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Abstract. – We consider a system of particles that interact through a jump process. The jump
intensities are functions of the proximity rank of the particles, a type of interaction referred to as
topological in the literature. Such interactions have been shown relevant for the modelling of
bird flocks. We show that, in the large number of particles limit and under minimal smoothness
assumptions on the data, the model converges to a kinetic equation which was derived in earlier
works both formally and rigorously under more stringent regularity assumptions. The proof relies
on the coupling method which assigns to the particle and limiting processes a joint process posed
on the cartesian product of the two configuration spaces of the former processes. By appropriate
estimates in a suitable Wasserstein metric, we show that the distance between the two processes
tends to zero as the number of particles tends to infinity, with an error typical of the law of large
numbers.
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1. Introduction

Systems of self-propelled agents undergoing local interactions are ubiquitous in nature,
from migrating cells [16] to locust swarms [2] and fish schools [18]. They form intriguing
patterns such as coherent motion, travelling bands, oscillations, etc., encompassed
in the generic term of collective dynamics (see a review in [24]). Most models of
collective dynamics are based on mean-field interactions (such as the Cucker–Smale
[12] or Vicsek [23] models) or binary contact interactions [4]. However, a third type of
interaction has been suggested following observations of bird flocks [1, 9] and referred
to as “topological interaction”. In this kind of interaction, the strength of the interaction
of an agent with another one is a function of the proximity rank of the latter with respect
to the former. The seminal paper [1] has been followed by a number of papers studying
various aspects of this phenomenon; see, e.g., [7, 8, 15, 20, 21].

Mathematically, flocking of systems of topologically interacting particles has been
investigated in [19,22,26]. In [17], in addition to studying flocking, the author proposes
kinetic and fluid models derived from mean-field topological interactions. The present

https://creativecommons.org/licenses/by/4.0/


p. degond, m. pulvirenti and s. rossi 642

work is strongly aligned with [5,6,13] where kinetic models are derived for topological
interaction models based on jump processes. More precisely, [13] proves propagation of
chaos and provides a rigorous proof of the model formally derived in [5]. The proof of
[13] makes the limiting assumption that the interaction strength is an analytic function
of the normalized rank (a concept precisely defined below) and is based on the BBGKY
hierarchy. In the present work, we propose an alternative proof of the result of [13]
based on the coupling method. The advantage of the coupling method over the BBGKY
hierarchy is that it only requires the interaction strength to be Lipschitz continuous, a
much more general and natural assumption than that of [13]. On the other hand, [6]
formally derives a kinetic model for a more singular interaction. The mathematical
validity of this formal result is still open. The literature on propagation of chaos and
derivation of kinetic models from particle ones is huge, and it is difficult to provide a
fair account of all relevant contributions in a short introduction. We refer the interested
reader to the reviews [10, 11] which provide a fairly detailed description of the subject.

The outline of this paper is as follows. In Section 2, we present the model and
provide a formal derivation of the macroscopic model. We then state the theorem and
comment on it in view of the previous results. Section 3 is devoted to the proof.

2. Presentation of the model and main results

We recall the model and notations introduced in [5, 13] and state our result. We study
an N -particle system in Rd , d D 1; 2; 3; : : : (or in Td the d -dimensional torus). Each
particle, say particle i , has a position xi and velocity vi . The configuration of the
system is denoted by

ZN D ¹ziº
N
iD1 D

®
.xi ; vi /

¯N
iD1
D .XN ; VN /:

Given the particle i , we order the remaining particles j1; j2; : : : ; jN�1 according
to their distance from i , namely, by the following relation:

jxi � xjh
j � jxi � xjhC1

j; h D 1; 2; : : : ; N � 1:

The rank R.i; k/ of particle k D jh (with respect to i) is h. Note that if Br.x/
denotes the closed ball of center x 2 Rd and radius r > 0, we have

R.i; k/ D
X

1�h�N
h¤i

XBjxi�xk j
.xi /.xh/;

where XA is the characteristic function of the set A.
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Given a non-increasing Lipschitz continuous function

K W Œ0; 1�! RC s.t.
Z 1

0

K.r/ dr D 1;

we introduce the transition probabilities

(2.1) �Ni;j D
K
�
r.i; j /

�PN
sD1K

�
s

N�1

� ;
where r.i; j / is the normalized rank:

r.i; j / D
R.i; j /

N � 1
2

²
1

N � 1
;

2

N � 1
; : : :

³
:

Thanks to the normalization in (2.1), we have that
P
j �

N
i;j D 1. We can also rewrite

�Ni;j as

(2.2) �Ni;j D ˛NK
�
r.i; j /

�
;

where

(2.3) ˛N D
1

.N � 1/
�
1 � eK.N /

�
and eK.N / is the error given by the Riemann sums

(2.4) eK.N / D

Z 1

0

K.x/ dx �
1

N � 1

X
s

K

�
s

N � 1

�
:

We are now in position to introduce a stochastic process describing alignment via a
topological interaction. The particles go freely: xi C vi t . At some random time dictated
by a Poisson process of intensity N , choose a particle (say i ) with probability 1

N
and a

partner particle, say j , with probability �i;j . Then, perform the transition

.vi ; vj /! .vj ; vj /:

After that, the system goes freely with the new velocities and so on.
The process is described by the following Markov generator given, for any ˆ 2

C 1
b
.R2dN /, by

LNˆ.XN ; VN / D

NX
iD1

vi � rxi
ˆ.XN ; VN /

C

NX
iD1

X
1�j�N
i¤j

�Ni;j
�
ˆ
�
XN ; V

i
N .vj /

�
�ˆ.XN ; VN /

�
;

(2.5)
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where

V iN .vj /D .v1; : : : ;vi�1;vj ;viC1; : : : ;vN / if VN D .v1; : : : ;vi�1;vi ;viC1; : : : ;vN /:

Note that�Ni;j depends not only onN but also on the whole spatial configurationXN .
Therefore, the law of the process WN .ZN I t / dZN is driven by the following evolution
equation:

@t

Z
WN .ZN I t /ˆ.ZN / dZN

D

NX
iD1

Z
WN .ZN I t /vi � rxi

ˆ.ZN / dZN

C

NX
iD1

X
1�j�N
i¤j

Z
WN.ZN I t /�

N
i;j

�̂ �
XN ; V

i
N .vj /

�
�ˆ.XN ; VN /

�
dZN ;

(2.6)

for any test function ˆ. Here, WN .ZN I t / is the density with respect to the Lebesgue
measure.

We assume that the initial measure WN .ZN I0/dZN factorizes; namely, WN .0/D

f ˝N0 , where f0 is the initial datum for the limiting kinetic equation we are going
to establish. Note also that WN .ZN I t /, for t � 0, is symmetric in the exchange of
particles.

The strong form of equation (2.6) is�
@t C

NX
iD1

vi � rxi

�
WN .t/ D �NWN .t/CLNWN .t/

where

LNWN .XN ; VN I t / D

NX
iD1

X
1�j�N
i¤j

ı.vi � vj /

Z
�Ni;j WN

�
XN ; V

.i/
N .u/I t

�
du:

2.1. Heuristic derivation
We now want to derive the kinetic equation we expect to be valid in the limit N !1.
Setting ˆ.ZN / D '.z1/ in (2.6), we obtain

@t

Z
f N1 .z1/'.z1/ dz1

D

Z
f N1 .z1/v1 � rx1

'.z1/ dz1 �
Z
f N1 .z1/'.z1/ dz1

C

X
j¤1

Z
WN .ZN I t /�

N
i;j'.x1; vj / dZN :

(2.7)
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Here, f N1 denotes the one-particle marginal of the measure WN . We recall that the
s-particle marginals are defined by

(2.8) f Ns .Zs/ D

Z
WN .Zs; zsC1; : : : ; zN /dzsC1; : : : ; dzN ; s D 1; 2; : : : ; N;

and are the distribution of the first s particles (or of any group of s tagged particles).
In order to describe the system in terms of a single kinetic equation, we expect that

chaos propagates. Actually, since WN is initially factorizing, although the dynamics
creates correlations, we hope that, due to the weakness of the interaction, factorization
still holds approximately also at any positive time t ; namely,

f Ns � f
˝s
1 :

In this case, the law of large numbers does hold; that is,

1

N

X
j

ı.z � zj / � f
N
1 .z; t/

for WN -almost all ZN D ¹z1; : : : ; zN º. Then,

�Ni;j �
1

N � 1
K

�
1

N � 1

X
k

XBjxi�xj j
.xi /.xk/

�
�

1

N � 1
K
�
M�N

1

�
Bjx1�x2j

.x1/
��

where

(2.9) M�N
1

�
BR.x/

�
D

Z
BR.x/

�N1 .y/ dy;

and �N1 .x/D
R

dvf N1 .x; v/ is the spatial density. Motivated by this remark, from now
on, we use the following notation:

MXN

�
Bjxi�xj j

.xi /
�
D r.i; j / D

1

N � 1

X
k

XBjxi�xj j
.xi /.xk/:

Here, M stands for “mass” and the notation introduced is justified by the law of large
numbers.

