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ABsTrACT. — The aim of this paper is to propose some results which we hope could contribute
to understand better Lavrentiev’s phenomenon for energy integrals as in (1.1) under some p, g-
growth conditions as in (1.2); in fact, we expect that Lavrentiev’s phenomenon does not occur if
the quotient ¢/ p is not too large in dependence of n, for instance, as in the cases — either scalar
or vectorial ones — that we consider in this manuscript.
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1. INTRODUCTION

We consider the following non-autonomous energy integral:
(1.1) Fu,Q) = / {f(x,Du)+(b(x),u)} dx,
Q

where u : Q C R” — R™ is a vector-valued map defined in a bounded open set
Q C R*, n > 2, with values in R™, m > 1, and Du is its gradient m X n matrix.
The function f : Q x R™" — R, f = f(x, z), is measurable with respect to x €
Q C R” and it is convex and C! with respect to z € R™*", Moreover, (b(x),u) =
> o1 b*(x)u®(x) represents the scalar product by b(x) = (b*(x))g=1,,...m and
u=u(x) = u*x))a=1.2,.,m-

We assume the following p, g-growth conditions for some p, ¢ exponents, with
l<p=gq:

(1.2) c1lz|P —ca < f(x,2) < e3lz|? + ca,

for some positive constants cq, ..., c4; we also assume the summability condition on
p— o .
b= (b )a=l,2,...,m-

(1.3) b e L7 (Q,R™).
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The coercivity condition at the left-hand side of (1.2) ensures the existence of
global minimizers u € W17 (Q,R™) of F when suitable boundary values have been
fixed. Let us recall the difference between global and local minimizers. A mapping
u € WhP(Q,R™) is a global minimizer when x — f(x, Du(x)) € L'(Q) and

F(u,Q) = F(u+¢,9),

for every ¢ € W, ¥ (€2, R™). On the other hand, a mapping u € W27 (2, R™) is a

local minimizer when x — f(x, Du(x)) € L} () and

(1.4) F(u,suppg) < F(u + ¢, supp ¢),

for every ¢ € WHP(Q,R™) with suppp € Q. Note that a global minimizer is also a
local minimizer.

The p, g-growth was introduced and firstly studied in [32] within the field of the
theory of regularity. More recent related researches are described and quoted below in
this manuscript. Nowadays, the mathematical literature on regularity under p, g and
general growth conditions is very large; for instance, see the extensive list of references
in [34-38].

In the study of elliptic-convex problems with p, g-growth, if p # ¢, the coercivity
and the boundedness condition in (1.2) hold with different growth with respect to the
gradient variable |z| = | Du|; then, the loss of the regularity may occur. In addition,
some other unexpected properties of solutions may occur, as highlighted by Zhikov
in his pioneer paper [40]. We refer in particular to the Lavrentiev phenomenon, that
is, the feature of some energy integrals to have different infima if considered either
on the complete class U of admissible functions or on a smaller class (dense and)
contained in U. In particular, for the energy integral in (1.1), under p, g-growth (1.2)
with p < ¢, the definition (i.e. the precise meaning) of the integral F(u, 2) is not
ambiguous if u € Wléc’q (£2). On the contrary, a priori, it is not uniquely defined if
uewhrP(Q)\ Wlic’q (R2); in fact, a further definition is, for every u € W17 (Q),

F(u,Q) = inf {liminf F(u;, Q) :u; € Wb (Q) Vj € N, uj — uin WhHP(Q)}.
{u;} j—>+o0

Here, we used the symbol F to emphasize the fact that a priori the functional F is

different from F, and it is also an extension by lower semicontinuity (a closure) of

F (see, for instance, [19,21,31]). Then, we cannot a priori exclude the Lavrentiev

phenomenon in this context, in particular in the case of x-dependence. For the gap in

the Lavrentiev phenomenon, we refer to [9].

The main aim of this paper is to give conditions to rule out the Lavrentiev phe-
nomenon in the general case p < g. More precisely, under growth conditions on p and ¢,
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we propose cases with
inf{F(v):veu+ WOI”’(SZ/)} =inf{F(v):veu+ Wol’q(Q/)},

forevery Q' € 2, where u is a local minimizer of F; see Theorem 2.2 for vector-valued
integrals and Theorem 3.2 in the scalar case.

