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Abstract. – Let X ! W be a flat family of generically irreducible hypersurfaces of degree
d > 2 in P n with singular locus of dimension t , with W unirational of dimension r . We prove
that if n is large enough with respect to d , r and t , then X is unirational. This extends results by
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in [Rend. Sem. Mat. Univ. Padova 31 (1961), 281–293].
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1. Introduction

A classical theorem by U. Morin says that if X is a general hypersurface of degree d in
Pn and n is large enough with respect to d , then X is unirational (see [7] and also [1]).
This result has been extended by A. Predonzan in [8] to any hypersurface X of degree
d in Pn, even singular in dimension t : X turns out to be unirational provided n is large
enough with respect to d and t (see Theorem 5.4 for a precise statement). This theorem
has been rediscovered by J. Harris, B. Mazur and R. Pandharipande in [5] although
they give a lower bound for n that is worse than Predonzan’s.

The purpose of this paper is to prove an extension of Predonzan’s result, namely,
Theorem 5.5, that asserts that if X ! W is a flat family of hypersurfaces of degree
d > 2 in Pn, whose general member is irreducible and singular in dimension t , andW
is irreducible, unirational of dimension r , if n is large enough with respect to d; r; t , then
X is unirational. The case d D 2 is already included in [3]. This theorem, for instance,
implies, under suitable numerical conditions, the unirationality of hypersurfaces in
Segre products of projective spaces.

As for the proof, Predonzan shows in [8] that ifX �Pn is an irreducible hypersurface
of degree d > 2, defined over a field K of characteristic zero, containing a k-plane
ƒ along which X is smooth, and if k is large enough with respect to the degree d ,
then X is unirational over the extension of K with the Plücker coordinates of ƒ (see
Theorem 5.3 for a precise statement). The key step in our proof is to show that if
X ! W is a flat family of generically irreducible hypersurfaces of degree d > 2
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in Pn, withW irreducible of dimension r , and n is large enough with respect to d; r; k,
then there is a rationally determined k-plane over the generic hypersurface of the
family (see Remark 4.6 for the meaning of being rationally determined). This is the
so-called Section Lemma (see Lemma 4.5 below). Theorem 5.5 follows by this result
and the aforementioned Predonzan’s theorem, in view of a unirationality criterion by
L. Roth (see Proposition 5.2). The proof of Section Lemma is inspired by a beautiful
and elegant idea of F. Conforto in [3], and it uses a birational description of the Fano
scheme of k-planes in a projective hypersurface, as in Section 3. This in turn requires
some preliminaries about Grassmannians stated in Section 2, which essentially appear
in a paper by J. G. Semple [12], and which we expose here for the reader’s convenience.

This paper extends some of the results by the second author in his Ph.D. thesis [11].
In this paper, we work over an algebraically closed field K of characteristic zero.

2. Some preliminaries on Grassmannians

In this section, we expose some preliminaries on Grassmann varieties, following [12].

2.1. Let G.k; n/ be the Grassmann variety of k-planes in Pn D P .V /, where V is
a K-vector space of dimension nC 1. One has G.k; n/ Š G.n � k � 1; n/; hence,
without loss of generality, we may and will assume 2k < n.

The variety G.k; n/ is naturally embedded in PN.k;n/, with N.k; n/ D
�
nC1
kC1

�
� 1,

via the Plücker embedding. Explicitely, in coordinates, we have the following. Fix
a basis B D ¹e1; : : : ; enC1º of V . Then, we can associate with any k-plane ƒ of
Pn D P .V / a .k C 1/ � .nC 1/ matrix

Mƒ D

264 v1;1 � � � v1;nC1
:::

:::

vkC1;1 � � � vkC1;nC1

375
whose rows are the coordinate vectors with respect to the basis B of k C 1 vectors
corresponding to independent points ofƒ. Two matricesM andM 0 represent the same
k-plane if and only if there exists A 2 GL.k C 1;K/ such that M D AM 0.

The homogeneous coordinates of the point in PN.k;n/ corresponding to ƒ are
given by the minors of order k C 1 of Mƒ. They depend only on ƒ and not on the
matrix Mƒ. These are the Plücker coordinates of ƒ, and we denote them by zI where
I D .i1; : : : ; ikC1/ is a multi-index with 1 6 i1 < i2 < � � � < ikC1 6 nC 1 denoting
the order of the columns ofMƒ which determine the corresponding minor. The Plücker
coordinates are lexicographically ordered.
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If we consider the subset U of points of PN.k;n/ where the first coordinate z1;:::;kC1
is different from zero, each pointƒ 2 U \G.k; n/ represents a k-plane such that there
is an associated matrix Mƒ to ƒ that can be uniquely written in the form266664

1 0 � � � 0 v1;kC2 � � � v1;nC1

0 1 � � � 0 v2;kC2 � � � v2;nC1
:::

: : :
:::

:::
:::

0 0 � � � 1 vkC1;kC2 � � � vkC1;nC1

377775 :
From this description, it follows that U \G.k; n/ is isomorphic to A.kC1/.n�k/, where
the coordinates are the (lexicographically ordered) vi;j ’s, with 1 6 i 6 k C 1 and
k C 2 6 j 6 nC 1. We will soon give a geometric interpretation of this isomorphism
(see Proposition 2.8 below).

