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1. Introduction

Given an unbounded Lipschitz domain C �RN ,N � 2, we consider a bounded domain
� � C and denote by �� its relative (to C ) boundary, i.e., �� D @� \ C . Then, we
set �1;� D @� \ @C and assume that HN�1.�1;�/ > 0, where HN�1 denotes the
.N � 1/-dimensional Hausdorff measure.

We study the partially overdetermined mixed boundary value problem

(1.1)

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

��u D 1 in �;
u D 0 on ��;
@u

@�
D 0 on �1;�;

@u

@�
D �c < 0 on ��;

where c > 0 is a constant and � denotes the exterior unit normal, which is defined on
the regular part of @�. The question we address is to determine the domains � � C

for which (1.1) admits a solution. Obviously, this depends on the given container C .

https://creativecommons.org/licenses/by/4.0/
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A related question is to characterize the surfaces � in the set C with constant
mean curvature (CMC, in short). More precisely, we consider CMC smooth, bounded,
connected, orientable .N � 1/-dimensional manifolds � inside C whose boundary is
contained in @C and intersects @C orthogonally. The characterization of such surfaces
also depends on the set C .

Both questions were addressed in [15] (see also [16]) in the case when C is a cone.
The overdetermined problem for more general equations in cones was considered in [4].

When the cone is convex, the results of [15] completely characterize the domains
� for which (1.1) admits a solution, as well as the CMC surfaces which intersect @C
orthogonally: they are either spherical sectors centered at the vertex of the cone or
half-balls lying on a flat portion of @C . For nonconvex cones, a similar characterization
has been proved, but only for CMC radial graphs [15,16]. On the other side, nonradiality
results have been proved for a class of nonconvex cones [7].

In this paper, we study the aforementioned questions when C is a general unbounded
smooth set. More precise results will be obtained when the unbounded set C is a
cylinder in RN spanned by a smooth bounded domain ! � RN�1. We denote it by
C! , i.e.,

C! WD ! � .0;C1/ D
®
x D .x0; xN / 2 RN W x0 2 !; xN 2 .0;C1/

¯
:

In this case, we obtain a result about CMC surfaces � D �' inside C! which are graphs
of smooth functions ' defined on x!. We prove that if �' meets @C orthogonally, then
the mean curvature of �' is necessarily 0 and �' is the graph of a constant function
(see Proposition 2.1).

Then, we consider the Lipschitz domain

�' WD
®
.x0; xN / 2 RN W x0 2 !; xN < '.x0/

¯
� C!

and study the overdetermined problem (1.1) in �' . In view of Proposition 2.1 and the
results in cones, it would be natural to conjecture that the domains �' for which (1.1)
admits a solution are the ones corresponding to a function ' � h for some h > 0, so
that �' is the bounded cylinder ! � .0; h/. In particular, �' would have zero mean
curvature. However, the case of the cylinder looks quite different and we show some
partial results.

In the case when C is a general Lipschitz unbounded domain, we introduce the
definition of relative (to C/ Cheeger set for a domain�� C . It generalizes the classical
one which goes back to [3] (see also [13, 17]). Then, we show that if C is convex, any
bounded domain � � C for which (1.1) admits a solution coincides with its relative
Cheeger set. This is an interesting geometric property of � which sheds light on the
connections between overdetermined and isoperimetric problems. We also show some
properties of relative self-Cheeger sets.
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We delay the precise statement of the results and the comments on the proofs to the
corresponding sections.

This paper is organized as follows. In Section 2, we study CMC surfaces in cylinders.
In Section 3, we introduce the relative Cheeger problem and prove some properties
of relative Cheeger sets. We also provide a bound on the first eigenvalue of the mixed
boundary value problem for the Laplacian in terms of the Cheeger constant. The
overdetermined problem is studied in Section 4.

2. CMC cartesian graphs

Let ! � RN�1 be a smooth bounded domain and let C! � RN be the half-cylinder
spanned by !, i.e., C! D ! � .0;C1/. We denote by @CC! the lateral part of @C! ,
i.e.,

@CC! WD @C! \ ¹xN > 0º:

Let ' 2 C 2.x!/ be such that ' > 0 in x! and consider the associated cartesian graph

�' WD
®
.x0; xN / 2 RN W x0 2 !; xN D '.x

0/
¯
:

By construction, we have that �' � C! and �' meets @C! only on @CC! . The main
result of this section is the following.

