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1. INTRODUCTION

In this paper, we consider the following variable exponent double phase system with
nonlinear boundary conditions:

—div (|Vur [P1®72Vuy + pg (x)|Vauy [0 72V

= filx,uy,uz, Vuy, Vus) inQ,
(1) —div (|Vuz P20 72V U, + po (x)[Vua |12 72V,
‘ = fz(x,ul,uz,Vul,Vuz) in Q,

(IVur[P1O72V 0y + g () [Vuy [ 72Vuy ) - v =g (x.u1,u2)  on IR,
(|Vu2|p2(x)_2Vu2 +/L2(x)|Vu2|q2(x)_2Vu2) -v=gs(x,uy,up) onas2,

where @ € RN, N > 2, is a bounded domain with Lipschitz boundary 02, v(x)
denotes the unit normal of Q at the point x € 3Q, fi: 2 x R x R x RY xRN — R
and g;: 902 x R x R — R are Carathéodory functions for i = 1, 2 that satisfy local
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growth conditions (see hypothesis (H2)) and we suppose the following assumptions on
the exponents and the weight functions:

(H1) pi,qi € C(Q) such that 1 < p;(x) < N and p;(x) < gi(x) < p}(x) for all
x € Q, aswell as 0 < u; () € L®(R2), where p; is given by

Npi(x)

for x € Q,
N — pi(x)

pi(x) =

fori =1,2.

The operator in (1.1) is the so-called variable exponent double phase operator given by
div (|Va; [PFO72Vu; + (0| Vit [0 72V;), u e wh(Q),

defined in a suitable Musielak—Orlicz Sobolev space Wi (R),i = 1,2, which has
been recently studied in Crespo-Blanco—Gasiriski—Harjulehto—Winkert [8]. The study
of such operators goes back to Zhikov [39] who introduced for the first time energy
functionals defined by

a)|—>/ (IVo|? + a(x)|Vw|?) dx.
Q

Such functionals have been used to describe models for strongly anisotropic materi-
als in the context of homogenization and elasticity. It also has several mathematical
applications in the study of duality theory and of the Lavrentiev gap phenomenon; see
Zhikov [40,41].

The main objective of our paper is to establish a method of sub- and supersolution in
terms of trapping region of the system (1.1) under very general local structure conditions
on the nonlinearities involved. As an application, we present some existence results to
the system (1.1) under very mild and easily verifiable conditions on the data. In addition,
we will study the corresponding Dirichlet system and get a sub-supersolution approach
including some existence results. The novelty of our paper is the combination of the
variable exponent double phase operator with fully coupled convective right-hand sides
along with coupled nonlinear boundary functions. To the best of our knowledge, such
general systems have not been treated in the literature, even if we replace our operator
with the p;-Laplacian; thatis, u; = O fori = 1, 2.

Our paper is motivated by the work of Carl-Motreanu [5] who studied the elliptic
system

—Apui = fi(x,u,u2,Vu,Vuz) inQ, u; =00ndQ (i =1,2),

where they obtain extremal positive and negative solutions of the system by combining
the theory of pseudomonotone operators, regularity results and a strong maximum
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principle. On the contrary, in the present paper, we obtain existence and multiplicity
results by using neither regularity theory nor strong maximum principle, which are
not available in our setting. The method of sub- and supersolution is a very powerful
tool and has been used in several works: here, we mention, for example, the papers of
Carl-Le—Winkert [4], Carl-Winkert [6] and Motreanu—-Sciammetta—Tornatore [32];
see also the monographs of Carl-Le [2] and Carl-Le—Motreanu [3].

We also point out that the right-hand sides in (1.1) depend on the gradients of the solu-
tions. Such reactions are said to be convection terms. The difficulty in the study of such
terms is their nonvariational character; that is, the standard variational tools cannot be
applied, even in the scalar case (i.e., for a single differential equation). For systems with
convection terms, only few works are available: we mention the papers of Guarnotta—
Marano [24,25], Guarnotta—Marano—Moussaoui [27] and Faria—Miyagaki—Pereira [18].
Neumann systems without gradient dependence on the nonlinearity can be found in
Chabrowski [7] and de Godoi—-Miyagaki—Rodrigues [11]. Finally, we mention some
works pertaining equations exhibiting convection terms and subjected to Dirichlet or
Neumann boundary conditions: we refer to Averna—Motreanu—Tornatore [ 1], de Araujo—
Faria [10], Dupaigne—Ghergu—Réadulescu [13], El Manouni—-Marino—Winkert [14],
Faraci—-Motreanu—Puglisi [ 16], Faraci—Puglisi [ 17], Figueiredo—Madeira [ 19], Gasifiski—
Papageorgiou [22], Gasinski—Winkert [23], Guarnotta—Marano—Motreanu [26], Liu—
Motreanu—Zeng [30], Marano—Winkert [3 1], Motreanu—Tornatore [33], Motreanu—
Winkert [34], Papageorgiou—Rédulescu—Repovs [35] and Vetro—Winkert [37].