Remark 2.1. We can describe geometrically the open subset U \G.k; n/: it is the
set of k-planes of Pn that do not intersect the .n� k � 1/-plane spanned by the points
corresponding to ekC2; : : : ; enC1. Similarly, for any choice of a totally decomposable
element of ^n�kV (i.e., a vector which can be expressed as v1 ^ � � � ^ vn�k), we can
construct a birational map between G.k; n/ and P .kC1/.n�k/.

2.2. Now, we setM.k; n/D .k C 1/.n� k/ and consider PM.k;n/ with homogeneous
coordinates given by y and xi;j for i D 1; : : : ; k C 1 and j D k C 2; : : : ; n C 1:
in this setting, the affine space with coordinates xi;j for i D 1; : : : ; k C 1 and j D
k C 2; : : : ; nC 1 is the complement of the hyperplane H with equation y D 0. We
define the rational map

(1)  k;n W P
M.k;n/ Ü PN.k;n/

sending the point with coordinates Œy; x1;kC2; : : : ; xkC1;nC1� to the point whose coor-
dinates are the minors of order k C 1 of the matrix

(2)

266664
y 0 � � � 0 x1;kC2 � � � x1;nC1

0 y � � � 0 x2;kC2 � � � x2;nC1
:::

: : :
:::

:::
:::

0 0 � � � y xkC1;kC2 � � � xkC1;nC1

377775 :
If we consider the open subset U 0 D ¹y ¤ 0º � PM.k;n/,  k;njU 0 is the inverse

isomorphism of the one described above betweenU \G.k; n/ and AM.k;n/. Therefore,
the image of  k;n is G.k; n/.
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We will describe the linear system dk;n of hypersurfaces associated with the
map  k;n. It corresponds to the vector space W � H 0.PM ;OPM .k C 1// spanned
by ykC1 and by the forms

(3) ykC1�rDr
i1;:::;ir Ij1;:::;jr

for r D 1; : : : ; kC 1, with 16 i1 < � � �< ir 6 kC 1 and kC 26 j1 < � � �< jr 6 nC 1,
where Dr

i1;:::;ir Ij1;:::;jr
denotes the minor of order r of the matrix

(4)

266664
x1;kC2 : : : x1;nC1

x2;kC2 : : : x2;nC1
:::

:::

xkC1;kC2 : : : xkC1;nC1

377775
determined by the rows of place i1; : : : ; ir and by the columns of place j1; : : : ; jr .

For a fixed r D 1; : : : ; k C 1, we definemr as the number of the minors of typeDr .
Thus, mr D

�
kC1
r

��
n�k
r

�
.

Note that the subvariety of H defined by the 2 � 2 minors of the matrix (4) is a
Segre variety Seg.k; n � k � 1/ Š Pk � Pn�k�1 (see [4, p. 98]).

We want to geometrically characterize the linear system dk;n. Before doing that,
we need the following.

Lemma 2.2. Let r > 1. There is no hypersurface of degree r C 2 in P r with multiplicity
at least r C 1 at r C 1 independent assigned points of P r .

Proof. Consider the linear system of P r of hypersurfaces of degree r with multiplicity
at least r � 1 at the r C 1 independent assigned points. This is well known to be a
homaloidal linear system, determining a birational map ! W P r Ü P r , such that
the counterimages of the lines of the target P r are the rational normal curves in the
domain P r passing through the r C 1 independent assigned points. The intersection
of a hypersurface of degree r C 2 in P r with multiplicity at least r C 1 at the r C 1
independent assigned points with the rational normal curve off the r C 1 independent
assigned points is�1. Thus, such a hypersurface is empty and the assertion follows.

Next, we can give the desired geometric description of the linear system dk;n.

Proposition 2.3. The linear system dk;n consists of the hypersurfaces of degree k C 1
in PM.k;n/ passing with multiplicity at leastk through the Segre variety Seg.k; n�k�1/
contained in the hyperplane H with equation y D 0 and defined by the 2 � 2 minors
of the matrix (4).
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Proof. The linear system dk;n has a base locus scheme B1. By looking at the basis of
W in (3), B1 is defined by the equations

y D 0; DkC1
1;:::;kC1Ij1;:::;jkC1

; for all k C 2 6 j1 < � � � < jr 6 nC 1:

Then, B1 is the .k � 1/-th secant variety of Seg.k; n � k � 1/ defined by the 2 � 2
minors of the matrix (4) inside H (see [4, p. 99]). Moreover, dk;n is the whole linear
system of hypersurfaces of degree k C 1 of PM.k;n/ containing B1.

For each r D 2; : : : ; k, we can also consider the subscheme Br of B1 consisting of
those points of B1 where all hypersurfaces of dk;n have multiplicity at least r . Looking
again at the basis of W in (3), it is immediate that Br is the .k � r/-secant variety
of Seg.k; n � k � 1/, for r D 2; : : : ; k (see again [4, p. 99]). Note that B1 itself has
points of multiplicity at least r along Br , for all r D 2; : : : ; k. In particular, each
hypersurface in the linear system dk;n passes with multiplicity k through the Segre
variety Seg.k; n � k � 1/ in H , which is Bk .

