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Abstract. – In this paper, we study the (possible) solutions of the equation exp�.f /D g, where
g is a slice regular never vanishing function on a circular domain of the quaternions H and exp�
is the natural generalization of the usual exponential to the algebra of slice regular functions.
Any function f which satisfies exp�.f / D g is called a �-logarithm of g. We provide necessary
and sufficient conditions, expressed in terms of the zero set of the “vector” part gv of g, for
the existence of a �-logarithm of g, under a natural topological condition on the domain �. By
this way, we prove an existence result if gv has no non-real isolated zeroes; we are also able to
give a comprehensive approach to deal with more general cases. We are thus able to obtain an
existence result when the non-real isolated zeroes of gv are finite, the domain is either the unit
ball, or H, or D (the solid torus obtained by circularization in H of the disc contained in C and
centered in 2

p
�1 with radius 1), and a further condition on the “real part” g0 of g is satisfied

(see Theorem 6.19 for a precise statement). We also find some unexpected uniqueness results,
again related to the zero set of gv , in sharp contrast with the complex case. A number of examples
are given throughout the paper in order to show the sharpness of the required conditions.
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1. Introduction

The aim of this paper is to investigate the (possible) existence and/or uniqueness of
solutions of

(1.1) exp�.f / D g;

given a never vanishing function g which is slice regular on a circular domain� of the
quaternions H. A solution of this equation will be called �-logarithm of g.

The �-exponential operator exp� on the space �R.�/ of slice regular functions
was introduced by Colombo, Sabadini, and Struppa in [8] and was later studied by
Altavilla and de Fabritiis in [3]. We underline the fact that its definition in the form
exp�.f / D

P f �n

nŠ
, where f �n D f � � � � � f denotes the �-product of f with itself

n times (i.e., the nth �-power), was due to the remark that in general the pointwise
product (and thus the pointwise powers) of slice regular functions is not slice regular.

https://creativecommons.org/licenses/by/4.0/
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One of the features of exp�.f / is that, as anyone would expect, it is a never vanishing
slice regular function for any slice regular f , so equation (1.1) has no solution unless
g is never vanishing. By an accurate investigation on the features of this operator, we
will be able to understand under which conditions on � and g equation (1.1) admits a
solution.

Similar results, suggested by different motivations and obtained by distinct tech-
niques, were obtained at the same time by Gentili, Prezelij, and Vlacci (see [11]).

Slice regular functions on quaternions were introduced by Gentili and Struppa in
2006 in order to give a suitable notion of regularity for functions of a quaternionic
variable which would provide a good balance between two requirements: the first one is
the necessity of a smooth behavior, in the sense of existence of some kind of derivatives,
while the second is the condition that the set of these functions is large enough to offer
an interesting theory; for a detailed account on the path which led to this approach,
see [12]. In particular, in our opinion, one of the key points of the theory is the definition
of �-product which, together with the pointwise sum, gives to the space �R.�/ the
structure of an associative �-algebra.

In this last 15 years, the theory quickly developed in several directions, creating
many connections with differential geometry, algebraic geometry, functional analysis,
operator theory, and applications to physics and engineering.

Before giving a description of the content of our paper, it is worthwhile looking a
bit more thoroughly to the behavior of the operator exp� with the aim to explain the
reason of its definition and the analogies and dissimilarities with the exponential in the
classical (i.e., complex analytic) sense.

Indeed, one can define an exponential map exp W H! H n ¹0º on the quaternions
which turns out to be slice regular and slice preserving. Nonetheless, in general, the
composition of slice regular functions is not slice regular (for a more detailed treatment
of the composition in the setting of slice regular functions, see [9, 20, 21]). Thus,
considering exp ıf for any slice regular function f provides a never vanishing func-
tion which could be non-regular. Indeed, the equality exp ıf D exp�.f / holds true
when f is a slice preserving function and, on a suitable subset of �, for one-slice
preserving functions, but in general, it does not for any slice regular function (see
Definition 2.7, Remark 2.16, and Example 2.22 for a detailed comparison between
exp ıf and exp�.f /).

Thus, the topological approach used in the theory of holomorphic functions on
complex numbers, where the logarithm of g W �! C n ¹0º can be obtained by means
of a lifting of the map g with respect to the covering exp W C! C n ¹0º, provided� is
contractible, cannot be used on slice regular functions unless the function g has special
properties (i.e., it preserves at least one slice). In antithesis with exp ıf , the definition
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of exp� is the natural one since it relies on the �-product, it provides an operator which
maps �R.�/ in �R.�/, and it coincides with exp ıf on slice preserving functions.

We now give an outline of the paper.
Section 2 contains definitions and preliminary material: we recall the basic def-

initions of the theory of slice regular functions together with the main topological
definition we need, that is, the notion of slice-contractible domain, and we cite the
main properties of the �-exponential proven in [3]. Indeed, we can write any slice
regular function f as a sum f D f0 C f1i C f2j C f3k, where i; j; k are the stan-
dard basis of imaginary quaternions and f`, for ` D 0; 1; 2; 3, are quaternionic valued,
slice preserving regular functions (see [7, 14]). The function f0 can be interpreted as
the “real part” of f and fv D f1i C f2j C f3k as the “vector part” of f . Thanks
to the splitting f D f0 C fv, we can give a useful rewriting of exp�.f / in terms of
the exponential of the real part of f and of two auxiliary slice preserving functions,
namely, �; �, introduced in Definition 2.17. By means of � and �, we can compute the
�-exponential in an easier way and thus compare exp�.f / and exp ıf for f 2 �R.�/.
Lastly, we prove that for any slice regular function g without non-real isolated zeroes
and such that gs 6� 0 has a square root � , the quotient ��1g is a well defined slice
regular function.

In Section 3, we investigate in full detail the behavior of the functions � and
� introduced in the previous section. For n 2 N, we define a family of circular
domains Dn � H, showing that the restriction of the map � to D0 is biregular
onto H n .�1;�1�, while for any positive n, the restriction of the map � to Dn

is biregular onto H n ..�1;�1� [ Œ1;C1//. This allows us to introduce the inverse
' W H n .�1;�1�! D0 of �jD0

which is a never vanishing function on D0 and will
be extensively used in Section 6.

Section 4 contains a first existence result for the �-logarithm: namely, we prove that
any one-slice preserving never vanishing function g defined on a slice-contractible
domain � has a �-logarithm which preserves the same slice. Moreover, we show that
if � is slice and g is positive on � \ R, then there exists a unique slice-preserving
�-logarithm of g, while if � is product, we can always find a slice preserving �-
logarithm of a slice preserving function, but in this case, the �-logarithm is never
unique. This statement allows us to prove the existence of a solution of a cosine-sine
problem, in strong analogy with the case of holomorphic functions. Indeed, given a
slice-contractible domain� and a0; a1 2 �RR.�/ such that a20 C a

2
1 � 1, we show that

there exists 
 2 �RR.�/ such that cos�.
/D a0 and sin�.
/D a1. As a consequence
of this proposition, we are able to classify zero divisors with identically zero real part
on product domains (see [4, 5] for a detailed study of zero divisors).

In Section 5, we start by studying the uniqueness problem for the �-logarithm on
slice preserving functions, and we then turn to the general case. The main point is that
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we have to consider two different situations: the first when we deal with slice preserving
functions and the second one when we take into account non-slice preserving functions.

We underline that the results we obtain in this section do not depend on any topo-
logical condition on the domain �.

For the first case, we need to define the set

N.�/ WD
®
f 2 �R.�/ j 9m 2 Z n ¹0º; f sv D m

2�2
¯
[ �RR.�/;

whose elements have the property that the symmetrized function of their vectorial part
always has a square root, and to anticipate the definition of the function J WH nR!H

given by J.q/ D q�qc

jq�qc j
, where qc denotes the usual quaternionic conjugation (see

Definition 2.9). This allows us to state the following.

Theorem 1.1. Let h; Qh 2 �R.�/ be such that exp�.h/ D exp�. Qh/ 2 �RR.�/.

• If � is a slice domain, then h0 � Qh0, h; Qh 2 N.�/, and
p
hsv �

q
Qhsv .mod 2�/.

• If � is a product domain, then there exists n 2 Z such that h0 D Qh0 C �nJ.

Moreover, h; Qh 2 N.�/ and
p
hsv �

q
Qhsv C n� .mod 2�/.

When the �-exponential of the functions we are considering does not belong to
�RR.�/, the conclusion we obtain is quite different.

Theorem 1.2. Let h; Qh 2 �R.�/ be such that h ¤ Qh and exp�.h/ D exp�. Qh/ 62
�RR.�/.
• If� is a slice domain, then h0� Qh0, both hv and Qhv have no non-real isolated zeroes,

both hsv and Qhsv have a square root on�, and there existm 2 Z n ¹0º, ˛ 2 �RR.�/,
and Hv 2 �R.�/ with H s

v � 1 such that hv D ˛Hv and Qhv D .˛ C 2�m/Hv D
hv C 2�mHv , so that

Qh D hC 2�mHv:

• If � is a product domain, then one of the following holds:

(1) There exists n 2 Z n ¹0º such that

Qh D hC 2�nJ:

(2) Both hv and Qhv are not zero divisors in �R.�/ and have no non-real isolated
zeroes, both hsv and Qhsv have a square root on �, and there exists n;m 2 Z such
thatm¤ 0 andm� n .mod 2/, ˛ 2 �RR.�/, andHv 2 �R.�/ withH s

v � 1,
such that hv D ˛Hv and

Qh D h0 C �nJ C .˛ C �m/Hv D hC �.nJ CmHv/:

If the domain � is slice and the function hv has a non-real isolated zero, the above
theorem gives an unexpected uniqueness result for the �-logarithm.
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Corollary 1.3. Let � be slice and let h 2 �R.�/ be such that exp�.h/ 62 �RR.�/.
If hv has a non-real isolated zero, then exp�.h/ D exp�. Qh/ if and only if Qh � h.

The last section contains the most important existence results of our paper. First of
all, we show that if the domain is slice-contractible, we can always limit ourselves to
look for the �-logarithm of a slice regular function g such that gs � 1.

We then get rid of the case when gv is a zero divisor, showing that if � is a slice-
contractible domain and g is a never vanishing function such that gv is a zero divisor,
then there exists a �-logarithm of g.

Next, we turn to the case when gv is not a zero divisor (which is always the case
when� is slice); under this hypothesis, we find a necessary condition for the existence
of a �-logarithm of a function g whose symmetrized function is identically equal to 1.
Indeed, if there exists a �-logarithm of such a g, we have that

(1) if � is a slice domain and q0 is a non-real isolated zero of gv , then g.q0/ D 1;

(2) if � is a product domain and q0; q1 are non-real isolated zeroes of gv , then either
g.q0/ D g.q1/ D 1 or g.q0/ D g.q1/ D �1.

Thus, the non-real isolated zeroes of gv are the true obstruction we have to overcome
in order to get the existence of a �-logarithm. We notice that, in the case of a slice
domain, the above conclusion gives the following unexpected negative results for the
existence of a �-logarithm of a function.

