Rend. Lincei Mat. Appl. 34 (2023), 577–595 DOI 10.4171/RLM/1019

© 2023 Accademia Nazionale dei Lincei Published by EMS Press This work licensed under a CC BY 4.0 license

Algebraic Geometry. – Unirationality of varieties described by families of projective hypersurfaces, by CIRO CILIBERTO and DUCCIO SACCHI, communicated on 10 February 2023.

ABSTRACT. – Let $\mathscr{X} \to W$ be a flat family of generically irreducible hypersurfaces of degree $d \ge 2$ in \mathbb{P}^n with singular locus of dimension t, with W unirational of dimension r. We prove that if n is large enough with respect to d, r and t, then \mathscr{X} is unirational. This extends results by J. Harris, B. Mazur and R. Pandharipande in [Duke Math. J. 95 (1998), 125–160] and A. Predonzan in [Rend. Sem. Mat. Univ. Padova 31 (1961), 281–293].

KEYWORDS. - Grassmannians, hypersurfaces, unirationality.

2020 MATHEMATICS SUBJECT CLASSIFICATION. - Primary 14E08; Secondary 14M15, 14M20.

1. INTRODUCTION

A classical theorem by U. Morin says that if X is a general hypersurface of degree d in \mathbb{P}^n and n is large enough with respect to d, then X is unirational (see [7] and also [1]). This result has been extended by A. Predonzan in [8] to any hypersurface X of degree d in \mathbb{P}^n , even singular in dimension t: X turns out to be unirational provided n is large enough with respect to d and t (see Theorem 5.4 for a precise statement). This theorem has been rediscovered by J. Harris, B. Mazur and R. Pandharipande in [5] although they give a lower bound for n that is worse than Predonzan's.

The purpose of this paper is to prove an extension of Predonzan's result, namely, Theorem 5.5, that asserts that if $\mathscr{X} \to W$ is a flat family of hypersurfaces of degree $d \ge 2$ in \mathbb{P}^n , whose general member is irreducible and singular in dimension t, and W is irreducible, unirational of dimension r, if n is large enough with respect to d, r, t, then \mathscr{X} is unirational. The case d = 2 is already included in [3]. This theorem, for instance, implies, under suitable numerical conditions, the unirationality of hypersurfaces in Segre products of projective spaces.

As for the proof, Predonzan shows in [8] that if $X \subset \mathbb{P}^n$ is an irreducible hypersurface of degree $d \ge 2$, defined over a field \mathbb{K} of characteristic zero, containing a *k*-plane Λ along which X is smooth, and if k is large enough with respect to the degree d, then X is unirational over the extension of \mathbb{K} with the Plücker coordinates of Λ (see Theorem 5.3 for a precise statement). The key step in our proof is to show that if $\mathscr{X} \to W$ is a flat family of generically irreducible hypersurfaces of degree $d \ge 2$ in \mathbb{P}^n , with W irreducible of dimension r, and n is large enough with respect to d, r, k, then there is a rationally determined k-plane over the generic hypersurface of the family (see Remark 4.6 for the meaning of being rationally determined). This is the so-called Section Lemma (see Lemma 4.5 below). Theorem 5.5 follows by this result and the aforementioned Predonzan's theorem, in view of a unirationality criterion by L. Roth (see Proposition 5.2). The proof of Section Lemma is inspired by a beautiful and elegant idea of F. Conforto in [3], and it uses a birational description of the Fano scheme of k-planes in a projective hypersurface, as in Section 3. This in turn requires some preliminaries about Grassmannians stated in Section 2, which essentially appear in a paper by J. G. Semple [12], and which we expose here for the reader's convenience.

This paper extends some of the results by the second author in his Ph.D. thesis [11]. In this paper, we work over an algebraically closed field \mathbb{K} of characteristic zero.

2. Some preliminaries on Grassmannians

In this section, we expose some preliminaries on Grassmann varieties, following [12].

2.1. Let $\mathbb{G}(k, n)$ be the Grassmann variety of k-planes in $\mathbb{P}^n = \mathbb{P}(V)$, where V is a K-vector space of dimension n + 1. One has $\mathbb{G}(k, n) \cong \mathbb{G}(n - k - 1, n)$; hence, without loss of generality, we may and will assume 2k < n.

The variety $\mathbb{G}(k, n)$ is naturally embedded in $\mathbb{P}^{N(k,n)}$, with $N(k, n) = \binom{n+1}{k+1} - 1$, via the *Plücker embedding*. Explicitly, in coordinates, we have the following. Fix a basis $B = \{e_1, \ldots, e_{n+1}\}$ of V. Then, we can associate with any k-plane Λ of $\mathbb{P}^n = \mathbb{P}(V)$ a $(k + 1) \times (n + 1)$ matrix

$$M_{\Lambda} = \begin{bmatrix} v_{1,1} & \cdots & v_{1,n+1} \\ \vdots & & \vdots \\ v_{k+1,1} & \cdots & v_{k+1,n+1} \end{bmatrix}$$

whose rows are the coordinate vectors with respect to the basis *B* of k + 1 vectors corresponding to independent points of Λ . Two matrices *M* and *M'* represent the same *k*-plane if and only if there exists $A \in GL(k + 1, \mathbb{K})$ such that M = AM'.

The homogeneous coordinates of the point in $\mathbb{P}^{N(k,n)}$ corresponding to Λ are given by the minors of order k + 1 of M_{Λ} . They depend only on Λ and not on the matrix M_{Λ} . These are the *Plücker coordinates* of Λ , and we denote them by z_I where $I = (i_1, \ldots, i_{k+1})$ is a multi-index with $1 \leq i_1 < i_2 < \cdots < i_{k+1} \leq n+1$ denoting the order of the columns of M_{Λ} which determine the corresponding minor. The Plücker coordinates are lexicographically ordered.

If we consider the subset U of points of $\mathbb{P}^{N(k,n)}$ where the first coordinate $z_{1,...,k+1}$ is different from zero, each point $\Lambda \in U \cap \mathbb{G}(k,n)$ represents a k-plane such that there is an associated matrix M_{Λ} to Λ that can be uniquely written in the form

 $\begin{bmatrix} 1 & 0 & \cdots & 0 & v_{1,k+2} & \cdots & v_{1,n+1} \\ 0 & 1 & \cdots & 0 & v_{2,k+2} & \cdots & v_{2,n+1} \\ \vdots & & \ddots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 & v_{k+1,k+2} & \cdots & v_{k+1,n+1} \end{bmatrix}.$

From this description, it follows that $U \cap \mathbb{G}(k, n)$ is isomorphic to $\mathbb{A}^{(k+1)(n-k)}$, where the coordinates are the (lexicographically ordered) $v_{i,j}$'s, with $1 \le i \le k + 1$ and $k + 2 \le j \le n + 1$. We will soon give a geometric interpretation of this isomorphism (see Proposition 2.8 below).

REMARK 2.1. We can describe geometrically the open subset $U \cap \mathbb{G}(k, n)$: it is the set of k-planes of \mathbb{P}^n that do not intersect the (n - k - 1)-plane spanned by the points corresponding to e_{k+2}, \ldots, e_{n+1} . Similarly, for any choice of a totally decomposable element of $\wedge^{n-k} V$ (i.e., a vector which can be expressed as $v_1 \wedge \cdots \wedge v_{n-k}$), we can construct a birational map between $\mathbb{G}(k, n)$ and $\mathbb{P}^{(k+1)(n-k)}$.