Conversely, let F be a hypersurface of degree k C 1 in PM.k;n/ passing with multi-
plicity at least k through the Segre variety Seg.k; n � k � 1/ lying in the hyperplane
H and defined by the 2 � 2 minors of the matrix (4). Then, we claim that F contains
the .k � 1/-th secant variety of Seg.k; n � k � 1/; hence, F belongs to dk;n. Indeed,
this is clear for k D 1, so we may assume k > 2, in which case the claim follows right
away by Lemma 2.2.

2.3. Next, we need a description of the osculating spaces to the Grassmann varieties
(for the concept of osculating spaces, see [10, p. 141]). First, we need some lemmata.

Lemma 2.4. Let Seg.1; k/ be a Segre variety in Pn, with n > 2k C 1. Let � W P1 !
G.k; n/ be the morphism which sends a point p to the k-plane ¹pº � Pk � Seg.1; k/
in Pn. Then, the image of � is a rational normal curve of degree kC 1 inside G.k; n/.

Proof. We can assume n D 2k C 1. If Œx0; x1� are homogeneous coordinates of P1

and zij , i D 0; 1 and j D 0; : : : ; k, are the homogenous coordinates of P2kC1, we
can assume that � is the map which sends Œ˛0; ˛1� to the k-plane whose equations in
P2kC1 are

˛1z0j � ˛0z1j D 0 for j D 0; : : : ; k:

In particular, the image of a point Œx0; x1� under � is the point of G.k; 2k C 1/ whose
coordinates are the minors of maximal order of the matrix26664

x0 0 � � � 0 x1 0 � � � 0

0 x0 � � � 0 0 x1 � � � 0
:::

: : :
: : :

:::

0 0 � � � x0 0 0 � � � x1

37775 :
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There are only k C 2 non-vanishing Plücker coordinates of this k-plane and they have
as entries the monomials of degree k C 1 in x0 and x1. The assertion follows.

We can generalize the above result.

Lemma 2.5. Let k; r; n be positive integers with k > r . Let Seg.1; r/ be a Segre variety
in Pn, with n > k C r C 1, and let… be a .k � r � 1/-plane, which does not intersect
the .2r C 1/-plane spanned by Seg.1; r/. Let � W P1 ! G.k; n/ be the morphism
which sends a point p to the k-plane spanned by … and by the r-plane in Seg.1; r/
given by ¹pº � P r . Then, its image is a rational normal curve of degree r C 1 inside
G.k; n/.

Proof. We can assume n D k C r C 1. Let Seg.1; r/ be a Segre variety inside the
.2r C 1/-plane L given by the vanishing of the last k � r homogeneous coordinates of
PkCrC1, and let … be the k � r � 1 plane given by the vanishing of the first 2r C 2
coordinates. Then, we can associate with the point Œx0; x1� of P1 the matrix whose
rows span the join of … and Œx0; x1� � P r . This is the .k C 1/ � .k C r C 2/ matrix�

Ax0;x1
01

02 Ik�r

�
;

whereAx0;x1
is the .r C 1/� .2r C 2/matrix associated with the r-plane Œx0; x1��P r

in L, 01 is the .r C 1/ � .k � r/ zero matrix, 02 is the .k � r/ � .2r C 2/ zero matrix
and Ik�r is the .k � r/ identity matrix. As in the proof of Lemma 2.4, we see that the
only non-vanishing Plücker coordinates of the point of the Grassmaniann associated
with this matrix are given by the monomials of order r C 1 in x0 and x1. The assertion
follows.

Lemma 2.6. Let L1; L2 be two distinct k-planes in Pn intersecting in a .k � r/-
planeM , with 16 r 6 kC 1. Then, there is a Segre variety Seg.1; r � 1/ in Pn such that
there are two distinct points p1; p2 2 P1 such that Li \ Seg.1; r � 1/D ¹piº � P r�1,
for i D 1; 2.

Proof. Projecting from M to a Pn�kCr�1, the images of L1; L2 are two disjoint
.r � 1/-planes L01 and L02. If we fix an isomorphism � W L01 ! L02, the variety defined
as the union of the lines joining p 2 L01 to �.p/ 2 L02 is the desired Segre variety.

The following proposition describes the osculating spaces of Grassmannians.

Proposition 2.7. Letƒ0 be a point of G.k;n/ and let 16 r 6 k. Then, the r-osculating
space T .r/G.k;n/;ƒ0

to G.k; n/ at ƒ0 is the linear space spanned by the Schubert variety

Wr;ƒ0
D
®
ƒ 2 G.k; n/ j dim.ƒ \ƒ0/ > k � r

¯
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and one has

(5) dim
�
T
.r/

G.k;n/;ƒ0

�
D

rX
iD1

�
k C 1

i

��
n � k

i

�
:

Proof. First of all, we claim thatWr;ƒ0
� T

.r/

G.k;n/;ƒ0
. To prove this, note that by Lem-

mata 2.5 and 2.6, for any k-planeƒ intersectingƒ0 in a linear space of dimension at least
k � r , we can construct a rational normal curve of degree r in G.k; n/ passing through
ƒ0 and ƒ. Such a curve must be contained in T .r/G.k;n/;ƒ0

, and this proves the claim.
To prove that T .r/G.k;n/;ƒ0

D hWr;ƒ0
i, we will compute the dimensions of both

T
.r/

G.k;n/;ƒ0
and hWr;ƒ0

i and we will prove they are equal.
First, let us prove (5). Without loss of generality, we may assume thatƒ0 is spanned

by the points corresponding to the vectors e1; : : : ; ekC1 of the basis B of V , so that
ƒ0 is the point where only the first Plücker coordinate is different from zero. Consider
the local parametrization of G.k; n/ around ƒ0 given by the restriction of the map
 k;n as in (1) to AM.k;n/ D PM.k;n/ nH , so that  k;n maps the origin of AM.k;n/ to
ƒ0. The r-osculating space T .r/G.k;n/;ƒ0

is spanned by the points that are derivatives up
to order r of the parametrization at the origin.