(1) Let� be a slice domain and let f 2 �R.�/ be such that fv has a non-real isolated
zero. Then, � exp�.f / has no �-logarithm.

(2) Let� be a slice-contractible slice domain and let g 2 �R.�/ be a never vanishing
function such that gv has a non-real isolated zero. Then, at least one between g
and �g has no �-logarithm.

The fact that the non-real isolated zeroes of gv are the genuine obstruction for the
existence of a global �-logarithm of a function is confirmed by the following statement.

Theorem 1.4. Let � be slice-contractible. Then, any never vanishing g 2 �R.�/

such that gv has no non-real isolated zeroes has a �-logarithm.

We now consider the problem near the non-real isolated zeroes of gv: by means of
the inverse of the function �, we are able to build a �-logarithm of g near these points
(to be more precise, afar from the points where g0 takes values in .�1;�1�).

Theorem 1.5. Let � be slice-contractible and g 2 �R.�/. If gs � 1 and for any
q0 2 � that is a non-real isolated zero of gv we have that g0.q0/ D 1, then, on every
connected component of � n g�10 ..�1;�1�/, there exists a �-logarithm of g.
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We conclude our investigation by gluing the solutions obtained in Theorem 1.4
where gv has no non-real isolated zeroes with the “patches” given by Theorem 1.5,
thus obtaining our main theorem. The topological difficulties we have to deal with
prevent us from obtaining a clear statement in the general case of a slice-contractible
domain, so we prefer to give a result which pays something to generality in order to
obtain a simpler formulation.

Let us denote by B the open unit ball in H, by D the solid torus obtained by
circularization in H of the disc contained in C and centered in 2

p
�1 with radius 1, by

CCI the closed upper half plane in SpanR.1; I /, and by �R1.�/ the set of slice regular
functions with symmetrized function identically equal to 1 (see Definition 2.25).

Theorem 1.6. Let � be one among B, H, or D. Let g 2 �R1.�/ be such that
• gv has a finite number of non-real isolated zeros ¹q1; : : : ; qN º;
• g0.q`/ D 1 for all ` D 1; : : : ; N ;
• the union Sq1

[ � � � [ SqN
is contained in a unique connected component U of

� n g�10 ..�1;�1�/.

If for some I 2 S (and hence for any) the set UCI DU \CCI is convex and U is slice
if � is, then there exists a �-logarithm of g.

2. Preliminary results

In this section, we recall the basic definitions and results we will use in the following.
We also prove a couple of basic, yet new, results.

We start with some general facts about quaternions. The real skew algebra of
quaternions is defined as

H WD ¹q D q0 C q1i C q2j C q3k j q` 2 R; ` D 0; 1; 2; 3;

i2 D j 2 D k2 D �1; ij D �j i D kºI

hence, i , j , and k are imaginary units. From these three elements, it is possible to
construct the sphere of imaginary units defined as

S WD ¹˛1i C ˛2j C ˛3k j ˛
2
1 C ˛

2
2 C ˛

2
3 D 1º D ¹I 2 H j I 2 D �1º:

By means of the standard conjugation

q D q0 C q1i C q2j C q3k 7! qc D q0 � .q1i C q2j C q3k/;

we can split any quaternion in its real and vector part q D q0 C qv, where qv D
.q � qc/=2. The set of purely imaginary quaternions will be denoted by

Im.H/ D ¹q 2 H j q0 D 0º:
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Another possible splitting is given as follows: any q 2H nR can be uniquely written as
q D ˛C Iˇ, where ˛ D q0, ˇ D jqvj> 0, and I D qv=jqvj 2 S. Such a decomposition
gives the fundamental description of H underlying the theory of slice regular functions.
Before presenting it, we need to introduce a few more definitions to specify the class of
domains, i.e., open connected subsets of H, where slice regular functions are defined.
For any imaginary unit I 2 S, we denote by CI the complex slice spanned by 1 and I
over the reals, i.e.,

CI WD SpanR.1; I /:

We will also consider closed semislices

CCI D ¹˛ C Iˇ j ˛; ˇ 2 R; ˇ � 0º; C�I D ¹˛ C Iˇ j ˛; ˇ 2 R; ˇ � 0º;

and, for any q 2 H nR, we denote by Cq the unique slice containing q. Moreover, if
� � H, then we write �I D � \CI and �˙I D � \C˙I .

Given any q 2 H, we define its sphere Sq as

Sq WD
®
q0 C jqvjJ j J 2 S

¯
;

where, trivially, if q 2 R, then qv D 0 and Sq D ¹qº. For any � � H, its symmetric
completion is given by [

q2�

SqI

a domain��H will be called circular if it coincides with its symmetric completion. A
circular domain is said to be slice if�\R¤ ;, while it is called product if�\RD ;.
Notice that if � is a product domain, then � is homeomorphic to �CI � S, for any
I 2 S, thus explaining the origin of its name.

We are now ready to give our main topological definition.

Definition 2.1. A circular subset � � H is said to be slice-contractible if, for some
I 2 S (and then any), �I is a simply connected domain if � is slice, and �CI is a
simply connected domain if � is product.

From now on, we denote by B � H the open unit ball centered at the origin and by
D the “solid torus”

(2.1) D D
®
˛ C Iˇ 2 H j ˛2 C .ˇ � 2/2 < 1; I 2 S

¯
;

which are both slice-contractible domains, the first one slice and the second one product.

Remark 2.2. We notice that for a slice domain � being simply connected does not
mean being slice-contractible, in general. Indeed, if � D B n ¹0º, then � is simply
connected because it retracts on S3, while �I is not simply connected because it is a
“flat” punctured disc in CI .
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The following definitions identify the functions we will work with (see [15] for an
introduction to the topic).

Definition 2.3. Let � be a circular domain in H and, for any I 2 S, set

D D ¹˛ C
p
�1ˇ j ˛ C Iˇ 2 �º � C:

We say that a function F W D!H˝R C 'H˚ {H is a stem function if the equality
F. Nz/DF.z/, wherep C {qDp� {q, holds for any z 2D. A slice functionf W�!H

is a function induced by a stem functionF DF0C {F1 WD!H˝R C in the following
way:

f .˛ C ˇI/ D F0.˛ C
p
�1ˇ/C IF1.˛ C

p
�1ˇ/:

Such a function will also be denoted by f D 	.F /.

Ghiloni and Perotti [15] proved that a slice function f is induced by a unique stem
function F D F0 C {F1, given by F0.˛ C

p
�1ˇ/ D 1

2
.f .˛ C Iˇ/C f .˛ � Iˇ//

and F1.˛ C
p
�1ˇ/ D �1

2
I.f .˛ C Iˇ/ � f .˛ � Iˇ// for any I 2 S. In particular,

if F D F0 C {F1 and f D 	.F /, we define its slice conjugate as the slice function
f c WD 	.F c/ W �! H, where F c D F c0 C {F

c
1 and F c

`
.q/ D .F`.q//

c for ` D 0; 1.

Definition 2.4. Let��H be a circular domain. A slice function f D	.F / W�!H

is slice regular if F is holomorphic with respect to the natural complex structures of
C and H˝R C. We denote by �R.�/ the set of all slice regular functions on � with
its natural structure of right H-module.

If� is slice, the notion of slice regularity coincides with Cullen regularity (see [12]).
We underline that a detailed study of the relation between the slice regularity adopted
in the present paper and original Cullen regularity can be found in [13, 16] and in
[12, Section 10.3]. A useful result for slice regular functions is the following.

Proposition 2.5 (Representation formula). Let f 2 �R.�/ and let ˛C ˇJ 2�. For
all I 2 S, we have

f .˛ C Jˇ/ D
1 � JI

2
f .˛ C Iˇ/C

1C JI

2
f .˛ � Iˇ/:

A useful consequence of the representation formula is the fact that if fI W �I ! H

is a holomorphic function with respect to the left multiplication by I , then there exists a
unique slice regular function f W�!H such that fI D fj�I

. Such a function ext.fI /
will be called the regular extension of fI (see [12]). From now on, if f 2 �R.�/, we
denote by fI its restriction to �I .

The strong relation between holomorphicity and slice regularity appears also in the
following result obtained by merging [12, Theorem 1.12] and [1, Theorem 3.6].
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Proposition 2.6 (Identity principle). Given f; g 2 �R.�/,
• if � is slice and for some I 2 S, the functions f and g coincide on a subset of �I

having an accumulation point, then f � g;
• if � is product and for some I 2 S, the functions f and g coincide on a subset of
�I having an accumulation point in �CI and an accumulation point in ��I , then
f � g.

The following two classes of regular functions are of particular interest for the
theory.

Definition 2.7. Given f 2 �R.�/, we say that f is one slice preserving if f .�I / �
CI for some I 2 S and f is slice preserving if f .�I / � CI for all I 2 S. The set of
slice preserving function on � will be denoted by �RR.�/, while the set of functions
that preserve �I will be denoted by �RI .�/.

Remark 2.8. Notice that a function f is slice preserving if and only if it preserves
two different slices, if and only if it is intrinsic, i.e., f .qc/ D .f .q//c , for all q in its
domain �. Moreover, if � is slice, f is slice preserving if and only if f .� \R/ � R

(see [14, Lemma 6.8]).

We now introduce an interesting function which will be widely used in the course
of the paper.

Definition 2.9. Let us define the regular (slice preserving) function J W H nR!

S � H as
J.q0 C qv/ D

qv

jqvj
:

Equivalently, if q D ˛ C Iˇ 2 H nR, with ˇ > 0, then J.q/ D I .
We now turn to the algebraic structure of �R.�/. It is a well known fact that

in general, the pointwise product of two slice regular functions is no more slice.
Nonetheless, this problem can be overcome by defining the following non-commutative
product (see [15]).

Definition 2.10. Let f D 	.F / and g D 	.G/ be two slice regular functions on �.
We denote by f � g their �-product defined by f � g D 	.F �G/ where F �G is the
pointwise product with values in H˝R C, i.e., .p C {q/.p0 C {q0/ D pp0 � qq0 C
{.pq0 C qp0/.

Remark 2.11. In [6], the authors prove that the �-product of f and g can be computed
as

.f � g/.q/ WD

´
0; if f .q/ D 0;
f .q/g.f .q/�1qf .q//; if f .q/ ¤ 0:
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In some specific case, the �-product coincides with the pointwise product and in
some more it turns to be commutative.

Remark 2.12. Let f; g 2 �R.�/. If� is slice, then f � g D f � g on�\R. If f is
slice preserving, then f � g D g � f D fg. If both functions preserve the same slice
�I , then f � g D ext.fI � gI / D ext.gI � fI / D g � f .

Given any slice regular function f 2 �R.�/, we then introduce its symmetrized
function f s 2 �RR.�/ defined as f s D f � f c D f c � f .

The importance of the symmetrized function relies mainly on its connection with
the zero set of f : in particular, the function f is a zero divisor if and only if f s � 0
and the fact that f has a non-real isolated zero q entails f s � 0 on Sq .

