Rend. Lincei Mat. Appl. 34 (2023), 577–595 DOI 10.4171/RLM/1019

© 2023 Accademia Nazionale dei Lincei Published by EMS Press This work licensed under a [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license

Algebraic Geometry. – *Unirationality of varieties described by families of projective hypersurfaces*, by Ciro Ciliberto and Duccio Sacchi, communicated on 10 February 2023.

ABSTRACT. – Let $\mathcal{X} \to W$ be a flat family of generically irreducible hypersurfaces of degree $d \geq 2$ in \mathbb{P}^n with singular locus of dimension t, with W unirational of dimension r. We prove that if n is large enough with respect to d, r and t, then $\mathscr X$ is unirational. This extends results by J. Harris, B. Mazur and R. Pandharipande in [Duke Math. J. 95 (1998), 125–160] and A. Predonzan in [Rend. Sem. Mat. Univ. Padova 31 (1961), 281–293].

KEYWORDS. – Grassmannians, hypersurfaces, unirationality.

2020 Mathematics Subject Classification. – Primary 14E08; Secondary 14M15, 14M20.

1. Introduction

A classical theorem by U. Morin says that if X is a general hypersurface of degree d in \mathbb{P}^n and *n* is large enough with respect to *d*, then *X* is unirational (see [\[7\]](#page-17-0) and also [\[1\]](#page-17-1)). This result has been extended by A. Predonzan in $[8]$ to any hypersurface X of degree d in \mathbb{P}^n , even singular in dimension t: X turns out to be unirational provided n is large enough with respect to d and t (see Theorem [5.4](#page-16-0) for a precise statement). This theorem has been rediscovered by J. Harris, B. Mazur and R. Pandharipande in [\[5\]](#page-17-3) although they give a lower bound for n that is worse than Predonzan's.

The purpose of this paper is to prove an extension of Predonzan's result, namely, Theorem [5.5,](#page-16-1) that asserts that if $\mathcal{X} \to W$ is a flat family of hypersurfaces of degree $d \geq 2$ in \mathbb{P}^n , whose general member is irreducible and singular in dimension t, and W is irreducible, unirational of dimension r, if n is large enough with respect to d, r, t, then $\mathscr X$ is unirational. The case $d = 2$ is already included in [\[3\]](#page-17-4). This theorem, for instance, implies, under suitable numerical conditions, the unirationality of hypersurfaces in Segre products of projective spaces.

As for the proof, Predonzan shows in [\[8\]](#page-17-2) that if $X \subset \mathbb{P}^n$ is an irreducible hypersurface of degree $d \ge 2$, defined over a field K of characteristic zero, containing a k-plane Λ along which X is smooth, and if k is large enough with respect to the degree d, then X is unirational over the extension of K with the Plücker coordinates of Λ (see Theorem [5.3](#page-16-2) for a precise statement). The key step in our proof is to show that if $\mathscr{X} \to W$ is a flat family of generically irreducible hypersurfaces of degree $d \geq 2$

in \mathbb{P}^n , with W irreducible of dimension r, and n is large enough with respect to d, r, k, then there is a rationally determined k -plane over the generic hypersurface of the family (see Remark [4.6](#page-15-0) for the meaning of being *rationally determined*). This is the so-called Section Lemma (see Lemma [4.5](#page-11-0) below). Theorem [5.5](#page-16-1) follows by this result and the aforementioned Predonzan's theorem, in view of a unirationality criterion by L. Roth (see Proposition [5.2\)](#page-15-1). The proof of Section Lemma is inspired by a beautiful and elegant idea of F. Conforto in [\[3\]](#page-17-4), and it uses a birational description of the Fano scheme of k -planes in a projective hypersurface, as in Section [3.](#page-9-0) This in turn requires some preliminaries about Grassmannians stated in Section [2,](#page-1-0) which essentially appear in a paper by J. G. Semple [\[12\]](#page-18-0), and which we expose here for the reader's convenience.

This paper extends some of the results by the second author in his Ph.D. thesis [\[11\]](#page-18-1). In this paper, we work over an algebraically closed field K of characteristic zero.

2. Some preliminaries on Grassmannians

In this section, we expose some preliminaries on Grassmann varieties, following [\[12\]](#page-18-0).

2.1. Let $\mathbb{G}(k,n)$ be the Grassmann variety of k-planes in $\mathbb{P}^n = \mathbb{P}(V)$, where V is a K-vector space of dimension $n + 1$. One has $\mathbb{G}(k, n) \cong \mathbb{G}(n - k - 1, n)$; hence, without loss of generality, we may and will assume $2k < n$.

The variety $\mathbb{G}(k,n)$ is naturally embedded in $\mathbb{P}^{N(k,n)}$, with $N(k,n) = \binom{n+1}{k+1}$ $\binom{n+1}{k+1} - 1$, via the *Plücker embedding*. Explicitely, in coordinates, we have the following. Fix a basis $B = \{e_1, \ldots, e_{n+1}\}\$ of V. Then, we can associate with any k-plane Λ of $\mathbb{P}^n = \mathbb{P}(V)$ a $(k + 1) \times (n + 1)$ matrix

$$
M_{\Lambda} = \begin{bmatrix} v_{1,1} & \cdots & v_{1,n+1} \\ \vdots & & \vdots \\ v_{k+1,1} & \cdots & v_{k+1,n+1} \end{bmatrix}
$$

whose rows are the coordinate vectors with respect to the basis B of $k + 1$ vectors corresponding to independent points of Λ . Two matrices M and M' represent the same k-plane if and only if there exists $A \in GL(k + 1, \mathbb{K})$ such that $M = AM'$.

The homogeneous coordinates of the point in $\mathbb{P}^{N(k,n)}$ corresponding to Λ are given by the minors of order $k + 1$ of M_A . They depend only on Λ and not on the matrix M_{Λ} . These are the *Plücker coordinates* of Λ , and we denote them by z_I where $I = (i_1, \ldots, i_{k+1})$ is a multi-index with $1 \leq i_1 < i_2 < \cdots < i_{k+1} \leq n+1$ denoting the order of the columns of M_A which determine the corresponding minor. The Plücker coordinates are lexicographically ordered.

If we consider the subset U of points of $\mathbb{P}^{N(k,n)}$ where the first coordinate $z_{1,...,k+1}$ is different from zero, each point $\Lambda \in U \cap \mathbb{G}(k,n)$ represents a k-plane such that there is an associated matrix M_{Λ} to Λ that can be uniquely written in the form

> Γ 6 6 6 6 4 1 0 \cdots 0 $v_{1,k+2}$ \cdots $v_{1,n+1}$ 0 1 \cdots 0 $v_{2,k+2}$ \cdots $v_{2,n+1}$: : : : : : : : : : : : : : : 0 0 \cdots 1 $v_{k+1,k+2}$ \cdots $v_{k+1,n+1}$ 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$

From this description, it follows that $U \cap \mathbb{G}(k,n)$ is isomorphic to $\mathbb{A}^{(k+1)(n-k)}$, where the coordinates are the (lexicographically ordered) $v_{i,j}$'s, with $1 \le i \le k + 1$ and $k + 2 \le j \le n + 1$. We will soon give a geometric interpretation of this isomorphism (see Proposition [2.8](#page-7-0) below).

REMARK 2.1. We can describe geometrically the open subset $U \cap \mathbb{G}(k, n)$: it is the set of k-planes of \mathbb{P}^n that do not intersect the $(n - k - 1)$ -plane spanned by the points corresponding to e_{k+2}, \ldots, e_{n+1} . Similarly, for any choice of a totally decomposable element of $\wedge^{n-k}V$ (i.e., a vector which can be expressed as $v_1 \wedge \cdots \wedge v_{n-k}$), we can construct a birational map between $\mathbb{G}(k,n)$ and $\mathbb{P}^{(k+1)(n-k)}$.