The paper is organized as follows. In Section 2, we present the main preliminaries,
including the properties of the Musielak—Orlicz Sobolev space, the double phase opera-
tor and the definition of trapping region (see Definition 2.5). Section 3 is devoted to our
abstract existence result for given pairs of sub-supersolution (see Theorem 3.2), while in
Section 4, we present several existence results with a construction of sub-supersolution
(see Theorems 4.1 and 4.2). Finally, in Section 5, we consider the corresponding Dirich-
let systems including the method of sub-supersolution and some existence results (see
Theorems 5.3 and 5.4).

2. PRELIMINARIES

In this section, we recall some facts about variable exponent Lebesgue spaces, Musielak—
Orlicz Sobolev spaces and properties of the variable exponent double phase operator.
We refer to the books of Diening—Harjulehto—Histo—Rzic¢ka [12] and Harjulehto—
Hasto [28]; see also the papers of Crespo-Blanco—Gasiski—Harjulehto—Winkert [8],
Fan—Zhao [15] and Kovacik—Rakosnik [29].
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Let © be a bounded domain in RY with Lipschitz boundary 92, and let
C+(Q):={heC(Q):1<h(x)foral x € Q}.

For any r € C4(Q), we define

r~ =minr(x) and r* = maxr(x).

xeQ xeQ

Let M(2) be the space of all measurable functions u: 2 — R. For a given r € C4 (),
the variable exponent Lebesgue space L” 0(Q) is defined as

L7OQ) = {u e M(Q): [Q "™ dx < oo}

equipped with the Luxemburg norm given by

r(x)
||M||r(.) = inf {/\ >0: [ (ll;l\—l) dx < 1}
Q

We know that (L”O(Q), || - [|l-() is a separable and reflexive Banach space. Similarly,
we introduce the variable exponent boundary Lebesgue space (L") (dQ), || - [I;¢).62)
by using the (N — 1)-dimensional Hausdorft surface measure o.

Let r’ € C4 () be the conjugate variable exponent to 7; that is,
1 4 I
r(x) r'(x)

We have that L"O(Q)* = L™ ©(Q) and Hélder’s inequality holds true; namely,

1 forall x € Q.

1 1
; uvldry < | -—+ - luellrey lvlley < 2lllre vl

for all u € L7O() and for all v € L O(). Furthermore, if ry, r, € C4(Q) and
r1(x) < ra(x) for all x € Q, then we have the continuous embedding

L720(Q) — L"O(Q).

Next, we are going to introduce Musielak—Orlicz Lebesgue and Sobolev spaces. To
this end, suppose hypothesis (H1), and for i = 1, 2, let #;: Q x [0, 00) — [0, o0) be
the nonlinear function defined by

Hi(x, 1) = 171 4 p(x)p9i ™),
The Musielak—Orlicz space L¥i (Q) is defined by

L*(Q) = {u e M(Q) : pg, (u) < +00}
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equipped with the Luxemburg norm

l[ull g, = inf{r >0: pxi(%) <1},

where the modular function pg, is given by

pac () = [ G = [ (17 (o) g

We have the following relation between the norm || - ||, and the modular pg, (see
Crespo-Blanco—Gasifiski—-Harjulehto—Winkert [8, Proposition 2.13]).

ProrosiTioN 2.1. Let hypothesis (H1) be satisfied. Fori = 1,2, we have the following
assertions:

() Ifu #0, then ||lullg; = A if and only if pg, () = 1.
() |lullge, <1 (resp. > 1, =1)ifand only if ps, (u) < 1 (resp. > 1, = 1).
+ —_

q; p;
(i) If ullge; <1, then |lull g, < pse; (u) < |[ullg,.

- +
@) I lullse, > 1. then [l < pae, () < ull %,
) lull, — 0 if and only if pse, (u) — .
(vi) |lullg, — +oo if and only if pge, (u) — +o00.
(vii) ||ullge, — 1 if and only if pg,; (u) — 1.
(viil) Ifun — u in L% (Q), then pg, (un) — pae; (u).
The Musielak—Orlicz Sobolev space W -¥i (Q) is defined by
Wi (Q) = {u e L*(Q) : |Vu| € L*1(Q)}
equipped with the norm

Vel 3e; + lloell e; -

lleell 1,56

where ||Vul| g, = || |[Vul ||, andi = 1, 2. The completion of C§°(2) in WL (Q)
is denoted by W,"* (). We know that L% (), W% (), W-#i (Q) are reflex-
ive Banach spaces (see Crespo-Blanco—Gasiniski-Harjulehto—Winkert [8, Proposi-
tion 2.12]).

