such that

(1.3) kukL1.�/ � ku
?
kL1.�]/:

Remark 1.4. By the explicit expression of u� on the boundary and the Hölder inequal-
ity, we can estimate the Lp norm of the trace:

j@�]jp�1
Z
@�]

.u?/p dHn�1

D

�Z
@�

udHn�1

�p
� j@�jp�1

Z
@�

up dHn�1
8p � 1:

(1.4)

This result allows us to compare solutions to PDE with Robin boundary conditions
with solutions to their symmetrized.

Precisely, we are able to compare solutions to8̂<̂
:
��u D 1 in �;
@u

@�
C ˇj@�ju D 0 on @�

with the solution to 8̂<̂
:
��v D 1 in �];
@v

@�
C ˇj@�]jv D 0 on @�]:

In particular, we get the following.

Corollary 1.5. Let ˇ > 0 and let � � Rn be a bounded, open, and Lipschitz set. If
we denote by �] the ball centered at the origin with the same measure as �, it holds
that

T .�; ˇ/ � T .�]; ˇ/;

where

T .�;ˇ/D inf
w2W 1;2.�/

R
�
jrwj2 dx C ˇj@�j

R
@�
w2 dHn�1

.
R
�
w dx/2

for w 2W 1;2.�/:
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The paper is organized as follows. In Section 2, we recall some basic notions,
definitions, and classical results and we prove Theorem 1.3. Eventually, Section 3 is
dedicated to the application to the Robin torsional rigidity and in Section 4 we get a
comparison between Lorentz norm of u and u?.

2. Notations, preliminaries, and proof of the main result

Observe that obviously 8p � 1

kf kLp.�/ D kf
�
kLp.Œ0;j�j�/ D kf

]
kLp.�]/

D kf�kLp.Œ0;j�j�/ D kf]kLp.�]/I

moreover, the Hardy–Littlewood inequalities hold true:Z
�

jf .x/g.x/j dx �

Z j�j
0

f �.s/g�.s/ ds D

Z
�]

f ].x/g].x/ dx;Z
�]

f ].x/g].x/ dx D

Z j�j
0

f �.s/g�.s/ ds �

Z
�

ˇ̌
f .x/g.x/

ˇ̌
dx:

Finally, the operator which assigns to a function its symmetric decreasing rearrangement
is a contraction in Lp (see [7]) i.e.

(2.1) kf � � g�kLp.Œ0;j�j�/ � kf � gkLp.�/:

One can find more results and details about rearrangements for instance in [13] and
in [15].

Other powerful tools are the pseudo-rearrangements. Let u 2 W 1;p.�/ and let
f 2 L1.�/, as in [3] 8s 2 Œ0; j�j�, there exists a subset D.s/ � � such that

(1) jD.s/j D s;

(2) D.s1/ � D.s2/ if s1 < s2;

(3) D.s/ D ¹x 2 � j ju.x/j > tº if s D �.t/.

So the function Z
D.s/

f .x/ dx

is absolutely continuous, therefore there exists a function F such that

(2.2)
Z s

0

F.t/ dt D

Z
D.s/

f .x/ dx:

We will use the following property [3, Lemma 2.2].
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Lemma 2.1. Let f 2 Lp for p > 1 and let D.s/ be a family described above. If F
is defined as in (2.2), then there exists a sequence ¹Fkº such that Fk has the same
rearrangement as f and

Fk * F in Lp
��
0; j�j

��
:

If f 2 L1, it follows that

lim
k

Z j�j
0

Fk.s/g.s/ ds D

Z j�j
0

F.s/g.s/ ds

for each function g 2 BV.Œ0; j�j�/.

Moreover, for sake of completeness, we will recall the definition of the Lorentz
norm.

Definition 2.1. Let � � Rn be a measurable set, 0 < p < C1, and 0 < q < C1.
Then, a function g belongs to the Lorentz space Lp;q.�/ if

kgkLp;q.�/ D

�Z C1
0

�
t

1
p g�.t/

�q dt
t

� 1
q

< C1:

Let us notice that for p D q the Lorentz spaceLp;p.�/ coincides with the Lebesgue
space Lp.�/ by Cavalieri’s principle.