2.2. Now, we set $M(k, n) = (k + 1)(n - k)$ and consider $\mathbb{P}^{M(k,n)}$ with homogeneous coordinates given by y and $x_{i,j}$ for $i = 1, ..., k + 1$ and $j = k + 2, ..., n + 1$: in this setting, the affine space with coordinates $x_{i,j}$ for $i = 1, \ldots, k + 1$ and $j =$ $k + 2, \ldots, n + 1$ is the complement of the hyperplane H with equation $y = 0$. We define the rational map

$$
\psi_{k,n} : \mathbb{P}^{M(k,n)} \longrightarrow \mathbb{P}^{N(k,n)}
$$

sending the point with coordinates $[y, x_{1,k+2}, \ldots, x_{k+1,n+1}]$ to the point whose coordinates are the minors of order $k + 1$ of the matrix

If we consider the open subset $U' = \{y \neq 0\} \subset \mathbb{P}^{M(k,n)}$, $\psi_{k,n}|_{U'}$ is the inverse isomorphism of the one described above between $U \cap \mathbb{G}(k,n)$ and $\mathbb{A}^{M(k,n)}$. Therefore, the image of $\psi_{k,n}$ is $\mathbb{G}(k,n)$.

:

We will describe the linear system $\delta_{k,n}$ of hypersurfaces associated with the map $\psi_{k,n}$. It corresponds to the vector space $W \subset H^0(\mathbb{P}^M, \mathscr{O}_{\mathbb{P}^M}(k+1))$ spanned by y^{k+1} and by the forms

(3)
$$
y^{k+1-r} D^{r}_{i_1,\ldots,i_r;j_1,\ldots,j_r}
$$

for $r = 1, ..., k + 1$, with $1 \le i_1 < \cdots < i_r \le k + 1$ and $k + 2 \le j_1 < \cdots < j_r \le n + 1$, where $D_{i_1,\dots,i_r;j_1,\dots,j_r}^r$ denotes the minor of order r of the matrix

(4)

$$
\begin{bmatrix}\nx_{1,k+2} & \cdots & x_{1,n+1} \\
x_{2,k+2} & \cdots & x_{2,n+1} \\
\vdots & & \vdots \\
x_{k+1,k+2} & \cdots & x_{k+1,n+1}\n\end{bmatrix}
$$

determined by the rows of place i_1, \ldots, i_r and by the columns of place j_1, \ldots, j_r .

For a fixed $r = 1, ..., k + 1$, we define m_r as the number of the minors of type D^r . Thus, $m_r = \binom{k+1}{r}$ $\binom{r+1}{r}\binom{n-k}{r}.$

Note that the subvariety of H defined by the 2×2 minors of the matrix [\(4\)](#page-3-0) is a Segre variety $\text{Seg}(k, n - k - 1) \cong \mathbb{P}^k \times \mathbb{P}^{n-k-1}$ (see [\[4,](#page-17-5) p. 98]).

We want to geometrically characterize the linear system $\delta_{k,n}$. Before doing that, we need the following.

LEMMA 2.2. Let $r \geq 1$. There is no hypersurface of degree $r + 2$ in \mathbb{P}^r with multiplicity *at least* $r + 1$ *at* $r + 1$ *independent assigned points of* \mathbb{P}^r *.*

Proof. Consider the linear system of \mathbb{P}^r of hypersurfaces of degree r with multiplicity at least $r - 1$ at the $r + 1$ independent assigned points. This is well known to be a homaloidal linear system, determining a birational map $\omega : \mathbb{P}^r \dashrightarrow \mathbb{P}^r$, such that the counterimages of the lines of the target \mathbb{P}^r are the rational normal curves in the domain \mathbb{P}^r passing through the $r + 1$ independent assigned points. The intersection of a hypersurface of degree $r + 2$ in \mathbb{P}^r with multiplicity at least $r + 1$ at the $r + 1$ independent assigned points with the rational normal curve off the $r + 1$ independent assigned points is -1 . Thus, such a hypersurface is empty and the assertion follows. \blacksquare

Next, we can give the desired geometric description of the linear system $\delta_{k,n}$.

PROPOSITION 2.3. *The linear system* $\delta_{k,n}$ *consists of the hypersurfaces of degree* $k + 1$ *in* $\mathbb{P}^{M(k,n)}$ *passing with multiplicity at least* k *through the Segre variety* Seg(k, $n-k-1$) *contained in the hyperplane H with equation* $y = 0$ *and defined by the* 2×2 *minors of the matrix* [\(4\)](#page-3-0)*.*

Proof. The linear system $\delta_{k,n}$ has a base locus scheme B_1 . By looking at the basis of W in [\(3\)](#page-3-1), B_1 is defined by the equations

$$
y = 0
$$
, $D_{1,\dots,k+1;j_1,\dots,j_{k+1}}^{k+1}$, for all $k+2 \le j_1 < \dots < j_r \le n+1$.

Then, B_1 is the $(k - 1)$ -th secant variety of Seg $(k, n - k - 1)$ defined by the 2×2 minors of the matrix [\(4\)](#page-3-0) inside H (see [\[4,](#page-17-5) p. 99]). Moreover, $\delta_{k,n}$ is the whole linear system of hypersurfaces of degree $k + 1$ of $\mathbb{P}^{M(k,n)}$ containing B_1 .

For each $r = 2, \ldots, k$, we can also consider the subscheme B_r of B_1 consisting of those points of B_1 where all hypersurfaces of $\delta_{k,n}$ have multiplicity at least r. Looking again at the basis of W in [\(3\)](#page-3-1), it is immediate that B_r is the $(k - r)$ -secant variety of $\text{Seg}(k, n - k - 1)$, for $r = 2, \ldots, k$ (see again [\[4,](#page-17-5) p. 99]). Note that B_1 itself has points of multiplicity at least r along B_r , for all $r = 2, \ldots, k$. In particular, each hypersurface in the linear system $\delta_{k,n}$ passes with multiplicity k through the Segre variety $\text{Seg}(k, n - k - 1)$ in H, which is B_k .

Conversely, let F be a hypersurface of degree $k + 1$ in $\mathbb{P}^{M(k,n)}$ passing with multiplicity at least k through the Segre variety $\text{Seg}(k, n - k - 1)$ lying in the hyperplane H and defined by the 2×2 minors of the matrix [\(4\)](#page-3-0). Then, we claim that F contains the $(k - 1)$ -th secant variety of Seg $(k, n - k - 1)$; hence, F belongs to $\delta_{k,n}$. Indeed, this is clear for $k = 1$, so we may assume $k \ge 2$, in which case the claim follows right away by Lemma [2.2.](#page-3-2) \blacksquare

2.3. Next, we need a description of the *osculating spaces* to the Grassmann varieties (for the concept of osculating spaces, see [\[10,](#page-17-6) p. 141]). First, we need some lemmata.

LEMMA 2.4. Let $\text{Seg}(1, k)$ be a Segre variety in \mathbb{P}^n , with $n \geq 2k + 1$. Let $\phi : \mathbb{P}^1 \to$ $\mathbb{G}(k,n)$ be the morphism which sends a point p to the k-plane $\{p\}\times \mathbb{P}^k\subset \text{Seg}(1,k)$ *in* \mathbb{P}^n . Then, the image of ϕ is a rational normal curve of degree $k + 1$ inside $\mathbb{G}(k, n)$.