The symmetrized function allows us to define the �-inverse of a regular function.
Given f 2 �R.�/ with f s 6� 0, we define its �-inverse as f �� D .f s/�1f c which
is slice regular outside the zero set of f s . In the following, we will extensively use the
following zero-product property.

Proposition 2.13 ([17, Proposition 5.18]). Let f; g 2 �R.�/ be such that f s 6� 0.
Then, f � g � 0 implies g � 0. In particular,
• f 2 �R.�/ n ¹0º is a zero divisor if and only if f s � 0;
• if � is slice, then �R.�/ is an integral domain;
• if f 2 �RR.�/ n ¹0º, then fg � 0 implies g � 0.

Now, let us assume that .1; I; J;K/ is an orthonormal basis of H. Thanks to [7,
Proposition 3.12] and [14, Lemma 6.11], any slice regular function f 2 �R.�/ can be
uniquely written as a sum f D f0C f1I C f2J C f3K, where f0; : : : ; f3 2 �RR.�/,
thus giving to �R.�/ the structure of a 4-rank free module on �RR.�/. For the
convenience of what follows, we call f0 the “real part” of f and fv D f � f0 the

“vector part” of f . We also introduce the following two operators: let f; g 2 �R.�/,
then

hf; gi� WD .f � g
c/0; f *̂ g WD

f � g � g � f

2
:

The following result summarizes a series of properties of the �-product obtained via
the above interpretation of the multiplicative structure of �R.�/ (see [3, Proposition 2.7
and Remark 2.8]).

Proposition 2.14. Let f D f0C f1I C f2J C f3K;gD g0C g1I C g2J C g3K 2
�R.�/. Then,
• f c D f0 � .f1I C f2J C f3K/, f0 D fCf c

2
, and fv D f �f c

2
;

• f � g D f0g0 � hfv; gvi� C f0gv C g0fv C fv *̂ gv;
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• f s D f 20 C f
2
1 C f

2
2 C f

2
3 ; in particular, f s � 0 on � \R;

• fv � fv D �fv � .�fv/ D �fv � f
c
v D �f

s
v .

Following [8], we define the following operators on �R.�/.

Definition 2.15. Let f 2 �R.�/. We set

exp�.f / D
X
n2N

f �n

nŠ
;

cos�.f / D
X
n2N

.�1/nf �.2n/

.2n/Š
;

sin�.f / D
X
n2N

.�1/nf �.2nC1/

.2nC 1/Š
:

Remark 2.16. If� is slice, then exp�.f /D exp ıf on�\R and the same holds for
cos� and sin�, i.e., cos�.f /D cosıf and sin�.f /D sinıf on�\R. Iff 2 �RR.�/,
then exp�.f / D exp ıf D exp.f /, cos�.f / D cos ıf D cos.f /, and sin�.f / D
sinıf D sin.f /. Moreover, iff 2 �RI .�/, then exp�.f /D ext.exp.fI //, cos�.f /D
ext.cos.fI //, and sin�.f / D ext.sin.fI //.

We introduce the following definition in order to restate some of the contents of [3].

Definition 2.17. We denote by �; � W H! H the following slice preserving entire
functions:

�.q/ D
X
m2N

.�1/mqm

.2m/Š
; �.q/ D

X
m2N

.�1/mqm

.2mC 1/Š
:

Remark 2.18. We notice that

�.q2/ D cos.q/; �.q2/q D sin.q/;

for all q 2 H. In particular,

�.�2n2/ D .�1/n; for all n 2 Z; �.0/ D 1; and®
q 2 H j �.q/ D 0

¯
D
®
�2n2 2 H j n 2 N n ¹0º

¯
:

Moreover, for any q 2 H, the following equality holds:

(2.2) �2.q/C �2.q/q � 1:

Indeed, for any q 2 RC, choose t 2 R n ¹0º such that q D t2, and then �.q/ D
�.t2/D cos.t/, �.q/D �.t2/D sin.t/

t
. Thus,�2.q/C �2.q/q D cos2.t/C sin2.t/

t2
t2 D

cos2.t/C sin2.t/ D 1. By the identity principle, we are done.
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The next proposition collects several features of the �-exponential (see [3, Proposi-
tions 4.3, 4.5, and 4.13], where a slightly different notation is used).

Proposition 2.19. Let f; g 2 �R.�/. Then, we have the following equalities:

exp�.�f / D
�

exp�.f /
���

;(2.3) �
exp�.f /

�s
D exp.2f0/;(2.4)

exp�.f / D exp�.f0/
�
�.f sv /C �.f

s
v /fv

�
;(2.5)

exp�.f C g/ D exp�.f / � exp�.g/; if f � g D g � f:(2.6)

In particular, equality (2.3) shows that exp�.f / is never vanishing on �.
The following examples elucidate the behavior of the �-exponential in some notable

cases.

Example 2.20. As J defined in 2.9 is slice preserving, then a straightforward compu-
tation gives Js D J2 � �1. Therefore, we have

exp�.�J/ D exp.�J/ D
X
n2N

.�J/n

nŠ
D

X
m2N

.�1/m�2m

.2m/Š
C

X
m2N

.�1/m�2mC1

.2mC 1/Š
J

D cos.�/C sin.�/J D �1:

Example 2.21. If gv is a zero divisor, then gsv � 0 by Proposition 2.13, and thus

exp�.gv/ D �.g
s
v/C �.g

s
v/gv D �.0/C �.0/gv D 1C gv:

Example 2.22. Let f .q/ D i C qj . As f0 � 0 and f sv D 1C q2, we have

exp�.f / D �.q
2
C 1/C �.q2 C 1/.i C qj /:

In particular, for any q 2 S, we have q2 C 1 D 0, so .exp�.f //.q/ D 1 C i C qj ,
giving thus .exp�.f //.j / D i . Nonetheless, .exp ıf /.j / D ef .j / D ei�1.

Example 2.23. If f .q/ D � cos.q/i C � sin.q/j , again f0 � 0 and f sv � �2, so

exp�.f / D �.�
2/C �.�2/�.cos.q/i C sin.q/j / � �1:

Lastly, we compute exp� on one-slice preserving functions.

Remark 2.24. Notice that iff is CI -preserving for some I 2S, then we havefvD f1I
with f1 slice preserving. This entails

exp�.f / D exp.f0/
�

cos.f1/C sin.f1/I
�
:

Indeed, �.f sv / D �.f 21 / D cos.f1/, �.f sv /fv D �.f 21 /f1I D sin.f1/I .
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We now introduce the notion of �-logarithm.

Definition 2.25. We set

�R�.�/ WD
®
g 2 �R.�/ j g is never vanishing

¯
;

�R1.�/ WD
®
g 2 �R.�/ j gs � 1

¯
:

Given g 2 �R�.�/, a function f 2 �R.�/ such that exp�.f / D g is said to be a
�-logarithm of g.

Notice that the elements in �R�.�/ act by conjugation both on �R1.�/ and on
the set of functions having a �-logarithm.

Remark 2.26. If h 2 �R1.�/ and � 2 �R�.�/, since .���/s D ��s D .�s/�1, we
have .��� � h � �/s D ��s � hs � �s D ��s � �s D 1. Moreover, if f 2 �R.�/ is a
�-logarithm of h, then a trivial computation shows that ��� � f � � is a �-logarithm
of ��� � h � � as exp�.��� � f � �/ D ��� � exp�.f / � �.

We conclude this section by showing that a slice regular function without non-real
isolated zeroes can be factorized as the product of a slice preserving function and a
slice regular function in �R1.�/.

Proposition 2.27. Let g 2 �R.�/ be such that g has no non-real isolated zeroes and
gs has a square root � 2 �RR.�/ n ¹0º. Then, ��� � gD ��1gD g=� is a well-defined
slice regular function on � which belongs to �R1.�/.

Proof. Since � is a slice preserving function, outside the zero set of � , the function
��� � g is a well defined slice regular function which coincides with the pointwise
product ��1g D g=� .

Then, we are left to define the function ��1g at the zeroes of � . Since g is not a
zero divisor, then it only has real isolated zeroes and spherical isolated zeroes (non-real
isolated zeroes are ruled out by the assumption), so the zero set of � coincides with the
zero set of g (and of gs).

If x0 2 � \R is a zero of g, we choose a ball Ux0
� � centered at x0 on which

g vanishes at x0 only. By [12, Theorem 3.38], we can write g.q/ D .q � x0/m Qg.q/
for a suitable Qg slice regular and never vanishing on Ux0

. Then, we have gs.q/ D
.q � x0/

2m Qgs.q/. As Qgs is never vanishing onUx0
and it is strictly positive onUx0

\R,
then there exists ˛ 2 �RR.Ux0

/ such that ˛2 D Qgs . A trivial computation shows that
the slice regular function ˇ.q/ D .q � x0/m˛.q/ is a square root of gs on Ux0

. By the
identity principle, there are only two slice-preserving square roots of gs on Ux0

, so
either ˇ D � or ˇ D �� ; up to a change of sign of ˛ (and thus of ˇ), we can suppose
ˇ D � .
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On Ux0
, we consider the function Qg.q/=˛.q/ (which is well defined because ˛

is never vanishing and slice preserving on Ux0
). Moreover, on Ux0

n ¹x0º, we have
Qg.q/=˛.q/ D ..q � x0/

m Qg.q//=..q � x0/
m˛.q// D g.q/=�.q/, so that the two func-

tions truly coincide on Ux0
n ¹x0º and define a slice regular function on Ux0

.
Analogously, if g has a spherical zero at Sq0

, then in a “toric” neighborhood Uq0

of such a sphere, we can write g.q/ D �q0
.q/m Qg.q/ with Qg slice regular and never

vanishing onUq0
. Again, we find that gs.q/D�q0

.q/2m Qgs.q/; as Qgs is never vanishing
on Uq0

, it has a slice-preserving square root ˛ on that neighborhood. Thus, on Uq0
, the

function ˇ.q/ D �q0
.q/m˛.q/ is a square root of gs which coincides with � , up to a

change of sign of ˛ (and thus of ˇ). On Uq0
we consider Qg.q/=˛.q/ (which as above

is well defined) which on Uq0
n ¹Sq0

º coincides with g=� , and we are done.

If the domain� is slice-contractible and g is not a zero divisor and has no non-real
isolated zeroes, then the existence of a square root � 6� 0 of gs is a consequence of
[3, Corollary 3.2].

Corollary 2.28. Let� be a slice-contractible domain. For any g 2 �R.�/ which is
not a zero divisor and has no non-real isolated zeroes, let us denote by � 2 �RR.�/ a
square root of gs . Then, ��� � g D g=� is a well-defined slice regular-function on �
which belongs to �R1.�/.

3. Behavior of the entire function �

We now investigate the behavior of the slice preserving map � on the quaternions. In
particular, we will prove an invertibility result for the restriction of function � to a
family of subdomains of H that will be used in Section 6.