Each coordinate function of  k;n is given by a minor Ds as above (in the affine
coordinates xi;j , for i D 1; : : : ; k C 1 and j D k C 2; : : : ; nC 1, of AM.k;n/). The
derivatives up to order r of the minorsDs with s > r C 1 vanish at 0 2AM.k;n/. Hence,
T
.r/

G.k;n/;ƒ0
has dimension at most

Pr
iD1mi , where we recall that mi D

�
kC1
i

��
n�k
i

�
is the number of the Di ’s.

Moreover, for each minor Ds with s 6 r , there exists a derivative of order s of the
parametrization at the origin such that all of its coordinates, except the one correspond-
ing to Ds , vanish. This implies (5).

Next, we compute the dimension of hWr;ƒ0
i and prove that it equals the right-hand

side of (5). Let ƒ be an element of Wr;ƒ0
. It is spanned by k C 1 points, and we may

assume the first k � r C 1 of them lie on ƒ0. Then, the Plücker coordinates of ƒ are
given by the maximal minors of a matrix Mƒ D Œvi;j �iD1;:::;kC1I jD1;:::;nC1 where
vi;j D 0 if i 2 ¹1; : : : ; k � r C 1º and j 2 ¹k C 2; : : : ; nC 1º. Moreover, varying ƒ
in Wr;ƒ0

, we may consider the non-zero vi;j as variables.
The vanishing maximal minors of a matrix of type Mƒ are those involving at most

r C 1 of the last n � k columns. Hence, their number is

c D

kC1X
iDrC1

�
n � k

i

��
k C 1

i

�
D

kC1X
iDrC1

mi

and therefore
dim

�
hWr;ƒ0

i
�
D N.k; n/ � c:
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On the other hand, we have

N.k; n/ D

kC1X
iD1

mi I

hence

dim
�
hWr;ƒ0

i
�
D

rX
iD1

mi D dim
�
T
.r/

G.k;n/;ƒ0

�
;

as desired.

2.4. Next, we give the announced geometric description of the isomorphism of
U \G.k; n/ with AM.k;n/.

Proposition 2.8. Let … be an element of G.n � k � 1; n/ and W… the Schubert
variety ®

ƒ 2 G.k; n/ j dim.ƒ \…/ > 1
¯
:

Then, the projection ' W G.k; n/ Ü PM.k;n/ from the linear space spanned byW… is
the inverse map of a  k;n W PM.k;n/ Ü G.k; n/ as in (1).

Proof. We use the notation of Lemma 2.3. First of all, we observe that the linear
system dk;n contains the linear system of hyperplanes of PM.k;n/ as a subsystem: this
is kH C j�j, where � is any hyperplane. Via the map  k;n, the hypersurfaces of dk;n
are sent to hyperplane sections of G.k; n/. Thus, the inverse of  k;n is a projection
whose center is the intersection of all hyperplanes of PN.k;n/ whose intersection with
G.k; n/ contains  k;n.H/ with multiplicity at least k.

The image of H under  k;n is the Grassmannian G0 D G.k; n � k � 1/ of all
subspaces of dimension k contained in a fixed subspace… of Pn dimension n� k � 1.
Indeed, if we set y D 0 in (2), we obtain the Plücker embedding associated with a
.k C 1/ � .n � k/ matrix.

A hyperplaneH 0 in PN.k;n/ contains G0 with multiplicity at least k if and only ifH 0

contains T .k�1/G.k;n/;P for any P 2 G0 and the center of the projection is the intersection
of these hyperplanes. Then, from Proposition 2.7, the center of projection is the linear
span of W…. This proves the assertion.

Remark 2.9. With a dimension count similar to the one at the end of Proposition 2.7,
one checks that the linear space spanned by W… has dimension N.k; n/ �m1 � 1 D
N.k; n/ � .k C 1/.n � k/ � 1 D N.k; n/ �M.k; n/ � 1. This fits with the result of
Proposition 2.8.

Remark 2.10. From the above considerations it follows that the birational map  n;k
induces an isomorphism between PM.k;n/ minus a hyperplane H and G.k; n/ minus
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a hyperplane section H0, precisely the hyperplane section corresponding to the hyper-
surface .k C 1/H in dk;n. Looking at the proof of Proposition 2.8, we see that H0

contains G0 with multiplicity kC 1; hence, it contains T .k/G.k;n/;P for anyP 2G0. From
Proposition 2.7, one deduces that H0 coincides with the set of allƒ 2G.k; n/ that have
non-empty intersection with the .n � k � 1/-plane …. We will call the hyperplane H 0

cutting out such a H0 on G.k; n/ a k-osculating hyperplane to G.k; n/.