In order to give some details, we start to consider the standard growth p = ¢, and
we remark that since z — f(x, z) is convex and C!, growth conditions (1.2) and
[32, Lemma 2.1] imply

(1.5) afa(x z2)| <es(1+1z2771):

see also [31, Step 2, Section 2]. When p = ¢, (1.5) implies

0
(1.6) X > a—fa(x, Du(x)) € L7T(Q);

z¢

1

then, we can write the Euler equation in weak form, which in fact is a system of m
differential equations in divergence form, when we see each equation corresponding to
each separate component of the test vector-valued map ¢(x) = (¢*(x))g=1,2,...,m. For
every ¢ € W, P (2, R™), we have

(1.7) f 223 a x, Du(x))D;g (x)dx+/ Zb“(x)go (x)dx = 0.

a=1i=

Note also that when u € WHP(Q,R™) and p = g, then (1.2) implies that x —
f(x, Du(x)) € L'(2). Moreover, the convexity of z — f(x, z) guarantees that if
u € Whr(Q,R™), then

u globally minimizes F' <> u solves the Euler equation.

The case p < q is more delicate. Indeed, in such a situation, if u € W17 (Q,R™),
(1.6) changes into

X aaf (x Du(x)) Lq%l(Q).

Since q’%l < p —£5, then we cannot test (1.7) with ¢ € W ’p(Q R™) any longer. On

the contrary, if u € W 19 (Q;R™), then (1.5) implies

loc

0
8f (x Du(x)) € Ll‘écl (Q)
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and, being ¢ and qul conjugate exponents, (1.7) can be tested by any ¢ € W14 (Q,R™)
with compact support in 2. In this note, we use this approach to obtain the existence
(and regularity) of minimizers. In fact, the idea is to achieve existence in a Sobolev
class by means of regularity results, precisely by means of the higher integrability for
the gradient Du of solutions of the Euler equation or system. A weak solution of (1.7),
with a high degree of integrability, can be found, and such a weak solution turns out to
be a local minimizer of F also in a larger Sobolev class. Main steps in the proofs are
the results due by Cupini, Leonetti, and Mascolo [14] in the vector-valued case m > 1
and, in the more strict scalar case m = 1 but with better exponents, by Marcellini
[33, Section 4] and Cupini, Marcellini, and Mascolo [16].

2. VECTORIAL CASE

Consider the Dirichlet problem in 2 C R”:
e Z?ZI%(A?(x,Du(x)))zb“(x) nQ, a=1,...,m,
' u(x) = i(x) on 992,
The following theorem holds.

TueEOREM 2.1. Let Q2 be a bounded open subset of R", n > 2, and let AY : Q x R"™
—-R,i=1,...,n, a=1,...,m, be continuous with respect to z. We assume that
there exists 0 <y < landv, L, H > 0 such that

pr=2
22) v(lzP+ 217 2 |z -z
m n
<D A8 2) - AY(x.D)][zF — B, z.Ze R
a=1i=1
23) |A%(x,2)| < L(1+12))" ",

m n
24 Y > [A%2) —AXE )| < Hlx -3 (1+12)". xieq,
a=1i=1

with p and q satisfying

2.5) 22psq<pL.

—1
Let b be a function in LP/P=D (2, R™). Then, for all ii € Wl’p%(Q, R™), there
exists a weak solution u € (U + Wol’p (2,R™)N Wl;és (2, R™) of the Dirichlet prob-
lem (2.1), forallqg < s < pn"Ty.
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The proof of Theorem 2.1 proceeds basically in the same way as the one of [14,
Theorem 1.1] where b(x) = 0.

Under the previous assumptions, a vector-valued map u € W];C’q (2, R™) is a weak
solution to the system if

(2.6) / Z ZA"‘ x, Du(x)) D;¢®(x) dx + / Z b (x)p%(x) dx = 0,
a=1i=1
for all ¢ € W14(Q,R™) with suppy € Q.
We focus our attention on growth condition (2.3). First, we observe that since
|Du|97' € L77", we obtain A(x, Du(x)) € Lloc ,
The question is now the following: if we assume ¢ € W 1:7(Q,R™) w1th supp (p C Q,
do we have that A(x, Du(x)) € L7t (supp ¢)?
Ifg < "p Y the answer is affirmative; indeed, in this case, it is easy to check that

loc ’

np — n s
q < P y=>5|s suchthat g < s < p’ P < .
n—y n—y p—1 ¢g-1
Moreover, when p < %, we have that
np—yfpn+y<p n '
n—y n n—y

Let us assume g < "p y” therefore, the weak solution u given by Theorem 2.1 satisfies
(2.6) forall ¢ € W1 P (2, R™) with supp ¢ € Q.