Definition 3.1. We define the following slice domains (see Figure 1):

D0 WD

°
x C yJ j x < �2 �

y2

4�2
; J 2 S

±
� H;

and for any positive n 2 N,

Dn WD

°
x C yJ j n2�2 �

y2

4n2�2
<x<.nC 1/2�2 �

y2

4.nC 1/2�2
; J 2S

±
� H:

For n > 0, we also denote by

�n WD
°
x C yJ j x D n2�2 �

y2

4n2�2
; J 2 S

±
� H

the boundaries of the above domains. Indeed, we have @D0D�1 and @DnD�n[�nC1,
for any positive n 2 N.



�-logarithm for slice regular functions 505

D0 D1 D2 D3 D4

Figure 1. The section of the sets Dn and �n on a fixed slice.

Definition 3.2. Let � be a slice domain and f a non-constant slice preserving
function on �. We say that f is biregular on � if there exists g 2 �RR.f .�//, such
that g ı f D id� and f ı g D idf .�/. In such a case, we call g the biregular inverse
of f .

Theorem 3.3. The restriction of the map � to D0 is biregular onto H n .�1;�1�.
For any positive n 2N, the restriction of the map � to Dn is biregular onto the domain
H n ..�1;�1� [ Œ1;C1//.

Proof. We first carry out the proof in the case of D0. Consider the setfD0 WD ¹x C Jy 2 H j 0 < x < �; J 2 Sº

(see Figure 2). It is easily seen (working slice by slice) that the restriction to fD0 of
the function s W H! H, defined as s.q/ D q2, gives a bijection onto D0 n .�1; 0�.
Furthermore, working again slice by slice, the restriction to fD0 of the cosine function
gives a bijection onto H n ..�1;�1� [ Œ1;C1//.

For any � 2 H n ..�1;�1� [ Œ1;C1//, there exists a unique t 2 fD0 such that
� D cos.t/. Now, qD s.t/D t2 2D0 n .�1; 0� is the unique element of D0 n .�1; 0�

which is mapped in � by �; indeed, we have �.q/ D �.t2/ D cos.t/ D � .
Now, consider � 2 Œ1;C1/. If t 2 H is such that cos.t/ D �, then there exist

k 2 N and I 2 S such that a D 2k� , b D arccosh.�/, and t D aC Ib. Thus, t2 D
4k2�2 � .arccosh.�//2 C 4k� arccosh.�/I belongs to D0 if and only if k D 0. In
this particular case, q D t2 is equal to �.arccosh.�//2 2 .�1; 0� which is the unique
element in q 2 D0 such that �.q/ D �.
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fD0
fD1

fD2
fD3

fD4

Figure 2. The section of the sets fDn on a fixed slice.

Then, the function � is a slice preserving bijection from D0 onto H n .�1;�1�.
Let now I 2 S. Since � is slice preserving, then its restriction �I W D0 \ CI !

CI n .�1;�1� is a holomorphic bijection and thus a biholomorphism. Then, the
inverse of�I is a holomorphic function from CI n .�1;�1� to D0 \CI , thus showing
that the inverse of � is slice regular.

By using fDn WD
®
x C Jy 2 H j n� < x < .nC 1/�; J 2 S

¯
;

with n > 0 in place of fD0, the above argument is easily adapted to prove the last part
of the assertion.

Remark 3.4. Notice that the boundaries of D0 and Dn are mapped by � in either the
left half line .�1;�1� or the right half line Œ1;C1/. Indeed, we have

�.�n/ D

´
.�1;�1�; for n odd;
Œ1;C1/; for n even:

Theorem 3.3 allows us to give the following definition.

Definition 3.5. We denote by ' WH n .�1;�1�!D0 the biregular inverse of �jD0
.

Remark 3.6. As an immediate consequence of the definition of ', we have

' ı .�jD0
/ D idD0

; .�jD0
/ ı ' D � ı ' D idHn.�1;�1�:

Remark 3.7. In particular, we observe that '.1/ D 0 and that the function � is never
vanishing on D0. The first assertion is trivial because 0 is the unique point in D0 whose
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image via� is 1. Moreover, q 2H is a zero of � if and only if q 2 ¹n2�2 j n 2 Z n ¹0ºº

and none of these points belong to D0.

4. Initial existence results

We now start our discussion on the solvability of equation (1.1). The first case we con-
sider is when the function g preserves one slice; in this case, under suitable topological
hypothesis on �, namely, the fact that � is a slice-contractible domain, the solvability
of equation (1.1) follows almost immediately from the complex holomorphic case.
Nonetheless, differences with the complex case arise when looking to the case of a
product domain and of a slice preserving function.

Proposition 4.1. Let � be a slice-contractible domain and let g 2 �R�.�/. If g is
one-slice preserving, then there exists f 2 �R.�/ which preserves the same slice as
g and such that exp�.f / D g. Moreover,
• if � is a slice domain and g is slice preserving and positive on � \R, then there

exists a unique slice preserving �-logarithm of g;
• if� is a product domain and g is slice preserving, then there exists a slice preserving
�-logarithm of g.

Proof. Let us denote by CI the preserved slice and consider the never vanishing
restriction gI W �I ! CI . Since either �I is simply connected (whether � contains
real points) or its two connected components are (whether � contains no real points),
then we can find a logarithm of gI that is a holomorphic function fI W �I ! CI such
that exp.fI / D gI . Let f be the slice regular extension of fI to �. Then, we have�

exp�.f /
�
I
D exp.fI / D gI ;

and the identity principle entails the first part of the statement.
If � is a slice domain and g is slice preserving and positive on � \ R, then

gI .�I \R/ � .0;C1/ and therefore there exists a unique logarithm fI W �I ! CI
of gI such that fI .�I \R/ � R; the extension of such a function to� is the required
slice preserving solution f .

Now, suppose that � is a product domain and that g is slice preserving. Fix any
I 2 S and take hD h0C h1I as a CI -preserving slice function such that exp�.h/D g.
Formula (2.5) entails that exp�.h0/�.h21/h1I � 0, as g is slice preserving. If h1 �
0, then setting f D h D h0 gives the required function. Otherwise, �.h21/ must be
identically zero and hence there existsn2N n ¹0º such thath21��

2n2 since �.q/D 0 if
and only if q 2R n ¹0º and qD�2n2 forn2N n ¹0º. Thus, .h1 ��n/ � .h1C�n/� 0
and Proposition 2.13 entails that either h1 � �n or h1 D ��n.
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If n is even, then exp�.˙�nI/ � 1 on �, and by taking f D h0, we are done;
if n is odd, then exp�.˙�nI/ � �1 on �, and thus we obtain the thesis by taking
f D h0 C �J.

Corollary 4.2. Let � be a slice-contractible domain and let g be a one-slice pre-
serving function. Then, g has a �-logarithm if and only if it is never vanishing. In
particular, this holds for g 2 �RR.�/.

Trivially, if � is slice, g is slice preserving and never vanishing on �, and it is
negative on�\R, then there exists no slice preserving �-logarithm of g. Nonetheless,
the family of �-logarithms of a slice preserving function with this feature is quite large
and displays an unexpected behavior.

Example 4.3. For any a 2 R n ¹0º and I 2 S, we have that

exp�.aI / � cos.a/C sin.a/I:

In particular, exp�.�i/ D exp�.�j / � �1, while

exp�.�i C �j / D exp�

�
p
2� �

i C j
p
2

�
D cos.

p
2�/C sin.

p
2�/

i C j
p
2

¤ 1 D exp�.�i/ � exp�.�j /;

giving an explicit example of the application of [3, Theorem 4.14] (here .�i/sv D
.�j /sv D �

2 and 2h�i; �j i� D 0, so that exp�.�i C �j / 6� exp�.�i/ � exp�.�j /).

Corollary 4.4. Let g 2 �R�.�/ be such that there exists � 2 �R�.�/ for which
��� � g � � is one-slice preserving. Then, g has a �-logarithm.

Remark 4.5. Notice that if g is conjugated to a one-slice preserving function via a
never vanishing �, then gsv has a square root. Nonetheless, the existence of a square
root of gsv is not a sufficient condition for the existence of a �-logarithm of a never
vanishing function (see Example 6.9).

Proposition 4.1 allows us to prove a natural generalization to the quaternions of
a classical result in the theory of holomorphic functions that will be used later in
the search for a solution of equation (1.1). The second part of the statement gives a
uniqueness result obtained accordingly to the structure of the domain �: indeed, if the
domain is slice, uniqueness up to a constant integer multiple of 2� holds, while in the
case of a product domain, uniqueness up to a constant integer multiple of 2� holds for
slice preserving functions only.
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Proposition 4.6. Let� be a slice-contractible domain. Given a0; a1 2 �RR.�/ such
that a20 C a

2
1 � 1, there exists 
 2 �RR.�/ such that

(4.1)

´
cos�.
/ D a0
sin�.
/ D a1:

Moreover,
• if� is a slice domain and z
 2 �R.�/ is another solution of (4.1), then there exists
k 2 Z such that z
 � 
 C 2k�;

• if � is a product domain and z
 2 �RR.�/ is another solution of (4.1), then there
exists k 2 Z such that z
 � 
 C 2k� .

Proof. Fix I 2S and consider the CI -slice preserving function given byaD a0C a1I .
Clearly, as � 1 so that a is never vanishing. Proposition 4.1 gives f D f0 C f1I 2
�RI .�/ such that exp�.f / D a; the last equality can also be written as

(4.2) exp.f0/.�.f sv /C �.f
s
v /fv/ D exp.f0/.�.f 21 /C �.f

2
1 /f1I / D a0 C a1I:

Since as � 1, we obtain that .exp�.f //s � exp.2f0/ � 1, that is, .exp.f0//2 � 1. As
�RR.�/ is an integral domain, then either exp.f0/ � 1 or exp.f0/ � �1. In the first
case, the equalities 8<:�.f 21 / D cos.f1/;

�.f 21 /f1 D sin.f1/;

together with (4.2), ensure that cos.f1/ D a0 and sin.f1/ D a1, so that 
 D f1 gives
the required function. In the second case, performing the same computations as above
gives that the function 
 D f1 C � is a solution of system (4.1).

Now, suppose that� is slice and that z
 is another solution of system (4.1). The fact
that a0 is slice preserving and �1 � a0 � 1 on � \R implies that�

cos�.z
/
�
.t/ D cos

�
z
.t/

�
belongs to the interval Œ�1; 1� for any t 2�\R. As cos.˛C Iˇ/D cos.˛/ cosh.ˇ/�
sin.˛/ sinh.ˇ/I 2 Œ�1; 1� if and only if ˇ D 0, we have z
.t/ 2 R for any t 2 � \R,
showing that z
 is slice preserving. Considering the functions on � \R, formula (4.1)
trivially entails that z
 � 
 C 2k� , for some k 2 Z.

We are left to consider the case in which � is a product domain and z
 is another
slice preserving solution of (4.1). Let I 2 S, and consider the restrictions of 
 and z

on �I D �CI [�

�
I . Trivially, there exist nC; n� 2 Z such that z
 D 
 C 2�nC on

�CI and z
 D 
 C 2�n� on ��I . By the representation formula, we have, for ˇ > 0
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and J 2 S,

z
.˛ C Jˇ/ D
1 � JI

2
z
.˛ C Iˇ/C

1C JI

2
z
.˛ � Iˇ/

D
1 � JI

2

�

.˛ C Iˇ/C 2�nC

�
C
1C JI

2

�

.˛ � Iˇ/C 2�n�

�
D 
.˛ C Jˇ/C �

�
nC C n� C J.n� � nC/I

�
and this function is slice preserving if and only if n� � nC D 0. Thus, z
 D 
 C 2�nC
on �I and the identity principle entails the proof.