Proposition 2.1. Assume that �' is a CMC surface which meets @CC! orthogonally.
Then, �' is a minimal hypersurface and ' is a constant function.

Proof. Since �' is a smooth cartesian graph, then the mean curvature of �' (with
respect to the exterior unit normal ��'

) is given by

(2.1) H�'
D �

1

N � 1
div

�
r'p

1C jr'j2

�
and, as H�'

is constant, then integrating (2.1) over !, we deduce that

(2.2) .N � 1/H�'
j!j D �

Z
!

div
�

r'p
1C jr'j2

�
dx0:

On the other hand, by the divergence theorem, we have

(2.3)
Z
!

div
�

r'p
1C jr'j2

�
dx0 D

Z
@!

r' � �@!p
1C jr'j2

d�;

where �@! is the unit outward normal to @!. Let us observe that since �' meets @CC!
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orthogonally, then for all x 2 x�' \ @C! , it holds

(2.4) ��'
.x/ � �

@C
C
!
.x/ D 0:

Moreover, as �' is a cartesian graph, for all x D .x0; xN / 2 x�' , we have

(2.5) ��'
.x/ D ��'

�
x0; '.x0/

�
D

1q
1C

ˇ̌
r'.x0/

ˇ̌2
"
�r'.x0/

1

#
:

In particular, since @CC! is a cylinder spanned by @!, we have

�
@C

C
!
.x/ D

�
�@!.x

0/; 0
�

for all x D .x0; xN / 2 @CC! :

From these considerations, (2.4), and (2.5), we readily obtain that

(2.6) r'.x0/ � �@!.x
0/ D 0 8x 2 @!:

Hence, combining (2.2), (2.3), and (2.6), we deduce that

H�'
D 0:

To conclude, it remains to prove that ' is a constant function. Since H�'
D 0, then

from (2.1), integrating by parts and taking into account (2.6), it follows thatZ
!

r' � r p
1C jr'j2

dx0 D

Z
@!

 
r' � �@!p
1C jr'j2

d� D 0 8 2 C 1.x!/:

Finally, choosing  D ', we readily obtain thatZ
!

jr'j2p
1C jr'j2

dx0 D 0;

which implies jr'j2 D 0 on !. As ! is connected, we get that ' is a constant function.

Finally, we prove the following Minkowski formula for graphs, which is interesting
in itself and will be used in Section 4.

Proposition 2.2. Assume that �' meets @CC! orthogonally. Then,

(2.7)
Z
�'

H�'
hxN eN ; �i d� D

1

N � 1

Z
!

jr'j2p
1C jr'j2

dx0;

where eN D .0; : : : ; 0; 1/ 2 RN .
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Proof. Since �' is the cartesian graph associated with ', we have

(2.8) d� D
p
1C jr'j2 dx0:

Exploiting (2.1) and (2.5) and integrating by parts, we get thatZ
�'

H�'
hxN eN ; �i d�

D �
1

N � 1

Z
!

div
�

r'p
1C jr'j2

�
' dx0

D
1

N � 1

�Z
!

jr'j2p
1C jr'j2

dx0 �

Z
@!

'
r' � �@!p
1C jr'j2

d�@!

�
:

(2.9)

Finally, since �' intersects @CC! orthogonally, then from (2.6), we infer that the last
integral in (2.9) is zero, and (2.7) readily follows.

3. Relative Cheeger sets

Let C � RN be an unbounded Lipschitz domain. Let us recall the definition of the
relative perimeter.

Definition 3.1. The relative (to C ) perimeter of a set E � C is

PC .E/ WD jD�E jC .E/ D sup
²Z

E

div dx W  2 C 1c .C ;R
N /; k k1 � 1

³
;

where �E is the characteristic function of E. Of course, a set is said to be of finite
(relative) perimeter when PC .E/ < C1.

Note that if �E WD @E \ C is Lipschitz, then

(3.1) PC .E/ D HN�1.�E / D

Z
�E

1 d�:

Let jEj denote the Lebesgue measure of E, which will also be called the volume
of E. Let � � C and set, as in Section 1, �� WD @� \ C .