2.2. Now, we set M(k, n) = (k + 1)(n - k) and consider $\mathbb{P}^{M(k,n)}$ with homogeneous coordinates given by *y* and $x_{i,j}$ for i = 1, ..., k + 1 and j = k + 2, ..., n + 1: in this setting, the affine space with coordinates $x_{i,j}$ for i = 1, ..., k + 1 and j = k + 2, ..., n + 1 is the complement of the hyperplane *H* with equation y = 0. We define the rational map

(1)
$$\psi_{k,n}: \mathbb{P}^{M(k,n)} \dashrightarrow \mathbb{P}^{N(k,n)}$$

sending the point with coordinates $[y, x_{1,k+2}, ..., x_{k+1,n+1}]$ to the point whose coordinates are the minors of order k + 1 of the matrix

(2)	$\int y$	0	•••	0	$x_{1,k+2}$	•••	$x_{1,n+1}$	
	0	y	•••	0	$x_{2,k+2}$	•••	$x_{2,n+1}$	
			·	÷	÷		:	•
	0	0	•••	y	$x{k+1,k+2}$	•••	$x_{k+1,n+1}$	

If we consider the open subset $U' = \{y \neq 0\} \subset \mathbb{P}^{M(k,n)}, \psi_{k,n}|_{U'}$ is the inverse isomorphism of the one described above between $U \cap \mathbb{G}(k,n)$ and $\mathbb{A}^{M(k,n)}$. Therefore, the image of $\psi_{k,n}$ is $\mathbb{G}(k,n)$.

We will describe the linear system $\mathfrak{d}_{k,n}$ of hypersurfaces associated with the map $\psi_{k,n}$. It corresponds to the vector space $W \subset H^0(\mathbb{P}^M, \mathcal{O}_{\mathbb{P}^M}(k+1))$ spanned by y^{k+1} and by the forms

(3)
$$y^{k+1-r}D^r_{i_1,...,i_r;j_1,...,j_r}$$

for r = 1, ..., k + 1, with $1 \le i_1 < \dots < i_r \le k + 1$ and $k + 2 \le j_1 < \dots < j_r \le n + 1$, where $D_{i_1,...,i_r}^r$ denotes the minor of order *r* of the matrix

(4)
$$\begin{bmatrix} x_{1,k+2} & \dots & x_{1,n+1} \\ x_{2,k+2} & \dots & x_{2,n+1} \\ \vdots & & \vdots \\ x_{k+1,k+2} & \dots & x_{k+1,n+1} \end{bmatrix}$$

determined by the rows of place i_1, \ldots, i_r and by the columns of place j_1, \ldots, j_r .

For a fixed r = 1, ..., k + 1, we define m_r as the number of the minors of type D^r . Thus, $m_r = \binom{k+1}{r} \binom{n-k}{r}$.

Note that the subvariety of *H* defined by the 2 × 2 minors of the matrix (4) is a Segre variety Seg $(k, n - k - 1) \cong \mathbb{P}^k \times \mathbb{P}^{n-k-1}$ (see [4, p. 98]).

We want to geometrically characterize the linear system $b_{k,n}$. Before doing that, we need the following.

LEMMA 2.2. Let $r \ge 1$. There is no hypersurface of degree r + 2 in \mathbb{P}^r with multiplicity at least r + 1 at r + 1 independent assigned points of \mathbb{P}^r .

PROOF. Consider the linear system of \mathbb{P}^r of hypersurfaces of degree r with multiplicity at least r - 1 at the r + 1 independent assigned points. This is well known to be a homaloidal linear system, determining a birational map $\omega : \mathbb{P}^r \longrightarrow \mathbb{P}^r$, such that the counterimages of the lines of the target \mathbb{P}^r are the rational normal curves in the domain \mathbb{P}^r passing through the r + 1 independent assigned points. The intersection of a hypersurface of degree r + 2 in \mathbb{P}^r with multiplicity at least r + 1 at the r + 1independent assigned points with the rational normal curve off the r + 1 independent assigned points is -1. Thus, such a hypersurface is empty and the assertion follows.

Next, we can give the desired geometric description of the linear system $b_{k,n}$.

PROPOSITION 2.3. The linear system $\mathfrak{d}_{k,n}$ consists of the hypersurfaces of degree k + 1in $\mathbb{P}^{M(k,n)}$ passing with multiplicity at least k through the Segre variety Seg(k, n-k-1)contained in the hyperplane H with equation y = 0 and defined by the 2×2 minors of the matrix (4). **PROOF.** The linear system $\mathfrak{d}_{k,n}$ has a base locus scheme B_1 . By looking at the basis of W in (3), B_1 is defined by the equations

$$y = 0$$
, $D_{1,\dots,k+1;j_1,\dots,j_{k+1}}^{k+1}$, for all $k + 2 \le j_1 < \dots < j_r \le n+1$.

Then, B_1 is the (k - 1)-th secant variety of Seg(k, n - k - 1) defined by the 2 × 2 minors of the matrix (4) inside H (see [4, p. 99]). Moreover, $b_{k,n}$ is the whole linear system of hypersurfaces of degree k + 1 of $\mathbb{P}^{M(k,n)}$ containing B_1 .

For each r = 2, ..., k, we can also consider the subscheme B_r of B_1 consisting of those points of B_1 where all hypersurfaces of $b_{k,n}$ have multiplicity at least r. Looking again at the basis of W in (3), it is immediate that B_r is the (k - r)-secant variety of Seg(k, n - k - 1), for r = 2, ..., k (see again [4, p. 99]). Note that B_1 itself has points of multiplicity at least r along B_r , for all r = 2, ..., k. In particular, each hypersurface in the linear system $b_{k,n}$ passes with multiplicity k through the Segre variety Seg(k, n - k - 1) in H, which is B_k .

Conversely, let *F* be a hypersurface of degree k + 1 in $\mathbb{P}^{M(k,n)}$ passing with multiplicity at least *k* through the Segre variety Seg(k, n - k - 1) lying in the hyperplane *H* and defined by the 2 × 2 minors of the matrix (4). Then, we claim that *F* contains the (k - 1)-th secant variety of Seg(k, n - k - 1); hence, *F* belongs to $\mathfrak{d}_{k,n}$. Indeed, this is clear for k = 1, so we may assume $k \ge 2$, in which case the claim follows right away by Lemma 2.2.

2.3. Next, we need a description of the *osculating spaces* to the Grassmann varieties (for the concept of osculating spaces, see [10, p. 141]). First, we need some lemmata.

LEMMA 2.4. Let Seg(1, k) be a Segre variety in \mathbb{P}^n , with $n \ge 2k + 1$. Let $\phi : \mathbb{P}^1 \to \mathbb{G}(k, n)$ be the morphism which sends a point p to the k-plane $\{p\} \times \mathbb{P}^k \subset \text{Seg}(1, k)$ in \mathbb{P}^n . Then, the image of ϕ is a rational normal curve of degree k + 1 inside $\mathbb{G}(k, n)$.