Lemma 2.11. Let LPN.k;n/ be the dual space of PN.k;n/. Then, the k-osculating hyper-
planes to G.k;n/ are parametrized by a G.n� k � 1;n/ in LPN.k;n/. In particular, since
G.n � k � 1; n/ is non-degenerate in LPN.k;n/, there is no point of PN.k;n/ contained
in all k-osculating hyperplanes.

Proof. We have LPN.k;n/ D P .^kC1 LV / D P .^n�kV /.
Let… be an .n� k � 1/-plane spanned by n� k points corresponding to the vectors

v1; : : : ; vn�k of V . A k-planeƒ, spanned by k C 1 points corresponding to the vectors
w1; : : : ; wkC1 of V , intersects… if and only if the square matrix of order nC 1 whose
rows are v1; : : : ; vn�k; w1; : : : ; wkC1 has zero determinant. The set of these k-planes
is the section of G.k; n/ with the k-osculating hyperplane of PN.k;n/ of equationX

16i1<���<in�k6nC1

Si1;:::;in�k
pi1;:::;in�k

xi1;:::;in�k
D 0;

where the pi1;:::;in�k
’s are the Plücker coordinates of … in G.n � k � 1; n/, the

xi1;:::;in�k
’s are the homogeneous coordinates of PN.k;n/, where we denote by

i1; : : : ; in�k the .k C 1/-tuple of indices obtained by deleting ¹i1; : : : ; in�kº from
.1; : : : ; nC 1/, and Si1;:::;in�k

is the sign of the permutation .i1; : : : ; in�k; i1; : : : ; in�k/.
So the coordinates of this hyperplane in LPN.k;n/ are ŒSi1;:::;in�k

pi1;:::;in�k
�.i1;:::;in�k/.

The assertion follows.

Corollary 2.12. Let X be an irreducible subvariety of G.k; n/. Then, for a general
projection ' W G.k; n/ Ü PM.k;n/ as in Proposition 2.8, X is not contained in the
indeterminacy locus of ' and the restriction of ' to X is a birational map of X to its
image.

Proof. Given a projection ' W G.k; n/ Ü PM.k;n/ as in Proposition 2.8, its inde-
terminacy locus and the subvariety contracted by the projection are contained in a
k-osculating hyperplane section of the Grassmannian. By Lemma 2.11, these hyper-
planes vary in a Grassmannian G.n � k � 1; n/ in LPN.k;n/, and there is no point of
PN.k;n/ contained in all these hyperplanes. Hence, given the subvariety X in G.k; n/,
there is certainly a k-osculating hyperplane not containing it. The corresponding
projection enjoys the required property.



c. ciliberto and d. sacchi 586

3. Fano schemes

Let X � Pn be an irreducible projective variety. Given any positive integer k, we will
denote by Fk.X/ the Hilbert scheme of k-planes of Pn contained in X . This is also
called the k-Fano scheme of X . We will not be interested in the scheme structure on
Fk.X/, but rather on its support. In particular, we will be interested in Fk.X/ when X
is an irreducible hypersurface of degree d > 2 in Pn.

This short section is devoted to prove the following.

Proposition 3.1. Let X be an irreducible hypersurface of degree d > 2 in Pn. Let
' W G.k; n/ Ü PM.k;n/ be a general projection map as in Proposition 2.8. Then,
'jFk.X/ is a birational map on each component of Fk.X/ and '.Fk.X// is defined by
the vanishing of

�
dCk
k

�
polynomials of degree d .

Proof. The first assertion follows directly from Corollary 2.12.
Let us fix homogeneous coordinates Œx0; : : : ; xn� in Pn and let f D 0 be the equation

of X in this system, with

f .x0; : : : ; xn/ D
X

d0C���CdnDd

˛d0:::dn
x
d0

0 : : : xdn
n :

We assume, without loss of generality, that the projection is an isomorphism on the
open set U of the Grassmannian where the first Plücker coordinate is different from
zero. For every ƒ 2 U , we can give a parametrization �ƒ W Pk ! ƒ � Pn of ƒ as

Œs0; : : : ; sk� 7! Œs0; : : : ; sk�

26664
1 0 0 � � � 0 a1;kC2 a1;kC3 � � � a1;nC1

0 1 0 � � � 0 a2;kC2 a2;kC3 � � � a2;nC1
:::

0 0 0 � � � 1 akC1;kC2 akC1;kC3 � � � akC1;nC1

37775
with ai;j , for 1 6 i 6 k C 1, k C 2 6 j 6 nC 1, depending on ƒ.

Then, f .�ƒ.Œs0; : : : ; sk�// is a form of degree d in s0; : : : ; sk with coefficient poly-
nomials in the ai;j ’s and in the ˛d0:::dn

’s. Imposing that ƒ sits in Fk.X/ is equivalent
to impose that f .�ƒ.Œs0; : : : ; sk�// is identically zero as a form in s0; : : : ; sk . This
translates in imposing that the

�
dCk
k

�
coefficients of f .�ƒ.Œs0; : : : ; sk�// all vanish, and

these are linear in the ˛d0;:::;dn
’s and of degree d in the ai;j ’s. The assertion follows.