Let us consider functional F in (1.1) under the p, g-growth (1.2) and assumption
(1.3) on b. We assume that

af

A (x,z) = aZ—a(x, z)
i

satisfy (2.2), (2.3), (2.4), and (2.5); we assume also that
np—y
n—y

@7 g <

and ii € WEPHT(Q, R™).
By Theorem 2.1, we have that there exists u € (i + W, 7 (Q,R™)) N W15 (2, R™)

loc
satisfying the Euler equation (1.7) of functional F, i.e., for every test function

¢ € WhP(Q,R™)

with supp ¢ € 2.
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On the other hand, since z +— f(x, z) is convex, we have
£ (x. Du(x) + Dp(x)) = f (x. Du(x)) + Y 3" =% (x. Du()) Dig ().
a=1i=1 1
Consequently by (2.6), for all ¢ € WP (Q,R™) with supp ¢ € €2, we have

(2.8) f(x, Du(x) + Dop(x)) dx
supp @

m n 8
> / f(x, Du(x)) dx + [ Z Z 8%()( Du(x)) D;¢®(x) dx
supp ¢ j

SUPP® o=1j=1 i

:/ [f(x,Du(x))—Zb“(x)go“(x)} dx.
supp @ a1

Inequality (2.8) shows that u is also a local minimizer of the functional (1.1); that is,
u satisfies (1.4) for all ¢ € W12 (Q,R™) with suppg € .
Thus, the following theorem holds true.

THEOREM 2.2. Let Q be a bounded open subset of R", n > 2. Let f : Q x R" — R
be a C! function with respect to z, and f(x,0) is measurable, such that

c1lz|? —c2 = f(x,z2) < c3)z]|? + ca,

where 0 < ¢1 < ¢3, 0 < ¢a, c4. Assume that ;Z—fq(x, z) satisfies (2.2), (2.3), and (2.4),
with p and q as in (2.5) and (2.7). '
—1
Let b be a LP/P=D(Q R™) function. Then, for all ii € Wl’p%(Q,Rm), there

exists a local minimizer

u € (it + Wy P (2,R™) N WL (@, R™)

loc

of the functional

F(u,Q) = /Q [ f(x,Du(x))—i—Zb“(x)u“(x)} dx,
a=1

forallg <s < pnfy. Moreover, for every Q' € Q, it holds that
inf F = inf F.
veu+Ww, (@) veu+Ww, 4 (Q)

ReEMARK 2.3. Letus assume that b = O and f = f(z) in (1.1); in [26], it is shown
that every local minimizer u € Wlsc’p (€2, R™) enjoys higher integrability:

1,9 m 1:%
ue W (QR™MNW. "

loc

(2, R™),

C
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provided
2<p<gq <p—|—2min{1,£}.
n

When p < n, the previous restriction becomes

n+2
2.9) 2<p<qg<p—.
n

On the other hand, the best result in the case f(x, z) is obtained in our assumptions
when y = 1 and (2.5) becomes

n+1
2<p<qg<p—.
n

We remark that the gap between 2+L and

n
the non-autonomous case f(x, z) and the autonomous one f(z). Indeed, as far as p,

”nﬁ is due to the basic difference between
q,n,ysatisfy p <n <n 4y <gq,in [27], an example of f(x,z) is given for which
a global minimizer is not in Wl;(;q (2, R™). Note that such an example is the so-called
double phase functional

f(x.2) =27 +a(x)|z|".

For the double phase functional, we refer to Colombo—Mingione [12] and Colombo—
Mingione—Baroni [2].

For a more general structure of the energy function, we recall Cupini—Giannetti—
Giova—Passarelli di Napoli [ 3], Esposito, the second author, and Vincenzo Petricca [25],
Chlebicka—Borowski—Miasojedow [7], Bulicek—-Gwiazda—Skrzeczkowski [8], Hasto—
Ok [28], Balci—Diening—Surnachev [ 1], Eleuteri-Marcellini-Mascolo [23], De Filippis—
Mingione [20], Koch [30], and De Filippis—Leonetti [22].

The gap between ”ni "ni shows up when dealing with the autonomous case
A%(z), f(z) and comparing weak solutions of (3.1) with the minimizers of (1.1): for
weak solutions, we need ¢ < p”nll, and for minimizers, we need ¢ < p ":2; see, for
instance, the introduction of [35] and [3, Theorems 1.2, 1.3, and 1.17]. In the scalar

case, we have g < p”ni2 for weak solutions too, provided an additional restriction on

and

A; is assumed; see the next section for details.
Let us remark that the recent work of Shiffner [39] shows that the higher integrability
W72 for minimizers holds true under the restriction

n+1
2<p<qg<p .
n—1

Note that ”nﬁ < % Then, Shiffner’s result improves on bound (2.9). See also [4,5,29].
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For details and references on problems with p, g growth, we quote the classical
starting results in [32, 33], the well-known article by Mingione [37], and the recent
surveys [34,35] and Mingione—Radulescu [38]; see also [15,17, 18,24, 36].

3. SCALAR CASE
Consider the Dirichlet problem

Yt 7% (41 (x, Du(x))) = b(x) inQ,
u(x) = 1(x) on 9K2.