PROOF. We can assume n = 2k + 1. If $[x_0, x_1]$ are homogeneous coordinates of \mathbb{P}^1 and z_{ij} , i = 0, 1 and $j = 0, \ldots, k$, are the homogenous coordinates of \mathbb{P}^{2k+1} , we can assume that ϕ is the map which sends $[\alpha_0, \alpha_1]$ to the *k*-plane whose equations in \mathbb{P}^{2k+1} are

$$\alpha_1 z_{0j} - \alpha_0 z_{1j} = 0$$
 for $j = 0, \dots, k$.

In particular, the image of a point $[x_0, x_1]$ under ϕ is the point of $\mathbb{G}(k, 2k + 1)$ whose coordinates are the minors of maximal order of the matrix

x_0	0	•••	0	x_1	0	•••	0	
0	x_0	•••	0	0	x_1	•••	0	
÷		·				·	:	
0	0	•••	x_0	0	0	•••	x_1	

There are only k + 2 non-vanishing Plücker coordinates of this k-plane and they have as entries the monomials of degree k + 1 in x_0 and x_1 . The assertion follows.

We can generalize the above result.

LEMMA 2.5. Let k, r, n be positive integers with k > r. Let Seg(1, r) be a Segre variety in \mathbb{P}^n , with $n \ge k + r + 1$, and let Π be a (k - r - 1)-plane, which does not intersect the (2r + 1)-plane spanned by Seg(1, r). Let $\phi : \mathbb{P}^1 \to \mathbb{G}(k, n)$ be the morphism which sends a point p to the k-plane spanned by Π and by the r-plane in Seg(1, r)given by $\{p\} \times \mathbb{P}^r$. Then, its image is a rational normal curve of degree r + 1 inside $\mathbb{G}(k, n)$.

PROOF. We can assume n = k + r + 1. Let Seg(1, r) be a Segre variety inside the (2r + 1)-plane *L* given by the vanishing of the last k - r homogeneous coordinates of \mathbb{P}^{k+r+1} , and let Π be the k - r - 1 plane given by the vanishing of the first 2r + 2 coordinates. Then, we can associate with the point $[x_0, x_1]$ of \mathbb{P}^1 the matrix whose rows span the join of Π and $[x_0, x_1] \times \mathbb{P}^r$. This is the $(k + 1) \times (k + r + 2)$ matrix

$$\begin{bmatrix} A_{x_0,x_1} & 0_1 \\ 0_2 & I_{k-r} \end{bmatrix},$$

where A_{x_0,x_1} is the $(r + 1) \times (2r + 2)$ matrix associated with the *r*-plane $[x_0, x_1] \times \mathbb{P}^r$ in *L*, 0_1 is the $(r + 1) \times (k - r)$ zero matrix, 0_2 is the $(k - r) \times (2r + 2)$ zero matrix and I_{k-r} is the (k - r) identity matrix. As in the proof of Lemma 2.4, we see that the only non-vanishing Plücker coordinates of the point of the Grassmaniann associated with this matrix are given by the monomials of order r + 1 in x_0 and x_1 . The assertion follows.

LEMMA 2.6. Let L_1 , L_2 be two distinct k-planes in \mathbb{P}^n intersecting in a (k - r)plane M, with $1 \leq r \leq k + 1$. Then, there is a Segre variety Seg(1, r - 1) in \mathbb{P}^n such that there are two distinct points $p_1, p_2 \in \mathbb{P}^1$ such that $L_i \cap \text{Seg}(1, r - 1) = \{p_i\} \times \mathbb{P}^{r-1}$, for i = 1, 2.

PROOF. Projecting from M to a $\mathbb{P}^{n-k+r-1}$, the images of L_1, L_2 are two disjoint (r-1)-planes L'_1 and L'_2 . If we fix an isomorphism $\tau : L'_1 \to L'_2$, the variety defined as the union of the lines joining $p \in L'_1$ to $\tau(p) \in L'_2$ is the desired Segre variety.

The following proposition describes the osculating spaces of Grassmannians.

PROPOSITION 2.7. Let Λ_0 be a point of $\mathbb{G}(k, n)$ and let $1 \leq r \leq k$. Then, the *r*-osculating space $T^{(r)}_{\mathbb{G}(k,n),\Lambda_0}$ to $\mathbb{G}(k, n)$ at Λ_0 is the linear space spanned by the Schubert variety

$$W_{r,\Lambda_0} = \{\Lambda \in \mathbb{G}(k,n) \mid \dim(\Lambda \cap \Lambda_0) \ge k - r\}$$

and one has

(5)
$$\dim \left(T_{\mathbb{G}(k,n),\Lambda_0}^{(r)}\right) = \sum_{i=1}^r \binom{k+1}{i} \binom{n-k}{i}.$$

PROOF. First of all, we claim that $W_{r,\Lambda_0} \subseteq T_{\mathbb{G}(k,n),\Lambda_0}^{(r)}$. To prove this, note that by Lemmata 2.5 and 2.6, for any *k*-plane Λ intersecting Λ_0 in a linear space of dimension at least k - r, we can construct a rational normal curve of degree r in $\mathbb{G}(k,n)$ passing through Λ_0 and Λ . Such a curve must be contained in $T_{\mathbb{G}(k,n),\Lambda_0}^{(r)}$, and this proves the claim.

 Λ_0 and Λ . Such a curve must be contained in $T^{(r)}_{\mathbb{G}(k,n),\Lambda_0}$, and this proves the claim. To prove that $T^{(r)}_{\mathbb{G}(k,n),\Lambda_0} = \langle W_{r,\Lambda_0} \rangle$, we will compute the dimensions of both $T^{(r)}_{\mathbb{G}(k,n),\Lambda_0}$ and $\langle W_{r,\Lambda_0} \rangle$ and we will prove they are equal.

First, let us prove (5). Without loss of generality, we may assume that Λ_0 is spanned by the points corresponding to the vectors e_1, \ldots, e_{k+1} of the basis *B* of *V*, so that Λ_0 is the point where only the first Plücker coordinate is different from zero. Consider the local parametrization of $\mathbb{G}(k, n)$ around Λ_0 given by the restriction of the map $\psi_{k,n}$ as in (1) to $\mathbb{A}^{M(k,n)} = \mathbb{P}^{M(k,n)} \setminus H$, so that $\psi_{k,n}$ maps the origin of $\mathbb{A}^{M(k,n)}$ to Λ_0 . The *r*-osculating space $T_{\mathbb{G}(k,n),\Lambda_0}^{(r)}$ is spanned by the points that are derivatives up to order *r* of the parametrization at the origin.

Each coordinate function of $\psi_{k,n}$ is given by a minor D^s as above (in the affine coordinates $x_{i,j}$, for i = 1, ..., k + 1 and j = k + 2, ..., n + 1, of $\mathbb{A}^{M(k,n)}$). The derivatives up to order r of the minors D^s with $s \ge r + 1$ vanish at $0 \in \mathbb{A}^{M(k,n)}$. Hence, $T_{\mathbb{G}(k,n),\Lambda_0}^{(r)}$ has dimension at most $\sum_{i=1}^r m_i$, where we recall that $m_i = \binom{k+1}{i} \binom{n-k}{i}$ is the number of the D^i 's.