4. Families of hypersurfaces and the section lemma

In this section, we introduce the definition of a family of hypersurfaces and we prove
a crucial result, Section Lemma 4.5, in whose proof we use an idea of Conforto [3],
which extends previous work by Comessatti [2].
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4.1. We start with some definitions. We will denote by Ln;d the linear system of all
hypersurfaces of degree d in Pn, and by p W Hn;d ! Ln;d the universal family, so
that Hn;d � Ln;d � Pn and p is the projection to the first factor.

Definition 4.1. Let W be an irreducible variety. We call a family of hypersurfaces
(of degree d and dimension n � 1) parametrized by W any morphism f WX ! W ,
such that there exists a morphism g W W ! Ln;d so that the diagram

X //

f

��

Hn;d

p

��

W
g
// Ln;d

is cartesian. In particular, f WX ! W is flat. For any point w 2 W , we will denote
by Xw � Pn the corresponding hypersurface, that is, the fiber of f WX ! W over w.

Definition 4.2. Given two families of hypersurfaces X ! W and Y ! T as in
Definition 4.1, we say that X is birationally equivalent to Y if there exist two birational
maps f WX Ü Y and g W W Ü T such that the diagram

X Y

W T

f

g

commutes.

We will be interested in families of hypersurfaces up to birational equivalence.
The following lemma gives us a sort of canonical way of representing a family of
hypersurfaces up to birational equivalence.

Lemma 4.3. Let X ! W be a family of hypersurfaces of degree d in Pn with
dim.W / D r . Then, there is a birationally equivalent family X 0 ! W 0 such that
W 0 is a dense open subset of a hypersurface in P rC1 which is birational to W and
X 0 � W 0 � Pn has an equation of the form

(6)
X

i1;:::;id2¹0;:::;nº

ai1:::id .u0; : : : ; urC1/

dY
jD1

xij D 0;

where ai1:::id 2 H 0.W 0;OW 0.�// for some � 2 N, for all i1; : : : ; id 2 ¹0; : : : ; nº.

Proof. To give the family, X !W is equivalent to give the corresponding morphism
g W W ! Ln;d . Let W � P rC1 be a hypersurface with a birational map h WW Ü W .
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Then, g0 D g ı h WW Ü Ln;d is a rational map, and there is a dense open subsetW 0

of W where g0 is defined. Then, we have a morphism g0 WW 0!Ln;d , and accordingly
we have a family X 0 ! W 0 that is birationally equivalent to X ! W . On the other
hand, giving g0 W W 0 ! Ln;d is equivalent to give a suitable

�
nCd
n

�
-tuple of elements

ai1:::id 2 H
0
�
W 0;OW 0.�/

�
; for all i1; : : : ; id 2 ¹0; : : : ; nº

and some positive integer �, so that X 0 � W 0 � Pn has equation (6).

4.2. Next, we want to prove the announced Section Lemma.
Let X ! W be a family of hypersurfaces of degree d > 2 in Pn. We denote by

Fk.X /! W the relative Fano scheme of k-planes in Pn contained in the fibers of
X ! W . For any point w 2 W , the fiber of Fk.X /! W over w is Fk.Xw/.

We recall the following result (see [6]).

Theorem 4.4. Let k; n; d be positive integers with d > 2 and

(7) n >

8<: 2k C 1; if d D 2 and k > 2

1
kC1

�
kCd
d

�
; otherwise:

Then, all hypersurfaces of degree d in Pn contain a k-plane.

Next, we consider X ! W a family of hypersurfaces of degree d > 2 in Pn, with
dim.W / D r . We will assume that

(8) n > k C
1

k C 1

��
d C k

k

�
d r � 1

�
:

Then, clearly (7) holds, and hence, by Theorem 4.4, the morphism Fk.X /!W is sur-
jective. By generic flatness, there is a dense open subset ofW over whichFk.X /!W

is flat.
We are ready to prove the Section Lemma.

Lemma 4.5 (The Section Lemma). Let X !W be a family of hypersurfaces of degree
d > 2 in Pn, with dim.W / D r so that (8) holds. Then, there is a dense open subset
U of W such that over U there is a section of Fk.X /! W .

Proof. Since the problem is birational in nature, by Lemma 4.3, we may assume that
W is a dense open subset of a hypersurface of degree xm in P rC1 with equation

�.u0; : : : ; urC1/ D 0:
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The domainFk.X / of the Fano familyFk.X /!W , which up to shrinkingW we
may assume to be flat, is contained in W �G.k; n/. Consider a general birational pro-
jection ' W G.k; n/ Ü PM.k;n/ as in Proposition 2.8 that determines a birational map

ˆ W W �G.k; n/ Ü W � PM.k;n/:

By applying Corollary 2.12 and up to shrinkingW , we may suppose that for allw 2W ,
the restriction ofˆ to any irreducible component of ¹wº �Fk.Xw/ is birational onto its
image so that ˆ restricts to a birational map of Fk.X / to its image, that we denote by
Fk.X /, contained in W � PM.k;n/. By Proposition 3.1, we may assume that Fk.X /

is defined by the vanishing of
�
dCk
k

�
equations in W � PM.k;n/ of the form

(9)
X

i1;:::;id2¹0;:::;nº

b`i1:::id .u0; : : : ; urC1/

dY
jD1

yij D 0

for ` D 1; : : : ;
�
dCk
k

�
, and b`i1:::id .u0; : : : ; urC1/ 2 H

0.W;OW .�// for a suitable
positive integer �, where the yi ’s denote the homogeneous coordinates of PM.k;n/.

