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Abstract. – The aim of this paper is to propose some results which we hope could contribute
to understand better Lavrentiev’s phenomenon for energy integrals as in (1.1) under some p; q-
growth conditions as in (1.2); in fact, we expect that Lavrentiev’s phenomenon does not occur if
the quotient q=p is not too large in dependence of n, for instance, as in the cases – either scalar
or vectorial ones – that we consider in this manuscript.
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1. Introduction

We consider the following non-autonomous energy integral:

(1.1) F.u;�/ D

Z
�

®
f .x;Du/C

˝
b.x/; u

˛¯
dx;

where u W � � Rn ! Rm is a vector-valued map defined in a bounded open set
� � Rn, n � 2, with values in Rm, m � 1, and Du is its gradient m � n matrix.
The function f W � � Rm�n ! R, f D f .x; z/, is measurable with respect to x 2
� � Rn and it is convex and C 1 with respect to z 2 Rm�n. Moreover, hb.x/; ui DPm
˛D1 b

˛.x/u˛.x/ represents the scalar product by b.x/ D .b˛.x//˛D1;2;:::;m and
u D u.x/ D .u˛.x//˛D1;2;:::;m.

We assume the following p; q-growth conditions for some p, q exponents, with
1 < p � q:

(1.2) c1jzj
p
� c2 � f .x; z/ � c3jzj

q
C c4;

for some positive constants c1; : : : ; c4; we also assume the summability condition on
b D .b˛/˛D1;2;:::;m:

(1.3) b 2 L
p
p�1 .�;Rm/:
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The coercivity condition at the left-hand side of (1.2) ensures the existence of
global minimizers u 2 W 1;p.�;Rm/ of F when suitable boundary values have been
fixed. Let us recall the difference between global and local minimizers. A mapping
u 2 W 1;p.�;Rm/ is a global minimizer when x 7! f .x;Du.x// 2 L1.�/ and

F.u;�/ � F.uC ';�/;

for every ' 2 W 1;p
0 .�;Rm/. On the other hand, a mapping u 2 W 1;p

loc .�;R
m/ is a

local minimizer when x ! f .x;Du.x// 2 L1loc.�/ and

(1.4) F.u; supp'/ � F.uC '; supp'/;

for every ' 2 W 1;p.�;Rm/ with supp' b �. Note that a global minimizer is also a
local minimizer.

The p; q-growth was introduced and firstly studied in [32] within the field of the
theory of regularity. More recent related researches are described and quoted below in
this manuscript. Nowadays, the mathematical literature on regularity under p; q and
general growth conditions is very large; for instance, see the extensive list of references
in [34–38].

In the study of elliptic-convex problems with p; q-growth, if p ¤ q, the coercivity
and the boundedness condition in (1.2) hold with different growth with respect to the
gradient variable jzj D jDuj; then, the loss of the regularity may occur. In addition,
some other unexpected properties of solutions may occur, as highlighted by Zhikov
in his pioneer paper [40]. We refer in particular to the Lavrentiev phenomenon, that
is, the feature of some energy integrals to have different infima if considered either
on the complete class U of admissible functions or on a smaller class (dense and)
contained in U . In particular, for the energy integral in (1.1), under p; q-growth (1.2)
with p < q, the definition (i.e. the precise meaning) of the integral F.u; �/ is not
ambiguous if u 2 W 1;q

loc .�/. On the contrary, a priori, it is not uniquely defined if
u 2 W 1;p.�/ nW

1;q
loc .�/; in fact, a further definition is, for every u 2 W 1;p.�/,

xF .u;�/ D inf
¹uj º

®
lim inf
j!C1

F.uj ; �/ W uj 2 W
1;q

loc .�/ 8j 2 N; uj ! u in W 1;p.�/
¯
:

Here, we used the symbol xF to emphasize the fact that a priori the functional xF is
different from F , and it is also an extension by lower semicontinuity (a closure) of
F (see, for instance, [19, 21, 31]). Then, we cannot a priori exclude the Lavrentiev
phenomenon in this context, in particular in the case of x-dependence. For the gap in
the Lavrentiev phenomenon, we refer to [9].

The main aim of this paper is to give conditions to rule out the Lavrentiev phe-
nomenon in the general casep� q. More precisely, under growth conditions on p and q,
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we propose cases with

inf
®
F.v/ W v 2 uCW

1;p
0 .�0/

¯
D inf

®
F.v/ W v 2 uCW

1;q
0 .�0/

¯
;

for every�0 b�, where u is a local minimizer of F ; see Theorem 2.2 for vector-valued
integrals and Theorem 3.2 in the scalar case.