Next, we recall some embedding results for the spaces L*i(R2), WO1 Hi (Q), WH¥i(Q)
(see Crespo-Blanco—Gasinski—Harjulehto—Winkert [8, Proposition 2.16]).

ProposiTiON 2.2. Let hypothesis (H1) be satisfied, and let

Npi(x) and  (pi)a(x) = (N = 1) pi(x)

_ orall x € Q
N = pi(0) N T

pi(x) =
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be the critical exponents to p; fori = 1,2. Then, the following embeddings hold for

i=1,2:

i) LH(Q) > L7O@), W (Q) = WO@), Wy 7 (@) < W)
are continuous for all ri € C(Q) with 1 < r;(x) < p;(x) for all x € Q;

() WYHi(Q) s L"1O(Q)and Wol"%i (Q) = L"(Q) are compact forr; € C(Q)
with 1 < ri(x) < pf(x) forall x € Q;

(i) WL (Q) — LO0RQ) and Wy (Q) < L"1O(Q) are compact for r; €
C(Q) with 1 < ri(x) < (pi)«(x) forall x € Q;

(iv) L9%O(Q) — L% (Q) is continuous.
Fori = 1,2, let A;: Wh¥i (Q) — Wi (Q)* be defined by

Q2.1) (Ai (i), vi) e, = / (Vi [P O72 V5 4 i (0)| Vi | 972V ) - Vo d
Q

for all u;, v; € Wh%i(Q), where (-, - ) g, is the duality pairing between W 1-%i (Q)
and its dual space W 1-#i (Q)*. The operator A;: W% (Q) — Wi (Q)* has the
following properties (see Crespo-Blanco—Gasinski—Harjulehto—Winkert [8, Proposi-
tion 3.4]).

ProposiTiON 2.3. Let hypothesis (H1) be satisfied. Then, the operators A; defined in
(2.1) are bounded, continuous, strictly monotone and of type (S+); that is,

Up = uin WH%(Q) and limsup (Ajun, un —u) <0
n—odo

imply u, — u in WhH%i (Q).
Next, we define the product spaces
£ = L*1(Q) x L72(Q),
LP1 20 (Qy .= LP1O(Q) x LP2O(Q),
L11O:220(Q) .= L910(Q) x L22O(Q),
L”‘(')’pZ(')(aQ) = Lm(-)(ag) x LI’Z(')(GQ),
W= whHQ) x wh¥(Q)

equipped with the norms

lulle = llullse, + llullze,
lullpr0.0200q) = lullpy ) + 1ullpacy

||“||L<11<-),f12(~>(g) = ||“||q1(-) + ||“||q2(-),
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ull L pro.m20 00y = Iullp 0,00 + 140,00

el = leells, g, + llulls,ze,

respectively. Based on Proposition 2.2, we have the compact embeddings
W L, W LPI(‘)sPZ(‘)(Q)’

22) W s qu(-),qz(-)(Q), W s LPl(')=P2(')(aQ).

DEerINITION 2.4. We say that (11, u,) € W is a weak solution of problem (1.1) if
/ (|Vu1|p1(x)_2Vu1 + ul(x)|Vu1|ql(x)_2Vu1) - Vv dx
Q
(2.3) —/ g1(x,u1,uz)vy do
aQ

2/ Ji(Ge uq,uz, Vug, Vua)ug dx
Q
and
/ (|Vu2|p2(x)_2Vu2 + pLz(x)|Vu2|q2(x)_2Vu2) -Vuydx
Q
2.4) —/ ga(x,uy,uz)vydo
Q2

= / Sa(x,ur,uz, Vuy, Vua)vy dx
Q
hold true for all (v1, v2) € W and all the integrals in (2.3) and (2.4) are finite.
Next, we introduce the notion of weak sub- and supersolution to (1.1).

DEerINITION 2.5. We say that (u,,u,), (41, u2) € W form a pair of sub- and superso-
lution of problem (1.1) if u; < u; a.e.in Q2 fori = 1,2 and

/Q UVEIV)I(X)_ZVEI + “l(x)lvﬂﬂql(x)_zvﬂl) - Vo dx
- / fl(xvﬂly wa, Vﬂl, sz)vl dx
Q
—/ g1(x,uy, wr)v; do
(2.5) %2
+ /Q (IVi, P22V u, 4 15 (x)[Vity |29 72V, - Vvy dx

— / Ja(x, w1, u,, Vi, Vu,)vp dx
Q

—/ g2(x, wi,uy)v2do <0
aQ
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and
/ (IVity [P1972Viy + g (x)| Vi |12 Vi) - Vg dx
Q
—/ fi(x,uy, wa, Viry, Vwy)vy dx
Q
—f g2(x,uq, wy)vy do
(2.6) @

+ / (IVit2|P2 972V, 4 115 (x) | ViR | 25 72Vit,) - Vu, dx
Q

—/ fo(x,wy, ua, Vwy, Vi) vy dx
Q

—/ g2(x, wy,Uz)v2do >0
Q

forall (vi,v2) € W,vq,v2 > 0a.e.in Q2 and forall (w, w,) € Wsuchthaty; <w; <u;
fori = 1,2 and with all integrals in (2.5) and (2.6) being finite.