To prove the lemma, it clearly suffices to find a rational section p W W Ü Fk.X /

of Fk.X /! W . Such a rational section is determined by a suitable .M.k; n/C 1/-
tuple of rational functions on W . We may assume that each such rational function
is expressed by a homogeneous polynomial in the variables u0; : : : ; urC1 of a fixed
degree m modulo �.u0; : : : ; urC1/.

Supposing m > xm, we can choose M independent elements in H 0.W;OW .m//,
where

M D

�
mC r C 1

r C 1

�
�

�
m � xmC r C 1

r C 1

�
:

These can be identified withM forms‰1; : : : ;‰M of degreem, modulo�.u0; : : : ;urC1/.
We want to construct a section p by writing its homogeneous coordinates as linear

combinations of the ‰’s as above, that is, by writing them as

pi D

MX
jD1

�i;j‰j for i D 0; : : : ;M.k; n/

where we take the �i;j ’s as indeterminates. The number of the �’s is�
.k C 1/.n � k/C 1

�
M

D
�
.k C 1/.n � k/C 1

���mC r C 1
r C 1

�
�

�
m � xmC r C 1

r C 1

��
:

We need to find the values of these �’s so that p is a section. For this, we have
to replace the yi ’s in each of the equations (9) with the pi .u0; : : : ; urC1/’s and we
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have to impose that the results identically vanish on W , i.e., they must be forms in
KŒu0; : : : ; urC1� that are divisible by �.u0; : : : ; urC1/.

We make the substitution and for each ` D 1; : : : ;
�
dCk
k

�
we have expressions of

the sort X
i1;:::;id2¹0;:::;nº

b`i1:::id .u0; : : : ; urC1/

dY
jD1

pij

D

X
l1C���ClrC1DdmC�

F `l0:::lrC1
.�i;j /u

l0
0 � � �u

lrC1

rC1

where the homogeneous polynomials that we have after the substitution are of degree
dmC � with respect to u0; : : : ; urC1 and the coefficients F `

l0:::lrC1
are polynomials

in the �’s.
Thus, for all ` D 1; : : : ;

�
dCk
k

�
, we have to impose thatX

l1C���ClrC1DdmC�

F `l0:::lrC1
.�i;j /u

l0
0 : : : u

lrC1

rC1

D �.u0; : : : ; urC1/
� X
i1C���CirC1Ddm�xmC�

˛`i0���irC1
u
i0
0 � � �u

irC1

rC1

�(10)

where the ˛`i0���irC1
’s are again indeterminates. Their number is�

d C k

k

��
dm � xmC �C r C 1

r C 1

�
:

Now, to prove the thesis, we need to show that, under condition (8), there exists an
admissible solution of the system of non-homogeneous equations obtained by equating
the coefficients of the monomials of degree dmC � in (10) for each ` D 1; : : : ;

�
dCk
k

�
.

A solution of this system is called admissible if it gives rise to a section. Clearly, a
solution is admissible if and only if not all the �’s are equal to 0.

In the system, there are�
d C k

k

��
dmC �C r C 1

r C 1

�
equations in the ˛’s and �’s. The total amount of these variables is�

.k C 1/.n � k/C 1
���mC r C 1

r C 1

�
�

�
m � xmC r C 1

r C 1

��
C

�
d C k

k

��
dm � xmC �C r C 1

r C 1

�
:
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We claim that if the number of variables is greater than the number of equations, that
is, if the following inequality holds:�

.k C 1/.n � k/C 1
���mC r C 1

r C 1

�
�

�
m � xmC r C 1

r C 1

��
C

�
d C k

k

��
dm � xmC �C r C 1

r C 1

�
>

�
d C k

k

��
dmC �C r C 1

r C 1

�
;

(11)

our system has admissible solutions and we do have sections as required.
In general, given a system of non-homogeneous equations, it is not true that if it

is underdeterminate (i.e., the number of equations is lower than the number of the
variables), then the set of solutions is non-empty. However, we do know that, in the
associated affine space with coordinates �’s and ˛’s, the origin, where all �’s and all
˛’s vanish, is a solution of the system although it does not give rise to an admissible
solution. In any event, this implies that the set of solutions has a component S of
positive dimension which contains the origin. Moreover, S cannot be contained in the
subspace defined by the vanishing of all the �’s. Indeed, if all the �’s are equal to 0,
from (10), it follows that also the ˛’s are 0. This proves that if (11) holds, there are
admissible solutions and therefore there are sections as desired.