In order to give some details, we start to consider the standard growth p D q, and
we remark that since z 7! f .x; z/ is convex and C 1, growth conditions (1.2) and
[32, Lemma 2.1] imply

(1.5)
ˇ̌̌̌
@f

@z˛i
.x; z/

ˇ̌̌̌
� c5

�
1C jzjq�1

�
I

see also [31, Step 2, Section 2]. When p D q, (1.5) implies

(1.6) x 7!
@f

@z˛i

�
x;Du.x/

�
2 L

p
p�1 .�/I

then, we can write the Euler equation in weak form, which in fact is a system of m
differential equations in divergence form, when we see each equation corresponding to
each separate component of the test vector-valued map '.x/ D .'˛.x//˛D1;2;:::;m. For
every ' 2 W 1;p

0 .�;Rm/, we have

(1.7)
Z
�

mX
˛D1

nX
iD1

@f

@z˛i

�
x;Du.x/

�
Di'

˛.x/ dx C

Z
�

mX
˛D1

b˛.x/'˛.x/ dx D 0:

Note also that when u 2 W 1;p.�;Rm/ and p D q, then (1.2) implies that x !
f .x; Du.x// 2 L1.�/. Moreover, the convexity of z 7! f .x; z/ guarantees that if
u 2 W 1;p.�;Rm/, then

u globally minimizes F ” u solves the Euler equation:

The case p < q is more delicate. Indeed, in such a situation, if u 2 W 1;p.�;Rm/,
(1.6) changes into

x 7!
@f

@z˛i

�
x;Du.x/

�
2 L

p
q�1 .�/:

Since p
q�1

< p
p�1

, then we cannot test (1.7) with ' 2 W 1;p
0 .�;Rm/ any longer. On

the contrary, if u 2 W 1;q
loc .�IR

m/, then (1.5) implies

x 7!
@f

@z˛i

�
x;Du.x/

�
2 L

q
q�1

loc .�/
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and, being q and q
q�1

conjugate exponents, (1.7) can be tested by any ' 2W 1;q.�;Rm/

with compact support in �. In this note, we use this approach to obtain the existence
(and regularity) of minimizers. In fact, the idea is to achieve existence in a Sobolev
class by means of regularity results, precisely by means of the higher integrability for
the gradientDu of solutions of the Euler equation or system. A weak solution of (1.7),
with a high degree of integrability, can be found, and such a weak solution turns out to
be a local minimizer of F also in a larger Sobolev class. Main steps in the proofs are
the results due by Cupini, Leonetti, and Mascolo [14] in the vector-valued case m � 1
and, in the more strict scalar case m D 1 but with better exponents, by Marcellini
[33, Section 4] and Cupini, Marcellini, and Mascolo [16].

2. Vectorial case

Consider the Dirichlet problem in � � Rn:

(2.1)

´Pn
iD1

@
@xi

�
A˛i
�
x;Du.x/

��
D b˛.x/ in �; ˛ D 1; : : : ; m;

u.x/ D Qu.x/ on @�:

The following theorem holds.

Theorem 2.1. Let � be a bounded open subset of Rn, n � 2, and let A˛i W � �Rnm

! R, i D 1; : : : ; n, ˛ D 1; : : : ; m, be continuous with respect to z. We assume that
there exists 0 <  � 1 and �; L;H > 0 such that

�
�
jzj2 C jQzj2

�p�2
2 jz � Qzj2

�

mX
˛D1

nX
iD1

�
A˛i .x; z/ � A

˛
i .x; Qz/

�
Œz˛i � Qz

˛
i �; z; Qz 2 Rnm;

(2.2)

ˇ̌
A˛i .x; z/

ˇ̌
� L

�
1C jzj

�q�1
;(2.3)

mX
˛D1

nX
iD1

ˇ̌
A˛i .x; z/ � A

˛
i . Qx; z/

ˇ̌
� H jx � Qxj

�
1C jzj

�q�1
; x; Qx 2 �;(2.4)

with p and q satisfying

(2.5) 2 � p � q < p
nC 

n
:

Let b be a function in Lp=.p�1/.�;Rm/. Then, for all Qu 2 W 1;p q�1p�1 .�;Rm/, there
exists a weak solution u 2 . QuCW 1;p

0 .�;Rm//\W 1;s
loc .�;R

m/ of the Dirichlet prob-
lem (2.1), for all q � s < p n

n�
.
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The proof of Theorem 2.1 proceeds basically in the same way as the one of [14,
Theorem 1.1] where b.x/ � 0.