If u = (uy,u,), u = (4, uz) is a pair of sub- and supersolution, then the order
interval [u, u] = [u,, u1] x [u,, U2] is called trapping region, where

u;,u;] = {u e wh¥i(Q) ‘u; <u <ujae.in Q}

We now recall some definitions that we will use in the sequel (see Carl-Le—Motreanu
[3, Definitions 2.95 and 2.96]).

DerINITION 2.6. Let X be a reflexive Banach space, X * its dual space, and denote by
(-,-) its duality pairing. Let A: X — X™*. Then, 4 is called

(i)  coercive if
(Au, u)

lim
lullx =00 ||ullx

= +00;

(i) completely continuous if u,, — u in X implies Au, — Au in X*;
(iii) demicontinuous if u, — u in X implies Au, — Au in X*;

(iv) pseudomonotone if

U, ~uin X and limsup (Au,,u, —u) <0
n—>oo

imply

liminf (Au,,u, —v) > (Au,u —v) forallv € X;
n—>oo

(v)  to satisfy the (S4)-property if

U, —~uinX and limsup (Au,,u, —u) <0
n—oo

imply ¥, — u in X.
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REmARKk 2.7. In the context of Definition 2.6, any completely continuous operator
is compact and any linear compact operator is completely continuous (see Zeidler
[38, Proposition 26.2]).

The following helpful lemma can be found, for example, in Francu [20, Lemma 6.7]
(see also Zeidler [38, Proposition 27.6]).

LemMma 2.8. Let X be a reflexive Banach space, and let A: X — X* be a demicontin-
uous operator satisfying the (S )-property. Then, A is pseudomonotone.

The next lemma is recently obtained in Gambera—Guarnotta [21, Lemma 2.2].

LemMmA 2.9. Let X be a Banach space, A: X — X* of type (S4+) and B: X — X*
compact. Then, A + B is of type (S4) as well.

We are going to apply the following surjectivity result for pseudomonotone operators
(see, for example, Papageorgiou—Winkert [36, Theorem 6.1.57]).

TueoOREM 2.10. Let X be a real, reflexive Banach space, let A: X — X* be a pseu-
domonotone, bounded and coercive operator and b € X*. Then, a solution of the
equation Au = b exists.

Finally, for any s € R, we denote s+ = max{+s, 0}, which means s = s — s_
and |s| = s+ + s_. For any function v: Q2 — R, we denote v1(-) = [v(})]+.

3. SUB-SUPERSOLUTION APPROACH

In this section, we are going to prove a sub- and supersolution existence result for the
system (1.1) under very general structure conditions on the data.
Letu = (uy,u,), u = (i1, u2) be a pair of sub- and supersolution of problem (1.1)
in the sense of Definition 2.5. We suppose the following assumptions.
(H2) Fori = 1,2, the functions f;: 2 x R x R x RY xRN - R and g;: 02 X R x
R — R are Carathéodory functions satisfying the following conditions:
(i) thereexist¢; € LPi (')(Q) and ¢; > 0 such that

P (x)

| fi(x, 51,52, 61, E2)| < @1(x) + 1 (|61 D71 4 || 1),

r1(x)

| 251,52, 61, 62)] < 92(0) + e2(E1] 2+ [£2]7297T),
fora.a. x € Q, forall s = (s1,52) € [u(x),u(x)] and for all § € RV;

(i) there exist ¥; € L? ) (3Q) such that
|g1(x.51,82)] < ¥1(x) and  [ga(x,s1.52)| < Y2 (),

for a.a. x € Q and for all s = (51, 52) € [u(x), u(x)].
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RemARK 3.1. Under hypotheses (H1) and (H2), for any (u1,uz) € ‘W N [u, u], all the
integrals appearing in (2.3) and (2.4) are finite.

Our main theorem in this section reads as follows.

THEOREM 3.2. Let hypotheses (H1) and (H2) be satisfied. If [u, u] is a trapping region
of (1.1), then the system in (1.1) has a solutionu € W N [u, u].

Proor. We split the proof into three steps.

Step 1: Preliminaries. First, we introduce truncation operators Ty: W%k () —
WLk (Q) for k = 1,2 defined by

up(x) ifug(x) > ug(x),
(3.1) Tie(ui)(x) = § up(x)  if ug (x) < ug(x) < ug(x),
up(x)  ifug(x) < ug(x).