Proof. We can assume $n = 2k + 1$. If $[x_0, x_1]$ are homogeneous coordinates of \mathbb{P}^1 and z_{ij} , $i = 0, 1$ and $j = 0, \ldots, k$, are the homogenous coordinates of \mathbb{P}^{2k+1} , we can assume that ϕ is the map which sends $[\alpha_0, \alpha_1]$ to the k-plane whose equations in \mathbb{P}^{2k+1} are

$$
\alpha_1 z_{0j} - \alpha_0 z_{1j} = 0 \quad \text{for } j = 0, \dots, k.
$$

In particular, the image of a point $[x_0, x_1]$ under ϕ is the point of $\mathbb{G}(k, 2k + 1)$ whose coordinates are the minors of maximal order of the matrix

There are only $k + 2$ non-vanishing Plücker coordinates of this k-plane and they have as entries the monomials of degree $k + 1$ in x_0 and x_1 . The assertion follows.

We can generalize the above result.

LEMMA 2.5. Let k, r, n be positive integers with $k > r$. Let $\text{Seg}(1, r)$ be a Segre variety $\lim_{n \to \infty} \ln n$, with $n \geq k + r + 1$, and let Π be a $(k - r - 1)$ -plane, which does not intersect *the* $(2r + 1)$ -plane spanned by $Seg(1, r)$. Let $\phi : \mathbb{P}^1 \to \mathbb{G}(k, n)$ be the morphism *which sends a point p to the k-plane spanned by* Π *and by the r-plane in* Seg(1, *r*) given by $\{p\} \times \mathbb{P}^r$. Then, its image is a rational normal curve of degree $r + 1$ inside $\mathbb{G}(k,n)$.

Proof. We can assume $n = k + r + 1$. Let Seg $(1, r)$ be a Segre variety inside the $(2r + 1)$ -plane L given by the vanishing of the last $k - r$ homogeneous coordinates of \mathbb{P}^{k+r+1} , and let Π be the $k - r - 1$ plane given by the vanishing of the first $2r + 2$ coordinates. Then, we can associate with the point $[x_0, x_1]$ of \mathbb{P}^1 the matrix whose rows span the join of Π and $[x_0, x_1] \times \mathbb{P}^r$. This is the $(k + 1) \times (k + r + 2)$ matrix

$$
\left[\begin{array}{c|c} A_{x_0,x_1} & 0_1 \\ \hline 0_2 & I_{k-r} \end{array}\right],
$$

where A_{x_0,x_1} is the $(r + 1) \times (2r + 2)$ matrix associated with the r-plane $[x_0, x_1] \times \mathbb{P}^r$ in L, 0_1 is the $(r + 1) \times (k - r)$ zero matrix, 0_2 is the $(k - r) \times (2r + 2)$ zero matrix and I_{k-r} is the $(k-r)$ identity matrix. As in the proof of Lemma [2.4,](#page-4-0) we see that the only non-vanishing Plücker coordinates of the point of the Grassmaniann associated with this matrix are given by the monomials of order $r + 1$ in x_0 and x_1 . The assertion follows.

LEMMA 2.6. Let L_1, L_2 be two distinct k-planes in \mathbb{P}^n intersecting in a $(k - r)$ plane M, with $1 \leq r \leq k + 1$. Then, there is a Segre variety $\text{Seg}(1, r - 1)$ in \mathbb{P}^n such that *there are two distinct points* $p_1, p_2 \in \mathbb{P}^1$ such that $L_i \cap \text{Seg}(1, r - 1) = {p_i} \times \mathbb{P}^{r - 1}$, *for* $i = 1, 2$ *.*

Proof. Projecting from M to a $\mathbb{P}^{n-k+r-1}$, the images of L_1, L_2 are two disjoint $(r-1)$ -planes L_1' $\frac{1}{1}$ and L_2' χ'_2 . If we fix an isomorphism $\tau : L'_1 \to L'_2$ y_2 , the variety defined as the union of the lines joining $p \in L'_1$ t'_1 to $\tau(p) \in L'_2$ $\frac{1}{2}$ is the desired Segre variety.

The following proposition describes the osculating spaces of Grassmannians.

PROPOSITION 2.7. Let Λ_0 *be a point of* $\mathbb{G}(k,n)$ *and let* $1 \le r \le k$ *. Then, the r-osculating* space $T_{\mathbb{G}^{\:\!\! (l)}}^{(r)}$ $G(k,n), \Lambda_0$ to $G(k,n)$ at Λ_0 is the linear space spanned by the Schubert variety

$$
W_{r,\Lambda_0} = \left\{ \Lambda \in \mathbb{G}(k,n) \mid \dim(\Lambda \cap \Lambda_0) \geq k - r \right\}
$$

and one has

(5)
$$
\dim\left(T^{(r)}_{\mathbb{G}(k,n),\Lambda_0}\right)=\sum_{i=1}^r\binom{k+1}{i}\binom{n-k}{i}.
$$

Proof. First of all, we claim that $W_{r,\Lambda_0} \subseteq T_{\mathbb{G}(l)}^{(r)}$ $G(k,n), \Lambda_0$. To prove this, note that by Lem-mata [2.5](#page-5-0) and [2.6,](#page-5-1) for any k-plane Λ intersecting Λ_0 in a linear space of dimension at least $k - r$, we can construct a rational normal curve of degree r in $\mathbb{G}(k, n)$ passing through Λ_0 and Λ . Such a curve must be contained in $T_{\mathbb{G}(l)}^{(r)}$ $G(k,n), \Lambda_0$, and this proves the claim.

To prove that $T_{\mathbb{G}_1(t)}^{(r)}$ $E_{\mathbb{G}(k,n),\Lambda_0}^{(r)} = \langle W_{r,\Lambda_0} \rangle$, we will compute the dimensions of both $T_{\mathbb{G}^{\prime l}}^{(r)}$ $\mathcal{L}_{\mathbb{G}(k,n),\Lambda_0}^{(r)}$ and $\langle W_{r,\Lambda_0} \rangle$ and we will prove they are equal.

First, let us prove [\(5\)](#page-6-0). Without loss of generality, we may assume that Λ_0 is spanned by the points corresponding to the vectors e_1, \ldots, e_{k+1} of the basis B of V, so that Λ_0 is the point where only the first Plücker coordinate is different from zero. Consider the local parametrization of $\mathbb{G}(k, n)$ around Λ_0 given by the restriction of the map $\psi_{k,n}$ as in [\(1\)](#page-2-0) to $\mathbb{A}^{M(k,n)} = \mathbb{P}^{M(k,n)} \setminus H$, so that $\psi_{k,n}$ maps the origin of $\mathbb{A}^{M(k,n)}$ to Λ_0 . The *r*-osculating space $T_{\mathbb{G}(l)}^{(r)}$ $G(k,n)$, Λ_0 is spanned by the points that are derivatives up to order r of the parametrization at the origin.

Each coordinate function of $\psi_{k,n}$ is given by a minor D^s as above (in the affine coordinates $x_{i,j}$, for $i = 1, ..., k + 1$ and $j = k + 2, ..., n + 1$, of $\mathbb{A}^{M(k,n)}$). The derivatives up to order r of the minors D^s with $s \ge r + 1$ vanish at $0 \in A^{M(k,n)}$. Hence, $T_{\mathbb{G}^{\prime l}}^{(r)}$ $E_{\mathbb{G}(k,n),\Lambda_0}^{(r)}$ has dimension at most $\sum_{i=1}^r m_i$, where we recall that $m_i = \binom{k+1}{i}$ $\binom{i+1}{i}\binom{n-k}{i}$ is the number of the $Dⁱ$'s.

Moreover, for each minor D^s with $s \leq r$, there exists a derivative of order s of the parametrization at the origin such that all of its coordinates, except the one corresponding to D^s , vanish. This implies [\(5\)](#page-6-0).