Moreover, for each minor D^s with $s \leq r$, there exists a derivative of order *s* of the parametrization at the origin such that all of its coordinates, except the one corresponding to D^s , vanish. This implies (5).

Next, we compute the dimension of $\langle W_{r,\Lambda_0} \rangle$ and prove that it equals the right-hand side of (5). Let Λ be an element of W_{r,Λ_0} . It is spanned by k + 1 points, and we may assume the first k - r + 1 of them lie on Λ_0 . Then, the Plücker coordinates of Λ are given by the maximal minors of a matrix $M_{\Lambda} = [v_{i,j}]_{i=1,\dots,k+1}$; $j=1,\dots,n+1$ where $v_{i,j} = 0$ if $i \in \{1,\dots,k-r+1\}$ and $j \in \{k+2,\dots,n+1\}$. Moreover, varying Λ in W_{r,Λ_0} , we may consider the non-zero $v_{i,j}$ as variables.

The vanishing maximal minors of a matrix of type M_{Λ} are those involving at most r + 1 of the last n - k columns. Hence, their number is

$$c = \sum_{i=r+1}^{k+1} \binom{n-k}{i} \binom{k+1}{i} = \sum_{i=r+1}^{k+1} m_i$$

and therefore

$$\dim\left(\langle W_{r,\Lambda_0}\rangle\right) = N(k,n) - c.$$

On the other hand, we have

$$N(k,n) = \sum_{i=1}^{k+1} m_i;$$

hence

$$\dim \left(\langle W_{r,\Lambda_0} \rangle \right) = \sum_{i=1}^r m_i = \dim \left(T_{\mathbb{G}(k,n),\Lambda_0}^{(r)} \right),$$

as desired.

2.4. Next, we give the announced geometric description of the isomorphism of $U \cap \mathbb{G}(k, n)$ with $\mathbb{A}^{M(k,n)}$.

PROPOSITION 2.8. Let Π be an element of $\mathbb{G}(n - k - 1, n)$ and W_{Π} the Schubert variety

$$\{\Lambda \in \mathbb{G}(k, n) \mid \dim(\Lambda \cap \Pi) \ge 1\}.$$

Then, the projection $\varphi : \mathbb{G}(k,n) \dashrightarrow \mathbb{P}^{M(k,n)}$ from the linear space spanned by W_{Π} is the inverse map of a $\psi_{k,n} : \mathbb{P}^{M(k,n)} \dashrightarrow \mathbb{G}(k,n)$ as in (1).

PROOF. We use the notation of Lemma 2.3. First of all, we observe that the linear system $\delta_{k,n}$ contains the linear system of hyperplanes of $\mathbb{P}^{M(k,n)}$ as a subsystem: this is $kH + |\pi|$, where π is any hyperplane. Via the map $\psi_{k,n}$, the hypersurfaces of $\delta_{k,n}$ are sent to hyperplane sections of $\mathbb{G}(k, n)$. Thus, the inverse of $\psi_{k,n}$ is a projection whose center is the intersection of all hyperplanes of $\mathbb{P}^{N(k,n)}$ whose intersection with $\mathbb{G}(k, n)$ contains $\psi_{k,n}(H)$ with multiplicity at least k.

The image of H under $\psi_{k,n}$ is the Grassmannian $\mathbb{G}_0 = \mathbb{G}(k, n - k - 1)$ of all subspaces of dimension k contained in a fixed subspace Π of \mathbb{P}^n dimension n - k - 1. Indeed, if we set y = 0 in (2), we obtain the Plücker embedding associated with a $(k + 1) \times (n - k)$ matrix.

A hyperplane H' in $\mathbb{P}^{N(k,n)}$ contains \mathbb{G}_0 with multiplicity at least k if and only if H' contains $T^{(k-1)}_{\mathbb{G}(k,n),P}$ for any $P \in \mathbb{G}_0$ and the center of the projection is the intersection of these hyperplanes. Then, from Proposition 2.7, the center of projection is the linear span of W_{Π} . This proves the assertion.

REMARK 2.9. With a dimension count similar to the one at the end of Proposition 2.7, one checks that the linear space spanned by W_{Π} has dimension $N(k, n) - m_1 - 1 = N(k, n) - (k + 1)(n - k) - 1 = N(k, n) - M(k, n) - 1$. This fits with the result of Proposition 2.8.

REMARK 2.10. From the above considerations it follows that the birational map $\psi_{n,k}$ induces an isomorphism between $\mathbb{P}^{M(k,n)}$ minus a hyperplane H and $\mathbb{G}(k,n)$ minus

1

a hyperplane section \mathfrak{S}' , precisely the hyperplane section corresponding to the hypersurface (k + 1)H in $\mathfrak{d}_{k,n}$. Looking at the proof of Proposition 2.8, we see that \mathfrak{S}' contains \mathbb{G}_0 with multiplicity k + 1; hence, it contains $T^{(k)}_{\mathfrak{G}(k,n),P}$ for any $P \in \mathfrak{G}_0$. From Proposition 2.7, one deduces that \mathfrak{S}' coincides with the set of all $\Lambda \in \mathfrak{G}(k,n)$ that have non-empty intersection with the (n - k - 1)-plane Π . We will call the hyperplane H'cutting out such a \mathfrak{S}' on $\mathfrak{G}(k,n)$ a *k*-osculating hyperplane to $\mathfrak{G}(k,n)$.

LEMMA 2.11. Let $\check{\mathbb{P}}^{N(k,n)}$ be the dual space of $\mathbb{P}^{N(k,n)}$. Then, the k-osculating hyperplanes to $\mathbb{G}(k,n)$ are parametrized by a $\mathbb{G}(n-k-1,n)$ in $\check{\mathbb{P}}^{N(k,n)}$. In particular, since $\mathbb{G}(n-k-1,n)$ is non-degenerate in $\check{\mathbb{P}}^{N(k,n)}$, there is no point of $\mathbb{P}^{N(k,n)}$ contained in all k-osculating hyperplanes.

PROOF. We have $\check{\mathbb{P}}^{N(k,n)} = \mathbb{P}(\wedge^{k+1}\check{V}) = \mathbb{P}(\wedge^{n-k}V).$

Let Π be an (n - k - 1)-plane spanned by n - k points corresponding to the vectors v_1, \ldots, v_{n-k} of V. A k-plane Λ , spanned by k + 1 points corresponding to the vectors w_1, \ldots, w_{k+1} of V, intersects Π if and only if the square matrix of order n + 1 whose rows are $v_1, \ldots, v_{n-k}, w_1, \ldots, w_{k+1}$ has zero determinant. The set of these k-planes is the section of $\mathbb{G}(k, n)$ with the k-osculating hyperplane of $\mathbb{P}^{N(k,n)}$ of equation

$$\sum_{\leqslant i_1 < \dots < i_{n-k} \leqslant n+1} S_{i_1,\dots,i_{n-k}} p_{i_1,\dots,i_{n-k}} x_{\overline{i_1,\dots,i_{n-k}}} = 0,$$

where the $p_{i_1,...,i_{n-k}}$'s are the Plücker coordinates of Π in $\mathbb{G}(n-k-1,n)$, the $x_{\overline{i_1,...,i_{n-k}}}$'s are the homogeneous coordinates of $\mathbb{P}^{N(k,n)}$, where we denote by i_1, \ldots, i_{n-k} the (k+1)-tuple of indices obtained by deleting $\{i_1, \ldots, i_{n-k}\}$ from $(1, \ldots, n+1)$, and $S_{i_1,...,i_{n-k}}$ is the sign of the permutation $(i_1, \ldots, i_{n-k}, \overline{i_1, \ldots, i_{n-k}})$.