We know that Tj: W%k (Q) — W%k (Q) are continuous and bounded. Next, we
introduce the cut-off functions b;: Q2 x R — R for k = 1, 2 defined by

(s — g (x) =1 if s > g (x),
(3.2) br(x,s) =30 ifug(x) <s <ug(x),
—(uy (x) — )OI if s <y (x).

It is clear that by are Carathéodory functions fulfilling the growth
(3.3) b (x.,$)| < Pic(x) + Gl | !

fora.a. x € Q and for all s € R, where ¢y, € L% (Q) and & > 0. Moreover, we have
the following estimate:

(3.4) / b (x, up)ug dx > &k/ |uk|qk(x) dx —I;k
Q Q

for all u € LI%O(Q), where ay, 5k are some positive constants. From the growth
condition (3.3), we know that the corresponding Nemytskij operators By: L% () ()
— L9k (R2), defined by By (ux)(x) = br(x,ur(x)), are well defined, bounded and
continuous for k = 1, 2. Hence, the operator Bu = (B;(u1), B2(u2)) is also well
defined. By virtue of (2.2) and Remark 2.7, we know that

B:W — qu(')’qZ(')(Q) — L‘Il(')#]z(')(g)* s W*

is bounded and completely continuous.
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Let A = (A1, A2) with A > 0 and set
AB(u) = (A1 B1(u1), A2 B2 (u2)).
Furthermore, we set
F (u) = (F1(Tvuy, Tauz, V(Tiuy), V(Touz)), Fa(Tiuy, Touz, V(Tiuy), V(T2uz))),

where Fj denote the Nemytskij operators related to fi, which are well defined for
k = 1,2 since the ranges of T}, T, lie within the trapping region [u, u]. Therefore, due
to the growth condition in (H2) (i) and the compact embedding W < LP10:P20)(Q)
(see (2.2)), we have that

F:W — L2 OP20(Q)* s W*
is bounded and compact. For the boundary term, we define
9§ (u) = (G1(Thuy, Truz), Go(Tyuy, Truz)),
where Gy are the Nemytskij operators generated by gx. We know that
Gu): W LP1O:220(Q) — [ P10:220(§Q)* < W*

is well defined, completely continuous and bounded, due to (H2) (i), the compactness
of the trace operator (see (2.2)) and Remark 2.7.

Finally, let A (1) = (A1(u1), A2(u2)) where Ay are defined in (2.1). Because of
Proposition 2.3, it is clear that 4: W — ‘W™ is bounded, continuous, strictly monotone
and of type (S4+). We have the representations

(A(u) Z/ |Vuk|pk(x) 2Vug 4 e (x)| Vg |76 = 2Vuk) Vg dx,
(B(u) Z/ By (w1, u2, Vur, Vuo)vg dx,
(F (), v Z/ Fie(Tyuy, Tauz, V(Tyuy), V(Tauz))vg dx,

(&), v) Z/ Gi(Thuy, Touz)vg do

forall u,v € ‘W.
Using the notations above, u € ‘W N [u, u] is a solution to (1.1) if and only if

(A(u), v)W = (5‘7(u), v)w + (ﬁ(u), v)w forallv € W.
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Step 2: Auxiliary problem. Let 7 (u) = (Tyuy, Tou;), where Ty are the truncation
operators defined in (3.1). Now, we consider the auxiliary problem given in the form

uew: (A(u) + AB(u), v)W = (?(u), v)w + (ﬁ(u), v)w forallv e W,
where A = (A1, A,) with A > 0 to be specified later. Let ®: W — ‘W* be given by
D(u) ;= A) + ABwm) — F(u) —§).

First, we know that ® is bounded and continuous. Since + is of type (S ) (see Propo-
sition 2.3) and B, ¥, ¢ are compact (see Remark 2.7), we can apply Lemma 2.9 to get
that @ is of type (S+) as well. Lemma 2.8 then implies that ® is pseudomonotone.