Next, we compute the dimension of $\langle W_{r,\Lambda_0} \rangle$ and prove that it equals the right-hand side of [\(5\)](#page-6-0). Let Λ be an element of W_{r,Λ_0} . It is spanned by $k + 1$ points, and we may assume the first $k - r + 1$ of them lie on Λ_0 . Then, the Plücker coordinates of Λ are given by the maximal minors of a matrix $M_{\Lambda} = [v_{i,j}]_{i=1,\dots,k+1; j=1,\dots,n+1}$ where $v_{i,j} = 0$ if $i \in \{1, ..., k - r + 1\}$ and $j \in \{k+2, ..., n + 1\}$. Moreover, varying Λ in W_{r,Λ_0} , we may consider the non-zero $v_{i,j}$ as variables.

The vanishing maximal minors of a matrix of type M_{Λ} are those involving at most $r + 1$ of the last $n - k$ columns. Hence, their number is

$$
c = \sum_{i=r+1}^{k+1} {n-k \choose i} {k+1 \choose i} = \sum_{i=r+1}^{k+1} m_i
$$

and therefore

$$
\dim\big(\langle W_{r,\Lambda_0}\rangle\big)=N(k,n)-c.
$$

On the other hand, we have

$$
N(k,n) = \sum_{i=1}^{k+1} m_i;
$$

hence

$$
\dim\left(\langle W_{r,\Lambda_0}\rangle\right)=\sum_{i=1}^r m_i=\dim\left(T^{(r)}_{\mathbb{G}(k,n),\Lambda_0}\right),
$$

as desired.

2.4. Next, we give the announced geometric description of the isomorphism of $U \cap \mathbb{G}(k,n)$ with $\mathbb{A}^{M(k,n)}$.

PROPOSITION 2.8. Let Π be an element of $\mathbb{G}(n - k - 1, n)$ and W_{Π} the Schubert *variety*

$$
\{\Lambda \in \mathbb{G}(k,n) \mid \dim(\Lambda \cap \Pi) \geq 1\}.
$$

Then, the projection $\varphi : \mathbb{G}(k,n) \longrightarrow \mathbb{P}^{M(k,n)}$ *from the linear space spanned by* W_{Π} *is the inverse map of a* $\psi_{k,n}$: $\mathbb{P}^{M(k,n)} \longrightarrow \mathbb{G}(k,n)$ *as in* [\(1\)](#page-2-0)*.*

Proof. We use the notation of Lemma [2.3.](#page-3-3) First of all, we observe that the linear system $\delta_{k,n}$ contains the linear system of hyperplanes of $\mathbb{P}^{M(k,n)}$ as a subsystem: this is $kH + |\pi|$, where π is any hyperplane. Via the map $\psi_{k,n}$, the hypersurfaces of $\delta_{k,n}$ are sent to hyperplane sections of $\mathbb{G}(k, n)$. Thus, the inverse of $\psi_{k,n}$ is a projection whose center is the intersection of all hyperplanes of $\mathbb{P}^{N(k,n)}$ whose intersection with $\mathbb{G}(k,n)$ contains $\psi_{k,n}(H)$ with multiplicity at least k.

The image of H under $\psi_{k,n}$ is the Grassmannian $\mathbb{G}_0 = \mathbb{G}(k, n - k - 1)$ of all subspaces of dimension k contained in a fixed subspace Π of \mathbb{P}^n dimension $n - k - 1$. Indeed, if we set $y = 0$ in [\(2\)](#page-2-1), we obtain the Plücker embedding associated with a $(k + 1) \times (n - k)$ matrix.

A hyperplane H' in $\mathbb{P}^{N(k,n)}$ contains \mathbb{G}_0 with multiplicity at least k if and only if H' contains $T_{\mathbb{G}(k,n),P}^{(k-1)}$ for any $P \in \mathbb{G}_0$ and the center of the projection is the intersection of these hyperplanes. Then, from Proposition [2.7,](#page-5-2) the center of projection is the linear span of W_{Π} . This proves the assertion.

REMARK 2.9. With a dimension count similar to the one at the end of Proposition [2.7,](#page-5-2) one checks that the linear space spanned by W_{Π} has dimension $N(k, n) - m_1 - 1 =$ $N(k, n) - (k + 1)(n - k) - 1 = N(k, n) - M(k, n) - 1$. This fits with the result of Proposition [2.8.](#page-7-0)

REMARK 2.10. From the above considerations it follows that the birational map $\psi_{n,k}$ induces an isomorphism between $\mathbb{P}^{M(k,n)}$ minus a hyperplane H and $\mathbb{G}(k,n)$ minus

 \blacksquare

a hyperplane section \mathfrak{S}' , precisely the hyperplane section corresponding to the hypersurface $(k + 1)H$ in $\delta_{k,n}$. Looking at the proof of Proposition [2.8,](#page-7-0) we see that \mathfrak{S}' contains \mathbb{G}_0 with multiplicity $k+1$; hence, it contains $T^{(k)}_{\mathbb{G}(k,n),P}$ for any $P \in \mathbb{G}_0$. From Proposition [2.7,](#page-5-2) one deduces that \mathfrak{S}' coincides with the set of all $\Lambda \in \mathbb{G}(k,n)$ that have non-empty intersection with the $(n - k - 1)$ -plane Π . We will call the hyperplane H' cutting out such a \mathfrak{S}' on $\mathbb{G}(k,n)$ a k-*osculating hyperplane* to $\mathbb{G}(k,n)$.

LEMMA 2.11. Let $\check{\mathbb{P}}^{N(k,n)}$ be the dual space of $\mathbb{P}^{N(k,n)}$. Then, the k-osculating hyper*planes to* $\mathbb{G}(k,n)$ *are parametrized by* $a \mathbb{G}(n-k-1,n)$ *in* $\check{\mathbb{P}}^{N(k,n)}$ *. In particular, since* $\mathbb{G}(n-k-1,n)$ is non-degenerate in $\check{\mathbb{P}}^{N(k,n)}$, there is no point of $\mathbb{P}^{N(k,n)}$ contained *in all* k*-osculating hyperplanes.*

Proof. We have $\check{\mathbb{P}}^{N(k,n)} = \mathbb{P}(\wedge^{k+1} \check{V}) = \mathbb{P}(\wedge^{n-k} V)$.

Let Π be an $(n - k - 1)$ -plane spanned by $n - k$ points corresponding to the vectors v_1, \ldots, v_{n-k} of V. A k-plane Λ , spanned by $k+1$ points corresponding to the vectors w_1, \ldots, w_{k+1} of V, intersects Π if and only if the square matrix of order $n+1$ whose rows are $v_1, \ldots, v_{n-k}, w_1, \ldots, w_{k+1}$ has zero determinant. The set of these k-planes is the section of $\mathbb{G}(k,n)$ with the k-osculating hyperplane of $\mathbb{P}^{N(k,n)}$ of equation

$$
\sum_{1 \leq i_1 < \dots < i_{n-k} \leq n+1} S_{i_1, \dots, i_{n-k}} p_{i_1, \dots, i_{n-k}} x_{\overline{i_1, \dots, i_{n-k}}} = 0,
$$

where the $p_{i_1,\dots,i_{n-k}}$'s are the Plücker coordinates of Π in $\mathbb{G}(n-k-1,n)$, the $x_{\overline{i_1,...,i_{n-k}}}$'s are the homogeneous coordinates of $\mathbb{P}^{N(k,n)}$, where we denote by $\overline{i_1, \ldots, i_{n-k}}$ the $(k + 1)$ -tuple of indices obtained by deleting $\{i_1, \ldots, i_{n-k}\}$ from $(1,\ldots,n+1)$, and $S_{i_1,\ldots,i_{n-k}}$ is the sign of the permutation $(i_1,\ldots,i_{n-k},\overline{i_1,\ldots,i_{n-k}})$.