Definition 3.2. The relative (to C ) Cheeger constant of � � C is

hC .�/ WD inf
E��

PC .E/

jEj
:

The sets which attain the minimum will be called the relative (to C ) Cheeger sets of�.
If � itself is a Cheeeger set, then � is said to be self-Cheeger.
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The problem of finding hC .�/ and the associated Cheeger set (or sets) has many
interesting motivations and applications. The Cheeger constant h.�/ first appeared in a
bound for the first eigenvalue of the Laplacian on manifolds [3]; see [9] for the link with
the spectral theory for the p-Laplacian. See [11] and the references therein for fracture
problems in mechanics of materials; [8] for a landslide problem; [2] for a generalization
of the Cheeger problem in image processing. Regarding the Cheeger problem on its
own, see [1] for a study via p-torsion functions and [10] for a characterization of
Cheeger sets of convex plane domains. The surveys [13, 17] provide a nice overview.

We now show some properties of relative Cheeger sets.

Proposition 3.3 (Existence). Let � � C be a bounded domain such that �� is
Lipschitz. Then, there exists at least one Cheeger set for �.

Proof. The proof is a straightforward adaptation of the proof of [17, Proposition 3.1].
The important thing to note is that the test functions ' have compact support in C , so
they do not “see” the boundary of the container.

Proposition 3.4. Let C be a cone with vertex at the origin, i.e.,

C D
®
tx W x 2 D; t 2 .0;C1/

¯
;

where D is a domain on the unit sphere SN�1. Let � � C be a bounded domain such
that �� is Lipschitz. If E is a Cheeger set for �, then @E \ �� ¤ ;.

Proof. We adapt the proof of [17, Proposition 3.5]. Note that the fact that the cone is
invariant by dilation plays a crucial role in the proof.

For the sake of contradiction, suppose that d.@E; ��/ � ı for some ı > 0. Then,
we can find some t > 1 such that the set

tE WD ¹x 2 C W t�1x 2 Eº

is still in �. By the change of variables formula, we have

jtEj D

Z
tE

1 dx D

Z
E

tN dx D tN jEj:

To compute the perimeter, one proceeds as follows. By the definition of the relative
perimeter, the chain rule, and the change of variables formula, we get

PC .tE/ D sup
²Z

tE

div .x/ dx W  2 C 1c .C ;R
N /; k k1 � 1

³
D sup

²Z
E

div
�
 .t�1x/

�
tN dx W  2 C 1c .C ;R

N /; k k1 � 1

³
D tN�1PC .E/:
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Observe that the set of functions where we compute the supremum is the same, but
when computing the divergence, we must take into account the dilation of the argument.

Now, it remains to observe that

PC .tE/

jtEj
D
tN�1

tN
PC .E/

jEj
< hC .�/;

which contradicts the definitions of the (relative) Cheeger constant and Cheeger set.

We can prove a similar result in cylinders.

Proposition 3.5. Let ! � RN�1 and let C! be the cylinder spanned by !. Assume
that�� C! is a bounded domain such that�� is a connected surface whose projection
into RN�1 is exactly !. If some relative Cheeger set Ef of� is defined by the graph of
a function f on !, i.e.,Ef D ¹.x0; xN / 2 C! W 0 < xN < f .x

0/º, then �Ef
\ �� ¤ ;.

Proof. Note that�Ef
D@Ef \C is just the graph�f of the functionf . If �f \��D;,

considering the domain EfCı defined by the function f C ı, for ı > 0 sufficiently
small so that EfCı � �, we have

HN�1.�fCı/

jEfCı j
D

HN�1.�f /

jEfCı j
<

HN�1.�f /

jEf j
;

contradicting the definition of a Cheeger set.

Note that in the previous proof, we can allowf to be zero at some strict subset of !.

Remark 3.6. The Cheeger constant can be obtained by minimization in the class of
smooth subdomains of �; see [14, proof of Theorem 1] and the references therein.

When C is a cylinder and �' is the domain defined by the graph of a function
' 2 C 2.x!/, we have the following result.