Next, we are going to show that ®: W — W* is coercive. To this end, using
hypothesis (H2) (i) and Young’s inequality, we estimate

|($(”)’”)w|

2
< ng | fe(x. Tour. Totz. V(Tyun). V(Torr)) [ | dx
k=1

Po(x)

S/Q[<P1|M1|+Cl(|V(T1u1)|p1(x)_l|u1|+’V(T2M2)|"/1(")|M1|)]dx

r1(x)
+ o [@2 2] +c2(|V(T1u1)| 72 Jua |+ |V (Touz) |p2(X)_1 |ua)] dx
3.5)

S ([t [ )
Q Q
2
+2)° (g/ |V (Treug ) |PF ™) dx + Cg,k/ |y |PE>) dx)
Q Q

2
<> (@epsec (IVurl) + 2Cei + Dpse, (i) + Cr),

for suitable Cy depending on ¢ and C, x > 0 depending on both ¢ and py.
Next, we consider the operator §. To this end, for any uy; € L# (), we define

qf  if Jukllse, < 1.
me(ue) =4~
pr if flugllse =1,

and observe that n; > 1 for all uy € L% (Q). Using the definition of 7y along with
(H2) (i1), Holder’s inequality, the embedding inequality

lullpe .00 < Skllulli,ze,
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(cf. Proposition 2.2 (iii)) and Young’s inequality gives
1(8G). )y |
2

SZ/ |gic(x. Trewge) |Jux | do
fe=170%

2
< d
_;[mwkwu o

2
<2 1kl .00 1kl .00
k=1

2
<2 Sellvaly .00l
k=1
2

= > Ciclllurlle, + I Vuxllze,)
k=1

(3.6)

(8]

< 37 (e (e 7“0+ [ Va6 VD) - € e (€5 ) 40T D) )

~
Il
—-

[e(pst, ur) + s (IVurel)) + Cec]

M

=

~
Il
—-

for suitable positive constants Cy depending on ’s, while Cg g, ég,k also depend
on &. On the other hand, we have

/Q g |7 %) dx > g pge, (ur) — by

for suitable ay, l;k > 0. Using this along with (3.4), we get
(A(u) + AB(u), u)w

2

= Y (oo (9ukl) + Ade [ g ax - 25y)
3.7) = 2

N

(36, (IVur|) + axarrpge, (ur) — bdaxh — bid).

b

Combining (3.5), (3.6) and (3.7) together, we obtain

2
3.8) (P00:10)y =D [(1=30)p30,(IVuk]) + (@A —2Ce=1=e)page (ur)

k=1 ~
bkak)u bkl Ck — Ce,k]~
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Now, we choose
ZCs,k +14+¢

1
e<— and A > -
3 ming drdy

in (3.8) and use the fact that

e (i) + pae, (IVug]) — oo

if and only if |[ug||1,9, — oo (see Proposition 2.1(vi)). Hence, we infer that
(CID(u),u)W — 400 as ||u]|w — oo.

Since ® is bounded, continuous, pseudomonotone and coercive, the main theorem
on pseudomonotone operators (see Theorem 2.10) implies the existence of u € W such
that ®(u) = 0.

Step 3: Comparison. It remains to prove that u € [u, u]. We set
(=) = (1 — 1)+, (U2 — 2)4).
From ®(u) = 0, besides recalling the definitions of ¥, 9, we deduce

0= (Ay(u1) + A1 B1(uy), (uy — 171)+);gl
— (Fi1 (1, Touz, Vity, V(Touz)) + G (1, Tarta), (1 —i81)+) g -
0 = (A2(u2) + A2B2(u2). (U2 — 2)+) 4,
_(F2(T1”1aﬁ2aV(Tlul)aVl—lZ)“‘GZ(Tl”l’ﬁZ)?(MZ_EZ)-!—)J(z-

(3.9)

(3.10)

On the other hand, since u is a supersolution to (1.1), it turns out that

2
Z (ArGrr), (ug — L7k)+)ggk

@3.11) =t _ _ _
> (Fy (11, Touz, Viiy, V(Touz)) + G (i1, Tauz), (ug — u1)+>]g1

+ (F(Tyuy, iz, V(Thuy), Vita) + Go(Tyuy, z), (uz — ﬁz)+)J€2-

Hence, from (3.9), (3.10) and (3.11), along with the monotonicity of Ay (see Proposi-
tion 2.3), we obtain

]

Ak (B (ug), (U — ug)+) 3,

~
Il

(3.12) !

< ) (Ap(ug) — Ag(up), (ug — ug)+) 5, < 0.

2
=1

k
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According to the definition of By (see (3.2)), (3.12) implies
/Q(uk - L_tk)‘_lf(x) dx <0.

Thus, ux <uy a.e.in Q. Similarly, we show u;, < uy a.e. in 2 by applying the definition
of subsolution. Therefore, we have shown that u € [u, #] and so, by the definition of
the truncations in (3.1) and the functions by in (3.2), we see that u € ‘W turns out to
be a weak solution of the system (1.1) lying within [u, u]. ]

4., SUB- AND SUPERSOLUTIONS

This section is devoted to the construction of pairs of sub- and supersolution for the
system (1.1). Following ideas of Guarnotta—Marano [24] (see also the papers of D’Agui—
Sciammetta [9] and Motreanu—Sciammetta—Tornatore [32] for a single equation), we
prove the existence of infinitely many solutions to (1.1) under suitable sign conditions
on the nonlinearities, exhibiting an oscillatory behavior. We suppose the following
assumptions on the Carathéodory functions f;: Q x R x R x R¥ x RV — R and
giidQ2xRxR —>Rfori =1,2.

