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Abstract. – We consider non-degenerate elliptic systems of the type

� divA.x;Du/ D g.x/ in � � Rn;

where u W �! RN , g 2 L2.�;RN / and x ! A.x; �/ has derivatives in the Marcinkiewicz
class Ln;1.�/ with sufficiently small distance to L1.�/. We prove that every weak solution
u 2W

1;p
loc .�;RN / of the system is such that the nonlinear expression of its gradient V�.Du/ WD

.�2 C jDuj2/
p�2
4 Du is weakly differentiable with D.V�.Du// 2 L2loc.�/. Then, we deduce

higher differentiability properties for u itself and some higher integrability results for its gradient.

Keywords. – Elliptic systems, difference quotient, Marcinkiewicz classes, regularity of second
order.

2020 Mathematics Subject Classification. – Primary 35B65; Secondary 35R05, 35J47,
49N99.

1. Introduction

We consider nonlinear elliptic systems of the type

(1.1) � divA.x;Du/ D g.x/ in �;

where � is a bounded domain in Rn, n > 2, and u W �! RN , N � 1. We suppose
that g 2 L2.�;RN /, while the vector field A W � �RNn ! RNn is assumed to be a
Carathéodory function satisfying, for a.e. x; y 2 � and all �; � 2 RNn, the following
conditions:˝

A.x; �/ � A.x; �/; � � �
˛
�
�
�2 C j�j2 C j�j2

�p�2
2 j� � �j2;(1.2) ˇ̌

A.x; �/ � A.x; �/
ˇ̌
� ˛j� � �j

�
�2 C j�j2 C j�j2

�p�2
2 ;(1.3) ˇ̌

A.x; �/ � A.y; �/
ˇ̌
� jx � yj

�
k.x/C k.y/

��
�2 C j�j2

�p�1
2 ;(1.4)

A.x; 0/ D 0(1.5)

for � 2 .0; 1�, ˛ > 0 and some exponent 2 � p < n.
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Regarding the function k W � ! Œ0;C1/, we assume k 2 Ln;1.�/ such that
distLn;1.k; L1/ is sufficiently small.

Note that, by virtue of a characterization of the Sobolev functions due to Hajlasz [17],
the function k above plays the role of the derivative DxA. Therefore, the condition
(1.4) describes the continuity of A.x; �/ with respect to the x-variable. Obviously, this
is a weak form of continuity since the function k may blow up at some points.

The model case of the systems we have in mind is given by the non-degenerate
system

� div
�
A.x/

�
1C jDuj2

�p�2
2 Du

�
D g.x/ in �;

where the function A.x/ 2 L1.�;RNn/ is weakly differentiable with derivatives
belonging to the Marcinkiewicz class Ln;1 and having sufficiently small distance
to L1.

In the linear case, the study of the second-order regularity of solutions to equations
with discontinuous coefficients goes back to Miranda (see [20, 21]). More recently, in
particular in connection with the regularity of minimizers of functionals of the Calculus
of Variations, the regularity theory for solutions to problems of the type (1.1) has been
extensively studied. For an almost complete treatment, see [19] and the references
therein.

The aim of this paper is to study the second-order regularity for weak solutions
u 2 W

1;p
loc .�;R

N / to

(1.6) � divA.x;Du/ D g.x/ in �:

As for p-Laplacian systems with coefficients differentiable in the spatial variable,
where the higher differentiability of solutions holds in the sense that the nonlinear
expressions V.Du/D V�.Du/ WD .�2C jDuj2/

p�2
4 Du of their gradients are weakly

differentiable, our result will be stated in terms of V.Du/. More precisely, we shall
prove the following.

Theorem 1.1. Letu2W 1;p
loc .�;R

N / be a weak solution of (1.6), under the assumptions
(1.2)–(1.5) with k 2Ln;1.�/. Further assume g 2L2.�;RN /. There exists a positive
constant � D �.n; p/ such that if

(1.7) distLn;1.k; L1/ < �;

then D.V.Du// 2 L2loc.�/. Moreover, the following estimate holds:Z
BR

ˇ̌
D
�
V.Du/

�ˇ̌2
dx

� C

�
1C

1

R2

�Z
B2R

�
�2 C jDuj2

�p
2 dx C c

Z
B2R

jgj2 dx

(1.8)
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for every ball B2R b � and constants C D C.distLn;1.k; L1/; p; ˛; n; N / and
c D c.p; �/.

