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1. THE RIEMANNIAN PENROSE INEQUALITY

The Penrose conjecture is a longstanding open problem in mathematical relativity. In
the case of an isolated gravitational system containing a single black hole and obeying
the dominant energy condition (see [19, Chapter 7)), it says that the “mass” of an
asymptotically flat initial datum for the Einstein field equations is at least as large as the
one of a reference space-like Schwarzschild manifold, whose horizon boundary has the
same area as the horizon of the given initial datum. Here, the relevant concept of mass
is the ADM mass, a global invariant introduced by Arnowitt, Deser and Misner in the
late fifties (see [3]), which is supposed to measure the total amount of mass contained
in an asymptotically flat initial datum. We recall that in the PDE’s formulation of
general relativity, the Einstein field equations are interpreted as a hyperbolic system
whose solutions are four-dimensional space-time Lorentzian manifolds. Then, an
asymptotically flat initial datum is atriple (M, g, h), where (M, g) is a three-dimensional
asymptotically flat Riemannian manifold and % is a symmetric (2, 0)-tensor field,
representing the second fundamental form of M inside his (globally) hyperbolic space-
time development. In this framework, the Penrose conjecture affirms that
|0M |

1.1 > ) —,
(L.1) mapm = =

where |0M | denotes the area of the horizon boundary of M.
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Penrose viewed it as a test result for the validity of his final-state conjecture (see [18,
Section 5] and [8, Section 1]) which, roughly speaking, says that the space-time evolution
of a generic asymptotically flat initial datum eventually gets closer and closer to a
stationary Kerr solution (see [25]) in the long run. If such a far-reaching conjecture
would be correct, then the Penrose inequality (1.1) would also be true. Indeed, by
Hawking’s area theorem, the area of the horizon is nondecreasing along the evolution
of the initial datum, whereas the Trautman—Bondi mass (see [11]) — another concept of
mass, which coincides with the ADM mass on the initial datum — is nonincreasing. On
the other hand, the inequality

horizon area

1.2 >
(1.2) mrp = lon

can be seen to hold on any Kerr solution, hence at the asymptotic final stage of the
evolution, provided the final-state conjecture is correct. Combining the latter fact with
the opposite monotonicities of mass and area, it turns out that inequality (1.2) must
hold a fortiori on the initial datum, where it coincides with the Penrose inequality (1.1).
This shows that the Penrose inequality is a necessary condition for the validity of the
final-state conjecture.

It is worth mentioning that the Penrose conjecture is still an open problem in its
full generality. Remarkably, its validity has been established within the class of time-
symmetric initial data, i.e., for initial data whose second fundamental form is vanishing
inside their globally hyperbolic development. Since time-symmetric initial data are
often called Riemannian initial data in the physics literature, inequality (1.1) is often
referred to as the Riemannian Penrose inequality (RPI), in this context.

In dimension three, proofs of the RPI were obtained by G. Huisken and T. Ilmanen
in 1997, for the case of a single black hole [17], and by H. Bray in 1999, for the general
case of multiple black holes [7]. The proof of Huisken and Ilmanen is based on the
monotonicity of a certain quantity, called Hawking mass, along a family of surfaces
moving by (a weak form of) the inverse mean curvature flow. Bray’s argument uses
instead a flow of metrics, called conformal flow, that deforms the original metric to a
Schwarzschild one — representing a spherically symmetric black hole in the vacuum
—in a way that the total mass of the space does not increase and the total area of
the horizons does not decrease. Therefore, these two approaches use two different
geometric flows, while our proof relies on a monotonicity formula holding along
the level sets of appropriate p-capacitary potentials. Although our argument cannot
apparently be generalized to the case of multiple black holes and does not allow us, so
far, to characterize the equality case, its brevity and simplicity distinguish it from the
previous proofs of the Riemannian Penrose inequality. Actually, we think that our proof
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is elementary enough to be understood by graduate students with a standard training in
PDE’s and Riemannian geometry.

We mention that several monotone quantities, involving appropriate harmonic
functions [2,20-22] or suitable p-harmonic functions [1,9, 15], have been discovered
thanks to the groundbreaking work of Stern [23]. They have been used to obtain
comparison results (concerning the area of the level sets of the considered harmonic
or p-harmonic functions, the bottom spectrum, the ADM mass and the capacity). All
these monotone quantities are compared in [15], except those in [22], which are the
only ones modeled on the Schwarzschild manifolds.

In order to state precisely the result, we recall some definitions.