Notice that the hypothesis on the sliceness of the domain contained in the statement
of Proposition 4.6 cannot be removed without adding a requirement on the behavior of
the function z
 , as it is shown in the following example.

Example 4.7. Let � D H nR, fix any I 2 S, and consider z
 W H nR! H defined
as z
 D 2�JI . Clearly, z
0 � 0, and hence z
�2 D �z
 s � 4�2. Thus, we have

cos�.z
/ D
X
n2N

.�1/nz
�2n

.2n/Š
D

X
n2N

.�1/n.4�2/n

.2n/Š
D

X
n2N

.�1/n.2�/2n

.2n/Š

D cos.2�/ D 1;

and analogously, sin�.z
/D 0. This gives a continuous family of functions parametrized
by I 2 S defined on H n R solving system (4.1) with a0 � 1 and a1 � 0, in sharp
contrast with the “discrete” uniqueness behavior which holds in the case of slice
domains.

The above proposition allows us to give a more precise description of the zero
divisors whose “real” part is identically zero in the case when the product domain� is
slice-contractible (see the third paragraph of [4] for a comprehensive investigation of
such functions). We denote by �EM.�/ the algebra of slice semi-regular functions
(see [18,19] for the definitions and a detailed study of the singularities and [5] for an
investigation in the flavor of a vector space structure over the field of slice preserving
semi-regular functions).

Proposition 4.8. Let� be a slice-contractible product domain and let f 2 �EM.�/

be a zero divisor such that f0 � 0. Then, there exists an orthonormal basis .i; j; k/ of
Im.H/, ˛ 2 �EMR.�/ and # 2 �RR.�/, such that

f D ˛i C ˛J cos.#/j C ˛J sin.#/k:

Proof. Since f D fv is not identically zero, we can find an orthonormal basis .i; j; k/
of Im.H/, such that f D f1i C f2j C f3k, with f1 6� 0. Then, thanks to [5, Propo-
sition 2.14], we can write f D �2.f i/0i � � D 2f1i � �, for a suitable idempotent
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� D 1
2
C �1i C �2j C �3k 2 �R.�/, that is, � � � D �. Now, we have

f D 2f1i � � D 2f1i �

�
1

2
C�1i C�2j C�3k

�
D f1i � 2f1�1C 2f1�2k � 2f1�3j;

and therefore, the fact that f D fv implies �1 � 0, that is, � D 1
2
C �2j C �3k. As �

is an idempotent, we obtain �22 C �
2
3 � �

1
4
, and hence the functions '2 D 2J�2 and

'3D 2J�3 satisfy'22 C '
2
3 � 1. Thus, Proposition 4.6 implies we can find# 2 �RR.�/

such that '2 D cos.#/ and '3 D sin.#/. Setting ˛ D f1 gives the required equality

f D ˛i C ˛J cos.#/j C ˛J sin.#/k:

5. Uniqueness results

We now begin a detailed investigation on the possible family of solutions of equa-
tion (1.1) starting from the case of slice preserving functions. Our first statement
classifies slice preserving functions which share the same exponential, giving a first
uniqueness result for the exponential problem in the case of slice domains.

Proposition 5.1. Let h0; Qh0 2 �RR.�/ be such that

exp�.h0/ � exp�. Qh0/:

• If � is a slice domain, then h0 � Qh0.
• If � is a product domain, then there exists n 2 Z such that h0 D Qh0 C 2�nJ.

Proof. Since both h0 and Qh0 are slice preserving, Proposition 4.3 in [3] gives us the
possibility to work on the difference f0 D h0 � Qh0 which is a solution of

(5.1) exp.f0/ � 1:

If� is a slice domain, equality (5.1) gives f � 0 on�\R. The identity principle
entails f0 � 0 on �, that is, h0 � Qh0 on � and hence the thesis.

Assume now that � \R D ;. Fix I 2 S and restrict equality (5.1) to �I . Since
f0 is slice preserving and �I has two connected components, exp.f0/ � 1 implies
the existence of nC; n� 2 Z such that

f0.x C Iy/ D

´
2�nCI; for y > 0;
2�n�I; for y < 0:



a. altavilla and c. de fabritiis 512

For y > 0 and J 2 S, the representation formula yields

f0.x C Jy/ D
1 � JI

2
f0.x C Iy/C

1C IJ

2
f0.x � Iy/

D .1 � JI /�nCI C .1C I /�n�I

D �
�
.nC C n�/I C .nC � n�/J

�
:

Since f0 2 �RR.�/, this equality gives nCC n� D 0 and thus f0.xC Jy/D 2�nCJ
for any y > 0 and J 2 S, that is, h0 D Qh0 C 2�nCJ.

Corollary 5.2. Let h; Qh 2 �R.�/ be such that

(5.2) exp�.h/ � exp�. Qh/:

• If � is a slice domain, then h0 � Qh0 and exp�.hv/ � exp�. Qhv/.
• If� is a product domain, then there exists n 2 Z such that h0 D Qh0 C �nJ. In this

case, exp�.hv/ � exp�. Qhv/ if n is even and exp�.hv/ � � exp�. Qhv/ if n is odd.

Proof. Using formula (2.4), equality (5.2) implies exp.2h0/ D exp.2 Qh0/. As h0; Qh0
are slice preserving functions, Proposition 5.1 gives that either h0 � Qh0 or � is a
product domain and

(5.3) 2h0 D 2 Qh0 C 2�nJ;

for a suitable n 2Z. As h0; Qh0 and J are slice preserving functions, by formula (2.6), we
have that exp�.h/D exp�.h0/ exp�.hv/ and exp�. Qh/D exp�. Qh0/ exp�. Qhv/. A straight-
forward application of formula (5.3) yields the thesis.

We now study when two functions h; Qh give the same �-exponential. The first case
we analyze is when exp�.h/ is slice preserving. In order to simplify notations, we set

N.�/ WD
®
f 2 �R.�/ j 9m 2 Z n ¹0º; f sv D m

2�2
¯
[ �RR.�/:

We strongly underline that if f 2N.�/, then either fv � 0 or fv is never vanishing;
in both cases, fv has no non-real isolated zeroes and f sv always admits a square root
(which, by the way, is constant).

Theorem 5.3. Let h; Qh 2 �R.�/ be such that exp�.h/ D exp�. Qh/ 2 �RR.�/.

• If � is a slice domain, then h0 � Qh0, h; Qh 2 N.�/, and
p
hsv �

q
Qhsv .mod 2�/.

• If � is a product domain, then there exists n 2 Z such that h0 D Qh0 C �nJ.

Moreover, h; Qh 2 N.�/ and
p
hsv �

q
Qhsv C n� .mod 2�/.
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Proof. By Corollary 5.2, we have that either h0 D Qh0 or � is a product domain and
there exists n 2 Z such that h0 D Qh0 C �nJ. In particular, these equalities imply

exp.h0/ � exp. Qh0/; for n even;(5.4)

exp.h0/ � � exp. Qh0/; for n odd;(5.5)

where the second one can occur only if � is a product domain. We start by con-
sidering the case of a slice domain. In this case, we have exp�.hv/ D exp�. Qhv/ 2
�RR.�/. If hv D Qhv � 0, we are done. Otherwise, we can suppose hv 6� 0. As
exp�.h/ D exp�.h0/.�.hsv/C �.hsv/hv/ 2 �RR.�/, we have exp�.h0/�.hsv/hv � 0,
which implies �.hsv/ � 0 and therefore guarantees that there exists m 2 Z n ¹0º such
that hsv D m2�2. If Qhv � 0, we have

cos.m�/ D �.hsv/ D exp�.hv/ D exp�. Qhv/ D exp�.0/ � 1;

thus showing that m is even and thatp
hsv D

p

m2�2 � 0 D

q
Qhsv .mod 2�/:

If Qhv 6� 0, as �.hsv/hv D �. Qhsv/ Qhv � 0, we can find n 2 Z n ¹0º such that Qhsv � n2�2;
as �.hsv/ D �. Qhsv/, we find that m and n have the same parity, thus showing againp
hsv �

q
Qhsv .mod 2�/.

The case of a product domain is obtained following the same lines of reasoning, by
studying separately the two cases given by formulas (5.4) and (5.5).

We now turn to the case when exp�.h/ is not slice preserving; under this hypothesis,
if � is slice, we find a dichotomy: either hv and Qhv have no non-real isolated zeroes
and are such that hsv and Qhsv have a square root (independently from the fact that � is
slice-contractible), in which case we find a “discrete” family of functions producing
the same �-exponential, or h D Qh; that is, there is an unexpected uniqueness result.
An analogous, more refined statement can be obtained also in the case of a product
domain.

Theorem 5.4. Let h; Qh 2 �R.�/ be such that h ¤ Qh and exp�.h/ D exp�. Qh/ 62
�RR.�/.
• If� is a slice domain, then h0� Qh0, both hv and Qhv have no non-real isolated zeroes,

both hsv and Qhsv have a square root on�, and there existm 2 Z n ¹0º, ˛ 2 �RR.�/,
and Hv 2 �R.�/ with H s

v � 1 such that hv D ˛Hv and Qhv D .˛ C 2�m/Hv D
hv C 2�mHv , so that

Qh D hC 2�mHv:
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• If � is a product domain, then one of the following holds:

(1) There exists n 2 Z n ¹0º such that

Qh D hC 2�nJ:

(2) Both hv and Qhv are not zero divisors and have no non-real isolated zeroes,
both hsv and Qhsv have a square root on �, and there exist n; m 2 Z such that
n�m .mod 2/ andm¤ 0, ˛ 2 �RR.�/, andHv 2 �R.�/ withH s

v � 1, such
that hv D ˛Hv and

Qh D h0 C �nJ C .˛ C �m/Hv D hC �.nJ CmHv/:

Proof. If hv D Qhv, then exp.h0/ D exp. Qh0/, so the hypothesis h ¤ Qh and Propo-
sition 5.1 give that � is a product domain and there exists n 2 Z n ¹0º such that
h0 D Qh0 C 2�nJ. Thus, from now on, we assume that hv ¤ Qhv .

If � is a slice domain, Corollary 5.2 gives h0 D Qh0 and exp�.hv/ D exp�. Qhv/ 62
�RR.�/. We have �.hsv/hv � �. Qhsv/ Qhv 6� 0. This implies that hv and Qhv are linearly
dependent on �RR.�/ and thus commute (see [3, Proposition 2.10]). Now, choose
p 2 � n R such that �.hsv/hv is never vanishing on Sp, and denote by z� a slice-
contractible product domain contained in � such that �.hsv/hv is never vanishing
on z�.