Obviously, forpD 2, Theorem 1.1 provides directly theW 2;2
loc regularity of solutions

to (1.6). Anyway, inequality (1.8), thanks to the properties of V.Du/ (see Lemma 2.4
below), yields the W 2;2

loc regularity also for 2 < p < n.
Embedding theorem for Nikolskii spaces gives the existence of a fractional derivative

ofDu as shown in Corollary 4.1 and a higher integrability result is achieved whenever
g 2 Lr.�;RN /, for some r > 2 (see Corollary 4.2).

Let us discuss condition (1.7) on the distance of the function k.x/ to L1. First of
all, we notice that it is clearly satisfied if the derivatives of A.x; �/ with respect to x
belong to any subspace of Ln;1 in which L1 is dense and then, in particular, if they
belong to Ln;q with 1 < q <1, since their distances to L1 are null. On the contrary,
we underline that L1 is not dense in Lp;1 for any p > 1.

Secondly, we note that condition (1.7) does not imply the smallness of the norm of
k.x/ in Ln;1 (as shown in the example below) but rather it measures how the function
k.x/ is far from being a regular function. It follows that assuming (1.7) is more general
than considering a condition on the norm and allows us to present different settings of
our result in a unified way.

We also observe that the norm in Ln;1 is not absolutely continuous; namely, a
function can have large norm even if restricted to a set with small measure.

It is worth pointing out that the assumption on the coefficients of the type (1.7)
has been firstly introduced in [9] to study the solvability and the regularity of some
linear elliptic equations with lower-order terms. Moreover, a condition like (1.7) also
turned out crucial in [10] to study the W 2;2 solvability of the Dirichlet problem for
some linear nonvariational elliptic equations as well as in [7, 8] to treat the solvability
of some noncoercive nonlinear operators. See also the recent paper [22].

Now, let us spend some words on the strategy of the proof. We first obtain an a
priori estimate for regular solutions by using the classic difference quotient method (for
details, see, for example, [1, 14,15]). Neverthless, the fact that the coefficients could
have discontinuous derivatives causes, as pointed out above, some difficulties. More
precisely, our arguments result to bound integrals of the typeZ

B�r

k.x/2
�
�2 C

ˇ̌
Du.x/

ˇ̌2�p2 dx
and the estimates we get involve some integrals that have to be reabsorbed to the
left-hand side. It is on this occasion that the hypothesis that the function k 2 Ln;1 has
sufficiently small distance to L1 comes into play.

Once the a priori estimate has been obtained, the proof of Theorem 1.1 consists in
the construction of regularized problems whose regularized solutions u" verify the a
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priori estimate. The conclusion follows by proving that we can pass to the limit in such
estimates.

Notice that second-order estimates are established for solutions to homogeneous
parabolic systems with discontinuous coefficients in [11,12]. We also refer to [6] for
the p-Laplace system with the right-hand side in L2.

We emphasize that here we consider nonlinear elliptic systems with right-hand side
in L2 and, at the same time, with discontinuous coefficients.

We exhibit the following example (see also [10]).

Example 1.2. Consider the following system in the cube Q D .0; 1�n:

�

nX
i;jD1

@

@xi
Aij

@

@xj
u� D g�.x/ � D 1; : : : ; N

with g D .g1; : : : ; gN / 2 L2.�;RN / and

A�ij .x/ D ı
�
ij C

Axixj

jxj2
C '� i; j D 1; : : : ; n;

where A > 0, ' 2 C 1. xQ/, ' � 0 and where ıi;j is the Kronecker delta.
Observe that the matrix of the coefficients verifies all our assumptions for p D 2.

In particular, the derivatives of A�ij belong to Ln;1.Q/. We note that such derivatives
do not belong to the Lebesgue space Ln.Q/ (for more details, we refer to [25]). An
elementary calculation shows that in this case, distLn;1.k; L1/ D A!1=nn , where !n
stands for the Lebesgue measure of the unit ball in Rn. The condition (1.7) is verified
provided the constant A is sufficiently small.

In the homogeneous case, i.e. for g D 0, our argument works also for degenerate
operators. Indeed it holds the following theorem.

Theorem 1.3. Let u 2 W 1;p
loc .�;R

N / be a weak solution of the system

(1.9) � divA.x;Du/ D 0 in �

under the assumptions (1.2)–(1.5) with k 2 Ln;1.�/;� 2 Œ0; 1�. There exists a positive
constant � D �.n; p/ such that if

distLn;1.k; L1/ < �;

then D.V.Du// 2 L2loc.�/. Moreover, the following estimate holds:

(1.10)
Z
BR

ˇ̌
D
�
V.Du/

�ˇ̌2
dx � C

�
1C

1

R2

�Z
B2R

�
�C jDuj2

�p
2 dx

for every ball B2R b � and for a constant C D C.distLn;1.k; L1/; p; ˛; n;N /.
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Note that in the degenerate case � D 0, the previous result gives

jDuj
p�2
2 jD2uj 2 L2loc.�/

with the estimateZ
BR

jDujp�2jD2uj2 dx � C

�
1C

1

R2

�Z
B2R

jDujp dx:

2. Preliminaries

This section is devoted to notation and preliminary results useful for our aims. We start
specifying the meaning of the solution to system (1.6).