Let us now prove the main theorem.

Proof of Theorem 1.3. Let us consider ", ı WD ı", and the sets

�" D ¹x 2 Rnjd.x;�/ < "º †" D �" n�;

�]" D ¹x 2 Rnjd.x;�]/ < ıº †]" D �
]
" n�

];

j�"j D j�
]
"j j†"j D j†

]
"j;

where, since j†"j="! j@�j and j†]"j=ı ! j@�]j as "! 0, we have

lim
"!0

ı

"
D
j@�j

j@�]j
:

Let d.�; �/ be defined as follows:

d.x;�/ WD inf
y2�
jx � yj:

Then, we divide the proof into four steps.

Step 1. First of all, we assume� with C 1;˛ boundary, u 2 W 1;1.�/, and u � � > 0
in �.
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So we can consider the following “linear” extension of u, u" in �":

u".x/ D u
�
p.x/

��
1 �

d.x; @�/

"

�
8x 2 �" n�;

where p.x/ is the projection of x on @� (for " sufficiently small, this definition is well
posed since � is smooth; see [12]). The function u" has the following properties:

(a) u"j� D u,

(b) u" D 0 on @�",

(c) kru"kL1.�/ � jru"j.y/ 8y 2 †" for " sufficiently small,

(d) lim"!0C

R
†"
jru"j dx D

R
@�
udHn�1.

Properties (a) and (b) follow immediately by the definition of u", while (c) is a con-
sequence of the regularity of u. Property (d) can be obtained by an easy calculation;
indeed

ru".x/ D r
�
u
�
p.x/

���
1 �

d.x; @�/

"

�
� u

�
p.x/

�rd.x; @�/
"

:

For the first term, we can notice thatZ
†"

ˇ̌
r
�
u
�
p.x/

��ˇ̌�
1 �

d.x; @�/

"

�
dx � L

Z
†"

dx D Lj†"j;

whereL is theL1 norm ofru.p.x//. Now we deal with the second term and, keeping
in mind that jrd j D 1 and using coarea formula, we have

lim
"!0C

Z
†"

jru"j dx D lim
"!0C

1

"

Z
†"

u
�
p.x/

�
dx D lim

"!0C

Z "

0

dt

Z
�t

.u ı p/ dHn�1;

where �t D ¹x 2 †" j d.x; @�/D "º. By continuity of u and Lebesgue differentiation
theorem, we get

lim
"!0C

1

"

Z "

0

dt

Z
�t

u ı p dHn�1
D

Z
�0

.u ı p/ dHn�1
D

Z
@�

udHn�1

that proves property (d).
For every " > 0, we consider the problem

(2.3)

´
jrv"j.x/ D jru"j].x/ in �]";
v" D 0 on @�]";

and by Theorem 1.1 it holds that

(2.4) ku"kL1.�"/
� kv"kL1.�

]
"/
:
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Moreover, there exists x" such that for every " � x"

(2.5) jrv"j.x/ D jru"j].x/ D jruj].x/ 8x 2 �
]:

We can see u" as a W 1;1.�x"/ function and we have

(2.6)
Z
�

]
x"

jrv"j D

Z
�x"

jru"j D

Z
�

jruj C

Z
†"

jru"j � krukL1.�/ C 2kukL1.@�/

by property (d).
Finally, by Poincarè and (2.6), there exists a constant 0 < C D C.n;�/ such that

kv"kW 1;1.�
]
x"
/
� Ckrv"kL1.�x"/

� C.n;�/kukW 1;1.�/:

Therefore, up to a subsequence, there exists a limit function u? 2 BV.�]
x"/ such

that [6, Proposition 3.13]

v" ! u? in L1.�]
x"/ rv"

�
* ru? in �I

namely,

lim
"!0

Z
�

]
x"

