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Abstract. – Suppose that �.z/ D
P1

nD1 dnz
n is a series with radius of convergence greater

than 1 and suppose that dn are real numbers such that �.1/ ¤ 0. We prove that for any integer a
greater than 1, the complex variable function

f .z/ D

1X
nD0

�.zan

/ D �.z/C �.za/C �.za2

/C �.za3

/C � � �

has infinitely many zeros on the unit disk. It even takes every complex value in every disk centered
in any point of the boundary.
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1. Introduction

Following the analogy provided by the great Picard theorem, we say that a holomorphic
function on the disk D D ¹z 2 C j jzj < 1º has the Picard property if it takes every
complex value infinitely many times at every neighborhood of any point of the boundary
ofD. The domain of holomorphy of such functions isD since the zeros accumulate at
every point of the boundary (and the function is not always zero). We are interested in
finding power series with this property.

A power series given by
P1
nD1 cnz

kn with cn 2C, kn 2NC is called lacunary with
Hadamard gaps if there exists q > 1 such that knC1=kn � q. W. H. J. Fuchs proved in
1967 [1] that a lacunary series convergent on the disk D, such that lim sup jcnj > 0,
has infinitely many zeros. A more general result of T. Murai in 1981 [6] affirms that a
lacunary and unbounded series convergent on D has the Picard property.

Another class of lacunary series with the Picard property was provided by F. Nazarov
in an unpublished work. There exist some setsƒ�N such that every series

P
k2ƒ ckz

k

with
P
k2ƒ jckj

2 D 1 has the Picard property. For example, a set of the form ƒ D

¹an j n 2 Nº with a � 2 an integer falls in this category and corresponds to a lacunary
series.
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The so-called Fredholm series

f .z/ D

1X
nD0

z2
n

D z C z2 C z4 C z8 C � � �

satisfies the functional equation

f .z/ D z C f .z2/:

It is a very simple example of a lacunary series with Hadamard gaps. It is interesting
both from an arithmetic and an analytic point of view. For example, its values at the
points 1

n
are linked to the iterated paperfolding [8]. K. Mahler proved the transcendence

of the values taken at the algebraic points different from zero (the Fredholm series
is part of a vast class of functions satisfying certain functional equations for which
the same result holds) [2] and he studied in detail the behavior at the boundary [4].
However, results about algebraic dependence or independence of the zeros are not
known and their position is little understood. In the last section of this paper, we give
an estimation of the number of zeros of modulus less than or equal to r , for 0 < r < 1.

U. Zannier [10] proved, independently from the previous results, that the Fredholm
series has the Picard property. This falls as a special case of Murai’s or Nazarov’s
theorem, but Zannier’s proof proceeds in a different way and contains further results.
The object of this paper is to generalize Zannier’s method to obtain the following
without lacunarity hypothesis.

Theorem 1.1. Let �.z/ D
P1
nD1 dnz

n (with �.0/ D 0) be a series convergent on a
disk of radius greater than 1, where dn are real, such that �.1/ ¤ 0. Let a � 2 be an
integer and let f WD! C be a holomorphic function such that f .z/D �.z/C f .za/
for every z 2 D. Then f has the Picard property.

That means that the function

(1) f .z/ D

1X
nD0

�.za
n

/ D �.z/C �.za/C �.za
2

/C �.za
3

/C � � �

has the Picard property. It should be noted that the function defined in (1) is actually
holomorphic and it is the only one (up to an additive constant) which satisfies the
functional equation

f .z/ D �.z/C f .za/:

We can write f .z/ D
P1
nD1 bnz

n with the coefficients given by

bn D

1X
jD0

dn=aj ;
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where we agree that dk D 0 if k is not an integer. Also, with the same convention

dn D bn � bn=a:

The Fredholm series is obtained with �.z/ D z and a D 2, hence Theorem 1.1
proves that it has the Picard property.

The series (1) is not necessarily lacunary, therefore its Picard property is not a
consequence of Murai’s or Nazarov’s theorem. As an example of non-lacunary series,
one can consider the f arising for a D 2 and �.z/ D ez � 1:

f .z/ D .ez � 1/C .ez
2

� 1/C .ez
4

� 1/C � � � :

Actually, we note that for most of the choices of �, f is not lacunary. Another significant
example suggested by the referee is the following. Fix a parameter w 2 C n ¹0º and
put a D 2 and

�.z/ D
z

w � z2
D

1X
nD0

z2nC1

wnC1
:

Then f .z/ D
P1
nD0 �.z

2n
/ D

P1
nD1 bnz

n with

bn D
1

wmC1
if n D 2k.2mC 1/ for m; k 2 N:

The radius of convergence of � in zero is
p
jwj. Ifw is real and jwj > 1, then Theorem

1.1 tells us that f has the Picard property. If instead w D 1, we get f .z/ D z
1�z

[5, Exercise 3.3] contrasting with the conclusion of Theorem 1.1. Functions of this sort
come up when studying simple linear recurrences. Consider for example the following
recurrence depending on a parameter ˛ 2 C:

(2) XnC2 D ˛XnC1 �Xn n � 0:

Fix w 2 C n ¹0º and put initial values X0 and X1 such that the explicit expression for
Xn is

Xn D w�
n
2 � �

n
1 ;

where �1 and �2 are the two roots of the polynomial

z2 � ˛z C 1

and j�1j < j�2j (suppose that their moduli are different). Since �1�2 D 1, we observe
that �.�2n

1 / D .X2n/�1 for every n � 0. Hence

f .�1/ D

1X
nD0

�.�2
n

1 / D

1X
nD0

.X2n/�1:
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Theorem 1.1 applies whenw is real and jwj > 1. For such a fixedw, we then know that
f .�/ D 0 for infinitely many � 2 D. Put ˛ D � C 1=� . Then for these infinitely many
˛ for the recurrence (2) (with initial values X0 D w � 1 and X1 D w=� � �), we get

1X
nD0

.X2n/�1 D 0:

This function f also possesses nice arithmetic properties that we briefly discuss in the
next section.

We return to the main theorem. The hypothesis �.1/ ¤ 0 in Theorem 1.1 is natural
because we have the following lemma.

Lemma 1.2. If �.1/ ¤ 0 and f .z/ D �.z/C f .za/ for some integer a � 2, then the
domain of holomorphy of f is exactly D.

Conversely, without the hypothesis �.1/ ¤ 0, Theorem 1.1 does not hold. We can
construct a counterexample. Take any f holomorphic on a disk with radius greater than
1 with f .0/ D 0 (e.g. f .z/ D z) and put �.z/ D f .z/ � f .za/ in order to satisfy the
functional equation. Formula (1) holds. However, f does not have the Picard property
because its domain of holomorphy is bigger than D. Note that with this construction
we get �.1/ D f .1/ � f .1a/ D 0.