Definition 2.1. A function u 2 W 1;p
loc .�IR

N / is a local weak solution of (1.6) ifZ
�

˝
A.x;Du/;D'

˛
dx D

Z
�

˝
g.x/; '

˛
dx

for every ' 2 C10 .�;R
N /.

For R > 0 and x0 2 Rn, we define

BR.x0/ D
®
x 2 Rn W jx � x0j < R

¯
;

but in the case no ambiguity arises, we shall use the short notation BR. We shall denote
by c a general constant that may vary on different occasions, even within the same
line of estimates. Relevant dependencies on parameters and special constants will be
suitably emphasized using parentheses.

In order to obtain the a priori estimate, we shall use the difference quotient method.
Therefore, in the following, we introduce the finite difference operator �h;i and recall
some basic properties.

Given a vector valued function F W Rn ! RN , we use the notation

�h;iF.x/ WD F.x C hei / � F.x/;

where h 2 R, i 2 ¹1; : : : ; nº and ei is the unit vector in the xi direction.
The difference quotient is defined for h 2 R n ¹0º as

�h;iF.x/ D
�h;iF.x/

h

and the next two lemmas, whose proof can be found, for example, in [15], hold.
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Lemma 2.2. If 0 < � < R, jhj < R � �, 1 < p < C1, i 2 ¹1; : : : ; nº and F;DiF 2
Lp.BR/, then Z

B�

ˇ̌
�h;iF.x/

ˇ̌p
dx � jhjp

Z
BR

ˇ̌
DiF.x/

ˇ̌p
dx:

Moreover, Z
B�

ˇ̌
F.x C hei /

ˇ̌p
dx � c.n; p/

Z
BR

ˇ̌
F.x/

ˇ̌p
dx:

Lemma 2.3. If at least one of the functions F or G has support contained in the set®
x 2 � W dist.x; @�/ > jhj

¯
;

then Z
�

F�h;iG dx D �

Z
�

G��h;iF dx:

Moreover,

�h;i .FG/.x/ D F.x C hei /�h;iG.x/CG.x/�h;iF.x/:

To shorten the notation, we shall use in the sequel �h instead of �h;i .
To handle with the nonlinear expression of the gradient

V.Du/ D
�
�2 C jDuj2

�p�2
4 Du;

the inequalities contained in the following lemma will be fundamental.

Lemma 2.4 ([14, Lemma 2.2]). For any p � 2, we have

c�1
�
�2 C j�j2 C j�j2

�p�2
2 j� � �j2

�
ˇ̌
V.�/ � V.�/

ˇ̌2
� c

�
�2 C j�j2 C j�j2

�p�2
2 j� � �j2

for any �; � 2 RNn and a constant c D c.p/ > 0.

We also recall the well-known iteration lemma which is essential in the hole filling
method.

Lemma 2.5 ([13, Lemma V.3.1]). For R0 < R1, consider a bounded function

f W ŒR0; R1�! Œ0;1/

with
f .s/ � #f .t/C

A

.s � t /˛
C B for all R0 < s < t < R1
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where A;B and ˛ denote non-negative constants and # 2 .0; 1/. Then, we have

f .R0/ � c.˛; #/

�
A

.R1 �R0/˛
C B

�
:

The rest of the present section is dedicated to some definitions and results concerning
the functional spaces we shall use.

For 1 < p;q <C1, the Lorentz spaceLp;q.�/ consists of all measurable functions
f defined on � such that

kf kqp;q D p

Z C1
0

j�t j
q
p tq�1dt < C1

with�t D ¹x 2� W jf .x/j > tº, for t � 0, and j�t j its Lebesgue measure. For p D q,
the space Lp;q.�/ coincides with the Lebesgue space Lp.�/.

The class Lp;1.�/, also known as the Marcinkiewicz class weak-Lp.�/, consists
of all functions f such that

jf jpp;1 D sup
t>0

tpj�t j < C1:

It is a Banach space equipped with the norm

(2.1) kf kp;1 D sup
E��

jEj
1
p�1

Z
E

jf j dx:

Since it holds that
.p � 1/p

ppC1
kf kpp;1 � jf j

p
p;1 � kf k

p
p;1

(see [4, Lemma A.2]), we shall use the notationLp;1 or weak-Lp , with the norm (2.1),
indifferently.