' drv" D

Z
�

]
x"

' dru? 8' 2 C0.�;R
n/:

Our aim is to show that u? satisfies properties (1.2), (1.3), and (1.4).
Concerning (1.2), then jru?j D jruj] follows from (2.5).
To find the value of u? at the boundary, we observe that, from (2.3) and (2.5), we

have Z
†"

jru"j D

Z
†

]
"

jrv"j:

Now, for t > 0 setting �t D ¹d.x;�/ D tº, �]t D ¹d.x;�]/ D tº, r D .
j�j
!n
/

1
n , and

recalling that v" is radially symmetric, we haveZ
†

]
"

jrv"j D

Z rCı

r

Z
�

]
t

jrv"j dHn�1 dt D j�
]
t j

Z rCı

r

�v0"j�
]
t j dt D j�

]
t j v".r/:

Therefore, by monotonicity of j�]t j we have

j�]r jv".r/ �

Z rCı

r

�
�v0".t/j�

]
t j
�
dt � j�

]

rCı
jv".r/;

and since
j�]r jv".r/ D

Z
@�]

v" dHn�1
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using the fact that v" ! v in L1.�/, rv" D ru in � and the continuity embedding
of W 1;1.�/ in L1.�/, in the end we haveZ

†
]
"

jrv"j !

Z
@�]

u? dHn�1:

Using property (d), we obtainZ
@�

udHn�1
D

Z
@�]

u? dHn�1:

In the end, we have that for u? it holds that8̂<̂
:
jru?j D jruj] in �];

u? D

R
@�
udHn�1

j@�]j
on @�]

that proves (1.2).
Furthermore, by

ku"kL1.D/ ! kukL1.D/ and kv"kL1.D]/ ! ku
?
kL1.D]/;

we can pass to the limit "! 0 in (2.4) and we get

kukL1.�/ � ku
?
kL1.�]/

that proves (1.3).

Step 2. Now, we remove the extra-assumption u � ı > 0 defining

u� WD uC �:

Then, u� is strictly positive in � and we can apply the previous result: there exists
a function v� in �] such that8̂<̂

:
jrv� j D jru� j] D jruj] a.e. in �];

v� D

R
@�
u� dHn�1

j@�]j
D

R
@�
udHn�1

j@�]j
C �
j@�j

j@�]j
on @�];

and

(2.7) ku�kL1.�/ � kv�kL1.�]/:

If we define
u? WD v� � �

j@�j

j@�]j
;
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then u? solves 8̂<̂
:
jru?j D jruj] in �];

u? D

R
@�
udHn�1

j�]j
on @�]:

Sending � ! 0 in (2.7), we have

kukL1.�/ � ku
?
kL1.�]/:

Step 3. Now we remove the assumption on the regularity of �.
Let � be a bounded, open, and Lipschitz set and let u 2 W 1;1.�/. Then, there

exists a sequence ¹�kº �Rn of open set withC 2 boundary such that���k; 8k 2N

(for instance you can mollify �� and take a suitable superlevel set) and

j�k4�j ! 0; Hn�1.@�k/! Hn�1.@�/ for k !C1:

Let Qu be an extension of u in Rn such that

Quj� � u; k QukW 1;1.Rn/ � CkukW 1;1.�/:

We define
uk D Qu��k

and clearly uk D u in�. By the previous step, we can construct u?
k
2W 1;1.�

]

k
/ such

that it is radial, jrukj� D jru?kj�, and

kukkL1.�k/
� ku?kkL1.�

]

k
/
;(2.8) Z

@�k

uk dHn�1
D

Z
@�

]

k

u?k dHn�1:(2.9)

Therefore, since kukkW 1;p.�k/
�M , for all p, the sequence ¹u?

k
º is equibounded in

W 1;p.�]/ and it has a subsequence which converges strongly in Lp and weakly in
W 1;p to a function w.