In particular, this means that hsv is never vanishing on z�, and therefore there exists a
square root ˛ of hsv which is never vanishing on z�. Moreover, the equality �.hsv/hv �
�. Qhsv/

Qhv gives that �. Qhsv/ is never vanishing on z�, and thus there exists ˇ 2 �RR. z�/

such that Qhv D ˇhv . As h 6� Qh on�, the identity principle gives that ˇ is not identically
equal to 1 on z�. Since hv and Qhv commute, we can apply [3, Proposition 4.3], and
we are left to study exp�..1 � ˇ/hv/ � 1. As hv 6� 0, this implies that there exists
m 2Z n ¹0º such that ..1� ˇ/hv/s D 4m2�2, that is, .1� ˇ/2hsv D 4m2�2, therefore
giving ˇ D 2�m

˛
C 1, up to a possible change of sign of m. We then obtain

Qhv D

�
2�m

˛
C 1

�
hv;

on z�, which can also be written as

(5.6) ˛ � Qhv D .2�mC ˛/hv:

By computing the symmetrized function of both members of equation (5.6), we obtain
hsv
Qhsv D .2�mC˛/

2hsv . Ashsv is never vanishing on z�, we also have Qhsv D .2�mC˛/2,
from which we infer

˛ D
Qhsv � h

s
v � 4�

2m2

4�m
;
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on z�, thanks to ˛2 D hsv . By squaring both members, we thus get

hsv D
1

16�2m2
. Qhsv � h

s
v � 4�

2m2/2:

The last equality was obtained on z�, but since both members are defined and regular
on�, by the identity principle, we have that it holds on the whole�, thus showing that
hsv has a square root in �. Up to a change of sign, we can suppose that it agrees with
the previous one on z�, so we still denote it by ˛ 2 �RR.�/. A further application of
the identity principle shows that equality (5.6) continues on �.

Now, suppose that q0 is a non-real isolated zero of hv; thus, hsv and therefore ˛ are
identically zero on Sq0

. The left hand side of equality (5.6) is then identically zero on
Sq0

, while the right hand side is equal to 2�m � hv; as m ¤ 0, the last function has
an isolated zero in q0. This contradiction shows that hv cannot have non-real isolated
zeroes.

Thanks to Proposition 2.27, the function Hv WD hv

˛
is a well-defined slice regular

function on � with H s
v � 1; as hv D ˛Hv , by the zero-product property (see Proposi-

tion 2.13), equality (5.6) can also be written in the form Qhv D .2�mC ˛/Hv , which
holds on the whole of � by a further application of the identity principle.

Now, since Qhv is the product of the never vanishing function Hv by the slice-
preserving factor .2�mC ˛/, we have that the only zeroes of Qhv are the zeroes of
.2�mC ˛/. Since .2�mC ˛/ is slice preserving, then Qhv has no non-real isolated
zeroes as well. Lastly, Qhsv D .2�mC ˛/2, which ensures that Qhsv has a square root on
the domain �.

Now, we turn our attention to the case in which� is a product domain. Corollary 5.2
gives that there existsn2Z such thath0D Qh0C�nJ, and moreover, either exp�.hv/�
exp�. Qhv/ if n is even or exp�.hv/ � � exp�. Qhv/ if n is odd. We first deal with the case
when n is even; in particular, this gives �.hsv/hv � �. Qhsv/ Qhv 6� 0.

We first look at the case in which hv is a zero divisor. As hsv � 0, we have �.hsv/� 1;
thus, the above equality becomes hv D �. Qhsv/ Qhv 6� 0, which in particular implies that
�. Qhsv/ 6� 0. By taking the symmetrized function of both members of the above equality,
we obtain 0 � hsv D �. Qhsv/

2 Qhsv, showing that Qhsv � 0, too. Hence, �. Qhsv/ � 1, and
therefore hv � Qhv which is a contradiction to the assumption hv ¤ Qhv .

We now turn to the case in which hv is not a zero divisor. As n is even, �.hsv/hv �
�. Qhsv/

Qhv is not a zero divisor, and hv ¤ Qhv , we can argue as in the case of a slice domain
obtaining that both hv and Qhv have no non-real isolated zeroes and there exist an even
m 2 Z n ¹0º, ˛ 2 �RR.�/, andHv 2 �R.�/ withH s

v � 1 such that hv D ˛Hv and
Qhv D .˛ C �m/Hv D hv C �mHv .

Finally, we consider the case in which n is odd. The only difference with the above
reasoning is due to the fact that exp�.hv/ � � exp�. Qhv/. In the case when hv is a
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zero divisor, again we get that Qhv is a zero divisor. Thus, �. Qhsv/ � 1, and we obtain
1C hv D �.1C Qhv/ which is equivalent to hv C Qhv D �2. This is a contradiction
because �2 is slice preserving and different from 0, while hv C Qhv coincides with its
vector part. Finally, in the case when hv is not a zero divisor, the above reasoning gives
that Qhv is not a zero divisor as well; moreover, both hv and Qhv have no non-real isolated
zeroes, and there exists m 2 Z odd, ˛ 2 �RR.�/, Hv 2 �R.�/ with H s

v � 1 such
that hv D ˛Hv and Qhv D .˛ C �m/Hv D hv C �mHv .

Remark 5.5. Notice that the function Hv 2 �R.�/ such that H s
v � 1 which appears

in the previous statement is unique up to a change of sign and can be interpreted as the
quotient of hv by a square root of hsv . Indeed, if ˛Hv D ˇLv D hv for ˛;ˇ 2 �RR.�/

and H s
v D L

s
v � 1, we have ˛2 D ˇ2; thus, either ˛ D ˇ (which gives Lv D Hv) or

˛ D �ˇ (which gives Lv D �Hv). Moreover, hsv D .˛Hv/s D ˛2H s
v D ˛

2, so that
˛ is a square root of hsv .

To stress the relevance, and also the unexpectedness, of the above theorem, we give
a couple of partial restatements which underline the uniqueness result when � is slice
and the “vector” part of the function has a non-real isolated zero.

Corollary 5.6. Let� be slice and let h; Qh 2 �R.�/ be such that exp�.h/ 62 �RR.�/.
If hv has a non-real isolated zero, then exp�.h/ D exp�. Qh/ if and only if h � Qh.

Corollary 5.7. Let� be slice and leth; Qh2 �R.�/ be such that exp�.h/D exp�. Qh/ 62
�RR.�/. If there exists q 2 � such that h.q/ D Qh.q/, then h � Qh.

Proof. As� is slice, if h 6� Qh, then there existm 2 Z n ¹0º andHv withH s
v � 1 such

that Qh D hC 2�mHv. Thus, Qh.q/ D h.q/C 2�mHv.q/ gives mHv.q/ D 0. Since
H s
v � 1, this entails m D 0, which is a contradiction.

6. Existence results for the �-logarithm

As a first consequence of the results obtained in Section 4, Proposition 4.1 allows us to
restrict our attention to a particular class of never vanishing functions.

Remark 6.1. Let� be a slice-contractible domain. For any g 2 �R�.�/, we have that
gs belongs to �R�.�/ \ �RR.�/, and it is positive on the reals if� \R ¤ ;. Then,
Proposition 4.1 entails the existence of a  g 2 �RR.�/ such that exp. g/ D gs (and
 g is unique if � is slice). A trivial computation shows that exp.� g=2/g belongs to
�R1.�/. Moreover, since exp.� g=2/ is slice preserving, by [3, Corollary 4.4], we
have that g has a �-logarithm if and only if exp.� g=2/g has. Thanks to these consid-
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erations, without loss of generality, we can reduce ourselves to study equation (1.1) in
the case when gs � 1.

Assumption 6.2. Since Corollary 4.2 gives the existence of a �-logarithm for all never
vanishing slice preserving regular functions, from now on, we consider equation (1.1)
only in the case when g 62 �RR.�/, that is, gv 6� 0.

Proposition 6.3. Let g 2 �R1.�/ and suppose that f is a �-logarithm of g. If �
is slice, then f0 � 0; if � is product, then there exists n 2 Z such that f0 � n�J. In
particular,
• if � is slice, then any �-logarithm of g has “real part” identically zero;
• if � is product, then, up to substituting g with �g, we can find a �-logarithm of g

whose real part is identically zero.

Proof. Let us assume that f is a solution of equation (1.1). Thanks to Proposition 2.19,
as gs � 1, we have that exp.2f0/� 1� exp.0/. Thus, Corollary 5.2 ensures that f0� 0
if � is a slice domain, while there exists n 2 Z such that f0 � n�J if � is a product
domain.

The above proposition tells us that we can limit ourselves to look for solutions of
exp�.fv/ D g if � is slice or � is product and n is even and exp�.fv/ D �g if � is
product and n is odd.

The following result sets the existence of a�-logarithm for a never vanishing function
whose “vector part” is a zero divisor (obviously, this case can occur only if � is a
product domain).

Proposition 6.4. Let � be a slice-contractible domain and let g 2 �R�.�/ be such
that gv is a zero divisor. Then, there exists f 2 �R.�/ such that exp�.f / D g.

Proof. By Remark 6.1, we can suppose that gs D g20 C g
s
v � 1. As gv is a zero divisor,

we have gsv � 0 and therefore g20 � 1, which entails that either g0 � 1 or g0 � �1. In
the first case, a trivial computation gives

exp�.gv/ D �.g
s
v/C �.g

s
v/gv D �.0/C �.0/gv D 1C gv D g0 C gv D g;

and in the second,

exp�.�J � gv/ D exp.�J/ �
�
�.gsv/C �.g

s
v/.�gv/

�
D �

�
�.0/ � �.0/gv

�
D �1C gv D g0 C gv D g:

Assumption 6.5. Thanks to Proposition 6.4, we can refine 6.2 by assuming that gv is
neither identically zero nor a zero divisor.
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Thanks to formula (2.5), if g D exp�.fv/, then

(6.1)

´
�.f sv / D g0;

�.f sv /fv D gv:

A first simple necessary condition in order to ensure the solvability of equation (1.1)
entails the behavior of g at non-real isolated zeroes of gv . As a surprising consequence,
we obtain that the presence of non-real isolated zeroes of gv could be an obstruction
to the existence of a �-logarithm of g. This feature underlines the strong difference
between the complex and the quaternionic case for the exponential function.

Proposition 6.6. If g 2 �R1.�/ has a �-logarithm, we have that

(1) if � is a slice domain and q0 is a non-real isolated zero of gv , then g.q0/ D 1;

(2) if � is a product domain and q0; q1 are non-real isolated zeroes of gv , then either
g.q0/ D g.q1/ D 1 or g.q0/ D g.q1/ D �1.

Proof. Let � be a slice domain and f a �-logarithm of g. By Proposition 6.3, we
have that f D fv . Then, if q0 is a non-real isolated zero of gv , the second equation of
system (6.1) implies that �.f sv /fv has a non-real isolated zero at q0. Since �.f sv / is
slice preserving, we have that q0 is a non-real isolated zero of fv and thus f sv .q0/ D 0.
Therefore, the first equation gives g.q0/ D g0.q0/ D �.0/ D 1.