We now prove Lemma 1.2.

Proof. Assume that f can be extended to a holomorphic function on an open set
which contains a point z0 on the boundary ofD. It is not restrictive to assume that there
exists an integer k such that zak

0 D 1. Then the limit limr!1� f .r/ exists because,
using repeatedly the functional equation, we get

f .rz0/ D �.rz0/C �
�
.rz0/

a
�
C �

�
.rz0/

a2�
C � � � C �.ra

k

/C f .ra
k

/;

lim
r!1�

f .ra
k

/ D lim
r!1�

�
f .rz0/ � �.rz0/ � �

�
.rz0/

a
�
� � � � � �.ra

k

/
�
:

The limit on the right-hand side exists finite since � has radius of convergence greater
than 1 and f can be extended at z0, thus

0 D lim
r!1�

f .r/ � lim
r!1�

f .ra/ D lim
r!1�

�
f .r/ � f .ra/

�
D lim
r!1�

�.r/ D �.1/;

while we assumed that �.1/ ¤ 0.

In order to prove Theorem 1.1, we recall the standard notation e.z/ D exp.2�iz/,
D.r/ D ¹z 2 C j jzj < rº, D D D.1/, and H D ¹z 2 C j =z > 0º.
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We will first state an intermediate proposition, the proof of which follows a general-
ization of the method proposed by Zannier in [10] for the special case aD 2 and � D Id
(the Fredholm series). From there, Theorem 1.1 will be deduced easily in many cases
(e.g. for the Fredholm series). In general, we will need some lemmas about real-valued
analytic functions. I thank Professor Zannier for helping me in this last step.

2. A remark about transcendence

One of the main motivations for studying solutions of a functional equation comes
from the example of the Fredholm series. Mahler proved that it takes transcendental
values on algebraic z satisfying 0 < jzj < 1. His method also applies to the previously
mentioned

f .z/ D

1X
nD0

�.z2
n

/ with �.z/ D
z

w � z2
:

If w 2 C n ¹0; 1º is algebraic, it can be verified that f .z/ and z are algebraically
independent over C and that the same transcendence property holds for f . Conversely,
f is rational for w D 1.

Mahler had already noticed in [3] that from its method the transcendence of a series
involving the Fibonacci numbers Fn follows. He used �.z/ D . z

1�z2 /
k for an integer

k � 2. The corresponding function

f .z/ D

1X
nD0

�.z2
n

/

takes transcendental values on algebraic z satisfying 0 < jzj < 1. By evaluating in
z D 1�

p
5

2
, he found that the following number is transcendental (for k � 2):

1X
nD0

.F2n/�k;

while for k D 1 it is algebraic and equal to 7�
p
5

2
[5, Exercise 3.7].

Before going on with the proof of Theorem 1.1, we note a simple transcendence
property of the Fredholm series following from Mahler’s theorem. As a consequence
we get that the Fredholm series does not have any zeros on some lines through the
origin, the union of which is dense in the disk D.

Theorem 2.1. Let f be the Fredholm series. If z D te2�i� D te.�/ with t 2 R,
0 < t < 1, � 2 R, � D k

2n for some integers k and n such that z is not real, then f .z/
is a transcendental number.
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Proof. Suppose (by contradiction) that f .z/ is algebraic. Mahler’s theorem ensures
that z is transcendental. Put ˛ D z. Nz/�1. Since � D k

2n with k; n 2 N, ˛ is a 2n-th
root of the unity, so it is algebraic. We have

f .z/ D

n�1X
jD0

z2
n

C f .z2
n

/;

f . Nz/ D f .˛z/ D

n�1X
jD0

.˛z/2
n

C f
�
.˛z/2

n�
:

Subtracting these two equations and recalling that ˛2n
D 1, we find that

f .z/ � f . Nz/ D

n�1X
jD0

.1 � ˛2
n

/z2
n

:

Note that ˛ ¤ 1 because we have chosen z 62 R, therefore this equation provides a
polynomial with algebraic coefficients of degree at least 1 in the variable z (f . Nz/ D
f .z/ is algebraic). Such a polynomial has z as root, contradicting the fact that z is
transcendental.

3. Structure of the proof of Theorem 1.1

For convenience, we change the variable we use by composing with the function e. The
domain of our functions changes from the diskD to the half planeH . For w 2 H , put

F.w/ D f
�
e.w/

�
;

P.w/ D �
�
e.w/

�
:

Doing so, the functional equation defining f becomes more manageable.

F.w/ D P.w/C F.aw/:

When f is the Fredholm series, the proof is actually contained in [10]. It articulates
as follows.

(1) We find an approximate formula for F D f ı e evaluated at some points near the
boundary ofH . It will equal a sum of exponentials and a remainder. The remainder
is F evaluated at some point which we keep away from the boundary.

(2) Part of the sum will vanish using Ramanujan sums.

(3) What we are left with is an expression for F evaluated at some points near the
boundary. Inside suitably small disks it almost equals, with arbitrary precision, a
function S (with a rescaled domain) plus a constant number. S only depends on f .
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(4) Thanks to Rouchè’s theorem, we find a zero of F if S plus that constant is zero.

(5) We note that the image of S is invariant under translation by some constants cm
and Z.

(6) We prove that the group generated by<.cm/ and Z is dense in R, hence we conclude
that S is surjective.

For the general case, we just change the sum of exponentials (evaluations of the
function e) with a sum of evaluations of P D � ı e. We also use a different kind of
Ramanujan sums which do not vanish but get arbitrarily small.

4. An intermediate proposition

Proposition 4.1. Let �.z/ D
P1
nD1 dnz

n be a series where dn 2 R are such thatP1
nD1 njdnj converges and �.1/ ¤ 0. Let a � 2 be an integer and f W D ! C a

holomorphic function such that f .z/D �.z/C f .za/ for every z 2D. If the subgroup
of R generated by �.1/ and by the real part of the constants

cm D

1X
lD1

�
�

�
e

�
m

al

��
� �.1/

�
for m varying in Z is dense in R, and if there exists at least one cm with non-zero
imaginary part, then f has the Picard property.

Note that both � and �0 converge on xD because
P1
nD1 njdnj converges. Then the

series that defines cm converges because � ı e is Lipschitz.
The proof of this proposition follows steps 1 through 5 of the aforementioned plan.

This proposition brings us close to Theorem 1.1. In many cases, for example with the
Fredholm series, proving the density of the group generated by <.cm/ and �.1/ (step
6 generalized) is quite easy. In general, even verifying that they do not all vanish is a
crucial difficulty. We will address this problem later.