In conclusion, we expect that, by (2.7), in the limitN!1,f N1 !f and f N2 !f
˝2,

where f solves

@t

Z
f .z1/'.z1/ dz1 D

Z
f .z1/v1 � rx1

'.z1/ dz1 �
Z
f .z1/'.z1/ dz1

C

Z
f .z1/f .z2/'.x1; v2/K

�
M�

�
Bjx1�x2j

.x1/
��

dz1 dz2
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and �.x; t/ D
R
f .x; v; t/ dv. This is the weak form of the equation

.@t C v � rx/f .x; v; t/

D �f .x; v; t/C �.x; t/

Z
K
�
M�

�
Bjx�yj.x/

��
f .y; v; t/ dy:

(2.10)

We remark that existence and uniqueness of global solutions inL1.R2d / for the kinetic
equation (2.10) can be proved by using a standard Banach fixed-point argument.

Once f is known, we can construct the one-particle nonlinear process given by the
generator

L
.1/
1 �.x; v/

D .v � rx � 1/�.x; v/C

Z
f .y;w/�.x;w/K

�
M�

�
Bjx�yj.x/

��
dy dw:

We also introduce the N -particle process given by N independent copies of the above
process. Its generator is

(2.11) L
.1/
N ˆ.ZN / D VN � rXN

ˆ.ZN /

C

NX
iD1

�Z
ˆ
�
XN ; V

i
N .wi /

�
K
�
M�

�
Bjxi�yi j

.xi /
��
f .yi ; wi / dyi dwi �ˆ.XN; VN/

�
:

2.2. Motivations and main result

This work aims to prove propagation of chaos for the N -particle process described by
(2.5). Propagation of chaos consists in preparing a system of N particles with initial
configurations i.i.d with a given law f0, showing that, considering any group of fixed s
particles between the N ones, this independence (chaos) is also recovered for future
times for the fixed s-group when N !1. This is expressed mathematically by saying
that the s-particle marginal f Ns .t/ introduced in (2.8) approximates f ˝s.t/ for positive
times, where f .t/ is the solution with initial datum f0 of the limit equation (2.10).

As mentioned in the introduction, the propagation of chaos result for (2.5) was
already obtained in [13] using hierarchical techniques. Indeed, the BBGKY hierarchies
are a powerful approach but their structure is such that the equation for the s-marginal
depends on the contributions given by different integral terms each of which involving
only a single .s C r/-marginal for r D 1; 2; : : : : In this case, the non-binary nature of
the topological interaction does not allow deriving this hierarchical structure unless
the interaction function K is real analytic and therefore expandable in series, which is
exactly the assumption made in [13].
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The reason for this work is to provide a different derivation of the limit kinetic
equation, using the classic probabilistic coupling technique. In general, given two
stochastic processes X and Y , a coupling is a realization of a new process on a product
probability space that has as marginal distributions those of X and Y . This approach
brings a more natural and general proof, avoiding the analyticity assumption on K.

Theorem 1. Let f 2 C.Œ0; T �IL1.R2d // be the solution of the limit equation (2.10)
with initial datum f0 2 L

1.R2d /. Assume that the interaction function K is Lipschitz-
continuous and consider the N -particle dynamics such that

WN .0/ D f
˝N
0 :

If f Ns denotes the s-marginal as defined in (2.8), for t 2 Œ0; T � and s 2 ¹1; : : : ;N º,
it holds that

(2.12)


f Ns .t/ � f ˝s.t/

L1.R2ds/

� s
eCKT

p
N � 1

;

where CK is a constant depending only on the Lipschitz constant of K.

The topological character of the interaction brings us naturally to work with norms
of strong type and in particular with the L1/total variation distance (see also [3] where
a distance similar to the total variation has been used to prove the validity of the
mean-field limit for a deterministic Cucker–Smale model with topological interactions
introduced in [17]).