DeriniTION 1.1. A complete three-dimensional Riemannian manifold (M, g), with or
without boundary and with one single end, is said to be asymprotically flat with decay
rate t if the following conditions are satisfied:

(1) there exists a compact set K € M such that the end £ = M \ K is diffeomorphic
to the complement of a closed ball in R3 centered at the origin, through a so-called
asymptotically flat coordinate chart (E, (x', x2, x3));

(2) in such a chart, the metric tensor can be expressed as
g = gijdx' ® dx) = (8;j + yij) dx' ® dx/,
with

Sl Iyl Y I e L+ Y 1P (80 | = O(1),

i,J i,j.k i,j.k.¢
as |x| — +oo (here, § is the Kronecker delta function).

According to the physicists Arnowitt, Deser and Misner who first introduced it
in [3], the ADM mass of an asymptotically flat Riemannian 3-manifold is defined as
follows:

. 1 Xt _
mapm = lim  — (0jgij —0igjj) — do,

r—>+oo 167 Jy|x|=r} | x|

where d o is the area element on the sphere {|x| = r} with respect to the Euclidean
metric. It can then be shown that if the scalar curvature of (M, g) is nonnegative and
the decay rate 7 is strictly larger than 1/2, the ADM mass is a well-defined geometric
invariant; i.e., the above limit exists (possibly equal to +o00) and its value does not
depend on the particular asymptotically flat coordinate chart in which the limit is
computed (see [4, 10]).
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We can then state the Riemannian Penrose inequality for single black hole initial
data.

TueoreM 1.2 (Riemannian Penrose inequality for single black hole initial data). Let
(M, g) be a three-dimensional, complete, connected, noncompact Riemannian manifold
with a smooth, compact, connected boundary and one single end. Assume that

(1) the metric g has nonnegative scalar curvature R > 0;
(2) (M, g) is asymptotically flat with decay rate T = 1;
(3) OM is the unique closed minimal surface in (M, g).
Then, the ADM mass satisfies

|0M |

1.3 > —
(1.3) MmaDM Z \[ T

where |0M | denotes the area of M.

We are going to present here the proof with some technical simplifications, skipping
details that are fully addressed in [1]. We also mention, for completeness, that another
proof of the Riemannian Penrose inequality under the optimal decay assumptions was
shown in [6], through the use of the isoperimetric mass introduced by Huisken in [16].

2. A PROOF VIA NONLINEAR POTENTIAL THEORY

The main idea of the proof is to consider, for every 1 < p < 3, the elliptic problem

Apu=0 inM
2.1 u=0 ondM

u—1 atoo

where A,u = div(|Vu|P~2Vu) is the p-Laplacian operator of (M, g) (in the whole
paper, V denotes the Levi-Civita connection of (M, g)). This problem admits a unique
(weak) solution u, € W,2?(M) in €"# on any bounded open set, for some 8 > 0
(hence, a p-harmonic function). It takes values in [0, 1) and it is a proper function
from M to [0, 1). Furthermore, u,, is smooth at the points where the gradient does not
vanish and attains smoothly the datum on the boundary, as zero is a regular value, by
the Hopf lemma (see [5, Section 2]).

We then recall that, for any 1 < p < 3, the p-capacity of M is defined as

Cap,(0M) = inf{/ Vol dp:veCX(M), v=1on 8M}
M
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and, when 1 < p < 3, itis related to u, through the following identities:

(2.2) Cap,, (IM) = / |Vup|? dp = / |Vu,|?~! do,
M {

up=t}

for every regular value ¢ of u,; see [5, Section 2]. We set

Cap (M) 7=T
2.3) c,,:(%) 1,

moreover, whenever there is no possibility of misunderstanding, we will drop the
subscript p and we will simply denote with u the solution of problem (2.1).
With these notations, we introduce the vector field X as

p—1
= Vu|P=2vu  VIVul— &4 Vu Vu|V
Y = p {| ul u vl M |Vu|Vu |

ra-w | @ S -w [Ra-w]

which is well defined and smooth away from the critical points of u. Then, we consider
the function

Vu
24) F,(1) = / <X, —>d0
’ {u=a, (1)} |Vu|
2 5—p
tp-1 trp-1

=d4mt — / |Vu|Hdo + — / |Vu|? do,
Cp J{u=ap@)} Cp Hu=ap®)}

where

3—pi 1 g—l

t\ 7 , p— >

2.5 Hn=1-(2 . with t, = >—— ,
(2.5) ap(1) (t) ith 7p (3_pcp)

and the variable ¢ ranges in [t,, +00). The function F}, is then well defined whenever
ap(t) is a regular value of u and the second equality follows by a straightforward
computation, taking into account equalities (2.2), (2.3) and the expression

VVu(Vu, Vu)

H=—-(p-1 VP

for the mean curvature H of a regular level set of u (with respect to the unit normal
Vu /|Vul) which is obtained by making explicit the equation A,u = 0.