So the coordinates of this hyperplane in $\check{\mathbb{P}}^{N(k,n)}$ are $[S_{i_1,...,i_{n-k}} p_{i_1,...,i_{n-k}}]_{(i_1,...,i_{n-k})}$.

COROLLARY 2.12. Let X be an irreducible subvariety of $\mathbb{G}(k, n)$. Then, for a general projection $\varphi : \mathbb{G}(k, n) \longrightarrow \mathbb{P}^{M(k,n)}$ as in Proposition 2.8, X is not contained in the indeterminacy locus of φ and the restriction of φ to X is a birational map of X to its image.

PROOF. Given a projection $\varphi : \mathbb{G}(k, n) \longrightarrow \mathbb{P}^{M(k,n)}$ as in Proposition 2.8, its indeterminacy locus and the subvariety contracted by the projection are contained in a k-osculating hyperplane section of the Grassmannian. By Lemma 2.11, these hyperplanes vary in a Grassmannian $\mathbb{G}(n-k-1,n)$ in $\check{\mathbb{P}}^{N(k,n)}$, and there is no point of $\mathbb{P}^{N(k,n)}$ contained in all these hyperplanes. Hence, given the subvariety X in $\mathbb{G}(k,n)$, there is certainly a k-osculating hyperplane not containing it. The corresponding projection enjoys the required property.

3. FANO SCHEMES

Let $X \subset \mathbb{P}^n$ be an irreducible projective variety. Given any positive integer k, we will denote by $F_k(X)$ the Hilbert scheme of k-planes of \mathbb{P}^n contained in X. This is also called the *k*-Fano scheme of X. We will not be interested in the scheme structure on $F_k(X)$, but rather on its support. In particular, we will be interested in $F_k(X)$ when X is an irreducible hypersurface of degree $d \ge 2$ in \mathbb{P}^n .

This short section is devoted to prove the following.

PROPOSITION 3.1. Let X be an irreducible hypersurface of degree $d \ge 2$ in \mathbb{P}^n . Let $\varphi : \mathbb{G}(k, n) \dashrightarrow \mathbb{P}^{M(k,n)}$ be a general projection map as in Proposition 2.8. Then, $\varphi|_{F_k(X)}$ is a birational map on each component of $F_k(X)$ and $\varphi(F_k(X))$ is defined by the vanishing of $\binom{d+k}{k}$ polynomials of degree d.

PROOF. The first assertion follows directly from Corollary 2.12.

Let us fix homogeneous coordinates $[x_0, ..., x_n]$ in \mathbb{P}^n and let f = 0 be the equation of X in this system, with

$$f(x_0,\ldots,x_n) = \sum_{d_0+\cdots+d_n=d} \alpha_{d_0\ldots d_n} x_0^{d_0} \ldots x_n^{d_n}.$$

We assume, without loss of generality, that the projection is an isomorphism on the open set U of the Grassmannian where the first Plücker coordinate is different from zero. For every $\Lambda \in U$, we can give a parametrization $\phi_{\Lambda} : \mathbb{P}^k \to \Lambda \subseteq \mathbb{P}^n$ of Λ as

$$[s_0, \dots, s_k] \mapsto [s_0, \dots, s_k] \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & a_{1,k+2} & a_{1,k+3} & \cdots & a_{1,n+1} \\ 0 & 1 & 0 & \cdots & 0 & a_{2,k+2} & a_{2,k+3} & \cdots & a_{2,n+1} \\ \vdots & & & & \\ 0 & 0 & 0 & \cdots & 1 & a_{k+1,k+2} & a_{k+1,k+3} & \cdots & a_{k+1,n+1} \end{bmatrix}$$

with $a_{i,j}$, for $1 \le i \le k + 1$, $k + 2 \le j \le n + 1$, depending on Λ .

Then, $f(\phi_{\Lambda}([s_0, \ldots, s_k]))$ is a form of degree d in s_0, \ldots, s_k with coefficient polynomials in the $a_{i,j}$'s and in the $\alpha_{d_0\ldots d_n}$'s. Imposing that Λ sits in $F_k(X)$ is equivalent to impose that $f(\phi_{\Lambda}([s_0, \ldots, s_k]))$ is identically zero as a form in s_0, \ldots, s_k . This translates in imposing that the $\binom{d+k}{k}$ coefficients of $f(\phi_{\Lambda}([s_0, \ldots, s_k]))$ all vanish, and these are linear in the $\alpha_{d_0\ldots d_n}$'s and of degree d in the $a_{i,j}$'s. The assertion follows.

4. Families of hypersurfaces and the section Lemma

In this section, we introduce the definition of a *family of hypersurfaces* and we prove a crucial result, *Section Lemma* 4.5, in whose proof we use an idea of Conforto [3], which extends previous work by Comessatti [2].

4.1. We start with some definitions. We will denote by $\mathcal{L}_{n,d}$ the linear system of all hypersurfaces of degree d in \mathbb{P}^n , and by $p : \mathcal{H}_{n,d} \to \mathcal{L}_{n,d}$ the universal family, so that $\mathcal{H}_{n,d} \subset \mathcal{L}_{n,d} \times \mathbb{P}^n$ and p is the projection to the first factor.

DEFINITION 4.1. Let W be an irreducible variety. We call a *family of hypersurfaces* (of degree d and dimension n - 1) parametrized by W any morphism $f : \mathcal{X} \to W$, such that there exists a morphism $g : W \to \mathcal{L}_{n,d}$ so that the diagram

is cartesian. In particular, $f : \mathscr{X} \to W$ is flat. For any point $w \in W$, we will denote by $X_w \subset \mathbb{P}^n$ the corresponding hypersurface, that is, the fiber of $f : \mathscr{X} \to W$ over w.

DEFINITION 4.2. Given two families of hypersurfaces $\mathscr{X} \to W$ and $\mathscr{Y} \to T$ as in Definition 4.1, we say that \mathscr{X} is *birationally equivalent* to \mathscr{Y} if there exist two birational maps $f : \mathscr{X} \dashrightarrow \mathscr{Y}$ and $g : W \dashrightarrow T$ such that the diagram

$$\begin{array}{ccc} \mathscr{X} & \stackrel{f}{\dashrightarrow} & \mathscr{Y} \\ \downarrow & & \downarrow \\ W & \stackrel{g}{\dashrightarrow} & T \end{array}$$

commutes.

We will be interested in families of hypersurfaces up to birational equivalence. The following lemma gives us a sort of canonical way of representing a family of hypersurfaces up to birational equivalence.