4.1. About certain sums of Ramanujan type

This section is done in order to accomplish step 2 of the plan. Given the integer a
and the function P D � ı e, we would like to find an integer q such that the sumP'.q/�1
mD0 P.a

m

q
/ is small.

Lemma 4.2. Put q D pk . If p is an odd prime and a � 1 mod p (or p D 2 and
a � 1 mod 4) but a 6� 1 mod q, then

'.q/�1X
mD0

e

�
am

q

�
D 0:
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Proof. Let t D vp.a � 1/ < k be the p-adic valuation of a � 1. It is enough to show
that ®

amj0 � m � '.q/ � 1
¯
D ¹xjx � 1 mod ptº

modulo q. Clearly, a� 1 mod pt implies that am � 1 mod pt . On the other hand, both
sets have cardinality pk�t . This holds for the left-hand side set since the multiplicative
order of a modulo q is pk�t . It follows easily by the lifting-the-exponent lemma:
vp.a

m � 1/ D vp.a � 1/C vp.m/.

An immediate generalization that will be needed is the following. Put t D vp.a� 1/
the p-adic valuation of a � 1. Under the same hypothesis, if n is an integer not divisible
by pk�t , then also

'.q/�1X
mD0

e

�
amn

q

�
D 0:

Let now s be an integer coprime with p. If n < pk�t , we can write

'.q/�1X
mD0

e

�
ams

q

�n
D

'.q/�1X
mD0

e

�
amsn

q

�
D 0

and thus if '.z/ D
P1
nD1 dnz

n,

(3)
ˇ̌̌̌ '.q/�1X
mD0

P

�
ams

q

�ˇ̌̌̌
� '.q/

1X
nDq=a

jdnj � a

1X
nDq=a

njdnj:

If a ¤ 2; 3 is an assigned integer, choose p an odd prime which divides a � 1 (or
p D 2 if 4 divides a � 1). Then the inequality (3) holds with q D pk for every integer
k big enough so that a 6� 1 mod q. Instead, if a D 2 or a D 3, a prime p with the
required property cannot be found and we must follow another path (exactly as Zannier
proposed in [10]).

In the case a D 2 (putting p D 3) and in the case a D 3 (putting p D 5), a is a
primitive root modulo pk for every k. Put q D pk for k � 2. If n is an integer not
divisible by pk�2 and if s is coprime with p, we obtain

'.q/�1X
mD0

e

�
amsn

q

�
D 0

and thus if '.z/ D
P1
nD1 dnz

n, then similarly to before

(4)
ˇ̌̌̌ '.q/�1X
mD0

P

�
ams

q

�ˇ̌̌̌
� '.q/

1X
nDq=p2

jdnj � p
2

1X
nDq=p2

njdnj:
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4.2. An approximate formula

Given a, choose p such that the inequality (3) or (4) holds with q D pk for k big
enough. Choose r a power of p such that r � 1 mod a. For every integer t � 1, define
k D at , q D rk and choose any s � 1 mod rat . Note that q is coprime with s and that
q > a. Put �0 D s

q
and n0 D '.q/. By induction we observe that q � 1 mod at . For

every l � t and for every n � l , multiplying the congruence �0 � .1 � q/�0 mod Z

by an�l we obtain

an�l�0 � a
n 1 � q

al
�0 mod Z:

Since an0 � 1 mod q and q � s � 1 mod at , we find that, for 0 � l � t � n0,

(5) an0�l�0 � a
n0
1 � q

al
�0 �

1 � q

al
�0 D

�0 � s

al
�
�0 � 1

al
mod Z

(the second congruence is the only one not obvious).
We can write the following equalities:

F

�
w

an0
C�0

�
D

n0�1X
lD0

P

�
w

an0�l
C al�0

�
C F.w C an0�0/(6)

D

n0�1X
lD0

P

�
w

an0�l
C al�0

�
C F.w C �0/(7)

D

n0�1X
lD0

�
P

�
w

an0�l
C al�0

�
� P.al�0/

�
C F.w C �0/C�

D

tX
lD1

�
P

�
w

al
C
�0 � 1

al

�
� P

�
�0 � 1

al

��

C

n0X
lDtC1

�
P

�
w

al
Can0�l�0

�
�P.an0�l�0/

�
CF.wC�0/C�;(8)

where�D
Pn0�1

lD0
P.al�0/ satisfies by (3) or (4) (depending ona) j�j�a

P1
nDq=a njdnj

or j�j � p2
P1
nDq=p2 njdnj when t is big enough. In (6), we use recursively the

functional equation F.z/ D P.z/C F.az/. Formula (7) is valid because an0�0 �

�0 mod Z and F is 1-periodic. Finally, in (8) we change the variable l with n0 � l and
we use (5).

Note that for fixed a,
lim
t!1
j�j D lim

q!1
j�j D 0

since
P1
nD1 njdnj converges by hypothesis.
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4.3. Two auxiliary functions

In this section, we accomplish steps 3 and 4 of the plan. Similarly to what was done
in [10], we define for w 2 H two new functions:

G.w/ D

1X
lD1

�
P

�
w � 1

al

�
� P

�
�
1

al

��
;

S.w/ D F.w/CG.w/:

Fix ˛ real. For every t , we look for an integer n0 D n0.t/ and a real number �0 D �0.t/
which, when t tends to infinity, tend respectively to infinity and to ˛, such that the
number

F

�
w

an0
C �0

�
� S.w C ˛/CG.˛/

tends to 0 when t tends to infinity, uniformly for w varying in a compact. Through the
use of Rouchè’s theorem, this fact will lead to the following proposition.

Proposition 4.3. Let ˛ 2R and letU be an open disk centered in e.˛/. For all � 2H ,
the function f takes on U \D the value S.�/ �G.˛/ infinitely many times.

Choose t and s such that

j�0 � ˛j �
rat

q
D

k

rk�1
< a�t ;

where k D at , q D rk , s � 1 mod rat , and �0 D s
q

are defined as usual. The first
inequality can always be satisfied by choosing the right s, the second one holds for k
big enough. Put n0 D '.q/.