Theorem 3.7. Let ! � RN�1 be a smooth bounded domain and consider the cylinder
C! spanned by !. Let ' 2 C 2.x!/ be a positive function and assume that �' meets
@C! orthogonally. If �' is self-Cheeger, then

(3.2) H�'
�

PC!
.�'/

.N � 1/j�' j
:

Proof. For anyC 1 function v � 0 on x!, the relative perimeter of the perturbed domain
�'Ctv is given by (recall (3.1) and (2.8))

pv.t/ WD PC .�'Ctv/ D HN�1.�'Ctv/

D

Z
!

p
1C jr' C trvj2 dx0:
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We also define

Vv.t/ WD j�'Ctw j D

Z
!

' C tv dx0:

Here, we are considering t small enough for these quantities to make sense in the
container, that is, ' C tv � 0.

If �' is self-Cheeger, then

d

dt

�
pv.t/

Vv.t/

�ˇ̌̌̌
tD0

D
p0v.t/Vv.t/ � pv.t/V

0
v.t/�

Vv.t/
�2 ˇ̌̌̌

tD0

� 0

for all negative v 2 C 1.x!/.
Since .Vv.t//2 is always positive, we have that

(3.3) p0v.0/Vv.0/ � pv.0/V
0
v.0/ � 0:

Simple computations yield

p0v.t/ D

Z
!

r' � rv C t jrvj2p
1C jr' C trvj2

dx0

and

V 0v.t/ D

Z
!

v dx0:

Then,

p0v.0/Vv.0/ � pv.0/V
0
v.0/

D

Z
!

r' � rvp
1C jr'j2

dx0j�' j � PC!
.�'/

Z
!

v dx0:

(3.4)

Integrating by parts and using the divergence theorem, we obtainZ
!

r' � rvp
1C jr'j2

dx0

D

Z
!

div
�
v

r'p
1C jr'j2

�
dx0 �

Z
!

v div
�

r'p
1C jr'j2

�
dx0

D

Z
@!

v
r' � �@!p
1C jr'j2

dx0 �

Z
!

v div
�

r'p
1C jr'j2

�
dx0

D �

Z
!

v div
�

r'p
1C jr'j2

�
dx

(3.5)
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since �' meets @C! orthogonally (see the proof of Proposition 2.1). Then, substituting
(3.5) into (3.4) and taking into account (3.3), we getZ

!

v

�
j�' j div

�
r'p

1C jr'j2

�
C PC!

.�'/

�
dx0 � 0

for every negative v 2 C 1.x!/. Hence,

0 � j�' j div
�

r'p
1C jr'j2

�
C PC!

.�'/ D �.N � 1/H��
j�' j C PC!

.�'/;

from which (3.2) readily follows.

Theorem 3.8. Let ! � RN�1 be a smooth bounded domain and consider the cylinder
C! spanned by !. Let ' 2 C 2.x!/ be a positive function. Assume that jr'j � ı on x!,
for some ı > 0. Then, �' cannot be self-Cheeger.

Proof. Again, we apply the idea of perturbing ', but now the aim is to find a specific
function v � 0 in C 1.x!/ for which

d

dt

�
pv.t/

Vv.t/

�ˇ̌̌̌
tD0

D
p0v.t/Vv.t/ � pv.t/V

0
v.t/�

Vv.t/
�2 ˇ̌̌̌

tD0

< 0:

Indeed, this will imply that

PC .�'Ctv/

j�'Ctvj
<
PC .�/

j�j

for every t < " for some " > 0.
As .Vv.t//2 is always positive, the problem reduces to finding v such that

p0v.0/Vv.0/ � pv.0/V
0
v.0/ < 0:

Take
v.x0/ D �e˛'.x

0/;

where ˛ > 0 is a constant to be chosen later. Then,

rv.x0/ D �˛e˛'.x
0/
r'.x0/

and

p0v.0/Vv.0/ � pv.0/V
0
v.0/

D

Z
!

�˛j�' je
˛' jr'j2p

1C jr'j2
dx0 C

Z
!

PC .�'/e
˛' dx0

�

Z
!

e˛'
�
PC .�'/ � ˛j�' j

jr'j2p
1C jr'j2

�
dx0:
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Since jr'j is bounded on x! (because ' is smooth) and jr'j � ı on x!, choosing ˛
big enough such that

PC .�'/ � ˛j�' j
ı2p

1C kr'k21
< 0;

we easily conclude.

We now go back to the case when C is a general unbounded Lipschitz domain and
conclude this section with an application.