So the coordinates of this hyperplane in $\check{\mathbb{P}}^{N(k,n)}$ are $[S_{i_1,...,i_{n-k}} p_{i_1,...,i_{n-k}}]_{(i_1,...,i_{n-k})}$. The assertion follows.

COROLLARY 2.12. Let X be an irreducible subvariety of $\mathbb{G}(k,n)$. Then, for a general *projection* $\varphi : \mathbb{G}(k,n) \longrightarrow \mathbb{P}^{M(k,n)}$ *as in Proposition* [2.8](#page-7-0)*, X is not contained in the indeterminacy locus of* φ *and the restriction of* φ *to* X *is a birational map of* X *to its image.*

Proof. Given a projection $\varphi : \mathbb{G}(k,n) \longrightarrow \mathbb{P}^{M(k,n)}$ as in Proposition [2.8,](#page-7-0) its indeterminacy locus and the subvariety contracted by the projection are contained in a k -osculating hyperplane section of the Grassmannian. By Lemma [2.11,](#page-8-0) these hyperplanes vary in a Grassmannian $\mathbb{G}(n - k - 1, n)$ in $\check{\mathbb{P}}^{N(k,n)}$, and there is no point of $\mathbb{P}^{N(k,n)}$ contained in all these hyperplanes. Hence, given the subvariety X in $\mathbb{G}(k,n)$, there is certainly a k -osculating hyperplane not containing it. The corresponding projection enjoys the required property. \blacksquare

3. Fano schemes

Let $X \subset \mathbb{P}^n$ be an irreducible projective variety. Given any positive integer k, we will denote by $F_k(X)$ the Hilbert scheme of k-planes of \mathbb{P}^n contained in X. This is also called the k*-Fano scheme* of X. We will not be interested in the scheme structure on $F_k(X)$, but rather on its support. In particular, we will be interested in $F_k(X)$ when X is an irreducible hypersurface of degree $d \ge 2$ in \mathbb{P}^n .

This short section is devoted to prove the following.

PROPOSITION 3.1. Let *X* be an irreducible hypersurface of degree $d \geq 2$ in \mathbb{P}^n . Let $\varphi : \mathbb{G}(k,n) \longrightarrow \mathbb{P}^{M(k,n)}$ *be a general projection map as in Proposition* [2.8](#page-7-0)*. Then,* $\varphi|_{F_k(X)}$ *is a birational map on each component of* $F_k(X)$ *and* $\varphi(F_k(X))$ *is defined by the vanishing of* $\binom{d+k}{k}$ k *polynomials of degree* d*.*

PROOF. The first assertion follows directly from Corollary [2.12.](#page-8-1)

Let us fix homogeneous coordinates $[x_0, \ldots, x_n]$ in \mathbb{P}^n and let $f = 0$ be the equation of X in this system, with

$$
f(x_0,\ldots,x_n)=\sum_{d_0+\cdots+d_n=d}\alpha_{d_0\ldots d_n}x_0^{d_0}\ldots x_n^{d_n}.
$$

We assume, without loss of generality, that the projection is an isomorphism on the open set U of the Grassmannian where the first Plücker coordinate is different from zero. For every $\Lambda \in U$, we can give a parametrization $\phi_\Lambda : \mathbb{P}^k \to \Lambda \subseteq \mathbb{P}^n$ of Λ as

Œs0; : : : ; sk 7! Œs0; : : : ; sk 2 6 6 6 4 1 0 0 0 a1;kC² a1;kC³ a1;nC¹ 0 1 0 0 a2;kC² a2;kC³ a2;nC¹ : : : 0 0 0 1 akC1;kC² akC1;kC³ akC1;nC¹ 3 7 7 7 5

with $a_{i,j}$, for $1 \le i \le k+1, k+2 \le j \le n+1$, depending on Λ .

Then, $f(\phi_{\Lambda}([s_0, \ldots, s_k]))$ is a form of degree d in s_0, \ldots, s_k with coefficient polynomials in the $a_{i,j}$'s and in the $\alpha_{d_0...d_n}$'s. Imposing that Λ sits in $F_k(X)$ is equivalent to impose that $f(\phi_{\Lambda}([s_0, ..., s_k]))$ is identically zero as a form in $s_0, ..., s_k$. This translates in imposing that the $\binom{d+k}{k}$ ${k \choose k}$ coefficients of $f(\phi_{\Lambda}([s_0,\ldots,s_k]))$ all vanish, and these are linear in the $\alpha_{d_0,...,d_n}$'s and of degree d in the $a_{i,j}$'s. The assertion follows.

4. Families of hypersurfaces and the section lemma

In this section, we introduce the definition of a *family of hypersurfaces* and we prove a crucial result, *Section Lemma* [4.5,](#page-11-0) in whose proof we use an idea of Conforto [\[3\]](#page-17-4), which extends previous work by Comessatti [\[2\]](#page-17-7).

4.1. We start with some definitions. We will denote by $\mathcal{L}_{n,d}$ the linear system of all hypersurfaces of degree d in \mathbb{P}^n , and by $p : \mathcal{H}_{n,d} \to \mathcal{L}_{n,d}$ the universal family, so that $\mathcal{H}_{n,d} \subset \mathcal{L}_{n,d} \times \mathbb{P}^n$ and p is the projection to the first factor.

Definition 4.1. Let W be an irreducible variety. We call a *family of hypersurfaces (of degree d and dimension* $n - 1$ *) parametrized by* W any morphism $f : \mathcal{X} \to W$, such that there exists a morphism $g: W \to \mathcal{L}_{n,d}$ so that the diagram

is cartesian. In particular, $f : \mathcal{X} \to W$ is flat. For any point $w \in W$, we will denote by $X_w \subset \mathbb{P}^n$ the corresponding hypersurface, that is, the fiber of $f : \mathcal{X} \to W$ over w.

DEFINITION 4.2. Given two families of hypersurfaces $\mathscr{X} \to W$ and $\mathscr{Y} \to T$ as in Definition [4.1,](#page-10-0) we say that $\mathscr X$ is *birationally equivalent* to $\mathscr Y$ if there exist two birational maps $f : \mathcal{X} \dashrightarrow \mathcal{Y}$ and $g : W \dashrightarrow T$ such that the diagram

$$
\begin{array}{ccc}\n\mathcal{X} & \xrightarrow{f} & \mathcal{Y} \\
\downarrow & & \downarrow \\
W & \xrightarrow{g} & T\n\end{array}
$$

commutes.

We will be interested in families of hypersurfaces up to birational equivalence. The following lemma gives us a sort of canonical way of representing a family of hypersurfaces up to birational equivalence.

LEMMA 4.3. Let $\mathscr{X} \to W$ be a family of hypersurfaces of degree d in \mathbb{P}^n with $\dim(W) = r$. Then, there is a birationally equivalent family $\mathscr{X}' \to W'$ such that W' is a dense open subset of a hypersurface in \mathbb{P}^{r+1} which is birational to W and $\mathscr{X}' \subset W' \times \mathbb{P}^n$ has an equation of the form

(6)
$$
\sum_{i_1,\dots,i_d \in \{0,\dots,n\}} a_{i_1\dots i_d} (u_0,\dots,u_{r+1}) \prod_{j=1}^d x_{i_j} = 0,
$$

where $a_{i_1...i_d} \in H^0(W', \mathcal{O}_{W'}(\mu))$ for some $\mu \in \mathbb{N}$, for all $i_1, ..., i_d \in \{0, ..., n\}$.