Indeed, given two measures �1 and �2, from (2.9), we haveˇ̌
M�1

�
Br.x/

�
�M�2

�
Br.x/

�ˇ̌
� k�1 � �2kTV

where, given .X;A/ a measurable space and two measures � and � over X , the total
variation distance is defined as

k� � �kTV D sup
A2A

ˇ̌
�.A/ � �.A/

ˇ̌
:

In the present work, we use the equivalence between the L1 distance and the total
variation for regular measures and the characterization of the total variation distance
given by the Wasserstein distance

k� � �kTV D inf
�2C.�;�/

Z
X�X

d.x; y/ d�.x; y/;

where C.�; �/ is the set of all couplings, i.e., measures on the product space with
marginals, respectively,� and � in the first and second variables, and d.a;b/D 1� ıa;b
is the discrete distance (see [25]).
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3. Proof of the result

3.1. Coupling and strategy of the proof

We introduce, as a coupling between (2.5) and (2.11), the process t ! .ZN .t/I†N .t//

on the product space R2dN �R2dN , where †N .t/ D .YN .t/;WN .t//. The generator
of the new process is

QN D Q0 C zQN ;

where

(3.1) Q0ˆ.ZN I†N / D .VN � rXN
CWN � rYN

/ˆ.ZN I†N /

is the free-stream operator, while

zQNˆ.ZN I†N /

D

NX
iD1

X
j¤i

�i;j
�
ˆ
�
XN ; V

i
N .vj /IYN ; W

.i/
N .wj /

�
�ˆ.ZN I†N /

�
(3.2a)

C

NX
iD1

X
j¤i

�
�Ni;j .XN /��i;j

��
ˆ.XN ; V

i
N .vj /I†N /�ˆ.ZN I†N /

�
(3.2b)

C

NX
iD1

X
j¤i

�
��.yi ; yj /��i;j

��
ˆ
�
ZN IYN ; W

.i/
N .wj /

�
�ˆ.ZN I†N/

�
(3.2c)

C

NX
iD1

Z
duENi .u/

�
ˆ
�
ZN IYN ; W

.i/
N .u/

�
�ˆ.ZN I†N /

�
(3.2d)

tends to penalize the discrepancies that can occur over time between ZN and †N .
Indeed, in (3.2a), the process jumps jointly on both variables with a rate given by

(3.3) �i;j .XN Iyi ; yj /´ min
®
�Ni;j .XN /; �

�.yi ; yj /
¯
;

where

(3.4) ��.yi ; yj /´ ˛NK
�
M�

�
Bjyi�yj j

.yi /
��
:

In (3.2b) and (3.2c), the jumps occur only for one of the pair, with a transition
probability given by the error between �i;j and �N or ��. Finally, in (3.2d),

ENi .u/ D

Z
K
�
M�

�
Bjyi�yj.yi /

��
f .y; u/ dy �

X
j¤i

��.yi ; yj /ı.u � wj /

is the last error due to the approximation of the limit kinetic equation by the N -particle



propagation of chaos for topological interactions 649

dynamics with transition probabilities given by �� and will be treated using the law of
large numbers.

We remark that since
R
K.x/ dx D 1, formally, we haveZ

K
�
M�

�
Bjx�yj.x/

��
�.y/ dy D

Z C1
0

drK
�
M�.Br.x/

� Z
jx�yjDr

�.y/ dHn�1.dy/

D

Z C1
0

drK
�
M�.Br.x/

� d
dr
�
M�

�
Br.x/

��
D

Z
K.x/ dx D 1:

This is generally true for � 2 L1.Rd / and it is a consequence of the coarea formula
(see [14, Thm. 3.12, p. 140]).

From the previous formula, it follows that QN is a coupling of the two previously
described processes; i.e., we recover, considering test functions depending only on ZN
and †N , respectively, the two processes as the two marginals.

We want to prove that f and f N1 (defined as in (2.8)) agree asymptotically in the
limit N !C1. To do this, we consider RN .t/ D RN .ZN ; †N I t / the law at time t
for the coupled process. As initial distribution at time 0, we assume

(3.5) RN .0/ D f ˝N0 .ZN /ı.ZN �†N /:

Let DN .t/ be the average fraction of particles having different positions or velocities,
i.e., using the symmetry of the law,

(3.6) DN .t/ D

Z
dRN .t/

1

N

NX
iD1

d.zi ; �i / D

Z
dRN .t/d.z1; �1/;

where zi D .xi ; vi /, �i D .yi ; wi /, and d.a; b/ D 1 � ıa;b is the discrete distance.
The aim is to show thatDN .t/! 0. This means the following: initially, the coupled

system has all the pairs of particles overlapping. The dynamics creates discrepancies
and the average number of separated pairs is exactlyDN which is also the total variation
distance (L1.x; v/ in our case) between f N1 and f .