Assume that�� is smooth and consider the eigenvalue problem with mixed boundary
conditions:

(3.6)

8̂̂̂<̂
ˆ̂:
��u D �u in �

u D 0 on ��
@u

@�
D 0 on �1;�:

Let H 1
0 .� [ �1;�/ be the closure in H 1.�/ of the space C 1c .� [ �1;�/. It is the

natural space to study problem (3.6), for it coincides with the space of functions in
H 1.�/ whose trace vanishes on ��.

The spectral theory for this problem is analogous to the one for the Dirichlet-
Laplacian (see [5, Section 1.4] for the spectral theory of mixed boundary value problems
in a more general setting). In particular, the eigenvalues are all positive and form an
increasing divergent sequence, and the first eigenfunction is positive. Moreover, the
first eigenvalue is characterized by

�1.�/ D min
v2H1

0
.�[�1;�/n¹0º

R
�
jrvj2 dxR
�
v2 dx

:

Theorem 3.9. Let � � C be a bounded domain such that �� is Lipschitz. Then,

�1.�/ �
h2

C
.�/

4
:

Proof. We adapt the proof presented for the Dirichlet-p-Laplacian in the appendix
of [12].

Let w 2 C1c .� [ �1;�/ and Et D ¹x 2 � W w.x/ > tº. By the classical coarea
formula, by the definition of hC .�/ and Cavalieri’s principle, we haveZ

�

jrwj dx D

Z 1
�1

HN�1

�
w�1.t/

�
dt D

Z 1
�1

HN�1

�
w�1.t/

�
jEt j

jEt j dt

� hC .�/

Z
�

jwj dx:
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Hence,

(3.7) hC .�/ �

R
�
jrwj dxR
�
w dx

8w 2 C1c .� [ �1;�/;

and by density, (3.7) holds as well in W 1;1
0 .� [ �1;�/.

Now, let v 2 H 1
0 .� [ �1;�/. By Hölder’s inequality, it follows that

v2 2 W
1;1
0 .� [ �1;�/:

Indeed, Z
�

ˇ̌
r.v2/

ˇ̌
dx D 2

Z
�

jvjjrvj dx � 2kvk2krvk2:

By (3.7), it follows that

hC .�/ �

R
�

ˇ̌
r.v2/

ˇ̌
dxR

�
v2 dx

� 2
kvk2krvk2

kvk22
D 2
krvk2

kvk2
:

We conclude the proof by taking into account the variational characterization of the
first eigenvalue �1.�/.

4. The overdetermined problem

Let C be an unbounded Lipschitz domain and � � C a bounded domain with smooth
relative boundary ��.

For a solution u of (1.1), we define

P.x/ D
ˇ̌
Du.x/

ˇ̌2
C
2

N
u.x/; x 2 x�:

This function (sometimes calledP -function) is often used in the study of overdetermined
problems [6, 15, 18].

We can give a bound on the curvature of ��, with the aid of the following.

Lemma 4.1. If C is convex and u is a solution of (1.1), then either P � c2 in x� or
@P
@�
> 0 on ��.

Proof. Direct computations yield

DP D 2D2uDuC
2

N
Du

and

�P D 2kD2uk2 C 2
˝
Du;D.�u/

˛
�
2

N
D 2

�
kD2uk2 �

.�u/2

N

�
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since �u D �1. Here, D2u denotes the Hessian matrix of u and kD2uk2 is the sum
of the squares of the elements of D2u. By [15, inequality (2.4)], it then follows that

�P � 0 in �:

Moreover, by the boundary conditions for u, we obtain the following boundary condi-
tions for P :

P � c2 on ��;
@P

@�
D 2hD2uDu; �i on �1;�:

From the convexity assumption on C , we have that the second fundamental form
h.�; �/ on @C is positive semidefinite at any regular point. On the other hand, by the
Neumann condition @u

@�
D 0 on �1;�, we deduce that Du is tangent to �1;�. Thus,

denoting by Nu the vector field differentiating along the direction Du, i.e.,

Nu D

NX
kD1

uk.x/
@

@xk
;

we obtain

0 D Nu
�
hDu; �i

�
D

NX
j;kD1

ukukj �j C h.Du;Du/ � hD
2uDu; �i:

Hence, the function P satisfies8̂̂̂<̂
ˆ̂:
�P � 0 in �
P D c2 on ��
@P

@�
� 0 on �1;�:

By the maximum principle for the mixed boundary value problem (see [5, Sec-
tion 1.2.1] or [15, Corollary 2.3]), we obtain P � c2 in �. Then, the strong maximum
principle applies, so that either P � c2 in � or P < c2 in �. In this last case, by
Hopf’s lemma, we get @P

@�
> 0 on ��.