(H3) There exist h;,k; € R such that h; < k; and
f1(x,k1,52,0,6) <0< fi(x,hy,52,0,6) foraa x € Q,

g1(x,ky1,52) <0< g1(x,h1,s2) for a.a. x € 09,
fa(x,s1,k2,61,0) <0< fo(x,s1,h2,6,0) foraa. x € Q,
g2(x,51,k2) <0 < ga(x,51,h2) fora.a. x € 0L,

for all (sq,52) € [h1,k1] X [h2, k] and for all § € RV,

We have the following existence result.

THeOREM 4.1. Let hypotheses (H1) and (H3) be satisfied. Suppose that (H2) is fulfilled
Jora.a. x € Q, forall s; € [h;, k;] and for all &; € RN, i = 1,2. Then, there exists a
weak solution (uy,us) € W of system (1.1) satisfying h; < u; <k; fori =1,2.

Proor. We sety; := h; and u; := k;. By (H3), we have u; < u;. Forall (vi,v;) € W
with vy, v2 > 0 a.e. in Q and for all (wy, wy) € W such that u; < w; < u;, we get

[ 91789729, 401 (019, 1929, - Vo
Q
_/ fl(xvﬂlanJVﬂlavwz)vl dx

Q

—/ gi1(x,uy, wr)vy do
F1)
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+ [ (V1172972V1, + a0V 2029, ) - Vs
—/Qfz(X,wl,Ez,le,Vﬂz)Uzdx

- / g2(x, w1, uy)vpdo
0Q

—/ fl(x,zl,wz,Vzl,sz)vldx—/ g1(x,u;, wy)vy do

Q 0Q

_/ fz(x,wl,yz,le,ng)vzdx—/ g2(x, w1, uy)vado < 0.
Q 0Q

Analogous computations concerning iy, i, prove that (u,, u,) and (%, #>) form a pair
of sub- and supersolution of problem (1.1). Then, Theorem 3.2 implies the existence
of a weak solution (u,u2) € W of (1.1) satistying u; <u; <u; fori =1,2. [ ]

If we strengthen our assumptions, we can obtain more solutions. For this purpose,
we assume the following hypothesis.

(H4) Forall n € N, there exist 2", k™ € R such that

either 7" < k™ <p"TV or KTV < p™ <™

4

and
fi (x k(n , 52,0, “52) 0< f( h(ln , 52,0, 52) fora.a. x € Q,
(x k(n),sz) <0< gl(x,hgn),sz) fora.a. x € 992,
fz(x 51, k 51, ) 0< fz(x sl,hg’),él,O) fora.a. x € 2,
g2 (x sl,k(”)) 0< gz(x,sl,hgn)) fora.a. x € 092,

for all (s1,52) € [h(ln),kgn)] X [hg"),kén)], for all § € RN and foralln € N.

THEOREM 4.2. Let hypotheses (H1) and (H4) be satisfied. Suppose that, for alln € N,
(H2) is fulfilled for a.a. x € Q ,forall s; € [h(") k(")] and for all & € RN . Then, there
exists a sequence {(u (1"), U, ))} C W of pairwise distinct solutions to problem (1.1).
Moreover, ugn)fus-n“L )(resp., ugnﬂ)fugn))prowdedkl(-n) hl("H) (resp., kl(-"H) hg"))

foralln € N.

Proor. It suffices to apply Theorem 4.1 for all n € N, with h; = hf") and k; = ki("),

and observe that
ul(")(x) Ski(n) <hl(n+1) < ul("H)(x)

for a.a. x € 2, provided kl.(") < hl(nH) (the other case works similarly). [
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The following example satisfies hypotheses (H3) and (H4).

ExampLE 4.3. Let¢; > 0 and p; € L°(2) be such that |p; (x)| < % a.e. in Q. Then,
the functions

1 1
S1(x,51,52,61,8) = sins; + 500552 + Cl|§1|p‘(x)_1 + — arctan | £, |
F14
1 . 1 _
fa(x,51,52,61,6) = 5 sinsy + cos sy + ;arctanléll + ]| P2
. 1
g1(x,s1,52) = sinsy + 5 C08S2 + p1(x)
1 .
g2(x,51,82) = 5 sins; + cossz + pa2(x)

fulfill (H4) (and hence also (H3)). Indeed, one can choose h(ln) = % + 2mn, kg") =
35 4 2mn, Y = 270 and k" = 7 4 27n for all n € N. Since b — +o00 as

n — 00, the sequence of solutions given by Theorem 4.2 diverges at +o00 a.e. uniformly
in €2.