Let us prove that jruj and jrwj have the same rearrangement:

lim sup
k

jru?kj � jruj]Lp.�]/
� lim

k

.fk/] � f]Lp.Rn/
;

where

f .x/ D

´
jr Quj in �;
kr QukL1.Rn/ in Rn n�

and fk D

´
jrukj in �k;
kr QukL1.Rn/ in Rn n�k :
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So using (2.1), we have.fk/] � f]Lp.Rn/
� kfk � f kLp.Rn/ D kfk � f kLp.�kn�/

� 2kr QukL1.Rn/j�k n�j

that tends to 0 as k !C1 by the fact that j�k4�j ! 0.
Hence, the functions rw and ru have the same rearrangement by the uniqueness

of the weak limit in �].
In the end, passing to limit k !C1 in (2.8) and (2.9), we have

kukL1.�/ � kwkL1.�]/;Z
@�

udHn�1
D

Z
@�]

w dHn�1:

Hence, w D u?.

Step 4. Finally, we proceed by removing the assumption u 2 W 1;1.�/.
Ifu 2W 1;p.�/, by Meyers–Serrin theorem, there exists a sequence ¹ukº �C1.�/

\W 1;p.�/ such that uk ! u in W 1;p.�/. We can apply a previous step to obtain
u?
k
2 W 1;1.�]/ such that jrukj and jru?

k
j are equally distributed and

kukkL1.�/ � ku
?
kkL1.�]/ 8k 2 N;(2.10) Z

@�

uk dHn�1
D

Z
@�]

u?k dHn�1
8k 2 N:(2.11)

Arguing as the previous step, there exists a function w such that up to a subsequence

u?k ! w in Lp.�/; ru?k * rw in Lp.�IRn/;

and jrwj has the same rearrangement as jruj.
Finally, sending k !C1 in (2.10) and (2.11), we have

kukL1.�/ � kwkL1.�]/;Z
@�

udHn�1
D

Z
@�]

w dHn�1:

Hence, w D u?.

3. An application to torsional rigidity

Let ˇ > 0, let � � Rn be a bounded and open set with Lipschitz boundary, and let us
consider the functional

Fˇ .�;w/ D

R
�
jrwj2 dx C ˇj@�j

R
@�
w2 dHn�1

.
R
�
w dx/2

w 2 W 1;2.�/
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and the associate minimum problem

T .�; ˇ/ D min
w2W 1;2.�/

Fˇ .w/:

The minimum u is a weak solution to8̂<̂
:
��u D 1 in �;
@u

@�
C ˇj@�ju D 0 on @�:

Our aim is to compare T .�; ˇ/ with

T .�]; ˇ/ WD min
v2W 1;2.�/

F�;ˇ .v/

D min
v2W 1;2.�/

R
�] jrvj

2 dx C ˇj@�]j
R
@�] v

2 dHn�1

.
R
�] v dx/2

;

where the minimum is a weak solution to8̂<̂
:
��z D 1 in �];

@z

@�
C ˇj@�]j z D 0 on @�]:

Proof of Corollary 1.5. Letw 2W 1;p.�/. By Theorem 1.3 and Remark 1.4, there
exists w? 2 W 1;1.�]/ radial such thatZ

�

jrwj2 dx D

Z
�]

jrw?j2 dx;Z
�

jwj dx �

Z
�]

jw?j dx;

j@�]j

Z
@�]

.w?/2 � j@�j

Z
@�

w2:

Therefore,
Fˇ .w/ � Fˇ .w

?/:

Passing to the infimum on the right-hand side and successively to the left-hand side,
we obtain

T .�; ˇ/ � T .�]; ˇ/:

Remark 3.1. We highlight that all the arguments work also in the non-linear case,
where the functional

Fˇ;p.w/ D

R
�
jrwjp dx C ˇj@�jp�1

R
@�
wp dHn�1

.
R
�
w dx/p

for w 2 W 1;p.�/

is considered.



symmetric rearrangement of the gradient of a sobolev function 445

4. A weighted L1 comparison

Let us check how to extend the result by [15] to the case of function non-vanishing on
the boundary.