Observe that for f belonging to weak-Lp.Rn/ and g 2 L1.Rn/, the convolution
f � g belongs to weak-Lp.Rn/ and

(2.2) kf � gkLp;1 � kf kLp;1kgkL1

(see [4, 26]). The distance of a given f 2 Lp;1 to L1 is defined as

distLp;1.f; L1/ D inf
g2L1

kf � gkp;1:

For an exhaustive discussion on the distance to L1, we refer to [5]. We remark that
assuming that distLp;1.f; L1/ is small does not give any smallness control on the
norm in Lp;1 (see [9]).

The next Sobolev Embedding theorem in Lorentz spaces will be useful for us (see
[3, 16, 23]).
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Theorem 2.6. Let us assume 1 < p < n, q � 1. Then, every functionu 2W 1;1
0 .�;RN /

verifying jDuj 2 Lp;q actually belongs to Lp�;q , where p� D np
n�p

and

(2.3) kukp�;q � SpkDukp;q;

where Sp D !�1=nn
p
n�p

.

Hölder’s inequality in Lorentz spaces states the following (see [24]).

Theorem 2.7. If 0 < p1; p2; p <1 and 0 < q1; q2; p �1 obey 1
p
D

1
p1
C

1
p2

and
1
q
D

1
q1
C

1
q2

, then
kfgkLp;q � ckf kLp1;q1kgkLp2;q2

whenever the right-hand side norms are finite.

We conclude recalling that the fractional Sobolev spaceW ˇ;p.�;RN /, ˇ 2 .0; 1/,
1 � p <1, is made up of measurable functions f such that

kf kW ˇ;p WD kf kLp C

�Z
�

Z
�

ˇ̌
f .x/ � f .y/

ˇ̌p
jx � yjnCpˇ

dx dy

�p
is finite.

3. The a priori estimate

Theorem 3.1. Under the assumptions of Theorem 1.1, assume that u 2W 1;p
loc .�;R

N /

is a weak solution of (1.6) such that jD.V.Du//j2 2 L1loc.�/. Then, there exists a
positive constant � D �.n; p/ such that if

(3.1) distLn;1.k; L1/ < �;

the following estimate holds:Z
BR

ˇ̌
D
�
V.Du/

�ˇ̌2
dx

� C

�
1C

1

R2

�Z
B2R

�
�2 C jDuj2

�p
2 dx C C

Z
B2R

jgj2 dx

(3.2)

for every ball B2R b � and for a constant C D C.distLN;1.k; L1/; p; ˛; n;N;�/.

Proof. Fix radiiR < s < t < 2R, consider a cut-off function � 2 C10 .Bt /, 0 � � � 1,
� � 1 on Bs , jr�j � c

t�s
and set  D �2�hu.
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Since u is a weak solution of (1.6), we can choose ' D ��h as a test function and
have by virtue of the properties of the finite difference operatorZ

Bt

˝
�hA.x;Du/;D 

˛
dx D �

Z
Bt

hg; ��h i dxI

that is, Z
Bt

˝
�hA.x;Du/;D.�

2�hu/
˛
dx D �

Z
Bt

˝
g; ��h.�

2�hu/
˛
dx:

It follows thatZ
Bt

�2
˝
�hA.x;Du/; �hDu

˛
dx C 2

Z
Bt

�
˝
�hA.x;Du/;r� ˝ �hu

˛
dx

D �

Z
Bt

˝
g; ��h.�

2�hu/
˛
dx

(3.3)

and observing that

�hA.x;Du/ D
�
A
�
x C hei ;Du.x C hei /

�
� A

�
x C hei ;Du.x/

��
C
�
A
�
x C hei ;Du.x/

�
� A

�
x;Du.x/

��
DW Ah CA0h;

equality (3.3) can be rewritten asZ
Bt

�2hAh; �hDui dx

D �

Z
Bt

�2hA0h; �hDui dx � 2

Z
Bt

�hAh;r� ˝ �hui dx

� 2

Z
Bt

�hA0h;r� ˝ �hui dx �

Z
Bt

˝
g; ��h.�

2�hu/
˛
dx

DW I1 C I2 C I3 C I4:

By assumption (1.2), we immediately obtain for the left-hand side thatZ
Bt

�2hAh; �hDui dx

�

Z
Bt

�2
�
�2 C

ˇ̌
Du.x/

ˇ̌2
C
ˇ̌
Du.x C hei /

ˇ̌2�p�22 j�hDuj2 dx
and hence Z

Bt

�2
�
�2 C

ˇ̌
Du.x/

ˇ̌2
C
ˇ̌
Du.x C hei /

ˇ̌2�p�22 j�hDuj2
jhj2

dx(3.4)