If � is a product domain, let f D fv be a �-logarithm of either g or �g. Again,
�.f sv /fv has non-real isolated zeroes at q0 and q1, so that fv has non-real isolated
zeroes at q0 and q1 and thus f sv .q0/ D f sv .q1/ D 0. The first equation of system (6.1)
thus gives g.q0/ D g.q1/ D 1, if f is a �-logarithm of g, and �g.q0/ D �g.q1/ D 1,
if f is a �-logarithm of �g.

In particular, if� is a slice domain, the previous proposition gives a strong obstruc-
tion to the existence of a �-logarithm. The following two corollaries give explicit
restraints to the existence of a �-logarithm: the first one applies to any slice domain,
while the function must have a special form, and the second one holds in a smaller
class of domains, but for a larger class of functions.

Corollary 6.7. Let � be a slice domain and let f 2 �R.�/ be such that fv has a
non-real isolated zero. Then, � exp�.f / has no �-logarithm.

Proof. As � exp�.f / D � exp.f0/ exp�.fv/, then � exp�.f / has a �-logarithm if
and only if � exp�.fv/ has. Now, notice that .� exp�.fv//s � 1, so, if � exp�.fv/ has
a �-logarithm, then it fulfills the hypotheses of Proposition 6.6. Let us denote by q0 a
non-real isolated zero of fv . On Sq0

, we have f sv � 0; hence, �.f sv / D 1 on Sq0
, and

thus, � exp�.fv/.q0/ D �1 which is a contradiction to Proposition 6.6.
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Corollary 6.8. Let � be a slice-contractible slice domain and g 2 �R.�/ a never
vanishing function such that gv has a non-real isolated zero. Then, at least one between
g and �g has no �-logarithm.

Proof. By using the notation contained in Remark 6.1, we have that  g D  �g , and
thus exp�.� g=2/g and exp�.� �g=2/.�g/ are opposite one another. Proposition 6.6
ensures that one of these two functions has no �-logarithm, and thus at least one of the
two functions g and �g has no �-logarithm, too.

Example 6.9. In view of Corollary 6.7, we may give a large family of examples of never
vanishing functions without�-logarithm. Take, for instance, the polynomials .q � i/� j ,
.q � i/�2 � j , or .q � i/ � .q � 2j / � .�2i C j /. It is not difficult to check that these
three polynomials have no “real part” and have only non-real isolated zeros. There-
fore, the functions � exp�..q� i/ � j /, � exp�..q� i/�2 � j /, and � exp�..q� i/ �
.q � 2j / � .�2i C j // have no �-logarithm. In particular, notice that

� exp�
�
.q � i/�2 � j

�
v
D ��

�
.q2 C 1/2

�
.q � i/�2 � j

and its symmetrized function is given by �..q2 C 1/2/2.q2 C 1/2 which trivially
has the square root �..q2 C 1/2/.q2 C 1/. This provides the example of a function
g 2 �R1.H/ such that gsv has a square root but g has no �-logarithm as we were
referring in Remark 4.5.

Remark 6.10. Notice that if g is one-slice preserving, then gv cannot have non-
real isolated zeroes. Indeed, if the preserved slice lies in CI , then gv D g1I , where
g1 2 �RR.�/ and hence gv has only real and spherical isolated zeroes.

If � is slice-contractible, as gv is neither identically zero nor a zero divisor by
Assumption 6.5, following the outline of the proof of [2, Proposition 3.1] (and taking
�CI as the unitary disc centered at 2i and h without spherical zeroes in the case of a
product domain), we can find ˛ 2 �RR.�/ and W 2 �R.�/, such that

(6.2) gv D ˛W;

whereW 6� 0 is not a zero divisor and has neither real nor spherical zeroes. In particular,
we notice that W0 � 0. The second equation of system (6.1) becomes now

(6.3) �.f sv /fv D ˛W:

Lemma 6.11. Let f be a slice regular function satisfying equation (6.3), where ˛ 2
�RR.�/ n ¹0º and W has neither real nor spherical zeroes. Then, there exists ˇ 2
�RR.�/, such that fv D ˇW .
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Proof. Equation (6.3) ensures that �.f sv / is not identically zero. If q0 is a real isolated
zero of �.f sv / of multiplicity n, then it is a real isolated zero of ˛W of multiplicity
greater than or equal to n; as W has no real zeroes, then q0 is a real isolated zero of ˛
with multiplicity greater than or equal to n. The same holds for the spherical zeroes
of �.f sv /. Choose I 2 S and consider the restriction of both �.f sv / and ˛ to �I . The
above considerations on the multiplicities of these functions entail that there exists an
intrinsic holomorphic function ˇI on �I such that ˛ D ˇI�.f sv / on �I ; we denote
by ˇ the regular extension of ˇI to �. As both ˛ and �.f sv / are slice preserving, then
ˇ is slice preserving too and ˛ D ˇ�.f sv / on � by the identity principle. Now, write
�.f sv /fv D ˇ�.f

s
v /W ; as �.f sv / is a non-identically zero slice preserving function,

we obtain that fv D ˇW .

Thanks to system (6.1) and Lemma 6.11, we obtain �.W sˇ2/ˇW D ˛W that entails
the following result.

Lemma 6.12. Let g 2 �R1.�/ be such that gv D ˛W as in equation (6.2). If fv is a
�-logarithm of g, then there exists ˇ 2 �RR.�/, such that fv D ˇW and ˇ satisfies

(6.4)

´
�.W sˇ2/ D g0;

�.W sˇ2/ˇ D ˛:

Contrarily, if ˇ is a solution of the previous system, then fv D ˇW is a �-logarithm
of g.

Proof. Suppose fv is a �-logarithm of g, i.e., a solution of exp�.fv/ D g. Then,
Lemma 6.11 ensures that there existsˇ 2 �RR.�/ such that fv D ˇW . Thus, exp�.fv/
D g is equivalent to ´

�.W sˇ2/ D g0;

�.W sˇ2/ˇW D ˛W:

As W is not identically zero and �.W sˇ2/ˇ; ˛ 2 �RR.�/, we can cancel W and
hence we obtain system (6.4).

Contrarily, suppose that ˇ is a solution of system (6.4) and set f DfvDˇW . Thus,

exp�.fv/ D �.f
s
v /C �.f

s
v /fv D �.W

sˇ2/C �.W sˇ2/ˇW

D g0 C ˛W D g:

This result allows us to prove that any function with �-logarithm carries along a
whole family of functions with �-logarithm, thus generalizing Remark 2.26.

Corollary 6.13. Let g 2 �R1.�/ be such that gv D ˛W , where ˛ 2 �RR.�/ and
W has neither real nor spherical zeroes. If g has a �-logarithm, for any U 2 �R.�/

such that U0 � 0 and U s � W s , the function Qg D g0 C ˛U has a �-logarithm as well.
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Proof. Let f0 C fv be a �-logarithm of g. By Proposition 6.3, either exp�.fv/ D g
or exp�.fv/ D �g. In the first case, Lemma 6.12 shows that there exists ˇ 2 �RR.�/

such that fv D ˇW and ˇ satisfies (6.4). A straightforward computation shows that
exp�.ˇU / D Qg. If exp�.fv/ D �g, we apply the above reasoning to �g, obtaining
that exp�.f0 C ˇU / D Qg.

Our first positive result on the solvability of equation (1.1) deals with the more
manageable case in which gv has no non-real isolated zeroes; that is, the function W
appearing in equation (6.3) is never vanishing. The next theorem provides the existence
of a �-logarithm for this class of functions.

Theorem 6.14. Let � be slice-contractible. Then, any g 2 �R�.�/ such that gv has
no non-real isolated zeroes has a �-logarithm.

Proof. By Remark 6.1, we can limit ourselves to the case gs � 1. As W is never
vanishing, then [3, Corollary 3.2] guarantees the existence of a square root � 2 �RR.�/

of W s and system (6.4) becomes8<:�.�2ˇ2/ D g0;�.�2ˇ2/ˇ D ˛;

or, equivalently, 8<:�.�2ˇ2/ D g0;�.�2ˇ2/ˇ� D ˛�:

Using the relation between the power series of � and cos and � and sin, the last system
can be written as ´

cos.�ˇ/ D g0;
sin.�ˇ/ D ˛�:

Since g20 C ˛
2�2 D g20 C ˛

2W s D g20 C g
s
v D 1, by Proposition 4.6, there exists


 2 �RR.�/ which solves ´
cos.
/ D g0;
sin.
/ D ˛�:

Now, setting ˇ D 
=� , where the second term is well defined since �RR.�/ is abelian
and � is never vanishing, we have that ˇ is a solution of system (6.4), and hence, thanks
to Lemma 6.12, f D fv D ˇW is a �-logarithm of g.
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Figure 3. The domains involved in the first part of the proof of Proposition 6.16.

Theorem 6.14 allows us to give a first local existence result for the �-logarithm.

Corollary 6.15. Let g 2 �R.�/ and q0 2� be such that gjSq0
is never vanishing and

gv has no non-real isolated zeros on Sq0
. Then, there exists a circular slice-contractible

neighborhood �0 of Sq0
such that gj�0

admits a �-logarithm.

Proof. Theorem 6.14 guarantees the existence of a �-logarithm of g on any circular
neighborhood�0 of q0 such that�0 is slice-contractible, provided gv has no non-real
isolated zeroes on �0. Such �0 exists because the sets of spheres where g vanishes
and those where gv has a non-real isolated zero are discrete and do not contain Sq0

.

When � is a slice domain, the previous local existence result can be improved to a
suitable slice subdomain.

Proposition 6.16. Let� be a slice domain, g 2 �R�.�/, and let q0 2� nR be such
that the sphere Sq0

does not contain any non-real isolated zero of gv . Then, there exists
a slice neighborhood �0 of q0 which is slice-contractible where g has a �-logarithm;
i.e., there exists f 2 �R.�0/ such that exp�.f / D gj�0

.

Proof. Again, Theorem 6.14 yields the proof provided we construct �0 as in the
thesis of the statement.

Since � is slice and � \Cq0
is connected by arcs, we can find a piecewise linear

path joining x0 2 � \ R with q0 which touches the real line at x0 only and is such
that an "-neighborhood U of this path in Cq0

is contractible and contained in �I (see
Figure 3). By replacing � with the symmetric completion of this domain, we can
suppose that � is slice and slice-contractible.
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Thanks to [10, Corollary 3.7], we can suppose that either� equals H or the unitary
ball B � H centered in 0. Let �1 b � be a ball centered at the origin containing q0.
Lemma 3.12 in [12] entails that the set of non-real isolated zeroes of gv contained in
�1 is finite. Let us denote by S1; : : : ; SN the spheres containing the non-real isolated
zeroes of gv. Take a closed interval ` � �1 \ R and consider the infinitely many
segments joining q0 to the points of `. As F WD .S1 [ � � � [ SN / \Cq0

is finite, we
can find a segmentM ��1 \Cq0

joining q0 to a point in `which does not intersect F .
As F is symmetric with respect to conjugation in Cq0

and M is compact, we can
find a simply connected neighborhood V of M in Cq0

symmetric with respect to
conjugation in Cq0

which does not intersect F . Then, the symmetric completion of V

is the required �0.