Let H.x/ denote the mean curvature at a point x 2 ��.

Proposition 4.2. If C is convex and there exists a solution for (1.1) in �, then either

H.x/ <
1

Nc

or

(4.1) H.x/ �
1

Nc

on for every x 2 ��.
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Proof. The proof of [6, Lemma 3.3] can be easily adapted to our setting. Denoting for
brevity u� D @u

@�
, exploiting that ��u D 1, and arguing as in [6, Lemma 3.3], we have

(4.2) u�� � .N � 1/cH.x/ D �1 on ��:

Consider the two possible cases given by Lemma 4.1. In the inequality case,

(4.3) P� D 2u�u�� C
2

N
u� > 0:

Dividing (4.3) by 2u� and combining with (4.2), we obtain

H.x/ <
1

Nc
:

The case of equality in Lemma 4.1 develops similarly.

As anticipated, we show that the solutions of the overdetermined problem are
(relatively) self-Cheeger.

Theorem 4.3. If C is convex and there exists a solution u for (1.1) in�, then jDuj � c
in x�, c as in (1.1), and � is self-Cheeger.

Proof. Recall from the proof of Lemma 4.1 that

P.x/ D
ˇ̌
Du.x/

ˇ̌2
C
2

N
u.x/ � c2

in x�. By the maximum principle, we have that u is positive, and thus we obtain
that jDuj � c in x�. It then follows that for any smooth subdomain E � � (recall
Remark 3.6), we have

jEj D

Z
E

��udx D

Z
@E

@u

@�
d� � cHN�1.@E \ C/

because @u
@�
D 0 on �1;�.

Now, integrating (1.1) in �, we have

j�j D �

Z
�

�udx D �

Z
@�

@u

@�
d� D

Z
��

c d�

D cHN�1.��/:

(4.4)

Hence,
HN�1.��/

j�j
D
1

c
�

HN�1.@E \ C/

jEj
:

The proof is complete.
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Remark 4.4. The previous theorem allows us to study the geometrical properties of
the bounded domains � which admit a solution of the overdetermined problem (1.1),
by looking at those of the self-Cheeger sets. In particular, we point out those provided
by Theorems 3.7 and 3.8.

We conclude with a result which applies when � D �' is defined by the graph
of a function ' as in Section 3. It gives a bound for the gradient of ', whenever �'
admits a solution of the overdetermined problem (1.1).

Proposition 4.5. Let! �RN�1 be a convex smooth bounded domain and ' 2 C 2.x!/
a positive function. If �' meets @C! orthogonally and �' admits a solution to the
overdetermined problem (1.1), then we have a bound from above for jr'j:

(4.5)
HN�1.�'/

N
<

Z
!

1p
1C jr'j2

dx0:

Proof. From the Minkowski formula (2.7), we haveZ
�'

H�'
hxN eN ; �i d�

D
1

N � 1

Z
!

jr'j2p
1C jr'j2

dx0

D
1

N � 1

Z
!

1C jr'j2p
1C jr'j2

dx0 �
1

N � 1

Z
!

1p
1C jr'j2

dx0

D
HN�1.�'/

N � 1
�

1

N � 1

Z
!

1p
1C jr'j2

dx0:

(4.6)

Now, from the bound on H�'
given by Proposition 4.2 (observe that the case (4.1),

i.e., H�'
�

1
Nc

, cannot happen, in view of Proposition 2.1), we haveZ
�'

H�'
hxN eN ; �i d� <

Z
�'

hxN eN ; �i

Nc
d�

D
1

Nc

Z
!

' dx0

D
j�' j

Nc
D

HN�1.�'/

N
;

(4.7)

by (4.4). Finally, combining (4.6) and (4.7), we get

HN�1.�'/

N � 1
�

1

N � 1

Z
!

1p
1C jr'j2

dx0 <
HN�1.�'/

N
;

and (4.5) readily follows.
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