Theorem 4.1. Let � � Rn be a bounded, open, and Lipschitz set. Let f 2 L1.�/
be a function such that

(4.1) f �.t/ �

�
1 �

1

n

�
1

t

Z t

0

f �.s/ ds 8t 2
�
0; j�j

�
:

If u 2 W 1;p.�/ and u? is the function given by Theorem 1.3, then

(4.2)
Z
�

f .x/u.x/ dx �

Z
�]

f ].x/u?.x/ dx:

Proof. If u 2 W 1;p
0 .�/, the result is contained in [15]. We recall it for the sake of

completeness.
By [11, (2.7)], it is known that

(4.3) u�.s/ �
1

n!
1
n
n

Z j�j
s

F.t/

t1�
1
n

dt;

where F is a function such thatZ s

0

F.t/ dt D

Z
D.s/

jruj�.s/ ds

with D.s/ defined in Section 2.
Setting g.t/ WD 1

t1�
1
n

R t
0
f �.s/ ds, multiplying both terms of (4.3) for f �.s/, inte-

grating from 0 to j�j, and using Fubini’s theorem, we getZ j�j
0

f �.s/u�.s/ ds �
1

n!
1
n
n

Z j�j
0

f �.s/

�Z j�j
s

F.t/

t1�
1
n

dt

�
ds

D
1

n!
1
n
n

Z j�j
0

F.t/g.t/ dt:

(4.4)

Let us suppose that g.t/ is non-decreasing, so g�.s/ D g.s/ and by Lemma 2.1 there
exists a sequence ¹Fkº such that .Fk/� D .ru/� and Fk * F in BV. Therefore,Z j�j

0

F.t/g.t/ dt D lim
k

Z j�j
0

Fk.t/g.t/ dt:
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Using Hardy–Littlewood’s inequality, we have

lim
k

Z j�j
0

Fk.t/g.t/ dt �

Z j�j
0

jruj�.t/g�.t/ dt D

Z j�j
0

jruj�.t/g.t/ dt:

Hence, by (4.4) and Fubini’s theorem, we obtainZ j�j
0

f �.t/u�.t/ dt �
1

n!
1
n
n

Z j�j
0

jruj�.t/ g.t/ dt

D
1

n!
1
n
n

Z j�j
0

jruj�.t/

�
1

t1�
1
n

Z t

0

f �.s/ ds

�
dt

D

Z j�j
0

f �.s/

�
1

n!
1
n
n

Z j�j
s

jruj�.t/

t1�
1
n

dt

�
ds

D

Z j�j
0

f �.s/.u?/�.s/ ds:

Therefore, by Hardy–Littlewood’s inequality, we haveZ
�

f .x/u.x/ dx �

Z j�j
0

f �.t/u�.t/ �

Z j�j
0

f �.s/.u?/�.s/ ds

D

Z
�]

f ].x/ u?.x/ dx:

But we have to deal with the assumption that g is non-decreasing; that is

g0.t/ � 0 ”
d

dt

�
1

t1�
1
n

Z t

0

f �.s/ ds

�
D �

n � 1

n

1

t2�
1
n

�Z t

0

f �.s/ ds

�
C

1

t1�
1
n

f �.t/ � 0

if and only if

f �.t/ �

�
1 �

1

n

�
1

t

Z t

0

f �.s/ ds:

Now let us deal with u …W 1;p
0 .�/. Suppose that u 2 C 2.�/ is a non-negative function,

that� has C 2 boundary, and that f satisfies (4.1). Proceeding as in Step 1 of Theorem
1.3, for every " > 0 we can construct u" that coincides with u in� and is zero on @�".
Moreover, we can extend f to �" simply defining

f".t/ D

´
f .x/ in �;
f �
�
j�j

�
in �" n�:
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The rearrangement, for every " > 0, is

f �" .t/ D

8<:f �.t/ in
�
0; j�j

�
;

f �
�
j�j

�
in
�
j�j; j�"j

�
;

so we just have to check (4.1) for t 2 Œj�j; j�"j�; namely,

(4.5) f �" .t/ �

�
n � 1

n

�
1

t

Z t

0

f �" .s/ ds:

Keeping in mind that f verifies (4.1), we have

f �" .t/ D f
�.j�j/ �

�
n � 1

n

�
1

j�j

Z j�j
0

f �.s/ ds:

If we show that

1

j�j

Z j�j
0

f �.s/ ds �

�
1

t

Z j�j
0

f �.s/ ds C
t � j�j

t
f �
�
j�j

��
D
1

t

Z t

0

f �" .s/ ds;

then (4.5) is true. By direct calculations,

t � j�j

t j�j

Z j�j
0

f �.s/ ds �
t � j�j

t
f �
�
j�j

�
”

1

j�j

Z j�j
0

f �.s/ ds � f �
�
j�j

�
I

that is true of the fact that f � is decreasing.
So, 8" > 0 we can apply the first part of the theorem obtainingZ

�"

u"f" dx �

Z
�

]
"

v"f
]
" dx:

Sending "! 0, we get Z
�

uf dx �

Z
�]

u?f ] dx:

Arguing as in Theorem 1.3, we get (4.2).

Remark 4.2. Condition (4.1) implies that the f is strictly positive. Moreover, if the
essential oscillation of f is bounded

ess osc jf j WD
ess supx2�

ˇ̌
f .x/

ˇ̌
ess infx2�

ˇ̌
f .x/

ˇ̌ � n

n � 1
;

then (4.1) is satisfied.
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Theorem 4.1 allows us to compare the minimum of

Tˇ;f .�/ WD min
w2W 1;2.�/

²
1

2

Z
�

jrwj2 dx C
ˇj@�j

2

Z
@�

w2 dHn�1
�

Z
�

wf dx

³
with the one of

Tˇ;f .�
]/ WD min

v2W 1;2.�]/

²
1

2

Z
�]

jrvj2dxC
ˇj@�]j

2

Z
@�]

v2dHn�1
�

Z
�]

vf ]dx

³
:

Corollary 4.3. Let ˇ > 0 and let � � Rn be a bounded, open, and Lipschitz set.
If f satisfies (4.1), then denoting by �] the ball centered at the origin with the same
measure as �, it holds that

Tˇ;f .�/ � Tˇ;f ].�]/:

Moreover, we can use Theorem 4.1 to get a comparison between Lorentz norm of
u and u?.

Corollary 4.4. Let 1 � p � n
n�1

. Under the assumption of Theorem 1.3, it holds
that

(4.6) kukLp;1.�/ � ku
?
kLp;1.�]/;

where u? is the function given by Theorem 1.3.

Proof. Let us explicit the Lp;1 norm of u:

kukLp;1.�/ D

Z C1
0

t
1
p�1u�.t/ dt D

Z C1
0

t
� 1

p0 u�.t/ dt:

Hence by Theorem 4.1, it is sufficient that

(4.7) t
� 1

p0 �
n � 1

n

1

t

Z t

0

s
� 1

p0 ds � 0:

If we compute
1

t

Z t

0

s
� 1

p0 ds D
1

t
p t
� 1

p0
C1
D p t

� 1
p0 ;

then we have

t
� 1

p0 �
n � 1

n

1

t

Z t

0

s
� 1

p0 ds D t
� 1

p0

�
1 �

n � 1

n
p

�
� 0 ” p �

n

n � 1
;

so (4.7) is true and we can apply Theorem 4.1 obtainingZ C1
0

t
� 1

p0 u�.t/ dt �

Z C1
0

t
� 1

p0 u?.t/ dt

that is (4.6).
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Remark 4.5. We emphasize that the boundp � n
n�1

is the best we can hope for Lorentz
norm Lq;1. Indeed, if by absurd (4.6) holds for p > n

n�1
, then by the embedding of

Lp;q spaces, Lq;1.�/ � Lq;q.�/ D Lq.�/, which gives a contradiction.
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