LEMMA 4.3. Let $\mathscr{X} \to W$ be a family of hypersurfaces of degree d in \mathbb{P}^n with $\dim(W) = r$. Then, there is a birationally equivalent family $\mathscr{X}' \to W'$ such that W' is a dense open subset of a hypersurface in \mathbb{P}^{r+1} which is birational to W and $\mathscr{X}' \subset W' \times \mathbb{P}^n$ has an equation of the form

(6)
$$\sum_{i_1,\dots,i_d \in \{0,\dots,n\}} a_{i_1\dots i_d}(u_0,\dots,u_{r+1}) \prod_{j=1}^d x_{i_j} = 0,$$

where $a_{i_1...i_d} \in H^0(W', \mathcal{O}_{W'}(\mu))$ for some $\mu \in \mathbb{N}$, for all $i_1, \ldots, i_d \in \{0, \ldots, n\}$.

PROOF. To give the family, $\mathscr{X} \to W$ is equivalent to give the corresponding morphism $g: W \to \mathcal{L}_{n,d}$. Let $\mathfrak{W} \subset \mathbb{P}^{r+1}$ be a hypersurface with a birational map $h: \mathfrak{W} \dashrightarrow W$.

Then, $g' = g \circ h : \mathfrak{W} \longrightarrow \mathcal{L}_{n,d}$ is a rational map, and there is a dense open subset W' of \mathfrak{W} where g' is defined. Then, we have a morphism $g' : W' \to \mathcal{L}_{n,d}$, and accordingly we have a family $\mathscr{X}' \to W'$ that is birationally equivalent to $\mathscr{X} \to W$. On the other hand, giving $g' : W' \to \mathcal{L}_{n,d}$ is equivalent to give a suitable $\binom{n+d}{n}$ -tuple of elements

$$a_{i_1\dots i_d} \in H^0(W', \mathscr{O}_{W'}(\mu)), \quad \text{for all } i_1, \dots, i_d \in \{0, \dots, n\}$$

and some positive integer μ , so that $\mathscr{X}' \subset W' \times \mathbb{P}^n$ has equation (6).

4.2. Next, we want to prove the announced Section Lemma.

Let $\mathscr{X} \to W$ be a family of hypersurfaces of degree $d \ge 2$ in \mathbb{P}^n . We denote by $F_k(\mathscr{X}) \to W$ the *relative Fano scheme* of *k*-planes in \mathbb{P}^n contained in the fibers of $\mathscr{X} \to W$. For any point $w \in W$, the fiber of $F_k(\mathscr{X}) \to W$ over *w* is $F_k(X_w)$. We recall the following result (see [6]).

THEOREM 4.4. Let k, n, d be positive integers with $d \ge 2$ and

(7)
$$n \ge \begin{cases} 2k+1, & \text{if } d = 2 \text{ and } k \ge 2\\ \frac{1}{k+1} \binom{k+d}{d}, & \text{otherwise.} \end{cases}$$

Then, all hypersurfaces of degree d in \mathbb{P}^n contain a k-plane.

Next, we consider $\mathscr{X} \to W$ a family of hypersurfaces of degree $d \ge 2$ in \mathbb{P}^n , with $\dim(W) = r$. We will assume that

(8)
$$n > k + \frac{1}{k+1} \left[\binom{d+k}{k} d^r - 1 \right].$$

Then, clearly (7) holds, and hence, by Theorem 4.4, the morphism $F_k(\mathscr{X}) \to W$ is surjective. By generic flatness, there is a dense open subset of W over which $F_k(\mathscr{X}) \to W$ is flat.

We are ready to prove the Section Lemma.

LEMMA 4.5 (The Section Lemma). Let $\mathscr{X} \to W$ be a family of hypersurfaces of degree $d \ge 2$ in \mathbb{P}^n , with dim(W) = r so that (8) holds. Then, there is a dense open subset U of W such that over U there is a section of $F_k(\mathscr{X}) \to W$.

PROOF. Since the problem is birational in nature, by Lemma 4.3, we may assume that W is a dense open subset of a hypersurface of degree \overline{m} in \mathbb{P}^{r+1} with equation

$$\phi(u_0,\ldots,u_{r+1})=0.$$

The domain $F_k(\mathscr{X})$ of the Fano family $F_k(\mathscr{X}) \to W$, which up to shrinking W we may assume to be flat, is contained in $W \times \mathbb{G}(k, n)$. Consider a general birational projection $\varphi : \mathbb{G}(k, n) \dashrightarrow \mathbb{P}^{M(k,n)}$ as in Proposition 2.8 that determines a birational map

$$\Phi: W \times \mathbb{G}(k, n) \dashrightarrow W \times \mathbb{P}^{M(k, n)}.$$

By applying Corollary 2.12 and up to shrinking W, we may suppose that for all $w \in W$, the restriction of Φ to any irreducible component of $\{w\} \times F_k(X_w)$ is birational onto its image so that Φ restricts to a birational map of $F_k(\mathscr{X})$ to its image, that we denote by $\mathbb{F}_k(\mathscr{X})$, contained in $W \times \mathbb{P}^{M(k,n)}$. By Proposition 3.1, we may assume that $\mathbb{F}_k(\mathscr{X})$ is defined by the vanishing of $\binom{d+k}{k}$ equations in $W \times \mathbb{P}^{M(k,n)}$ of the form

(9)
$$\sum_{i_1,\dots,i_d \in \{0,\dots,n\}} b_{i_1\dots i_d}^{\ell}(u_0,\dots,u_{r+1}) \prod_{j=1}^d y_{i_j} = 0$$

for $\ell = 1, \ldots, {\binom{d+k}{k}}$, and $b_{i_1...i_d}^{\ell}(u_0, \ldots, u_{r+1}) \in H^0(W, \mathcal{O}_W(\mu))$ for a suitable positive integer μ , where the y_i 's denote the homogeneous coordinates of $\mathbb{P}^{M(k,n)}$.

To prove the lemma, it clearly suffices to find a rational section $p: W \to \mathbb{F}_k(\mathscr{X})$ of $\mathbb{F}_k(\mathscr{X}) \to W$. Such a rational section is determined by a suitable (M(k, n) + 1)tuple of rational functions on W. We may assume that each such rational function is expressed by a homogeneous polynomial in the variables u_0, \ldots, u_{r+1} of a fixed degree m modulo $\phi(u_0, \ldots, u_{r+1})$.

Supposing $m > \overline{m}$, we can choose M independent elements in $H^0(W, \mathcal{O}_W(m))$, where

$$M = \binom{m+r+1}{r+1} - \binom{m-\overline{m}+r+1}{r+1}.$$

These can be identified with M forms Ψ_1, \ldots, Ψ_M of degree m, modulo $\phi(u_0, \ldots, u_{r+1})$.

We want to construct a section p by writing its homogeneous coordinates as linear combinations of the Ψ 's as above, that is, by writing them as

$$p_i = \sum_{j=1}^M \lambda_{i,j} \Psi_j \quad \text{for } i = 0, \dots, M(k,n)$$

where we take the $\lambda_{i,j}$'s as indeterminates. The number of the λ 's is

$$\begin{bmatrix} (k+1)(n-k)+1 \end{bmatrix} M \\ = \begin{bmatrix} (k+1)(n-k)+1 \end{bmatrix} \begin{bmatrix} \binom{m+r+1}{r+1} - \binom{m-\overline{m}+r+1}{r+1} \end{bmatrix}.$$

We need to find the values of these λ 's so that p is a section. For this, we have to replace the y_i 's in each of the equations (9) with the $p_i(u_0, \dots, u_{r+1})$'s and we

have to impose that the results identically vanish on W, i.e., they must be forms in $\mathbb{K}[u_0, \ldots, u_{r+1}]$ that are divisible by $\phi(u_0, \ldots, u_{r+1})$.