5. THE DIRICHLET PROBLEM

In this section, we want to discuss the situation when we have a Dirichlet boundary
condition instead of a nonhomogeneous Neumann one. We consider the system

—div (|Vu [P 72Vuy + pg (x)| Vg [ 072V,)

= fi(x,uy,uz, Vuy, Vuy) in Q,
(5.1) —div (|Vuz P22V, + 115(x)| VU |92 2Vy,)

= fa(x,ur,uz, Vuy, Vus) inQ,

U =uy; =0 on 0%2,

where p;,q;, 1i,i = 1,2 satisfy hypothesis (H1). Instead of ‘W, we consider its subspace
Wo = Wol"%1 X WOI"%2 equipped with the norm induced by the one of W.

DEerINITION 5.1. We say that (11, uz) € Wy is a weak solution to (5.1) if

/ (|Vu1|p1(x)_2Vu1 + ul(x)|Vu1|q1(x)_2Vul) Vv, dx

5.2) Q

:/ Ji(x,uq,uz, Vuq, Vuy)vy dx,
Q

/ (|Vu2|p2(x)_2Vu2 + ;Lz(x)|Vu2|q2(x)_2Vu2) -Vuydx
(5.3) 2

= [ fa(x,u1,uz, Vuy, Vup)vy dx
Q

hold true for all (v1, v2) € Wy and all the integrals in (5.2) and (5.3) are finite.
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The definition of a sub- and a supersolution of problem (5.1) reads as follows.

DErINITION 5.2. We say that (4, u,), (i1, u2) € W form a pair of sub- and superso-
lution of problem (5.1) if u; <0 < u; a.e.in 2 fori = 1,2 and

[ 921719729 g )19, 1102 ) - Vo
—/ Si(x, uy, w2, Vi, Vwo)vg dx
Q
+ / (IVun 272V, + o ()| Vi, |2 72 Vu,) - Vp dx
Q

_/ fz(wilszz’vwlaVEZ)vzdx EO
Q
and

/Q (IVit1 [PrO72Va, 4y (x)| Vit |19 72Viy) - Vg dx
—/;2fl(x,ﬁl,wz,Vﬁl,sz)vldx

+ [ (VIO 4 (0 V02 Vits) - Vs e
—/sz(x,wl,ﬁz,le,Vﬁz)vz dx >0

for all (vy,v2) € Wo, v1,v2 > 0 ae. in € and for all (w;, wz) € W such that u; <
w; < u; fori = 1,2, with all integrals above being finite.

Adapting the proof of Theorem 3.2 with slight modifications, we have the following
result.

THEOREM 5.3. Let hypotheses (H1) and (H2) (i) be satisfied. If [u, ] is a trapping

region of (5.1), then the system in (5.1) has a solution u € Wy N [u, u]

In order to construct a pair of sub- and supersolution, we suppose the following
assumption.

(H5) There exist ¢;, 1/7,~ e LPi0 (2) such that 0 < ¢; < 1/7i, @i # 0, and
i (x) < fi(x, 51,52, E1,6) < Yi(x)
for a.a. x € Q and for all (s1, 52, £1, &) € [0, +00) x [0, +00) x RN x RV,

THEOREM 5.4. Under the hypotheses (H1) and (H5), there exists (uy,uz) € Wy solution
to problem (5.1).
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Proor. Let us consider the auxiliary problems

—div (Va1 P19 72Vuy + pq (0) |V [T 72Vu) = ¢i1(x)  in Q,

(5.4) { —div (| V2| P2D72Vuy + 115 (x)|Vuz | 272Vu,) = ¢o(x) in Q,
Uy =u, =0 on 02,

— div (|Var|P' D72V 4 g (0)|Vur [0 72V ) = g (x) in Q.

(5.5) 4 —div (|Vu2| P22V, + 1o (x)| Vo |29 72Vu,) = ¥ (x)  in Q,

U =u, =0 on 0%2.

According to the Minty—Browder theorem (see, e.g., Corollary 6.1.34 in Papageorgiou—
Winkert [36]) and the embedding Wol"%i (RQ) — LPi (')(Q) (see Proposition 2.2 (ii)),
there exist solutions u = (¥, u,) € Wy and u = (U1, uz) € Wy of (5.4) and (5.5),
respectively. Testing (5.4) and (5.5) with ¥~ and recalling ¢; > 0, we see that u; > 0
a.e. in Q. In addition, ¢; # 0 forces u; # 0. Testing (5.4) and (5.5) with (v — )+,
besides using @; < 1},- and the strict monotonicity of the operators, yields u; < u; a.e.
in Q. Moreover, due to (H5), [u, u] is a trapping region of (5.1). The conclusion thus
follows by applying Theorem 5.3. ]
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