�
1

jhj2

�
jI1j C jI2j C jI3j C jI4j

�
:
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In order to estimate jIj j, j D 1; : : : ; 4, we introduce the notation

K.h/ WD k.x C hei /C k.x/; D.h/ D
�
�2 C

ˇ̌
Du.x/

ˇ̌2
C
ˇ̌
Du.x C hei /

ˇ̌2� 12 :
By assumption (1.4), we immediately have

jI1j �

Z
Bt

�2jA0hj j�hDuj dx

�

Z
Bt

�2jhjK.h/
�
�2 C jDuj2

�p�1
2 j�hDuj dx:

(3.5)

By the definition of the distance distLn;1.k; L1/, for every � > 0, there exists k0 2
L1.�/ such that kk � k0kLn;1.�/ < � . Then, define

K0.h/ WD k0.x C hei /C k0.x/:

The use of Young’s inequality with a constant � 2 .0; 1/ that will be chosen later yields

jI1j �

Z
Bt

�2jhj
�
K.h/ �K0.h/

��
�2 C

ˇ̌
Du.x/

ˇ̌2�p�12 j�hDuj dx
C

Z
Bt

�2jhjK0.h/
�
�2 C

ˇ̌
Du.x/

ˇ̌2�p�12 j�hDuj dx
�
jhj2

2�

Z
Bt

�
K.h/ �K0.h/

�2�
�
�
�2 C jDuj2

�p
4
�2
dx

C
�

2

Z
Bt

�2
�
�2 C jDuj2

�p�2
2 j�hDuj

2 dx

C
jhj2

2�



K0.h/


2
1

Z
Bt

�
�
�
�2 C jDuj2

�p
4
�2
dx

C
�

2

Z
Bt

�2
�
�2 C jDuj2

�p�2
2 j�hDuj

2 dx

�
jhj2

2�

Z
Bt

2
�
k.x/ � k0.x/

�2�
�
�
�2 C jDuj2

�p
4
�2
dx

C
jhj2

2�

Z
Bt

2
�
k.x C hei / � k0.x C hei /

�2�
�
�
�2 C jDuj2

�p
4
�2
dx

C �

Z
Bt

�2
�
�2 C jDuj2

�p�2
2 j�hDuj

2 dx

C
jhj2

2�



K0.h/


2
1

Z
Bt

�
�
�
�2 C jDuj2

�p
4
�2
dx:
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Now, note that, thanks to Lemma 2.4, the assumption V.Du/ 2 W 1;2
loc .�/ guarantees

that �
�2 C jDuj2

�p
2 2 W

1;2
loc .�/

and hence, by Sobolev embedding at (2.3), that

�
�
�2 C jDuj2

�p
2 2 L

n
n�2 ;1:

Consequently, we can estimate the first and the second integrals in the right-hand side
of the previous inequality as follows:

jI1j � 2
jhj2

�



.k � k0/2

n
2 ;1



���2 C jDuj2�p4 

22n
n�2 ;2

C �

Z
Bt

�2
�
�2 C jDuj2

�p�2
2 j�hDuj

2

C
jhj2

2�



K0.h/


2
1

Z
Bt

�
�
�
�2 C jDuj2

�p
4
�2
dx

� 2�2
jhj2

�
S22


D����2 C jDuj2�p4 �

2

2
C �

Z
Bt

�2D.h/p�2j�hDuj
2 dx

C jhj2c
�
�; kk0k1

� Z
Bt

�2
�
�2 C jDuj2

�p
2 dx:

Now, let us estimate jI2j. Observe that assumption (1.3) yields

jAhj � ˛
�
�2 C

ˇ̌
Du.x/

ˇ̌2
C
ˇ̌
Du.x C hei /

ˇ̌2�p�22 j�hDuj
D ˛D.h/p�2j�hDuj;

and hence, by the aid of Young’s and Hölder’s inequalities, we obtain

jI2j � 2˛

Z
Bt

�D.h/p�2j�hDuj � jr�j � j�huj dx

� �

Z
Bt

�2D.h/p�2j�hDuj
2 dx

C c.˛; �/kr�k21

Z
Bt

D.h/p�2j�huj
2 dx:

For I3, we proceed as follows.
The assumption (1.4) and the properties of � yield

jI3j � 2

Z
Bt

�jA0hj jr�j j�huj dx

� ckr�k1

Z
Bt

�jhjK.h/
�
�2 C jDuj2

�p�1
2 j�huj dx:
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Reasoning as we have done for the integral in the right-hand side of (3.5), we have

jI3j � ckr�k1

Z
Bt

�jhj
�
K.h/ �K0.h/

��
�2 C jDuj2

�p�1
2 j�huj dx

C ckr�k1

Z
Bt

�jhjK0.h/
�
�2 C

ˇ̌
Du.x/

ˇ̌2�p�12 j�huj dx
�

1

2�

Z
Bt

�2jhj2
�
K.h/ �K0.h/

�2�
�2 C jDuj2

�p
2 dx

C
1

2�
jhj2



K0.h/


2
1

Z
Bt

�2
�
�2 C jDuj2

�p
2 dx

C c.�/kr�k21

Z
Bt

�
�2 C jDuj2

�p�2
2 j�huj

2 dx

� 2�2
jhj2

�
S22


D����2 C jDuj2�p4 �

2

2

C c.�/kr�k21

Z
Bt

�
�2 C jDuj2

�p�2
2 j�huj

2 dx

C c
�
�; kk0k1

�
jhj2

Z
Bt

�2
�
�2 C jDuj2

�p
2 dx:

Finally, since we obviously have

I4 D �

Z
Bt

˝
g; ��h.�

2�hu/
˛
dx D �h

Z
Bt

�
g;
��h.�

2�hu/

h

�
dx;

by using Young’s inequality and Lemma 2.2, we get

jI4j � c.�; �/jhj
2

Z
Bt

jgj2 dx C ��p�2
Z
Bt

ˇ̌̌̌
��h.�

2�hu/

h

ˇ̌̌̌2
dx

� c.�; �/jhj2
Z
Bt

jgj2 dx C ��p�2
Z
Bt

ˇ̌
D.�2�hu/

ˇ̌2
dx

� c.�; �/jhj2
Z
Bt

jgj2 dx C 4��p�2
Z
Bt

�2jr�j2j�huj
2 dx

C ��p�2
Z
Bt

�4
ˇ̌
D.�hu/

ˇ̌2
dx:

Combining (3.4) with the estimates of jIj j, j D 1; : : : ; 4, above, we obtainZ
Bt

�2D.h/p�2
j�hDuj

2

jhj2
dx �

4�2

�
S22


D����2 C jDuj2�p4 �

2

2

C 2�

Z
Bt

�2D.h/p�2
j�hDuj

2

jhj2
dx C c

�
�; kk0k1

� Z
Bt

�2
�
�2 C jDuj2

�p
2 dx
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C c.˛; �/kr�k21

Z
Bt

D.h/p�2
j�huj

2

jhj2
dx

C c.�; �/

Z
Bt

jgj2 dx C 4��p�2
Z
Bt

�jr�j2
ˇ̌̌̌
�hu

h

ˇ̌̌̌2
dx

C �

Z
Bt

�2D.h/p�2

ˇ̌
D.�hu/

ˇ̌2
jhj2

dx

and therefore, choosing � D 1
4
,

1

4

Z
Bs

D.h/p�2
j�hDuj

2

jhj2
dx

� 16 �2S22


D����2 C jDuj2�p4 �

2

2

C c

Z
Bt

�2
�
�2 C jDuj2

�p
2 dx C ckr�k21

Z
Bt

D.h/p�2
j�huj

2

jhj2
dx

C c

Z
Bt

jgj2 dx C c

Z
Bt

�jr�j2
ˇ̌̌̌
�hu

h

ˇ̌̌̌2
dx:

By Lemma 2.2, we are legitimate to pass to the limit for h! 0 havingZ
Bs

ˇ̌
D
�
V.Du/

�ˇ̌2
dx � 64p2�2S22

Z
Bt

ˇ̌
D
�
V.Du/

�ˇ̌2
dx

C
c

.t � s/2

Z
Bt

�
�2 C jDuj2

�p
2 dx

C c

Z
Bt

�
�2 C jDuj2

�p
2 dx C c

Z
Bt

ˇ̌
g.x/

ˇ̌2
dx

where we also used the properties of the function �. For � < 1
8p S2

, we can apply
Lemma 2.5 havingZ

BR

ˇ̌
D
�
V.Du/

�ˇ̌2
dx

� C

�
1C

1

R2

�Z
B2R

�
�2 C jDuj2

�p
2 dx C C

Z
B2R

jgj2 dx

that is the conclusion.

Remark 3.2. Note that even if we do not provide the precise value of the constant �
in (3.1), a bound on it is given at the end of the proof of Theorem 3.1.