We make the substitution and for each $\ell = 1, ..., \binom{d+k}{k}$ we have expressions of the sort

$$\sum_{i_1,\dots,i_d \in \{0,\dots,n\}} b_{i_1\dots i_d}^{\ell}(u_0,\dots,u_{r+1}) \prod_{j=1}^d p_{i_j}$$

=
$$\sum_{l_1+\dots+l_{r+1}=dm+\mu} F_{l_0\dots l_{r+1}}^{\ell}(\lambda_{i,j}) u_0^{l_0} \cdots u_{r+1}^{l_{r+1}}$$

where the homogeneous polynomials that we have after the substitution are of degree $dm + \mu$ with respect to u_0, \ldots, u_{r+1} and the coefficients $F_{l_0 \ldots l_{r+1}}^{\ell}$ are polynomials in the λ 's.

Thus, for all $\ell = 1, \ldots, \binom{d+k}{k}$, we have to impose that

(10)
$$\sum_{l_1+\dots+l_{r+1}=dm+\mu} F_{l_0\dots l_{r+1}}^{\ell}(\lambda_{i,j})u_0^{l_0}\dots u_{r+1}^{l_{r+1}}$$
$$= \phi(u_0,\dots,u_{r+1})\Big(\sum_{i_1+\dots+i_{r+1}=dm-\bar{m}+\mu} \alpha_{i_0\dots i_{r+1}}^{\ell}u_0^{i_0}\dots u_{r+1}^{i_{r+1}}\Big)$$

where the $\alpha_{i_0\cdots i_{r+1}}^{\ell}$'s are again indeterminates. Their number is

$$\binom{d+k}{k}\binom{dm-\bar{m}+\mu+r+1}{r+1}.$$

Now, to prove the thesis, we need to show that, under condition (8), there exists an *admissible solution* of the system of non-homogeneous equations obtained by equating the coefficients of the monomials of degree $dm + \mu$ in (10) for each $\ell = 1, \ldots, \binom{d+k}{k}$. A solution of this system is called *admissible* if it gives rise to a section. Clearly, a solution is admissible if and only if not all the λ 's are equal to 0.

In the system, there are

$$\binom{d+k}{k}\binom{dm+\mu+r+1}{r+1}$$

equations in the α 's and λ 's. The total amount of these variables is

$$\begin{bmatrix} (k+1)(n-k)+1 \end{bmatrix} \begin{bmatrix} \binom{m+r+1}{r+1} - \binom{m-\overline{m}+r+1}{r+1} \end{bmatrix}$$
$$+ \binom{d+k}{k} \binom{dm-\overline{m}+\mu+r+1}{r+1}.$$

We claim that if the number of variables is greater than the number of equations, that is, if the following inequality holds:

(11)
$$[(k+1)(n-k)+1] \left[\binom{m+r+1}{r+1} - \binom{m-\bar{m}+r+1}{r+1} \right] + \binom{d+k}{k} \binom{dm-\bar{m}+\mu+r+1}{r+1} > \binom{d+k}{k} \binom{dm+\mu+r+1}{r+1},$$

our system has admissible solutions and we do have sections as required.

In general, given a system of non-homogeneous equations, it is not true that if it is *underdeterminate* (i.e., the number of equations is lower than the number of the variables), then the set of solutions is non-empty. However, we do know that, in the associated affine space with coordinates λ 's and α 's, the origin, where all λ 's and all α 's vanish, is a solution of the system although it does not give rise to an admissible solution. In any event, this implies that the set of solutions has a component \mathfrak{S} of positive dimension which contains the origin. Moreover, \mathfrak{S} cannot be contained in the subspace defined by the vanishing of all the λ 's. Indeed, if all the λ 's are equal to 0, from (10), it follows that also the α 's are 0. This proves that if (11) holds, there are admissible solutions and therefore there are sections as desired.

Finally, we want to see under which conditions, for m large enough, (11) holds. This can be written as

$$[(k+1)(n-k)+1] \left[\binom{m+r+1}{r+1} - \binom{m-\bar{m}+r+1}{r+1} \right] + \binom{d+k}{k} \left[\binom{dm-\bar{m}+\mu+r+1}{r+1} - \binom{dm+\mu+r+1}{r+1} \right] > 0.$$

The term on the left is a polynomial in m: the condition in order that it is positive for $m \gg 0$ is that the leading coefficient is positive. The coefficient of the monomial m^{r+1} of maximal degree is equal to zero, so we have to look at the coefficient of m^r . This equals

$$\frac{\left[(k+1)(n-k)+1\right]}{(r+1)!}(r+1)\overline{m} + \frac{\binom{d+k}{k}d^{r}}{(r+1)!}\left[-(r+1)\overline{m}\right]$$

After dividing for the positive term $\frac{\overline{m}}{r!}$, we obtain

$$(k+1)(n-k) + 1 - \binom{d+k}{k} d^r$$

and being this positive is equivalent to (8).

591

REMARK 4.6. Note that the result of the Section Lemma is equivalent to say that if (8) holds, and if w is the generic point of W, defined over the field of rational functions $\mathbb{K}(W)$, then one can find a k-plane Λ in the generic hypersurface X_w of the family, also defined over $\mathbb{K}(W)$. In this case, one says that Λ is *rationally determined* on X_w .

5. UNIRATIONALITY OF FAMILIES OF HYPERSURFACES

In this section, we use the previous results to give a criterion for the unirationality of families of hypersurfaces. We need some preliminaries.

5.1. We recall the following.

DEFINITION 5.1. Let $X \subset \mathbb{P}^n$ be an algebraic variety defined over \mathbb{K} and Λ a *k*-plane contained in *X*. One says that *X* is Λ -*rational* (resp. Λ -*unirational*) if *X* is $\mathbb{K}(\Lambda)$ -rational (resp. $\mathbb{K}(\Lambda)$ -unirational), where $\mathbb{K}(\Lambda)$ is the extension of \mathbb{K} obtained by adding to \mathbb{K} the Plücker coordinates of Λ .

Let $\mathscr{X} \to W$ be a flat family of subvarieties of \mathbb{P}^n with W being an irreducible variety. If $w \in W$, we denote, as usual, by $X_w \subset \mathbb{P}^n$ the fiber of $\mathscr{X} \to W$ over w. We assume that there is a dense open subset U of W such that for all $w \in U$, X_w is irreducible. Thus, up to shrinking W, we may assume that this happens for all $w \in W$. Let $F_k(\mathscr{X}) \to W$ be the *relative Fano scheme* of k-planes of $\mathscr{X} \to W$. For all $w \in W$, the fiber of $F_k(\mathscr{X}) \to W$ is $F_k(X_w)$.

The following criterion is due to Roth (see [9]).