Proof. To give the family, $\mathscr{X} \to W$ is equivalent to give the corresponding morphism $g: W \to \mathcal{L}_{n,d}$. Let $\mathfrak{W} \subset \mathbb{P}^{r+1}$ be a hypersurface with a birational map $h: \mathfrak{W} \dashrightarrow W$. Then, $g' = g \circ h : \mathfrak{W} \dashrightarrow \mathcal{L}_{n,d}$ is a rational map, and there is a dense open subset W' of $\mathfrak W$ where g' is defined. Then, we have a morphism $g': W' \to \mathcal L_{n,d}$, and accordingly we have a family $\mathscr{X}' \to W'$ that is birationally equivalent to $\mathscr{X} \to W$. On the other hand, giving $g' : W' \to \mathcal{L}_{n,d}$ is equivalent to give a suitable $\binom{n+d}{n}$ $\binom{+d}{n}$ -tuple of elements

$$
a_{i_1...i_d} \in H^0(W', \mathcal{O}_{W'}(\mu)), \text{ for all } i_1,..., i_d \in \{0,...,n\}
$$

and some positive integer μ , so that $\mathscr{X}' \subset W' \times \mathbb{P}^n$ has equation [\(6\)](#page-10-1).

4.2. Next, we want to prove the announced *Section Lemma*.

Let $\mathscr{X} \to W$ be a family of hypersurfaces of degree $d \geq 2$ in \mathbb{P}^n . We denote by $F_k(\mathscr{X}) \to W$ the *relative Fano scheme* of *k*-planes in \mathbb{P}^n contained in the fibers of $\mathscr{X} \to W$. For any point $w \in W$, the fiber of $F_k(\mathscr{X}) \to W$ over w is $F_k(X_w)$. We recall the following result (see [\[6\]](#page-17-8)).

THEOREM 4.4. Let k, n, d be positive integers with $d \geq 2$ and

(7)
$$
n \ge \begin{cases} 2k+1, & \text{if } d = 2 \text{ and } k \ge 2 \\ \frac{1}{k+1} {k+d \choose d}, & \text{otherwise.} \end{cases}
$$

Then, all hypersurfaces of degree d in \mathbb{P}^n contain a k-plane.

Next, we consider $\mathscr{X} \to W$ a family of hypersurfaces of degree $d \ge 2$ in \mathbb{P}^n , with $dim(W) = r$. We will assume that

(8)
$$
n > k + \frac{1}{k+1} \left[\binom{d+k}{k} d^r - 1 \right].
$$

Then, clearly [\(7\)](#page-11-1) holds, and hence, by Theorem [4.4,](#page-11-2) the morphism $F_k(\mathscr{X}) \to W$ is surjective. By generic flatness, there is a dense open subset of W over which $F_k(\mathscr{X}) \to W$ is flat.

We are ready to prove the *Section Lemma*.

LEMMA 4.5 (The Section Lemma). Let $\mathscr{X} \to W$ *be a family of hypersurfaces of degree* $d \geq 2$ in \mathbb{P}^n , with $\dim(W) = r$ *so that* [\(8\)](#page-11-3) *holds. Then, there is a dense open subset* U of W such that over U there is a section of $F_k(\mathscr{X}) \to W$.

Proof. Since the problem is birational in nature, by Lemma [4.3,](#page-10-2) we may assume that W is a dense open subset of a hypersurface of degree \overline{m} in \mathbb{P}^{r+1} with equation

$$
\phi(u_0,\ldots,u_{r+1})=0.
$$

 \blacksquare

The domain $F_k(\mathscr{X})$ of the Fano family $F_k(\mathscr{X}) \to W$, which up to shrinking W we may assume to be flat, is contained in $W \times \mathbb{G}(k, n)$. Consider a general birational projection $\varphi : \mathbb{G}(k,n) \longrightarrow \mathbb{P}^{M(k,n)}$ as in Proposition [2.8](#page-7-0) that determines a birational map

$$
\Phi: W \times \mathbb{G}(k,n) \longrightarrow W \times \mathbb{P}^{M(k,n)}.
$$

By applying Corollary [2.12](#page-8-1) and up to shrinking W, we may suppose that for all $w \in W$, the restriction of Φ to any irreducible component of $\{w\} \times F_k(X_w)$ is birational onto its image so that Φ restricts to a birational map of $F_k(\mathscr{X})$ to its image, that we denote by $\mathbb{F}_k(\mathscr{X})$, contained in $W \times \mathbb{P}^{M(k,n)}$. By Proposition [3.1,](#page-9-1) we may assume that $\mathbb{F}_k(\mathscr{X})$ is defined by the vanishing of $\binom{d+k}{k}$ $_{k}^{+k}$) equations in $W \times \mathbb{P}^{M(k,n)}$ of the form

(9)
$$
\sum_{i_1,\dots,i_d \in \{0,\dots,n\}} b_{i_1\dots i_d}^{\ell}(u_0,\dots,u_{r+1}) \prod_{j=1}^d y_{i_j} = 0
$$

for $\ell = 1, \ldots, \binom{d+k}{k}$ $\binom{m}{k}$, and $b^{\ell}_{i_1...i_d}(u_0,...,u_{r+1}) \in H^0(W, \mathcal{O}_W(\mu))$ for a suitable positive integer μ , where the y_i 's denote the homogeneous coordinates of $\mathbb{P}^{M(k,n)}$.

To prove the lemma, it clearly suffices to find a rational section $p : W \dashrightarrow \mathbb{F}_k(\mathcal{X})$ of $\mathbb{F}_k(\mathscr{X}) \to W$. Such a rational section is determined by a suitable $(M(k, n) + 1)$ tuple of rational functions on W . We may assume that each such rational function is expressed by a homogeneous polynomial in the variables u_0, \ldots, u_{r+1} of a fixed degree *m* modulo $\phi(u_0, \ldots, u_{r+1})$.

Supposing $m > \overline{m}$, we can choose M independent elements in $H^0(W, \mathcal{O}_W(m))$, where

$$
M = \binom{m+r+1}{r+1} - \binom{m-\overline{m}+r+1}{r+1}.
$$

These can be identified with M forms Ψ_1,\ldots,Ψ_M of degree m, modulo $\phi(u_0,\ldots,u_{r+1})$.

We want to construct a section p by writing its homogeneous coordinates as linear combinations of the Ψ 's as above, that is, by writing them as

$$
p_i = \sum_{j=1}^{M} \lambda_{i,j} \Psi_j \quad \text{for } i = 0, \dots, M(k, n)
$$

where we take the $\lambda_{i,j}$'s as indeterminates. The number of the λ 's is

$$
[(k+1)(n-k)+1]M
$$

=
$$
[(k+1)(n-k)+1] \left[\binom{m+r+1}{r+1} - \binom{m-\overline{m}+r+1}{r+1} \right].
$$

We need to find the values of these λ 's so that p is a section. For this, we have to replace the y_i 's in each of the equations [\(9\)](#page-12-0) with the $p_i(u_0, \ldots, u_{r+1})$'s and we

have to impose that the results identically vanish on W , i.e., they must be forms in $\mathbb{K}[u_0, \ldots, u_{r+1}]$ that are divisible by $\phi(u_0, \ldots, u_{r+1})$.

We make the substitution and for each $\ell = 1, \ldots, \binom{d+k}{k}$ $(k \atop k)$ we have expressions of the sort

$$
\sum_{i_1,\dots,i_d \in \{0,\dots,n\}} b_{i_1\dots i_d}^{\ell}(u_0,\dots,u_{r+1}) \prod_{j=1}^d p_{i_j}
$$

=
$$
\sum_{l_1+\dots+l_{r+1} = dm+\mu} F_{l_0\dots l_{r+1}}^{\ell}(\lambda_{i,j}) u_0^{l_0} \cdots u_{r+1}^{l_{r+1}}
$$

where the homogeneous polynomials that we have after the substitution are of degree $dm + \mu$ with respect to u_0, \ldots, u_{r+1} and the coefficients $F_{l_0...l_{r+1}}^{\ell}$ are polynomials in the λ 's.