Under the previous assumptions, a vector-valued map u 2 W 1;q
loc .�;R

m/ is a weak
solution to the system if

(2.6)
Z
�

mX
˛D1

nX
iD1

A˛i
�
x;Du.x/

�
Di'

˛.x/ dx C

Z
�

mX
˛D1

b˛.x/'˛.x/ dx D 0;

for all ' 2 W 1;q.�;Rm/ with supp' b �.
We focus our attention on growth condition (2.3). First, we observe that since

jDujq�1 2 L
s
q�1

loc , we obtain A.x;Du.x// 2 L
s
q�1

loc , for s such that q � s < p n
n�

.
The question is now the following: if we assume' 2W 1;p.�;Rm/with supp' b�,

do we have that A.x;Du.x// 2 L
p
p�1 .supp'/?

If q < np�
n�

, the answer is affirmative; indeed, in this case, it is easy to check that

q <
np � 

n � 
) 9s such that q < s <

np

n � 
;

p

p � 1
<

s

q � 1
:

Moreover, when p � n


, we have that

np � 

n � 
� p

nC 

n
< p

n

n � 
:

Let us assume q < np�
n�

; therefore, the weak solution u given by Theorem 2.1 satisfies
(2.6) for all ' 2 W 1;p.�;Rm/ with supp' b �.

Let us consider functional F in (1.1) under the p; q-growth (1.2) and assumption
(1.3) on b. We assume that

A˛i .x; z/ D
@f

@z˛i
.x; z/

satisfy (2.2), (2.3), (2.4), and (2.5); we assume also that

(2.7) q <
np � 

n � 

and Qu 2 W 1;p q�1p�1 .�;Rm/.
By Theorem 2.1, we have that there existsu 2 . QuCW 1;p

0 .�;Rm//\W 1;s
loc .�;R

m/

satisfying the Euler equation (1.7) of functional F , i.e., for every test function

' 2 W 1;p.�;Rm/

with supp' b �.
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On the other hand, since z 7! f .x; z/ is convex, we have

f
�
x;Du.x/CD'.x/

�
� f

�
x;Du.x/

�
C

mX
˛D1

nX
iD1

@f

@z˛i

�
x;Du.x/

�
Di'

˛.x/:

Consequently by (2.6), for all ' 2 W 1;p.�;Rm/ with supp' b �, we haveZ
supp'

f
�
x;Du.x/CD'.x/

�
dx

�

Z
supp'

f
�
x;Du.x/

�
dx C

Z
supp'

mX
˛D1

nX
iD1

@f

@z˛i

�
x;Du.x/

�
Di'

˛.x/ dx

D

Z
supp'

�
f
�
x;Du.x/

�
�

mX
˛D1

b˛.x/'˛.x/

�
dx:

(2.8)

Inequality (2.8) shows that u is also a local minimizer of the functional (1.1); that is,
u satisfies (1.4) for all ' 2 W 1;p.�;Rm/ with supp' b �.

Thus, the following theorem holds true.

Theorem 2.2. Let� be a bounded open subset of Rn, n � 2. Let f W � �Rnm ! R

be a C 1 function with respect to z, and f .x; 0/ is measurable, such that

c1jzj
p
� c2 � f .x; z/ � c3jzj

q
C c4;

where 0 < c1 � c3, 0 � c2; c4. Assume that @f
@z˛
i

.x; z/ satisfies (2.2), (2.3), and (2.4),
with p and q as in (2.5) and (2.7).