Notice that the convergence of the s-marginals f Ns toward f ˝s claimed in (2.12)
is easily recovered by the fact that

f Ns .t/ � f ˝s.t/

TV � Z .Zs; †s/ dRN .ZN ; †N I t /

�

sX
iD1

Z
d.zi ; �i / dRN .ZN ; †N I t / D sDN .t/

where ı.a; b/ denotes the discrete distance on the space R2ds �R2ds .
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3.2. Convergence estimates

Let SNt be the semigroup defined by the free-stream generatorQ0 in (3.1). To estimate
DN .t/, we apply the Duhamel formula in (3.6), and we getZ

dRN .t/d.z1; �1/ D
Z

dRN .0/d
�
SNt .z1; �1/

�
C

Z t

0

d�
Z

dRN .�/ zQNd
�
SNt�� .z1; �1/

�
;

(3.7)

where zQN is defined in (3.2).
The first term in (3.7) is negligible: indeed, from (3.5), we haveZ

dRN .0/d
�
SNt .z1; �1/

�
D

Z
df ˝N0 .ZN /d

�
SNt .z1; z1/

�
� 0:

Concerning the second term in (3.7), we define

Nz1 D
�
x1 C v1.t � �/; v1

�
; Nz

.j /
1 D

�
x1 C v1.t � �/; vj

�
;

and xXN D .x1 C v1.t � �/; : : : ; xN C vN .t � �//, similarly, for x� , x� .j /, and xYN .
By (3.2), we getZ

dRN .�/ zQNd
�
SNt�� .z1; �1/

�
D A1.�/C A2.�/C A3.�/;

where

A1.�/ D
X
j¤1

Z
dRN .�/�1;j . xXN I Ny1; Nyj /

�
d
�
Nz
.j /
1 I x�

.j /
1

�
� d. Nz1I x�1/

�
is due to the term of the generator zQN where the velocities of the particles jump
simultaneously,

A2.�/ D
X
j¤1

Z
dRN .�/

�
�N1;j .

xXN / � �1;j
��
d
�
Nz
.j /
1 I x�1

�
� d. Nz1I x�1/

�
C

X
j¤1

Z
dRN .�/

�
��. Ny1; Nyj / � �1;j

��
d
�
Nz1I x�

.j /
1

�
� d. Nz1I x�1/

�
is due to the terms of the generator where only one of the two coupled processes jump,
and

A3.�/ D

Z
dRN .�/

Z
du xEN1 .u/

�
d
�
Nz1I x�

.u/
1

�
� d. Nz1I x�1/

�
is due to the remainder term. Here, xEN1 .u/ is EN1 .u/ evaluated along the moving frame
of the free transport.
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Here, we have used that d.z1; �1/ depends only on the configurations of the first
particle; hence, the only non-zero contribution in the sum over i is given for i D 1.

Concerning A1.�/, it follows from (2.3) and (2.4) thatˇ̌
eK.N /

ˇ̌
�

Lip.K/
N � 1

and that, for N > 2Lip.K/C 1,

˛N �
4e

Lip.K/
N�1

N � 1
;

using the inequality 1=.1 � x/ � 4ex for x 2 .0; 1=2/. Therefore, from (3.3), we get

�1;j � ˛N kKk1 �
4
p

e Lip.K/
N � 1

:

By the symmetry of RN and denoting CK ´ 8
p

e Lip.K/,

(3.8) A1.�/ �
CK

2.N � 1/

X
j¤1

Z
dRN .�/

�
d.zj ; �j /C d.z1; �1/

�
� CKDN .�/

since d. Nz.j /1 I x�
.j /
1 / � d.zj ; �j /C d.z1I �1/. Indeed, the right-hand side is vanishing

iff z1 D �1 and zj D �j , and, in this case, also the left-hand side is clearly vanishing.
We now give a bound on A2.�/. Since �1;j is the minimum between �N1;j and ��i;j ,

we have

(3.9)
ˇ̌
A2.�/

ˇ̌
�

X
j¤1

Z
dRN .�/

ˇ̌
�N1;j .

xXN / � �
�
1;j . Ny1; Nyj /

ˇ̌
:

From (2.2) and (3.4),ˇ̌
�N1;j .

xXN / � �
�
1;j . Ny1; Nyj /

ˇ̌
� ˛N Lip.K/

ˇ̌
M xXN

�
xBx1;j

�
�M�

�
xB
y
1;j

�ˇ̌
;

where we are using the shorthand notation

xBx1;j D Bj Nx1� Nxj j
. Nx1/ and xB

y
1;j D Bj Ny1� Nyj j

. Ny1/:

By the triangular inequality,ˇ̌
M xXN

�
xBx1;j

�
�M�

�
xB
y
1;j

�ˇ̌
�
ˇ̌
M xXN

�
xBx1;j

�
�M xXN

�
xB
y
1;j

�ˇ̌
C
ˇ̌
M xXN

�
xB
y
1;j

�
�M xYN

�
xB
y
1;j

�ˇ̌
C
ˇ̌
M xYN

�
xB
y
1;j

�
�M�

�
xB
y
1;j

�ˇ̌
:
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Hence, we divide the estimate (3.9), respectively, in three terms:ˇ̌
A2.�/

ˇ̌
� T1.�/C T2.�/C T3.�/:

In T1.�/, we are considering particles with spatial configuration given by XN , and
we want to estimate the discrepancy of the configuration over two different balls xBx1;j
and xBy1;j . Since xBx1;j D xB

y
1;j iff z1 D �1 and zj D �j , using that M xXN

2 Œ0; 1�, we
have ˇ̌

M xXN

�
xBx1;j

�
�M xXN

�
xB
y
1;j

�ˇ̌
� d.z1; �1/C d.zj ; �j /:

Therefore, by the symmetry of RN ,

T1.�/ � ˛N Lip.K/
X
j¤1

Z
dRN .�/

�
d.z1; �1/C d.zj ; �j /

�
� CKDN .�/:

Regarding T2.�/, we are considering the discrepancy of two different configurations
over the same ball xBy1;j . Since

ˇ̌
M xXN

�
xB
y
1;j

�
�M xYN

�
xB
y
1;j

�ˇ̌
�
1

N

NX
iD1

d.zi ; �i /;

using again the symmetry of the law, we get

T2.�/ � ˛N Lip.K/
X
j¤1

Z
dRN .�/d.z1; �1/ � CKDN .�/:

The last estimate on T3.�/ is a consequence of the law of large numbers. After a
change of variable, using the symmetry of the law RN and the fact that this last term
depends only on the YN configuration, we have that

T3.�/ D ˛N Lip.K/
X
j¤1

Z
d�˝N .�/

ˇ̌
MYN

�
B
y
1;j

�
�M�

�
B
y
1;j

�ˇ̌
;

where By1;j D Bjy1�yj j
.y1/. By Cauchy-Schwartz,ˇ̌̌̌ Z

d�˝N .�/
ˇ̌
MYN

�
B
y
1;j

�
�M�

�
B
y
1;j

�ˇ̌ˇ̌̌̌2
�

Z
d�˝N .�/

ˇ̌̌̌
1

N � 1

X
h¤1

�
XB

y

1;j
.yh/ �M�

�
B
y
1;j

��ˇ̌̌̌2
�

X
h1;h2¤1

Z
d�˝N .�/
.N � 1/2

�
XB

y

1;j
.yh1

/ �M�

�
B
y
1;j

���
XB

y

1;j
.yh2

/ �M�

�
B
y
1;j

��
:
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Thanks to the independence of the limit process, we get that the only non-zero contri-
butions are given when h1 D h2, and this happens only for N � 1 terms. Hence,

T3.�/ �
CK

p
N � 1

:

Collecting the estimates on T1, T2, and T3, we obtain that

(3.10) A2.�/ � CK

�
DN .�/C

1
p
N � 1

�
:

We conclude the proof estimating A3.�/. Since this term depends only on the
independent YN configuration,ˇ̌
A3.�/

ˇ̌
�

Z
df ˝N .�/
N � 1

X
j¤1

ˇ̌̌̌ Z
K
�
M�

�
Bj Ny1�yj. Ny1/

��
d�.y/ �K

�
M�

�
xB
y
1;j

��ˇ̌̌̌
C

1

N � 1

X
j¤1

Z
df ˝N .�/

�
1 � .N � 1/˛N

�
K
�
M�

�
xB
y
1;j

��
;

where we added and subtracted the term
P
j K.M�. xB

y
1;j //=.N � 1/.

Applying again the law of large numbers on the first term, estimating the second
term thanks to (2.3), and using that

1 � .N � 1/˛N D
eK.N /

1 � eK.N /
�

CK

N � 1
;

we arrive at

(3.11)
ˇ̌
A3.�/

ˇ̌
�

CK
p
N � 1

:

Collecting the estimates in (3.8), (3.10), and (3.11) and using Gronwall’s lemma, we
conclude the proof of the theorem.
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