Thus, for all $\ell = 1, \ldots, \binom{d+k}{k}$ $(k \atop k$), we have to impose that

(10)
$$
\sum_{l_1 + \dots + l_{r+1} = dm + \mu} F_{l_0 \dots l_{r+1}}^{\ell}(\lambda_{i,j}) u_0^{l_0} \dots u_{r+1}^{l_{r+1}}
$$

= $\phi(u_0, \dots, u_{r+1}) \Biggl(\sum_{i_1 + \dots + i_{r+1} = dm - \overline{m} + \mu} \alpha_{i_0 \dots i_{r+1}}^{\ell} u_0^{i_0} \dots u_{r+1}^{i_{r+1}}\Biggr)$

where the $\alpha_{i_0\cdots i_{r+1}}^{\ell}$'s are again indeterminates. Their number is

$$
\binom{d+k}{k}\binom{dm-\overline{m}+\mu+r+1}{r+1}.
$$

Now, to prove the thesis, we need to show that, under condition [\(8\)](#page-11-3), there exists an *admissible solution* of the system of non-homogeneous equations obtained by equating the coefficients of the monomials of degree $dm + \mu$ in [\(10\)](#page-13-0) for each $\ell = 1, \ldots, {\ell_k + k \choose k}$ $_k^{+k}$). A solution of this system is called *admissible* if it gives rise to a section. Clearly, a solution is admissible if and only if not all the λ 's are equal to 0.

In the system, there are

$$
\binom{d+k}{k}\binom{dm+\mu+r+1}{r+1}
$$

equations in the α 's and λ 's. The total amount of these variables is

$$
[(k+1)(n-k)+1] \left[\binom{m+r+1}{r+1} - \binom{m-\overline{m}+r+1}{r+1} \right] + \binom{d+k}{k} \binom{dm-\overline{m}+\mu+r+1}{r+1}.
$$

We claim that if the number of variables is greater than the number of equations, that is, if the following inequality holds:

$$
(11) \quad \left[(k+1)(n-k) + 1 \right] \left[\binom{m+r+1}{r+1} - \binom{m-\overline{m}+r+1}{r+1} \right] + \binom{d+k}{k} \binom{dm-\overline{m}+\mu+r+1}{r+1} > \binom{d+k}{k} \binom{dm+\mu+r+1}{r+1},
$$

our system has admissible solutions and we do have sections as required.

In general, given a system of non-homogeneous equations, it is not true that if it is *underdeterminate* (i.e., the number of equations is lower than the number of the variables), then the set of solutions is non-empty. However, we do know that, in the associated affine space with coordinates λ 's and α 's, the origin, where all λ 's and all α 's vanish, is a solution of the system although it does not give rise to an admissible solution. In any event, this implies that the set of solutions has a component $\mathfrak S$ of positive dimension which contains the origin. Moreover, \Im cannot be contained in the subspace defined by the vanishing of all the λ 's. Indeed, if all the λ 's are equal to 0, from [\(10\)](#page-13-0), it follows that also the α 's are 0. This proves that if [\(11\)](#page-14-0) holds, there are admissible solutions and therefore there are sections as desired.

Finally, we want to see under which conditions, for m large enough, [\(11\)](#page-14-0) holds. This can be written as

$$
[(k+1)(n-k)+1] \left[\binom{m+r+1}{r+1} - \binom{m-\overline{m}+r+1}{r+1} \right] + \binom{d+k}{k} \left[\binom{dm-\overline{m}+\mu+r+1}{r+1} - \binom{dm+\mu+r+1}{r+1} \right] > 0.
$$

The term on the left is a polynomial in m : the condition in order that it is positive for $m \gg 0$ is that the leading coefficient is positive. The coefficient of the monomial m^{r+1} of maximal degree is equal to zero, so we have to look at the coefficient of m^r . This equals

$$
\frac{[(k+1)(n-k)+1]}{(r+1)!}(r+1)\overline{m} + \frac{\binom{d+k}{k}d^r}{(r+1)!}[-(r+1)\overline{m}].
$$

After dividing for the positive term $\frac{\overline{m}}{r!}$, we obtain

$$
(k+1)(n-k) + 1 - \binom{d+k}{k}d^r
$$

and being this positive is equivalent to [\(8\)](#page-11-3).

 \blacksquare

REMARK 4.6. Note that the result of the Section Lemma is equivalent to say that if (8) holds, and if w is the generic point of W, defined over the field of rational functions $\mathbb{K}(W)$, then one can find a k-plane Λ in the generic hypersurface X_w of the family, also defined over $\mathbb{K}(W)$. In this case, one says that Λ is *rationally determined* on X_w .

5. Unirationality of families of hypersurfaces

In this section, we use the previous results to give a criterion for the unirationality of families of hypersurfaces. We need some preliminaries.

5.1. We recall the following.

DEFINITION 5.1. Let $X \subset \mathbb{P}^n$ be an algebraic variety defined over K and Λ a k-plane contained in X. One says that X is Λ -*rational* (resp. Λ -*unirational*) if X is $\mathbb{K}(\Lambda)$ rational (resp. $\mathbb{K}(\Lambda)$ -unirational), where $\mathbb{K}(\Lambda)$ is the extension of K obtained by adding to $\mathbb K$ the Plücker coordinates of Λ .

Let $\mathscr{X} \to W$ be a flat family of subvarieties of \mathbb{P}^n with W being an irreducible variety. If $w \in W$, we denote, as usual, by $X_w \subset \mathbb{P}^n$ the fiber of $\mathcal{X} \to W$ over w. We assume that there is a dense open subset U of W such that for all $w \in U$, X_w is irreducible. Thus, up to shrinking W, we may assume that this happens for all $w \in W$. Let $F_k(\mathscr{X}) \to W$ be the *relative Fano scheme* of k-planes of $\mathscr{X} \to W$. For all $w \in W$, the fiber of $F_k(\mathscr{X}) \to W$ is $F_k(X_w)$.

The following criterion is due to Roth (see [\[9\]](#page-17-9)).

PROPOSITION 5.2 (Roth's Criterion). Let $\mathscr{X} \to W$ *be a flat family of varieties with* W being an irreducible, unirational variety. Suppose that $F_k(\mathscr{X}) \to W$ is dominant, *so that, up to shrinking* W *, we may assume it is flat. Suppose that there is a section* $s: W \to F_k(\mathscr{X})$ of $F_k(\mathscr{X}) \to W$ such that there is a dense open subset U of W such *that for all* $w \in U$ *, the variety* X_w *is* $s(w)$ *-unirational. Then,* $\mathscr X$ *is unirational.*

In addition, if W is rational and for all $w \in U$ *, the variety* X_w *is* $s(w)$ *-rational, then* X *is rational.*

Proof. We may assume that $U = W$. Let $\phi : \mathbb{P}^r \dashrightarrow W$ be the dominant map which assures the unirationality of W and by $\psi_w : \mathbb{P}^{r'}_{\mathbb{K}(s(w))} \longrightarrow X_w$ the dominant map which assures the unirationality of X_w , for $w \in W$.

Then, we can construct the map

$$
\mathbb{P}^r \times \mathbb{P}^{r'} \dashrightarrow \mathscr{X}
$$

such that the pair (t, t') is sent to $\psi_{\phi(t)}(t')$. This is a rational dominant map, and it is defined over \mathbb{K} .

It follows furthermore that if ϕ and ψ_w are generically finite of degree a and b, respectively, then this map is generically finite of degree $a \cdot b$. The second assertion follows.