We now continue our investigation in search of a �-logarithm of g in �R1.�/. By
Proposition 6.3, up to a change of sign of g if � is a product domain, we can limit
ourselves to look for solutions of exp�.fv/ D g, with the necessary condition that
g0.q0/ D 1 for any q0 that is a non-real isolated zero of gv .

Before stating the theorem, we notice that for anyg2�R�.�/, the setg�10 ..�1;�1�/
is a circular set because it is a union of pre-images of real points by the slice preserving
function g0.

Theorem 6.17. Let � be slice-contractible and let g 2 �R1.�/ be such that for any
q0 2 � that is a non-real isolated zero of gv, we have g0.q0/ D 1. Then, on every
connected component of � n g�10 ..�1;�1�/, there exists a �-logarithm of g.

Proof. Let us denote by U a connected component of � n g�10 ..�1;�1�/. Notice
that as g0 is slice preserving, then U is a circular domain. We claim that U is a domain
where equation (1.1) admits a solution.

Let us write gv D ˛W on � as in formula (6.3). Our choice of U entails that
g0.U/ � H n .�1;�1�. Since the function ' given in Definition 3.5 and g0 are slice
preserving, then ' ı g0 W U! D0 is a well defined slice preserving function. Thanks
to Remark 3.7, the function � ı ' ı g0 is a never vanishing slice preserving regular
function on U. Now, set

(6.5) ˇ D
˛

� ı ' ı g0
:

We claim that ˇ is a solution of system (6.4) on U.
First of all, recall that� ı ' D idjHn.�1;�1�. Thanks to this relation, the first equality

in system (6.4) is satisfied if ' ı g0 D ˇ2W s . By squaring equality (6.5), we have

(6.6) ˇ2W s
D

˛2W s

.� ı ' ı g0/2
:
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If q 2U is such that .' ı g0/.q/D 0, then g0.q/D 1 (see Remark 3.7); as gs � 1, we
then have ˛2.q/W s.q/ D 0. Formula (6.6) implies ˇ2.q/W s.q/ D 0 D .' ı g0/.q/.
Suppose now that q 2 U is such that .' ı g0/.q/ ¤ 0. Then, the following chain
of equalities is due to the fact that gs � 1, to formula (2.2), and to the fact that
� ı ' D idjHn.�1;�1�:

ˇ2.q/W s.q/ D
˛2.q/W s.q/�
�
�
'
�
g0.q/

���2 D 1 � g20.q/�
�
�
'
�
g0.q/

���2 D �
1 � g20.q/

�
� '
�
g0.q/

��
�
�
'
�
g0.q/

���2
� '
�
g0.q/

�
D

�
1 � g20.q/

�
� '
�
g0.q/

�
1 �

�
�
�
'
�
g0.q/

���2 D �
1 � g20.q/

�
� '
�
g0.q/

�
1 � g20.q/

D '
�
g0.q/

�
:

Now, since ˇ2W s D ' ı g0, equality (6.5) immediately gives

�.ˇ2W s/ � ˇ D ˛;

which is the second equation of system (6.4). Finally, thanks to Lemma 6.12, the
assertion follows by setting f D fv D ˇ �W jU.

Corollary 6.18. Let � be a slice-contractible product domain and g 2 �R1.�/.
Assume that for any q0 2 � that is a non-real isolated zero of gv , we have that g0.q0/
D �1. Then, on every connected component of � n g�10 .Œ1;C1//, there exists a
�-logarithm of g.

Proof. Set Qg D exp�.�J/g D �g. Then, Qg satisfies the hypotheses of Theorem 6.17,
and, therefore, there exists f such that exp�.f / D Qg. A trivial computation gives
exp�.�J C f / D g.

It is worth observing that the difficulty of the proof of Proposition 6.16 is of a purely
topological nature since the existence of a circular neighborhood of q0 where W s is
never vanishing is trivial, but the key point is that we are looking for a slice circular
neighborhood of q0 whose intersection with any slice is simply connected. On the
contrary, the proof of Theorem 6.17 has to overcome a problem of analytical nature:
indeed, the existence of a circular neighborhood U of q0 such thatg0..�1;�1�/\UD

; immediately follows by the continuity of the function g0, while the construction of
the function that gives the logarithm of g on U requires the sharp analytical properties
of the function � obtained in Section 3.

In particular, we are able to overcome this double kind of difficulties when suitable
topological hypotheses allow us to succeed in glueing three different solutions: one
which is defined near the non-real isolated zeroes of gv and two which are given on
suitable slice-contractible domains which do not contain the non-real isolated zero.
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The idea of the proof is to provide a solution (uniquely if the domain is slice)
near the “bad points” (i.e., the non-real isolated zeroes of gv) and to use this solution
to select two suitable solutions in two appropriate (i.e., slice-contractible) domains
whose union is exactly given by � minus the spheres containing the bad points. In
order for this kind of reasoning to work, the key problems should show two aspects.
First of all, the non-real isolated zeroes of gv could belong to different connected
components of � n g�10 ..�1;�1�/, and thus we could not be sure that the leaves we
selected around a point agree around a different zero of gv as well. Secondly, even if
all the non-real isolated zeroes of gv belong to the same connected component U of
� n g�10 ..�1;�1�/, we have no information on the topology of U itself. Therefore,
the construction of the two slice simply connected domains whose union is � minus
the spheres where gv has non-real isolated zeroes could give a domain which does not
allow to apply analytic continuation around each of such zeroes.

The following statement describes a situation in which the existence of a �-logarithm
holds. Recall the definition of D given in formula (2.1).

Theorem 6.19. Let � be one among B, H, or D. Let g 2 �R1.�/ be such that
• gv has a finite number of non-real isolated zeros ¹q1; : : : ; qN º;
• g0.q`/ D 1 for all ` D 1; : : : ; N ;
• the union Sq1

[ � � � [ SqN
is contained in a unique connected component U of

� n g�10 ..�1;�1�/.

If for some I 2 S (and hence for any) the set UCI DU \CCI is convex and U is slice
if � is, then there exists a �-logarithm of g.

Proof. First of all, choose any imaginary unit I 2 S and denote q0
`
D Sq`

\CCI .
Moreover, for ` D 1; : : : ; N , choose 2 outwarding segments (or rays in the case

� D H) s`; �`;� CCI nR starting from q0
`
, such that

• .s` [ �`/ \ .s`0 [ �`0/ D ; if ` ¤ `0,
• �I n .s1 [ Ns1 [ � � � [ sN [ NsN / and �I n .�1 [ x�1 [ � � � [ �N [ x�N / are con-

tractible if � is slice and have two contractible connected components if � is
product.

We denote by y� and z� the symmetric completions of�I n .s1 [ Ns1 [ � � � [ sN [ NsN /
and �I n .�1 [ x�1 [ � � � [ �N [ x�N /, respectively. By Theorem 6.17, we can find
a �-logarithm fU of g on U, while by Theorem 6.14, we can find Oh 2 �R. y�/ and
Qh 2 �R. z�/ which are �-logarithms of g on y� and z�, respectively.

As UCI is convex, then both UCI n .s1 [ � � � [ sN // and UCI n .�1 [ � � � [ �N /

are connected; we will denote them by yUCI and zUCI , respectively. Thus, also their
symmetric completions U \ y� and U \ z� are connected and will be denoted by yU
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Figure 4. An overview of the above geometric construction.

and zU. Moreover, . y� \ z�/ \ CCI D �CI n .s1 [ � � � [ sN [ �1 [ � � � [ �N / is the
union of N C 1 connected components which are given by N “triangles” T` with
vertex in q0

`
and whose boundary in�CI is given by s` [ �` and a connected component

which is the complement of these triangles and will be denoted by �0I (see Figure 4).
Again, the convexity of UCI gives that

.U \ y� \ z�/ \CCI D UCI n .s1 [ � � � [ sN [ �1 [ � � � [ �N /

is the union of N C 1 connected components which are given by N smaller “triangles”
T 0
`
D T` \UCI with vertex in q0

`
and whose boundary in UCI is given by .s` [ �`/\UCI

and a connected component which is the complement of these smaller triangles in UCI
and will be denoted by U0

I .
The slice-contractibility of y� and z� and the fact that gv has no non-real isolated

zeroes in both these domains ensure that both Ohv and Qhv have no non-real isolated
zeroes and thus imply the existence of a square root

q
Ohsv on y� and

q
Qhsv on z�. We

also set yHv D
Ohvp
Ohs
v

and zHv D
Qhvp
Qhs

v

.
We first perform the proof in the case when � is slice; by our assumptions, U is

slice too.
Theorem 5.4 and Remark 5.5 entail the existence of Om; Qm 2 Z such that

fU �
Oh D 2 Om� yHv on yU;(6.7)

fU �
Qh D 2 Qm� zHv on zU:(6.8)

Now, set Of D OhC 2� Om yHv on y� and Qf D QhC 2� Qm zHv on z�. Equality (6.7) entails
Of D fU on yU, while equality (6.8) gives Qf D fU on zU. Thus, Of D Qf on yU \ zU.

As yU \ zU contains accumulation points in any of the N C 1 connected components
of y� \ z�, then the identity principle implies Of D Qf on y� \ z�.
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Setting

f .q/ D

8̂̂<̂
:̂
Of .q/; if q 2 y�;
Qf .q/; if q 2 z�;
fU.q/; if q 2 U;

gives a well-defined slice regular function which is a �-logarithm of g on �.
We now turn our attention to the case in which� is product, which of course entails

that U is product, too.
Theorem 5.4 entails the existence of On; Om; Qn; Qm 2 Z with On � Om .mod 2/ and

Qn � Qm .mod 2/, such that

fU �
Oh D � OnJ C � Om yHv on yU;

fU �
Qh D � QnJ C � Qm zHv on zU:

Setting again Of D OhC � OnJ C � Om yHv on y� and Qf D QhC � QnJ C � Qm zHv on z� and
reasoning as above gives the existence of a �-logarithm of g on �.

In the case when� is product, the second condition of the previous theorem can be
changed.

Corollary 6.20. Let g 2 �R1.D/ be such that
• gv has a finite number of non-real isolated zeros ¹q1; : : : ; qN º;
• g0.q`/ D �1 for all ` D 1; : : : ; N ;
• the union Sq1

[ � � � [ SqN
is contained in a unique connected component U of

� n g�10 ..�1;�1�/.

If for some I 2 S (and hence for any) the set UCI D U \ CCI is convex, then there
exists a �-logarithm of g.

Proof. By applying Theorem 6.19 to �g, we find a �-logarithm f of �g, and then
the function f C �J is a �-logarithm of g.

Remark 6.21. We notice that the statement of Theorem 6.19 can be generalized to a
larger variety of domains and functions. Indeed, the techniques we use in the proof can
be applied when � is slice-contractible, all the non-real isolated zeroes of gv belong
to the same connected component U of � n g�10 ..�1;�1�/, and for any non-real
isolated zero, we can “draw” two paths issuing from the non-real isolated zeroes of gv
which give two contractible subdomains of �I and do not disconnect UI .
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