Fix K � H a compact set. Fix ˛ too, and let t vary. F is locally Lipschitz (that is
on compact sets) overH since it is of class C 1, while P is Lipschitz over the whole xH
because

P1
nD1 njdnj converges, hence � and �0 converge on xD. Therefore, there exist

some constants C1; C2; C3 (dependent on K but not on t ) such that, for all w 2 K,

n0X
lDtC1

ˇ̌̌̌
P

�
w

al
C an0�l�0

�
� P.an0�l�0/

ˇ̌̌̌
� C1

n0X
lDtC1

ˇ̌̌̌
w

al

ˇ̌̌̌
� C1jwja

�t
� C2a

�t ;

tX
lD1

ˇ̌̌̌
P

�
w C ˛ � 1

al

�
� P

�
w C �0 � 1

al

�ˇ̌̌̌
� C1

tX
lD1

ˇ̌̌̌
˛� �0

al

ˇ̌̌̌
�C1j˛� �0j<C1a

�t ;

tX
lD1

ˇ̌̌̌
P

�
�0 � 1

al

�
� P

�
˛ � 1

al

�ˇ̌̌̌
� C1

tX
lD1

ˇ̌̌̌
˛� �0

al

ˇ̌̌̌
�C1j˛� �0j<C1a

�t ;
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1X
lDtC1

ˇ̌̌̌
P

�
w C ˛ � 1

al

�
� P

�
˛ � 1

al

�ˇ̌̌̌
� C1

n0X
lDtC1

ˇ̌̌̌
w

al

ˇ̌̌̌
� C1jwja

�t
� C2a

�t ;

jF.w C �0/ � F.w C ˛/j � C3j�0 � ˛j < C3a
�t :

Also note that

G.w C ˛/ �G.˛/ �

tX
lD1

�
P

�
w

al
C
�0 � 1

al

�
� P

�
�0 � 1

al

��
D

tX
lD1

�
P

�
w C ˛ � 1

al

�
� P

�
w C �0 � 1

al

��
C

tX
lD1

�
P

�
�0 � 1

al

�
� P

�
˛ � 1

al

��
C

1X
lDtC1

�
P

�
w C ˛ � 1

al

�
� P

�
˛ � 1

al

��
:

We can now use formula (8) and the previous bounds to estimate the quantity we are
interested in (remember that S D F CG):ˇ̌̌̌

F

�
w

an0
C �0

�
� S.w C ˛/CG.˛/

ˇ̌̌̌
D

ˇ̌̌̌ tX
lD1

�
P

�
w

al
C
�0 � 1

al

�
� P

�
�0 � 1

al

��
C

n0X
lDtC1

�
P

�
w

al
C an0�l�0

�
� P

�
an0�l�0

��
C F.w C �0/ � F.w C ˛/ �G.w C ˛/CG.˛/C�

ˇ̌̌̌
�

ˇ̌̌̌ n0X
lDtC1

�
P

�
w

al
C an0�l�0

�
�P.an0�l�0/

�ˇ̌̌̌
C
ˇ̌
F.wC �0/�F.wC˛/

ˇ̌
C

ˇ̌̌̌
�G.wC˛/CG.˛/C

tX
lD1

�
P

�
w

al
C
�0� 1

al

�
�P

�
�0� 1

al

��ˇ̌̌̌
Cj�j

<
2C1 C 2C2 C C3

at
C j�j D

C4

at
C j�j

(9)

for a constant C4. � D
Pn0�1

lD0
P.al�0/ satisfies by (3) or (4) (depending on a) j�j �

a
P1
nDq=a njdnj or j�j � p2

P1
nDq=p2 njdnj when t is big enough. Hence j�j tends

to zero when t tends to infinity.
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Put v D S.�/ and define

Ft .w/ D F

�
w

an0
C �0

�
;

where n0 and �0 depend on t as usual. In order to complete the proof of Proposition
4.3, consider a disk C centered in � � ˛ such that xC � H and such that S.w C ˛/ ¤
v for every w on the boundary of C . It exists since S is not constant, otherwise
limx!0C F.ix/ D S � limx!0C G.ix/ D S � G.0/ D S while the left side term
diverges (see the functional equation). When t is big enough, we haveˇ̌�

Ft .w/ � v CG.˛/
�
�
�
S.w C ˛/ � v

�ˇ̌
<
C4

at
C j�j <

ˇ̌
S.w C ˛/ � v

ˇ̌
for every w on the boundary of C since the central term goes to zero when t tends to
infinity, while the right one has a positive minimum (for w varying on the boundary
ofC ) which does not depend on t . The functionsFt .w/� vCG.˛/ and S.wC ˛/� v
are holomorphic on the whole H , hence the inequality allows us to apply Rouchè’s
theorem to obtain that these two functions have the same number of zeros (counted
with multiplicity) inside C . The second one has a zero at � � ˛, thus there exists in C
a zero �t of the first function. This means that

F

�
�t

an0
C �0

�
D Ft .�t / D S.�/ �G.˛/:

Letting t rise to infinity, the quantity �t

at C �0 tends to ˛ because �t 2 C is contained in
a fixed compact and j�0 � ˛j < a�t . By the continuity of e, the numbers e. �t

at C �0/

tend to e.˛/. Therefore, we have found a sequence of complex numbers that tends to
e.˛/ at which f takes the value S.�/ �G.˛/. Proposition 4.3 is proven.

4.4. The image of S

From Proposition 4.3, the intermediate proposition follows if we ensure S to be surjec-
tive. That is exactly guaranteed by the hypothesis on the density of the group, since we
will show that the image of S is invariant under translation by cm, �.1/, and ��.1/.

Again, we proceed as in [10]. It is more convenient to study the image of

S1.w/ WD S.w C 1/ D F.w/C

1X
lD1

�
P

�
w

al

�
� P

�
�
1

al

��
:

Remember that the constants cm are defined for every integer m as

cm D

1X
lD1

�
P

�
m

al

�
� P.0/

�
:
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Let us see where the cm appear. For every m and s integers and w 2 H ,

S1.w Cma
s/ � S1.w/

D

1X
lD0

�
P

�
w Cmas

al

�
� P

�
w

al

��
D

1X
lDsC1

�
P

�
w Cmas

al

�
� P

�
w

al

��
D

1X
lD1

�
P

�
w Cmas

alCs

�
� P

�
m

al

�
� P

�
w

alCs

�
C P.0/

�
C cm

D �m;s.w/C cm:

We should now verify that�m;s.w/ is very small. Fix a compact setK. By the Lipschitz
property of P , there exist constants C1 and C2 (independent from m and s) such that
for all w 2 K we haveˇ̌

�m;s.w/
ˇ̌
�

1X
lD1

ˇ̌̌̌
P

�
wa�s Cm

al

�
� P

�
m

al

�ˇ̌̌̌
C

1X
lD1

ˇ̌̌̌
P

�
w

alCs

�
� P.0/

ˇ̌̌̌
� 2C1

1X
lD1

ˇ̌̌̌
w

alCs

ˇ̌̌̌
� 2C1

jwj

as
�
C2

as
:

If v D S1.w0/ is a point on the image of S1, consider the holomorphic functions
(in the variable w 2 H ) S1.w/� v and S1.w Cmas/� cm � v. Like before, through
Rouchè’s theorem we obtain that there existsw such thatS1.wCmas/D S1.w0/C cm.
Then S1.w0/C cm 2 S1.H/. Moreover, we easily note that

S1.aw/ D F.aw/C

1X
lD1

�
P

�
aw

al

�
� P

�
�
1

al

��
D F.aw/C

1X
lD1

�
P

�
aw

al

�
� P.0/

�
�

1X
lD1

�
P

�
�
1

al

�
� P.0/

�
D F.w/ � P.w/C

1X
lD2

�
P

�
aw

al

�
� P.0/

�
C P.w/ � P.0/ �

1X
lD1

�
P

�
�
1

al

�
� P.0/

�
D F.w/C

1X
lD1

�
P

�
w

al

�
� P

�
�
1

al

��
� P.0/ D S1.w/ � P.0/:
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Hence S1.w/ � P.0/ 2 S1.H/ and also S1.aw/C P.0/ 2 S1.H/. We have proven
that S1.H/ is invariant under translation by cm, �.1/, and ��.1/. Thus it is invariant
also under translation by any element of the semigroup generated by ZP.0/ D Z�.1/

and <cm D cm C c�m (we do not know if it is invariant under translation by �<cm).
This semigroup is dense in R since, by hypothesis, the group is dense too (the closure
of the group and the closure of the semigroup coincide because among the generators
there are both �.1/ and ��.1/ ¤ 0).

Thus if s 2 S1.H/, then s C r 2 S1.H/ for all r 2 R thanks to the open mapping
theorem, since s C a 2 S1.H/ for all a in the dense group. Moreover, for some m,
=.cm/ D �=.c�m/ ¤ 0 (by hypothesis), therefore S1.H/ contains numbers with
arbitrarily big and arbitrarily small imaginary parts. The image of S1 is connected
given that H is connected and S1 is continuous. Then S1.H/ contains numbers with
any imaginary part. Along with the previous observation, we conclude that S1.H/DC.

This completes the proof of the intermediate proposition (Proposition 4.1).

5. Some lemmas about real-valued analytic functions

In order to prove Theorem 1.1, we have to verify the density of the group generated by
<.cm/ and �.1/, and the existence of a non-real cm. To do so, we need some lemmas.

In this paper, a function f W R! R of class C1 is called analytic if for all x0 2 R

there exists " > 0 such that the Taylor series
1X
nD0

f n.x0/

nŠ
.x � x0/

n

converges for all x such that jx � x0j < " and the limit of the series is f .x/.

Lemma 5.1. Let h W R! R be an analytic and periodic function with period 1 with
h.0/ D 0. Let a � 2 be an integer. Then the series

P1
nD1 h.

x
an / converges for all x

real. Moreover, the function H W R! R

(10) H.x/ D

1X
nD1

h

�
x

an

�
which satisfies H.x/ D h.x

a
/CH.x

a
/ is analytic.

Proof. There is " > 0 such that, if jxj < ", thenˇ̌
h.x/

ˇ̌
�
�ˇ̌
h0.0/

ˇ̌
C 1

�
jxj

since h.0/ D 0. Fix M > 0. Let n0 be an integer such that an0 > M
"

, then for all x
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such that jxj < M ,ˇ̌̌̌
h

�
x

an

�ˇ̌̌̌
� sup jhj DWMn for 1 � n � n0 � 1;ˇ̌̌̌

h

�
x

an

�ˇ̌̌̌
�
�ˇ̌
h0.0/

ˇ̌
C 1

�M
an
DWMn for n � n0:

Then
P1
nD1Mn <1 and so by the Weierstrass criterion the series (10) converges

absolutely and uniformly on the compact sets. Then the limit is analytic because so are
the addends.

Lemma 5.2. Let h W R! R be an analytic and periodic function with period 1 with
h.0/ D 0. Let a � 2 be an integer. Define the analytic function (by Lemma 5.1) H W
R! R

H.x/ D

1X
nD1

h

�
x

an

�
:

If there is k0 such that for every integer k > k0,H.1C ak/ D H.1C akC1/, then
H is periodic with period 1.

Proof. First of all, we prove by induction on s that, for every s � 1,

(11) H .s/.1/ D
1

as � 1
h.s/.0/:

Fix s. Assume that for every 1 � t < s we know .at � 1/H .t/.1/D h.t/.0/, and we
want to prove (11). We achieve this with some calculations starting from the hypothesis

0 D H.1C ak/ �H.1C akC1/:

For every k > k0, we can write

0 D H.1C ak/ �H.1C akC1/

D

1X
nDkC1

�
h

�
1C ak

an

�
� h

�
1C akC1

an

��

D

1X
nDkC1

�
h

�
1C ak

an

�
� h

�
1C akC1

anC1

��
� h

�
1C akC1

akC1

�

D

1X
nD1

�
h

�
1=ak C 1

an

�
� h

�
1=akC1 C 1

an

��
� h

�
1

akC1

�
D

1X
nD1

�
h

�
1=ak C 1

an

�
� h

�
1=akC1 C 1

an

��
C h.0/ � h

�
1

akC1

�
:
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Now we approximate these differences with a Taylor series of order s and we introduce
the Lagrange remainder

D

1X
nD1

s�1X
mD1

1

mŠ
h.m/

�
1=akC1 C 1

an

��
a � 1

akC1Cn

�m
�

s�1X
mD1

1

mŠ
h.m/.0/

�
1

akC1

�m
C

1X
nD1

1

sŠ
h.s/.�n/

�
a � 1

akC1Cn

�s
�
1

sŠ
h.s/.�0/

�
1

akC1

�s
for some 1=akC1

an � �n �
1=akC1C1

an and 0 � �0 � 1

akC1 . We continue from the last
expression using the inductive hypothesis:

D

1X
nD1

s�1X
mD1

1

mŠ
h.m/

�
1=akC1 C 1

an

��
a � 1

akC1Cn

�m
�

1X
nD1

s�1X
mD1

1

mŠ
.am � 1/h.m/

�
1

an

��
1

akC1Cn

�m
C

1X
nD1

1

sŠ
h.s/.�n/

�
a � 1

akC1Cn

�s
�
1

sŠ
h.s/.�0/

�
1

akC1

�s
D

1X
nD1

s�1X
mD1

1

mŠ

�
1

akC1Cn

�m�
.a � 1/mh.m/

�
1=akC1 C 1

an

�
� .am � 1/h.m/

�
1

an

��
C

1X
nD1

1

sŠ
h.s/.�n/

�
a � 1

akC1Cn

�s
�
1

sŠ
h.s/.�0/

�
1

akC1

�s
:

(12)

By induction on m0, it may be observed that, for every m0 � 1, we have
1X
nD1

s�1X
mD1

1

mŠ

�
1

akC1Cn

�m�
.a � 1/mh.m/

�
1=akC1 C 1

an

�
� .am � 1/h.m/

�
1

an

��
D

1X
nD1

s�1X
mDm0

1

mŠ

�
1

akC1Cn

�m�
.a � 1/mh.m/

�
1=akC1 C 1

an

�
�

�
am � 1 �

m0�1X
jD1

.a � 1/j
�
m

j

��
h.m/

�
1

an

��

C

1X
nD1

m0�1X
jD1

1

sŠ

�
s

j

�
.a � 1/jh.s/.�n;j /

�
1

akC1Cn

�s
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for certain 1
an � �n;j �

1=akC1C1
an . Puttingm0 D s � 1 and substituting the last expres-

sion in (12), we get

0 D

1X
nD1

1

.s � 1/Š

�
1

akC1Cn

�s�1�
.a � 1/s�1h.s�1/

�
1=akC1 C 1

an

�
� .a � 1/s�1h.s�1/

�
1

an

��
C

1X
nD1

1

sŠ
h.s/.�n/

�
a � 1

akC1Cn

�s
�
1

sŠ
h.s/.�0/

�
1

akC1

�s
C

1X
nD1

s�2X
jD1

1

sŠ

�
s

j

�
.a � 1/jh.s/.�n;j /

�
1

akC1Cn

�s
:

Here again we use the Lagrange remainder to simplify the first line of the previous
equation. We are left with a linear combination of h.s/ valued at some points:

0 D

1X
nD1

1

.s � 1/Š

�
1

akC1Cn

�s
.a � 1/s�1h.s/.�0n/

C

1X
nD1

1

sŠ
h.s/.�n/

�
a � 1

akC1Cn

�s
�
1

sŠ
h.s/.�0/

�
1

akC1

�s
C

1X
nD1

s�2X
jD1

1

sŠ

�
s

j

�
.a � 1/jh.s/.�n;j /

�
1

akC1Cn

�s
for certain 1

an � �
0
n �

1=akC1C1
an . Multiply this last expression by sŠa.kC1/s and take

the limit for k which tends to infinity. Remembering that �n;j , �n, and �0n tend to 1
an

(n > 0) and that �0 tends to 0, we finally find that

0 D

1X
nD1

s

�
1

an

�s
.a � 1/s�1h.s/

�
1

an

�

C

1X
nD1

h.s/
�
1

an

��
a � 1

an

�s
� h.s/.0/

C

1X
nD1

s�2X
jD1

�
s

j

�
.a � 1/jh.s/

�
1

an

��
1

an

�s
D

1X
nD1

�
1

an

�s
.as � 1/h.s/

�
1

an

�
� h.s/.0/:
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We get (11) as wanted:

.as � 1/H .s/.1/ D

1X
nD1

�
1

an

�s
.as � 1/hs

�
1

an

�
D h.s/.0/:

Therefore, we find the equality of the derivatives of order s � 1 at 0 and 1:

H .s/.1/ D
1

as � 1
h.s/.0/ D

1X
nD1

1

ans
h.s/.0/ D H .s/.0/:

From this it follows, by the analyticity of H , that H.x C 1/ D H.x/C c for some
constant c. Our hypothesis was H.1C ak/ D H.1C akC1/ for some k (and a � 2 is
an integer), then c D 0, and hence H is periodic.

Lemma 5.3. Let h W R! R be an analytic and periodic function with period 1 with
h.0/ D 0. Let a � 2 be an integer. Define (as above) the function H W R! R

H.x/ D

1X
nD1

h

�
x

an

�
:

If H is 1-periodic, then h has zero integral in a period.

Proof. Note that H is well defined and continuous (Lemma 5.1 does not use the
analyticity for this step). Since a is an integer and H is 1-periodic,

1

a

Z a

0

H.x/dx D

Z 1

0

H.x/dx:

It suffices to observe that h.x/ D H.ax/ �H.x/, hence changing variable we seeZ 1

0

h.x/dx D

Z 1

0

H.ax/dx �

Z 1

0

H.x/dx

D
1

a

Z a

0

H.x/dx �

Z 1

0

H.x/dx

D

Z 1

0

H.x/dx �

Z 1

0

H.x/dx D 0:

6. Proof of Theorem 1.1

Since �.z/ D
P1
nD1 dnz

n has radius of convergence greater than 1,
P1
nD1 njdnj

converges. By the previous intermediate proposition (Proposition 4.1), it suffices to
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prove that the group generated by �.1/ and by the real parts of

cm D

1X
lD1

�
�

�
e

�
m

al

��
� �.1/

�
is dense in R, and that there exists some cm not real. We need Lemmas 5.2 and 5.3.

The hypothesis that � has radius of convergence greater than 1 will help us, but in
some particular cases may not be needed. For example, the function

f .z/ D
X
m;n�0

z2
n3m

4m

obtained by choosing a D 2 and �.z/ D
P1
mD0

z3m

4m has the Picard property too, as
one can easily verify using Proposition 4.1.

6.1. Density of the group generated by �.1/ and <cm
Put  .z/ D �.z/ � �.1/ and we must verify that the group generated by �.1/ and by
the quantities

�m D <cm D

1X
lD1

< 

�
e

�
m

al

��
is dense in R. If (by contradiction) that did not happen, given that �.1/ ¤ 0, the
real numbers �m=�.1/ for varying m would form a set of rationals with bounded
denominator. This will not be possible since for every " > 0 we will find m1 and
m2 such that j�m1

� �m2
j < " but j�m1

� �m2
j ¤ 0. We choose m1 D 1C ak and

m2 D 1C a
kC1 for k big enough.