Remark 3.3. We point out that the dependence of the constant C appearing in (3.2)
on the distLN;1.k; L1/ occurs only through the norm of k0 in L1.
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4. The main results

In this section, we shall prove Theorems 1.1 and 1.3 as well as higher integrability
results for the gradient of the solutions we deduce from them. In particular, the proofs
of the main theorems will consist in constructing approximating regular problems on a
ball B2R b � whose solutions u", agreeing to the solution u to (1.6) (respectively to
(1.9)) on @B2R, verify estimate (1.8) (respectively (1.10)). The conclusion will follow
showing that the estimates will be preserved passing to the limit.

Proof of Theorem 1.1. Let us show that there exists a sequence of approximating
problems for which we are allowed to use the a priori estimate (3.2).

Set A.x; �/ D 0 for any x 2 Rn n � and then consider a standard mollifier � W
Rn ! R with compact support in B1 � Rn. For 0 < " < min¹R; 1º, consider

A".x; �/ WD

Z
B1

A.x C "y; �/�.y/ dy; k".x/ WD

Z
B1

k.x C "y/�.y/ dy;

for any x 2 xB2R�" and � 2 RNn. Using assumptions (1.2)–(1.5), one can easily check
that ˝

A".x; �/ � A".x; �/; � � �
˛
�
�
�2 C j�j2 C j�j2

�p�2
2 j� � �j2;(4.1) ˇ̌

A".x; �/ � A".x; �/
ˇ̌
� ˛j� � �j

�
�2 C j�j2 C j�j2

�p�2
2 ;(4.2) ˇ̌

A".x; �/ � A".y; �/
ˇ̌
� jx � yj

�
k".x/C k".y/

��
�2 C j�j2

�p�1
2 ;(4.3)

A".x; 0/ D 0(4.4)

for all x 2 � and all �; � 2 RNn.
Consider the unique solution u" 2 W 1;p.�;RN / of the problem

(4.5)

´
� divA".x;Du"/ D g.x/ in B2R;
u" D u on @B2R;

and observe that, reasoning as we have done in the proof of Theorem 3.1, it can be
proven thatD.V.jDu"j//2 2 L1loc.B2R/. Moreover, let � > 0 be the constant such that
(3.1) holds, and notice that (2.2) guarantees that

distLn;1.k"; L1/ < �:

Indeed, let k0 2 L1 be such that kk � k0kn;1 < � , and then observe that

kk" � k0kn;1 �


k" � .k0/"

n;1 C 

.k0/" � k0

n;1(4.6)

� kk � k0kn;1 C


.k0/" � k0

n;1

and that the second term in the right-hand side is negligible for " sufficiently small.
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Hence, we are legitimate to apply the a priori estimate in Theorem 3.1 to u"; that is,Z
BR

ˇ̌
D
�
V.Du"/

�ˇ̌2
dx

� C

�
1C

1

R2

�Z
B2R

�
�2 C jDu"j

2
�p
2 dx C c

Z
B2R

jgj2 dx;

(4.7)

for constantsCDC.distLn;1.k;L1/;p;˛;n;N/and cDc.p;�/. Notice that Remark 3.3
and inequality (4.6), make evident that the dependence of C on distLn;1.k"; L1/ is
actually uniform with respect to " and hence can be expressed as a dependence on
distLn;1.k; L1/. In order to prove that u satisfies the same inequality, let us use
' D u � u" as a test function in (1.1) and (4.5) gettingZ

B2R

˝
A.x;Du/ � A".x;Du"/;Du �Du"

˛
dx D 0

and then Z
B2R

˝
A".x;Du/ � A".x;Du"/;Du �Du"

˛
dx

D

Z
B2R

˝
A".x;Du/ � A.x;Du/;Du �Du"

˛
dx:

It follows thatZ
B2R

jDu �Du"j
p dx

� c

Z
B2R

�
�2 C jDuj2 C jDu"j

2
�p�2
2 jDu �Du"j; dx

� c

Z
B2R

˝
A".x;Du/ � A.x;Du/;Du �Du"

˛
dx

� c

�Z
B2R

ˇ̌
A".x;Du/ � A.x;Du/

ˇ̌p0
dx

� 1
p0
�Z

B2R

jDu �Du"j
p dx

� 1
p

so that��Z
B2R

jDu �Du"j
p dx

� 1
p0
�p0
�

Z
B2R

ˇ̌
A".x;Du/ � A.x;Du/

ˇ̌p0
dx:

Assumptions (1.3) and (1.5), together with conditions (4.2) and (4.4) and the conver-
gence A".x;Du/! A.x;Du/ a.e., imply that we can use the dominated convergence
theorem to obtain that Du" ! Du strongly in Lp . At this point, estimates (4.7) yield
kD.V.Du"//kL2.BR/ � C , so that we deduce that, up to a subsequence, D.V.Du"//
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is weakly converging to D.V.Du// in L2.BR/. Therefore, we can pass to the limit
for "! 0 in the estimate (4.7) having the validity of the desired inequality for the
function u.