Let b be a Lp=.p�1/.�;Rm/ function. Then, for all Qu 2 W 1;p q�1p�1 .�;Rm/, there
exists a local minimizer

u 2
�
QuCW

1;p
0 .�;Rm/

�
\W

1;s
loc .�;R

m/

of the functional

F.u;�/ D

Z
�

�
f
�
x;Du.x/

�
C

mX
˛D1

b˛.x/u˛.x/

�
dx;

for all q � s < p n
n�

. Moreover, for every �0 b �, it holds that

inf
v2uCW

1;p
0

.�0/

F D inf
v2uCW

1;q
0

.�0/

F:

Remark 2.3. Let us assume that b D 0 and f D f .z/ in (1.1); in [26], it is shown
that every local minimizer u 2 W 1;p

loc .�;R
m/ enjoys higher integrability:

u 2 W
1;q

loc .�;R
m/ \W

1; npn�2
loc .�;Rm/;
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provided

2 � p < q < p C 2min
²
1;
p

n

³
:

When p � n, the previous restriction becomes

(2.9) 2 � p < q < p
nC 2

n
:

On the other hand, the best result in the case f .x; z/ is obtained in our assumptions
when  D 1 and (2.5) becomes

2 � p < q < p
nC 1

n
:

We remark that the gap between nC1
n

and nC2
n

is due to the basic difference between
the non-autonomous case f .x; z/ and the autonomous one f .z/. Indeed, as far as p,
q, n,  satisfy p < n < nC  < q, in [27], an example of f .x; z/ is given for which
a global minimizer is not in W 1;q

loc .�;R
m/. Note that such an example is the so-called

double phase functional

f .x; z/ D jzjp C a.x/jzjq:

For the double phase functional, we refer to Colombo–Mingione [12] and Colombo–
Mingione–Baroni [2].

For a more general structure of the energy function, we recall Cupini–Giannetti–
Giova–Passarelli di Napoli [13], Esposito, the second author, and Vincenzo Petricca [25],
Chlebicka–Borowski–Miasojedow [7], Bulíček–Gwiazda–Skrzeczkowski [8], Hästö–
Ok [28], Balci–Diening–Surnachev [1], Eleuteri–Marcellini–Mascolo [23], De Filippis–
Mingione [20], Koch [30], and De Filippis–Leonetti [22].

The gap between nC1
n

and nC2
n

shows up when dealing with the autonomous case
A˛i .z/, f .z/ and comparing weak solutions of (3.1) with the minimizers of (1.1): for
weak solutions, we need q < p nC1

n
, and for minimizers, we need q < p nC2

n
; see, for

instance, the introduction of [35] and [3, Theorems 1.2, 1.3, and 1.17]. In the scalar
case, we have q < p nC2

n
for weak solutions too, provided an additional restriction on

Ai is assumed; see the next section for details.
Let us remark that the recent work of Shäffner [39] shows that the higher integrability

W 1; npn�2 for minimizers holds true under the restriction

2 � p < q < p
nC 1

n � 1
:

Note that nC2
n
< nC1
n�1

. Then, Shäffner’s result improves on bound (2.9). See also [4,5,29].
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For details and references on problems with p, q growth, we quote the classical
starting results in [32, 33], the well-known article by Mingione [37], and the recent
surveys [34, 35] and Mingione–Rădulescu [38]; see also [15, 17, 18, 24, 36].

3. Scalar case

Consider the Dirichlet problem

(3.1)

8<:
Pn
iD1

@
@xi

�
Ai
�
x;Du.x/

��
D b.x/ in �;

u.x/ D Qu.x/ on @�:

In the scalar case m D 1, to solve (3.1), we refer to the existence and regularity
results in [33, Theorem 4.1] and [16, Theorem 2.1] that we merge into the following.

Theorem 3.1. Let � be a bounded open subset of Rn, n � 2. Let Ai W � �Rn ! R,
i D 1; : : : ; n, be locally Lipschitz continuous functions in� �Rn such that there exist
�;M > 0: for a.e. x 2 � and 8z; Qz 2 Rn,

�
�
1C jzj2

�.p�2/=2
j Qzj2 �

nX
i;jD1

Aizj .x; z/Qzi Qzj ;(3.2)

ˇ̌
Aizj .x; z/

ˇ̌
�M

�
1C jzj2

�.q�2/=2
;(3.3) ˇ̌

Aizj .x; z/ � A
j
zi
.x; z/

ˇ̌
�M

�
1C jzj2

�.pCq�4/=4
;(3.4) ˇ̌

Aixs .x; z/
ˇ̌
�M

�
1C jzj2

�.pCq�2/=4
; s D 1; : : : ; n;(3.5) ˇ̌

Ai .x; 0/
ˇ̌
�M; 8x 2 �;(3.6)

with p and q such that

(3.7)

8̂̂̂<̂
ˆ̂:
p � q � p C 1; q < p n�1

n�p
if 1 < p < 2;

p � q � p C 1; q < p n�1
n�p

if n > 4; 3n
nC2

< p � n
2
;