5.2. In the paper [\[8\]](#page-17-2), A. Predonzan proved the following.

THEOREM 5.3. Let $X \subset \mathbb{P}^n$ be an irreducible hypersurface of degree $d \geq 2$ defined *over* K *. Suppose that* X *contains a* k *-plane* Λ *with*

$$
k \geq k(d)
$$

where $k(d)$ *is inductively defined as follows:*

$$
k(d) = {k(d-1) + d - 1 \choose d-1}, \quad k(2) = 0.
$$

Suppose that X *is smooth along* Λ *. Then,* X *is* Λ *-unirational.*

As a consequence of this result, Predonzan also proved in [\[8\]](#page-17-2) the following.

THEOREM 5.4. Let $X \subset \mathbb{P}^n$ be an irreducible hypersurface of degree $d \geq 2$ defined *over* K*, with a singular locus of dimension* t*. If*

$$
n \geq \frac{1}{k(d)+1} {k(d)+d \choose d} + k(d)+t+1,
$$

then X *is unirational over an extension of* K *.*

This result has been rediscovered in [\[5\]](#page-17-3), although with a worse lower bound for n . Our aim is to prove the following extension of Theorem [5.4.](#page-16-0)

THEOREM 5.5. Let $\mathscr{X} \to W$ be a family of hypersurfaces of degree $d \geq 2$ in \mathbb{P}^n , with W being irreducible, unirational of dimension r. Assume that if $w \in W$ is the generic *point, then* X_w *is irreducible with a singular locus of dimension t. If*

(12)
$$
n > k(d) + \frac{1}{k(d) + 1} \left[\binom{d + k(d)}{k(d)} d^{r} - 1 \right] + t + 1,
$$

then X *is unirational.*

PROOF. By the hypotheses, up to shrinking W, we may assume that for all $w \in W$, the hypersurface $X_w \subset \mathbb{P}^n$ is irreducible with singular locus of dimension t. Again up to shrinking W, we may assume that there is an $(n - t - 1)$ -plane P in \mathbb{P}^n such that for all $w \in W$, the intersection of X_w with P is smooth. In this way, we get a new family

 $\mathscr{X}' \to W$ of hypersurfaces of degree d in \mathbb{P}^{n-t-1} such that for all $w \in W$, X'_w is the intersection of X_w with P.

Taking into account [\(12\)](#page-16-3), by Section Lemma [4.5,](#page-11-0) up to shrinking W , we may assume there is a section s of $F_{k(d)}(\mathcal{X}') \to W$. Note that for all $w \in W$, X'_{w} is smooth, and therefore, X_w is smooth along $s(w)$. Then, by Theorem [5.3,](#page-16-2) for all $w \in W$, X_w is $s(w)$ -unirational. Thus, by applying Roth's Criterion [5.2,](#page-15-1) the assertion follows.

We notice that if $d = 2$, then Theorem [5.5](#page-16-1) is basically the main result of [\[3\]](#page-17-4).

FUNDING. – Ciro Ciliberto is a member of GNSAGA of INdAM and he acknowledges support from the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006.

REFERENCES

- [1] C. Ciliberto, Osservazioni su alcuni classici teoremi di unirazionalità per ipersuperficie e complete intersezioni algebriche proiettive. *Ricerche Mat.* **29** (1980), no. 2, 175–191. Zbl [0478.14041](https://zbmath.org/?q=an:0478.14041) MR [632207](https://mathscinet.ams.org/mathscinet-getitem?mr=632207)
- [2] A. Comessatti, Intorno ad un classico problema di unisecanti. *Boll. Un. Mat. Ital. (2)* **2** (1940), 97–104. Zbl [66.0797.02](https://zbmath.org/?q=an:66.0797.02) MR [2942](https://mathscinet.ams.org/mathscinet-getitem?mr=2942)
- [3] F. Conforto, Su un classico teorema di Noether e sulle varietà algebriche transformabili in varietà con infinite quadriche. *Atti Accad. Italia. Rend. Cl. Sci. Fis. Mat. Nat. (7)* **2** (1941), 268–281. Zbl [67.0609.03](https://zbmath.org/?q=an:67.0609.03) MR [17968](https://mathscinet.ams.org/mathscinet-getitem?mr=17968)
- [4] J. Harris, *[Algebraic geometry. A first course](https://doi.org/10.1007/978-1-4757-2189-8)*. Grad. Texts in Math. 133, Springer, New York, 1992. Zbl [0779.14001](https://zbmath.org/?q=an:0779.14001) MR [1182558](https://mathscinet.ams.org/mathscinet-getitem?mr=1182558)
- [5] J. Harris – B. Mazur – R. Pandharipande, [Hypersurfaces of low degree.](https://doi.org/10.1215/S0012-7094-98-09504-7) *Duke Math. J.* **95** (1998), no. 1, 125–160. Zbl [0991.14018](https://zbmath.org/?q=an:0991.14018) MR [1646558](https://mathscinet.ams.org/mathscinet-getitem?mr=1646558)
- [6] U. Morin, Sull'insieme degli spazi lineari contenuti in una ipersuperficie algebrica. *Atti Accad. Naz. Lincei Rend. (6)* **24** (1936), 188–190. Zbl [0015.37002](https://zbmath.org/?q=an:0015.37002)
- [7] U. Morin, Sull'unirazionalità dell'ipersuperficie algebrica di qualunque ordine e dimensione sufficientemente alta. In *Atti Secondo Congresso Un. Mat. Ital., Bologna, 1940*, pp. 298–302, Ed. Cremonese, Rome, 1942. Zbl [0026.42401](https://zbmath.org/?q=an:0026.42401) MR [20272](https://mathscinet.ams.org/mathscinet-getitem?mr=20272)
- [8] A. PREDONZAN, Alcuni teoremi relativi all'unirazionalità di ipersuperficie algebriche non generali. *Rend. Sem. Mat. Univ. Padova* **31** (1961), 281–293. Zbl [0122.38805](https://zbmath.org/?q=an:0122.38805) MR [140994](https://mathscinet.ams.org/mathscinet-getitem?mr=140994)
- [9] L. Roth, Metodi ed esempi nella teoria delle varietà unirazionali. *Boll. Un. Mat. Ital. (3)* **5** (1950), 330–336. Zbl [0039.16501](https://zbmath.org/?q=an:0039.16501) MR [39302](https://mathscinet.ams.org/mathscinet-getitem?mr=39302)
- [10] F. Russo, *[On the geometry of some special projective varieties](https://doi.org/10.1007/978-3-319-26765-4)*. Lect. Notes Unione Mat. Ital. 18, Springer, Cham; Unione Matematica Italiana, Bologna, 2016. Zbl [1337.14001](https://zbmath.org/?q=an:1337.14001) MR [3445582](https://mathscinet.ams.org/mathscinet-getitem?mr=3445582)
- [11] D. Sacchi, *Unirationality of varieties described by families of hypersurfaces and quadratic line complexes*. Ph.D. thesis, University of Rome Tor Vergata, 2018.
- [12] J. G. SEMPLE, On representations of the S_k 's of S_n [and of the Grassmann manifolds](https://doi.org/10.1112/plms/s2-32.1.200) $G(k, n)$. *Proc. London Math. Soc. (2)* **32** (1931), no. 3, 200–221. Zbl [57.0849.08](https://zbmath.org/?q=an:57.0849.08) MR [1575987](https://mathscinet.ams.org/mathscinet-getitem?mr=1575987)

Received 5 June 2022, and in revised form 3 February 2023

Ciro Ciliberto Dipartimento di Matematica, Università di Roma Tor Vergata Via O. Raimondo, 00173 Roma, Italy; cilibert@axp.mat.uniroma2.it

Duccio Sacchi Via Filippo Turati 90, 53014 Monteroni d'Arbia, Siena, Italy; ducciosacchi89@gmail.com