First of all, it is easy to verify that �1Cak � �1CakC1 tends to 0 when k tends
to infinity. Now we have to prove that it cannot happen that �1Cak � �1CakC1 D 0

definitely in k. This would be a very particular case. As we can believe, it does not
arise. Put for x real h.x/ D < .e.x//. It is an analytic function because it is the real
part of a holomorphic function. We obtain

H.m/ WD

1X
nD1

h

�
m

an

�
D �m:

If �1Cak � �1CakC1 D 0 definitely in k, we would have H.1C ak/ D H.1C akC1/
for all k > k0 for some k0. Lemma 5.2 affirms that H is periodic. Apply Lemma 5.3
to H to find that h has zero integral on a period; that is the real part of  has mean
value 0 on the boundary of the disk. This is not possible since the mean value on the
boundary (the real part is a harmonic function) must coincide with the value at the
center < .0/ D <.�.0/ � �.1// D ��.1/ which is not zero by hypothesis. We have
proved that the group is dense.
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6.2. A non-real cm

To apply the intermediate proposition (Proposition 4.1), it remains to prove that there
exists a cm with non-zero imaginary part. In many particular cases, it is easy to verify
this request. In general, we need some work. I thank Professor Zannier for the valuable
contribution he gave me for completing the proof. Put as before  .z/ D �.z/ � �.1/
and consider the function

u.z/ D  
�
e.z/

�
�  

�
e.�z/

�
which is holomorphic on the stripe �" < =z < " where " D log.r/ > 0 if  is holo-
morphic on the disk of radius r > 1. Note that if z is real u.z/ D 2= .e.z//. Put

U.z/ D

1X
nD1

u

�
z

an

�
which is holomorphic on the same stripe �" < =z < " since u.0/ D 0. Then

U.m/ D

1X
nD1

u

�
m

an

�
D 2=

1X
nD1

 

�
e

�
m

an

��
D 2=cm for every integer m:

If (by contradiction) =cm D 0 for all integers m, then in particular U.1 C ak/ D
2=c1Cak D 0 for all integers k. Since u restricted to the real line is a real analytic
function, Lemma 5.2 implies that U restricted to the real line is 1-periodic, thus it is
1-periodic on the whole stripe. Then there is a function V W D.r/ n xD.1=r/! C such
that

U.z/ D V.q/ for q D e.z/:

Let V C.q/ be the holomorphic function on D.r/ obtained by summing the non-
negative terms of the expansion of V in Laurent series. It holds that

V.qa/ � V.q/ D U.az/ � U.z/ D u.z/ D  .q/ �  .q�1/;

therefore, since  is a holomorphic function and the expansion in Laurent series at a
point is unique (also a > 0),

V C.qa/ � V C.q/ D  .q/ �  .0/:

Inserting q D 1, we find that 0 D  .1/�  .0/; that is  .1/ D  .0/, so �.1/ D �.0/
but �.0/ D 0 and �.1/ ¤ 0 by hypothesis.

The proof of Theorem 1.1 is complete.
We do not know if Theorem 1.1 also holds for dn 2 C and not only when we

suppose them real. Proposition 4.3 still holds. Moreover, the image of S is invariant
under translation by cm, �.1/, and��.1/ but we are not able to prove S to be surjective
with this information.
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7. Estimate of the number of zeros

We discuss some quantitative estimations about the number of zeros contained inD.r/
of some function with the Picard property. We give an upper bound for the Fredholm
series and a lower bound for every function that emerges from Theorem 1.1. We then
improve this lower bound for the Fredholm series following Fuchs’ approach.

All lower bounds will be of the form: there exists a constant C and some r0 < 1
such that for every r > r0 the number of zeros N.r/ contained in D.r/ is greater than
C � h.r/ (for some function h with limr!1� h.r/ D C1), that is h.r/ D O.N.r// for
r ! 1�.

7.1. Upper bound

Let g be a holomorphic function on D.R/. For r < R, let a1; : : : ; an.r/ be the zeros
of g inside xD.r/ and let n.r/ be their number. Denote by M.r/ the maximum of the
modulus of g on the boundary of D.r/. Suppose that g.0/ ¤ 0. For every k such that
1 < k < R

r
, we obtain by Jensen’s formula

logM.kr/ �
Z 1

0

log
ˇ̌
g
�
kre.�/

�ˇ̌
d�

D log
ˇ̌
g.0/

ˇ̌
C

n.kr/X
lD1

log
�
kr

jal j

�

� log
ˇ̌
g.0/

ˇ̌
C

n.r/X
lD1

log
�
kr

jal j

�
� log

ˇ̌
g.0/

ˇ̌
C n.r/ log k:

(13)

We apply this inequality to the function g.z/ D f .z/=z, where f is the Fredholm
series. g is holomorphic on D and g.0/ D 1. For every 1 < k < 1

r
, from (13) we

get (n.r/ is the number of zeros of g inside xD.r/, that is the ones of f inside xD.r/
different from 0)

n.r/ �
logM.kr/

log k
< �

log.1 � kr/
log k

sinceM.r/ <
P1
nD0 r

n D
1
1�r

. The idea behind this kind of Jensen’s bound was taken
from [7, Section 15.20].

If r D ex logx for some x > 0, choose k D 1�x
r

(k > 1 for x small enough, and
k < 1

r
) and we find that

(14) n.r/ � �
log x

log
�
.1 � x/=r

� :
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With simple algebraic steps, from (14) we obtain that, asymptotically, the number of
zeros n.r/ of the Fredholm series contained in xD.r/ n ¹0º (which goes to infinity)
increases at most like log.� log r/

log r . That is, for every C > 1, for r big enough

n.r/ � C
log.� log r/

log r

or equivalently for d > 0 small enough

n.1 � d/ � �C
log d
d

:

7.2. Lower bound

Let f be any function which arises from Theorem 1.1. We retrace the proof of the
infinity of the zeros to get a quantitative estimate.

Fix ˛ 2 R and � 2 H . Let C be a disk centered in � � ˛ such that xC � H and
such that S.w C ˛/ ¤ S.�/ for all w on the boundary of C . We proved that for every
t 2 N big enough there exists �t 2 C such that

f

�
e

�
�t

an0
C �0

��
D S.�/ �G.˛/;

where �0 (dependent on t ) is a real number satisfying j�0 � ˛j < a�t and n0 D '.ba
t
/

(here ' is the Euler function) for some constants a and b dependent on the function f .

Remark 7.1. As noted in [10, Remark 4.1], f almost shows a “fractal” behavior. The
values taken in the circles Ct D C

an0
C �0 for varying t 2 N are almost the same but

at rescaled points (see expression (9)).