Finally, we want to see under which conditions, for m large enough, (11) holds.
This can be written as�

.k C 1/.n � k/C 1
���mC r C 1

r C 1

�
�

�
m � xmC r C 1

r C 1

��
C

�
d C k

k

���
dm � xmC �C r C 1

r C 1

�
�

�
dmC �C r C 1

r C 1

��
> 0:

The term on the left is a polynomial in m: the condition in order that it is positive
for m� 0 is that the leading coefficient is positive. The coefficient of the monomial
mrC1 of maximal degree is equal to zero, so we have to look at the coefficient of mr .
This equals �

.k C 1/.n � k/C 1
�

.r C 1/Š
.r C 1/ xmC

�
dCk
k

�
d r

.r C 1/Š

�
� .r C 1/ xm

�
:

After dividing for the positive term xm
rŠ

, we obtain

.k C 1/.n � k/C 1 �

�
d C k

k

�
d r

and being this positive is equivalent to (8).
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Remark 4.6. Note that the result of the Section Lemma is equivalent to say that if (8)
holds, and if w is the generic point of W , defined over the field of rational functions
K.W /, then one can find a k-plane ƒ in the generic hypersurface Xw of the family,
also defined over K.W /. In this case, one says that ƒ is rationally determined on Xw .

5. Unirationality of families of hypersurfaces

In this section, we use the previous results to give a criterion for the unirationality of
families of hypersurfaces. We need some preliminaries.

5.1. We recall the following.

Definition 5.1. Let X � Pn be an algebraic variety defined over K and ƒ a k-plane
contained in X . One says that X is ƒ-rational (resp. ƒ-unirational) if X is K.ƒ/-
rational (resp. K.ƒ/-unirational), where K.ƒ/ is the extension of K obtained by adding
to K the Plücker coordinates of ƒ.

Let X ! W be a flat family of subvarieties of Pn with W being an irreducible
variety. If w 2 W , we denote, as usual, by Xw � Pn the fiber of X ! W over w.
We assume that there is a dense open subset U of W such that for all w 2 U , Xw is
irreducible. Thus, up to shrinking W , we may assume that this happens for all w 2 W .
Let Fk.X /!W be the relative Fano scheme of k-planes of X !W . For allw 2W ,
the fiber of Fk.X /! W is Fk.Xw/.

The following criterion is due to Roth (see [9]).

Proposition 5.2 (Roth’s Criterion). Let X ! W be a flat family of varieties with
W being an irreducible, unirational variety. Suppose that Fk.X /! W is dominant,
so that, up to shrinking W , we may assume it is flat. Suppose that there is a section
s WW ! Fk.X / of Fk.X /!W such that there is a dense open subset U ofW such
that for all w 2 U , the variety Xw is s.w/-unirational. Then, X is unirational.

In addition, if W is rational and for all w 2 U , the variety Xw is s.w/-rational,
then X is rational.

Proof. We may assume that U D W . Let � W P r Ü W be the dominant map which
assures the unirationality ofW and by  w W P r

0

K.s.w// Ü Xw the dominant map which
assures the unirationality of Xw , for w 2 W .

Then, we can construct the map

P r � P r
0 Ü X

such that the pair .t; t 0/ is sent to  �.t/.t 0/. This is a rational dominant map, and it is
defined over K.
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It follows furthermore that if � and  w are generically finite of degree a and b,
respectively, then this map is generically finite of degree a � b. The second assertion
follows.

5.2. In the paper [8], A. Predonzan proved the following.

Theorem 5.3. Let X � Pn be an irreducible hypersurface of degree d > 2 defined
over K. Suppose that X contains a k-plane ƒ with

k > k.d/

where k.d/ is inductively defined as follows:

k.d/ D

�
k.d � 1/C d � 1

d � 1

�
; k.2/ D 0:

Suppose that X is smooth along ƒ. Then, X is ƒ-unirational.

As a consequence of this result, Predonzan also proved in [8] the following.

Theorem 5.4. Let X � Pn be an irreducible hypersurface of degree d > 2 defined
over K, with a singular locus of dimension t . If

n >
1

k.d/C 1

�
k.d/C d

d

�
C k.d/C t C 1;

then X is unirational over an extension of K.

This result has been rediscovered in [5], although with a worse lower bound for n.
Our aim is to prove the following extension of Theorem 5.4.

Theorem 5.5. Let X ! W be a family of hypersurfaces of degree d > 2 in Pn, with
W being irreducible, unirational of dimension r . Assume that if w 2 W is the generic
point, then Xw is irreducible with a singular locus of dimension t . If

(12) n > k.d/C
1

k.d/C 1

��
d C k.d/

k.d/

�
d r � 1

�
C t C 1;

then X is unirational.

Proof. By the hypotheses, up to shrinkingW , we may assume that for all w 2 W , the
hypersurface Xw � Pn is irreducible with singular locus of dimension t . Again up to
shrinking W , we may assume that there is an .n � t � 1/-plane P in Pn such that for
all w 2 W , the intersection of Xw with P is smooth. In this way, we get a new family
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X 0 ! W of hypersurfaces of degree d in Pn�t�1 such that for all w 2 W , X 0w is the
intersection of Xw with P .

Taking into account (12), by Section Lemma 4.5, up to shrinkingW , we may assume
there is a section s of Fk.d/.X 0/! W . Note that for all w 2 W , X 0w is smooth, and
therefore, Xw is smooth along s.w/. Then, by Theorem 5.3, for all w 2 W , Xw is
s.w/-unirational. Thus, by applying Roth’s Criterion 5.2, the assertion follows.

We notice that if d D 2, then Theorem 5.5 is basically the main result of [3].
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