For 2 < p < n, the following corollaries of fractional higher integrability easily
derive from Theorem 1.1.

Corollary 4.1. Let u 2W 1;p
loc .�;R

N / be a weak solution of (1.6), under the assump-
tions (1.2)–(1.5) with k 2 Ln;1.�/. Further assume g 2 L2.�;RN /. There exists a
positive constant � D �.n; p/ such that if

distLn;1.k; L1/ < �;

then Du 2 W ˇ;p
loc .�;RN / for every ˇ 2 .0; 2

p
/.

Proof. Since we can estimate for every i 2 ¹1; : : : ; nº

j�h;iDuj
p
� c.n; p/

�
�2 C

ˇ̌
Du.x/

ˇ̌2
C
ˇ̌
Du.x C hei /

ˇ̌2�p�22 j�h;iDuj2
� c.n; p/

ˇ̌
�h;iV.Du/

ˇ̌2
;

(4.8)

summing up on i 2 ¹1; : : : ; nº and taking into account either Lemma 2.2 or the estimate
given by Theorem 1.1, we get for � 2 .0; R/ and h sufficiently smallZ

B�

nX
iD1

j�h;iDuj
pdx

� c.n; p/jhj2
Z
BR

ˇ̌
D
�
V.Du/

�ˇ̌2
dx

� C �
�
jhj

2
p
�p��

1C
1

R2

�Z
B2R

�
�2 C jDuj2

�p
2 dx C c

Z
B2R

jgj2 dx

�
:

It follows that Du belongs to the Nikolskii space H
2
p ;p and hence the conclusion by

embedding (see [2, Section 7.73] and also [18]).

In the next corollary, we show that assuming a higher integrability of the function
g improves the integrability of the fractional derivatives.

Corollary 4.2. Let u 2W 1;p
loc .�;R

N / be a weak solution of (1.6), under the assump-
tions (1.2)–(1.5) with k 2 Ln;1.�/. Further assume g 2 Lr.�;RN /, for some r > 2.
There exists a positive constant � D �.n; p/ such that if

distLn;1.k; L1/ < �;

then Du 2 W ˇ;q
loc .�;R

N / for some q > p and for every ˇ 2 .0; 2
p
/.



regularity results of solutions of quasilinear systems 613

Proof. Without loss of generality, we assume 0 < R < 1. The estimate given by
Theorem 1.1 and the use of Lemma 2.4 yieldZ

BR

ˇ̌
DV.Du/

ˇ̌2
dx

� c

�
1C

1

R2

��Z
B2R

ˇ̌
V.Du/ �

�
V.Du/

�
B2R

ˇ̌2
dx C

Z
B2R

jgj2dx

�
:

Hence, applying Sobolev–Poincaré inequality, we have the following reverse Hölder’s
inequality:Z

BR

ˇ̌
DV.Du/

ˇ̌2
dx � c

��Z
B2R

�ˇ̌
DV.Du/

ˇ̌2� n
nC2dx

�nC2
n

C

Z
B2R

jgj2dx

�
getting the existence of an exponent s > 2 such that jDV.Du/j 2 Lsloc andZ

BR=2

ˇ̌
DV.Du/

ˇ̌s
dx � c

��Z
BR=2

ˇ̌
DV.Du/

ˇ̌2
dx

� s
2

C

Z
B2R

jgjsdx

�
:

Then, using the pointwise inequality in (4.8), we easily obtain that

k�hDukps
2

jhjs
� c



DV.Du/

 2p
s

which allows us to conclude thatDu belongs to the Nikolskii space H
2
p ;
ps
2 and hence,

setting q WD ps
2

, by embedding Du 2 W ˇ;q
loc .�;R

N / for every ˇ 2 .0; 2
p
/.

Proof of Theorem 1.3. By a careful analysis of the proofs of Theorems 3.1 and 1.1,
it is evident that the degenerate case, that is, for � D 0, causes further difficulties only
when dealing with the integral involving the datum g. More specifically, in the estimate
of jI4j, as well as in the corresponding estimate in the approximation part, an integral
which can blow up appears. Then, the proof can proceed according to the ones of
previous theorems since, for g � 0, the term I4 is not present.
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