Fix 0 < r < 1. Put C0 D min=C , we haveˇ̌̌̌
e

�
�t

an0
C �0

�ˇ̌̌̌
D exp

�
� 2�=

�
�t

an0
C �0

��
D exp

�
� 2�=

�t

an0

�
� exp.�2�C0a�n0/:

Thus the number of t 2 N such that je. �t

an0
C �0/j < r is at least�

loga

�
logb

�
� loga

�
�

log r
2�C0

����
� C log

�
log

�
� log.� log r/

��
for a constant C > 0 and for r close enough to 1. One can choose C small enough such
that the sets Ct D C

an0
C �0 are disjoint.
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Given ˛ 2 R, we choose � satisfying S.�/ �G.˛/ D 0. Pick any sector

S D ¹z 2 C j 2�˛0 < arg z < 2�˛1º with ˛0 < ˛ < ˛1:

Definitively in t , �t belongs to S . Let nS .r/ be the number of zeros of f of modulus
smaller than r contained in S . Then (we may need to decrease C since the argument
works only definitively) for every r big enough, we have

(15) nS .r/ � C log
�

log
�
� log.� log r/

��
or equivalently for d > 0 small enough

nS .1 � d/ � C log
�

log.� log d/
�
:

Remark 7.2. Here we have obtained the same estimation for every sector regardless of
the angle ˛. We believe that the zeros are equally distributed in every direction. Recall
that Nazarov proved that some lacunary series f .z/ D

P
k2ƒ ckz

k have the Picard
property when

P
k2ƒ jckj

2 D1. The zeros of these f are equidistributed in a precise
sense. For 0 < r < 1, define the discrete measure

�r D
X

� Wf .�/D0; j� j<r

log
r

j�j
ı�

and put �.r/2 D
P
k2ƒ jckj

2r2k , then 1
log �.r/�r weakly converges to the Lebesgue

measure on the boundary of D when r tends to 1.
Moreover, we observe that this convergence of measures implies that for every

C > 0 and for every r big enough n.r/ � C log �.r/.

7.3. Another estimate with Fuchs’ method

In the particular case of f the Fredholm series, we find a lower bound for n.r/, the
number of zeros of f contained inD.r/ different from 0. We will find better estimates
but not as general as the previous ones because they are only valid for the Fredholm
series.

For every constant C > 0, exactly one among the following scenarios happens.

(1) There exists a sequence of .rk/k2N of real numbers smaller than 1 which tend to 1
such that jf .z/j � C for every z such that jzj D rk .

(2) There exists r0 < 1 such that for all r > r0 there is a z of modulus r such that
jf .z/j < C .

If we had f .z/ D
P1
kD1 ckz

nk unbounded with limk!1 jckj D 0 (but here jckj D 1),
we would affirm that Scenario 2 happens and not 1 ([9] or [6, Lemma 5]).



s. boscardin 24

As noted in [10, Remark 4.2], we can approximate f with sn.�/ D
Pn�1
mD0 e.2

m�/.
Mahler precisely proved that [4, Theorem 1]

(16)
ˇ̌
f
�
re.�/

�
� sn.�/

ˇ̌
� C0 D 3;

where n D b� log2.� log r/c.

Remark 7.3. For C > 8, Scenario 2 happens. In fact, choose � D 1
9

in (16). Since
sn.1=9/ D 0 whenever 6 divides n, we get jf .re.1=9//j � 5C 3 D 8.

We obtain two different bounds.

Scenario 1. In [10, Remark 4.2], the following is proved.

Lemma 7.4. If An D ¹� 2 Œ0; 1� j jsn.�/j >
p
n

2
º, then the Lebesgue measure of jAnj

is greater than a constant . 9
32
/ which does not depend on n.

Using this result and (16), we can write (for n D b� log2.� log r/c)Z 1

0

logC
ˇ̌
f
�
re.�/

�ˇ̌
d� �

Z
An

logC
�ˇ̌
sn.�/

ˇ̌
� C0

�
d� �

9

32
logC

�p
n

2
� C0

�
:

For r D rk , we have supposed that jf .re.�//j > C . Then if C < 1 (we change logC

to log), then Z 1

0

log
ˇ̌
f
�
re.�/

�ˇ̌
d� �

9

32
logC

�p
n

2
� C0

�
C log.C /

� C1 logn � C2

for n big enough and for some constants C1 > 0 and C2 > 0. We use Jensen’s formula.
Given that there is ˛ > 0 such that jal j > ˛ for all al zeros of g.z/D f .z/=z, we have
(note that g > f )

n.r/ log
�
1

˛

�
�

n.r/X
lD1

log
�
r

jal j

�
D

Z 1

0

log
ˇ̌
g
�
re.�/

�ˇ̌
d� � C1 logn � C2

whence
n.r/ � C log.n/ � C log

�
� log.� log r/

�
valid for r big enough and for some positive constants which, for simplicity, we just
call C . Equivalently for d > 0 small enough,

n.1 � d/ � C log.� log d/:

We have removed one log from the estimate (15).
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Scenario 2. Fuchs proved [1] that there exist a constant C > 0 and r0 < 1 such that if
r > r0 and jf .z/j < C with jzj D r.s0s1/1=2, then there exists a zero of f of modulus
between rs0 and rs1, where s0, s1 are functions of r . In the special case of the Fredholm
series, for some constant p

s0.r/ D exp
�
�

p

2d� logr 2eC1

�
;

s1.r/ D exp
�
�

p

2d� logr 2eC2
.1C log 2/

�
:

For every r < 1, consider the annulus Sr D ¹z 2 C
ˇ̌
rs0 < jzj < rs1º. In this case,

we are supposing that for every r > r0 there exists z of modulus r such that jf .z/j < C .
In particular, there is one such z of modulus r.s0s1/1=2 for all r big enough since
r.s0s1/

1=2 tends to 1 when r tends to 1. Then, thanks to Fuchs’ proof, there exists a
zero in Sr .

We make some approximations in the limit of r tending to 1. We find a constant
C0 > 0 such that

log.rs1/ D log.rs0/C
p

2d� logr 2eC2
.1 � log 2/

� log.rs0/C C021=.C0 log r/

� log.rs0/C C021=.C0 log.rs0//

for r close enough to 1 (we used logr 2 D
log2
log r ).

For every ˛ > 0, consider the annulus

S 0˛ D
®
z 2 C j ˛ > � log jzj > ˛ � C02�1=.C0˛/

¯
:

For ˛ D � log.rs0/, we have Sr � S 0˛ . Then there exists a zero of f in S 0˛ for every ˛
small enough.

To obtain a lower bound to n.r/, we compute how many disjoint annuli can stay
inside D.r/. Given that for ˛ small enough C02�1=.C0˛/ < ˛=2, the sets S 02�n are
disjoint for n � n0 big enough. Moreover, if C02�1=.C0˛/ < ˛=2 and if ˛ > �2 log r ,
we have S 0˛ � D.r/. Therefore, when n0 � n < � log2.�2 log r/ the sets S 02�n are
disjoint and contained in D.r/. For n � n1 big enough, they all contain a zero of f .
We conclude that, for r close enough to 1,

n.r/ � � log2.�2 log r/ � C1 � �C log.� log r/;

where C1 D max¹n0; n1º and C is an appropriate positive constant as usual. Equiva-
lently for d > 0 small enough,

n.1 � d/ � �C log d:

We have removed two log functions from the estimate (15).
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