PROPOSITION 5.2 (Roth's Criterion). Let $\mathscr{X} \to W$ be a flat family of varieties with W being an irreducible, unirational variety. Suppose that $F_k(\mathscr{X}) \to W$ is dominant, so that, up to shrinking W, we may assume it is flat. Suppose that there is a section $s: W \to F_k(\mathscr{X})$ of $F_k(\mathscr{X}) \to W$ such that there is a dense open subset U of W such that for all $w \in U$, the variety X_w is s(w)-unirational. Then, \mathscr{X} is unirational.

In addition, if W is rational and for all $w \in U$, the variety X_w is s(w)-rational, then \mathscr{X} is rational.

PROOF. We may assume that U = W. Let $\phi : \mathbb{P}^r \dashrightarrow W$ be the dominant map which assures the unirationality of W and by $\psi_w : \mathbb{P}_{\mathbb{K}(s(w))}^{r'} \dashrightarrow X_w$ the dominant map which assures the unirationality of X_w , for $w \in W$.

Then, we can construct the map

$$\mathbb{P}^r \times \mathbb{P}^{r'} \dashrightarrow \mathscr{X}$$

such that the pair (t, t') is sent to $\psi_{\phi(t)}(t')$. This is a rational dominant map, and it is defined over \mathbb{K} .

It follows furthermore that if ϕ and ψ_w are generically finite of degree *a* and *b*, respectively, then this map is generically finite of degree $a \cdot b$. The second assertion follows.

5.2. In the paper [8], A. Predonzan proved the following.

THEOREM 5.3. Let $X \subset \mathbb{P}^n$ be an irreducible hypersurface of degree $d \ge 2$ defined over \mathbb{K} . Suppose that X contains a k-plane Λ with

$$k \ge k(d)$$

where k(d) is inductively defined as follows:

$$k(d) = \binom{k(d-1) + d - 1}{d - 1}, \quad k(2) = 0.$$

Suppose that X is smooth along Λ . Then, X is Λ -unirational.

As a consequence of this result, Predonzan also proved in [8] the following.

THEOREM 5.4. Let $X \subset \mathbb{P}^n$ be an irreducible hypersurface of degree $d \ge 2$ defined over \mathbb{K} , with a singular locus of dimension t. If

$$n \ge \frac{1}{k(d)+1} \binom{k(d)+d}{d} + k(d) + t + 1,$$

then X is unirational over an extension of \mathbb{K} .

This result has been rediscovered in [5], although with a worse lower bound for n. Our aim is to prove the following extension of Theorem 5.4.

THEOREM 5.5. Let $\mathscr{X} \to W$ be a family of hypersurfaces of degree $d \ge 2$ in \mathbb{P}^n , with W being irreducible, unirational of dimension r. Assume that if $w \in W$ is the generic point, then X_w is irreducible with a singular locus of dimension t. If

(12)
$$n > k(d) + \frac{1}{k(d) + 1} \left[\binom{d + k(d)}{k(d)} d^r - 1 \right] + t + 1,$$

then \mathscr{X} is unirational.

PROOF. By the hypotheses, up to shrinking W, we may assume that for all $w \in W$, the hypersurface $X_w \subset \mathbb{P}^n$ is irreducible with singular locus of dimension t. Again up to shrinking W, we may assume that there is an (n - t - 1)-plane P in \mathbb{P}^n such that for all $w \in W$, the intersection of X_w with P is smooth. In this way, we get a new family

 $\mathscr{X}' \to W$ of hypersurfaces of degree d in \mathbb{P}^{n-t-1} such that for all $w \in W, X'_w$ is the intersection of X_w with P.

Taking into account (12), by Section Lemma 4.5, up to shrinking W, we may assume there is a section s of $F_{k(d)}(\mathscr{X}') \to W$. Note that for all $w \in W$, X'_w is smooth, and therefore, X_w is smooth along s(w). Then, by Theorem 5.3, for all $w \in W$, X_w is s(w)-unirational. Thus, by applying Roth's Criterion 5.2, the assertion follows.

We notice that if d = 2, then Theorem 5.5 is basically the main result of [3].

FUNDING. – Ciro Ciliberto is a member of GNSAGA of INdAM and he acknowledges support from the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

References

- C. CILIBERTO, Osservazioni su alcuni classici teoremi di unirazionalità per ipersuperficie e complete intersezioni algebriche proiettive. *Ricerche Mat.* 29 (1980), no. 2, 175–191. Zbl 0478.14041 MR 632207
- [2] A. COMESSATTI, Intorno ad un classico problema di unisecanti. *Boll. Un. Mat. Ital.* (2) 2 (1940), 97–104. Zbl 66.0797.02 MR 2942
- [3] F. CONFORTO, Su un classico teorema di Noether e sulle varietà algebriche transformabili in varietà con infinite quadriche. *Atti Accad. Italia. Rend. Cl. Sci. Fis. Mat. Nat.* (7) 2 (1941), 268–281. Zbl 67.0609.03 MR 17968
- [4] J. HARRIS, Algebraic geometry. A first course. Grad. Texts in Math. 133, Springer, New York, 1992. Zbl 0779.14001 MR 1182558
- [5] J. HARRIS B. MAZUR R. PANDHARIPANDE, Hypersurfaces of low degree. *Duke Math. J.* 95 (1998), no. 1, 125–160. Zbl 0991.14018 MR 1646558
- [6] U. MORIN, Sull'insieme degli spazi lineari contenuti in una ipersuperficie algebrica. Atti Accad. Naz. Lincei Rend. (6) 24 (1936), 188–190. Zbl 0015.37002
- [7] U. MORIN, Sull'unirazionalità dell'ipersuperficie algebrica di qualunque ordine e dimensione sufficientemente alta. In *Atti Secondo Congresso Un. Mat. Ital., Bologna, 1940*, pp. 298–302, Ed. Cremonese, Rome, 1942. Zbl 0026.42401 MR 20272
- [8] A. PREDONZAN, Alcuni teoremi relativi all'unirazionalità di ipersuperficie algebriche non generali. *Rend. Sem. Mat. Univ. Padova* 31 (1961), 281–293. Zbl 0122.38805 MR 140994
- [9] L. ROTH, Metodi ed esempi nella teoria delle varietà unirazionali. Boll. Un. Mat. Ital. (3) 5 (1950), 330–336. Zbl 0039.16501 MR 39302
- [10] F. Russo, On the geometry of some special projective varieties. Lect. Notes Unione Mat. Ital. 18, Springer, Cham; Unione Matematica Italiana, Bologna, 2016. Zbl 1337.14001 MR 3445582

- [11] D. SACCHI, Unirationality of varieties described by families of hypersurfaces and quadratic line complexes. Ph.D. thesis, University of Rome Tor Vergata, 2018.
- [12] J. G. SEMPLE, On representations of the S_k 's of S_n and of the Grassmann manifolds G(k, n). *Proc. London Math. Soc.* (2) **32** (1931), no. 3, 200–221. Zbl 57.0849.08 MR 1575987

Received 5 June 2022, and in revised form 3 February 2023

Ciro Ciliberto Dipartimento di Matematica, Università di Roma Tor Vergata Via O. Raimondo, 00173 Roma, Italy; cilibert@axp.mat.uniroma2.it

Duccio Sacchi Via Filippo Turati 90, 53014 Monteroni d'Arbia, Siena, Italy; ducciosacchi89@gmail.com