(3.1)

In the scalar case m = 1, to solve (3.1), we refer to the existence and regularity
results in [33, Theorem 4.1] and [16, Theorem 2.1] that we merge into the following.

THEOREM 3.1. Let Q2 be a bounded open subset of R", n > 2. Let Al Q xR" - R,
i =1,...,n, be locally Lipschitz continuous functions in Q2 x R" such that there exist
w,M >0:forae x € QandVz,z € R",

n
(r-2)/2~ ] -
32 p(l+]z1?) 27 < Y AL (x.2)%iZ;,
i,j=1

(3.3) AL (x.2)] = M(1+12P) 7272,

G4 |AL (x.2) = AL (v 2)| < M(1 + [z) PO

(3.5) AL (o) < M(1+ 2P0 =1,
(3.6) |A'(x,0)| =M, VxeQ,

with p and q such that

p<qsp+lg<pi= fl<p<2,

3.7) pP<qs=p+lg<piz ifn>4 2 <p=<%
2<p<g< pnnlz otherwise.

Assume b € LP/?~D(Q R) N L™ (2, R).

loc

—1
Then, for all i € Wl’p% (2, R), there exists a weak solution

u e (i + Wy P (Q,R)) N Wu®(Q,R) N W22 (Q,R)

loc loc

of the Dirichlet problem (3.1).
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A function u € W4 (2, R) is a weak solution to the equation when

loc

n
(3.9) / Z A*(x, Du(x)) Dip(x) dx + / b(x)p(x)dx =0,
Qi Q
for all ¢ € W14(Q,R) with supp ¢ € Q.
‘We show that the weak solution u is also a local minimizer of the functional

(3.9) F(u,sz):/Q[f(x,Du(x))+b(x)u(x)] dx.

For this purpose, we observe that (3.3)—(3.7) imply that there exists M € (0, +00)
such that
|Ai(x, Du(x))| = M(1 + ’Du(x)!q_l).

Since [Du|97! € L2, we get A(x, Du(x)) € L. Therefore, if p € W7 (Q, R)
with supp ¢ € 2, we have that A(x, Du(x)) € L7°T (supp ¢). Hence, we can repeat
the same argument as above and obtain (3.8) for all ¢ € W7 (Q,R) with suppg € Q.

Now, we consider the functional (3.9), where f satisfies (1.2) and f(x,z) is C?

with respect to z. We assume that b € L?/(?=D(Q R) N L°(2,R). Moreover,
: 0
Al(x,z) = —f(x,z)
82,‘

is locally Lipschitz continuous in 2 x R” and satisfies (3.2)—(3.6), with p, ¢, n as in
(3.7). We observe that (3.2) implies the convexity of z — f(x, z).

For a fixed boundary value it € W7 = (2,R™), by Theorem 3.1, there exists
u € (i + Wy P (Q,R)N € W (2,R) N W2(22, R) verifying (3.8). By (3.8), we
have now for the scalar case

/ f(x, Du(x) + Do(x)) dx > / [f(x, Du(x)) — b(x)(p(x)] dx,
supp ¢

supp ¢

for all ¢ € W1-P(Q,R) with supp ¢ € 2. Then, we have just obtained that

u € (it + Wy P (Q,R)) N WLP(Q,R) N W22, R)

loc

is a local minimizer of the functional (3.9).
Thus, we have proved the following corollary.

TuEOREM 3.2. Let Q be a bounded open subset of R", n > 2. Let f : Q x R" — R;
f(x,0) is measurable, such that

c1]z|? —c2 < f(x,2) < c3z|? + ca,



F. DE FILIPPIS, F. LEONETTI, P. MARCELLINI AND E. MASCOLO 460

where 0 < ¢1 < ¢3, 0 < ¢a, c4. Moreover, f(x,z) is C2 with respect to z. Assume
that A* = % is locally Lipschitz continuous in Q x R" and satisfies (3.2)—(3.6), with
p,q,n asin (3.7) of Theorem 3.1.

Let b be a LP/P=D(Q, R)NL® (. R) function. Then, for all i € WP 5T (2, R),

loc
there exists a local minimizer

u € (it + Wy P (Q,R)) N WLP(Q,R) N W22, R)

C

of the functional
Fu,Q) = /Q [f(x, Du(x)) + b(x)u(x)] dx,

and for every Q' € Q, it holds that

inf F = inf F.
veu+w, P () veu+Wwy ()
RemaRrk 3.3. The relation between the minimizer and weak solution of the Euler equa-
tion has been studied by Carozza—Kristensen—Passarelli di Napoliin [10,11], for the vec-
torial case m>1, when f = f(z);ithas also been studied by Bonfanti—Cellina-Mazzola
in [6], for the scalar case m = 1, when f = f(x,u, z) and u is locally bounded.
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