2 � p � q < p nC2
n

otherwise:

Assume b 2 Lp=.p�1/.�;R/ \ L1loc.�;R/.
Then, for all Qu 2 W 1;p q�1p�1 .�;R/, there exists a weak solution

u 2
�
QuCW

1;p
0 .�;R/

�
\W

1;1
loc .�;R/ \W 2;2

loc .�;R/

of the Dirichlet problem (3.1).



the sobolev class where a weak solution is a local minimizer 459

A function u 2 W 1;q
loc .�;R/ is a weak solution to the equation when

(3.8)
Z
�

nX
iD1

Ai
�
x;Du.x/

�
Di'.x/ dx C

Z
�

b.x/'.x/ dx D 0;

for all ' 2 W 1;q.�;R/ with supp' b �.
We show that the weak solution u is also a local minimizer of the functional

(3.9) QF .u;�/ D

Z
�

�
f
�
x;Du.x/

�
C b.x/u.x/

�
dx:

For this purpose, we observe that (3.3)–(3.7) imply that there exists zM 2 .0;C1/
such that ˇ̌

Ai
�
x;Du.x/

�ˇ̌
� zM

�
1C

ˇ̌
Du.x/

ˇ̌q�1�
:

Since jDujq�1 2 L1loc, we get A.x;Du.x// 2 L1loc. Therefore, if ' 2 W 1;p.�;R/

with supp' b �, we have that A.x;Du.x// 2 L
p
p�1 .supp'/. Hence, we can repeat

the same argument as above and obtain (3.8) for all ' 2W 1;p.�;R/ with supp' b �.
Now, we consider the functional (3.9), where f satisfies (1.2) and f .x; z/ is C 2

with respect to z. We assume that b 2 Lp=.p�1/.�;R/ \ L1loc.�;R/. Moreover,

Ai .x; z/ D
@f

@zi
.x; z/

is locally Lipschitz continuous in � �Rn and satisfies (3.2)–(3.6), with p, q, n as in
(3.7). We observe that (3.2) implies the convexity of z 7! f .x; z/.

For a fixed boundary value Qu 2 W 1;p q�1p�1 .�;Rm/, by Theorem 3.1, there exists
u 2 . QuCW

1;p
0 .�;R//\ 2W 1;1

loc .�;R/\W 2;2
loc .�;R/ verifying (3.8). By (3.8), we

have now for the scalar caseZ
supp'

f
�
x;Du.x/CD'.x/

�
dx �

Z
supp'

�
f
�
x;Du.x/

�
� b.x/'.x/

�
dx;

for all ' 2 W 1;p.�;R/ with supp' b �. Then, we have just obtained that

u 2
�
QuCW

1;p
0 .�;R/

�
\W

1;1
loc .�;R/ \W 2;2

loc .�;R/

is a local minimizer of the functional (3.9).
Thus, we have proved the following corollary.

Theorem 3.2. Let � be a bounded open subset of Rn, n � 2. Let f W � �Rn ! R;
f .x; 0/ is measurable, such that

c1jzj
p
� c2 � f .x; z/ � c3jzj

q
C c4;
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where 0 < c1 � c3, 0 � c2; c4. Moreover, f .x; z/ is C 2 with respect to z. Assume
that Ai D @f

@zi
is locally Lipschitz continuous in� �Rn and satisfies (3.2)–(3.6), with

p; q; n as in (3.7) of Theorem 3.1.
Let b be aLp=.p�1/.�;R/\L1loc.�;R/ function. Then, for all Qu2W 1;p q�1p�1 .�;R/,

there exists a local minimizer

u 2
�
QuCW

1;p
0 .�;R/

�
\W

1;1
loc .�;R/ \W 2;2

loc .�;R/

of the functional

QF .u;�/ D

Z
�

�
f
�
x;Du.x/

�
C b.x/u.x/

�
dx;

and for every �0 b �, it holds that

inf
v2uCW

1;p
0

.�0/

F D inf
v2uCW

1;1
0

.�0/

F:

Remark 3.3. The relation between the minimizer and weak solution of the Euler equa-
tion has been studied by Carozza–Kristensen–Passarelli di Napoli in [10,11], for the vec-
torial casem�1, whenfDf .z/; it has also been studied by Bonfanti–Cellina–Mazzola
in [6], for the scalar case m D 1, when f D f .x; u; z/ and u is locally bounded.
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Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale
di Alta Matematica (INdAM).
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