The first step of the proof is to show that the function F}, is monotone nondecreasing.
We are going to prove this under the favorable hypothesis that the function u has no
critical points. Indeed, this fact has two relevant consequences: first, all the level sets
of u are connected closed surfaces, being all diffeomorphic to {u = 0} = dM which
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is a connected closed surface, and second, all the previous quantities are well defined
and smooth everywhere. In the general case, without such assumption, one has to deal
with the possible lack of these two properties, making the proof of the monotonicity of
F}, technically much more complicated (we refer the reader to [1]).

STEP 1. MONOTONICITY OF F),. With the help of the Bochner formula and the twice
contracted Gauss equation, the divergence of X can be expressed as

divX =

57 vl IVE[Vul? R |h?
[3;1 (1 _ u)]ﬁ‘l'l |Vu|2 2 2
=
+5—¢;( |Vl }1)2+|Vu|1f—1 RE
p—1 %(l—u) 2 cf,’_l 2|

where R¥(¢), V¥ and lol(q) represent the scalar curvature, the Levi-Civita connection
and the trace-free second fundamental form of the level set ¥ = {u = u(g)} passing

through the point ¢ € M. Then, since all the values in the range of u are regular, the
monotonicity of F), can be deduced by means of the divergence theorem and the coarea
formula,

Vu Vu
F(t)—F(s)=/ <X,—>da—/ <X,—>da
? i u=ay )y \ VUl u=ap} \ |Vl
div X
=/ dide,u=/ dr/ V2 o
{ap () <u<ap ()} @pe)ap@)  Ju=t |Vul
| VE[Vu| |2 Ihf2
dr/ |: + +—
/ w=apy L IVul? 2 2
5— v H)?
4 p(%lul ——)]m
p—1 Tp (I —u) 2

Vu|?P~! RZ
/ dr/ (| ul ; )do
{u=ap ()} - 2

Cp

Now, recalling that R¥ /2 is equal to the Gaussian curvature G of the surface ¥ and
formulas (2.2), (2.3), the last integral is equal to

/St(4n — /{u:ap(r)}GdU) dt = /st [471 —271)(({u = ap(r)})] dt >0,

where the equality is given by the Gauss—Bonnet theorem. Here, y({u = «,(7)}) is the
Euler characteristic of the level set {u = o, (r)}. When |Vu| > 0, all the level sets are
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diffeomorphic to each other; in particular, they are all diffeomorphic to the boundary
0M, which is a connected closed surface. Hence, 4w — 2my({u = a,(7)}) > 0, for
every 7, and the conclusion then follows as R > 0, by assumption. ]

ReEMARK 2.1. As we said, the monotonicity part is formal, rigorous only if the critical
points of the function u are not present, being the vector field X well defined and
smooth only away from these points, hence, we cannot in general apply the diver-
gence theorem. Nevertheless, through a suitable sequence of cut-off functions, we can
always limit from below the difference F), () — Fj(s) with the integral on the open set
{op(s) <u < oap(t)} of the extension of div X which is zero on such critical points and
subsequently apply the coarea formula as above. Actually, the main difference between
the case without critical points and the general one is that there is no control on the set
of the critical values of u, which a priori could even have positive Lebesgue measure.
Indeed, since the p-harmonic functions in general are only of class C'-#, Sard theorem
cannot be applied. This clearly could affect the regularity of “too many” surface-level
sets of the function u, not allowing the application of the Gauss—Bonnet theorem as we
did above. In order to overcome these difficulties, the idea is to “locally” approximate
the p-harmonic function u with the solutions u®7 of the following perturbed problem
(inspired by the works of DiBenedetto [12, 13] and similarly [9]):

div(|[Vv|Z7?Vv) =0 in{0<u=<T}
v=0 ondM
v=T on{u="T}

where |Vv|, = /|Vv|? + €2 and T is a fairly large regular value of u. The functions

e, T k
u loc

outside {|Vu| = 0}, for every k € N, as ¢ — 0; then, with the same line as before, we

are smooth (so Sard theorem can be applied) and C{ .-converge to the function u

can consider analogous functions F;, pointwise converging to Fj, as ¢ — 0, which are
“almost” nondecreasing, up to an “error term” going to zero as ¢ — 0. Hence, sending
& — 0, we obtain the monotonicity of the original function F),. For full details, we
refer to [1, Section 1].

The monotonicity of F), clearly leads to the inequality
(2.6) Fp(tp) = lim_ Fp(1),
t—>+00

where the limit of F), at infinity is well defined, by the “good” asymptotic behavior at
infinity of the function u, described by the expansion

-1 _3>p
2.7) u=1- i— s_p + 02(|x| p—l)
P |x|pT

(see [5, Theorem 3.1]).
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STEP 2. THE LIMIT OF F), AT INFINITY IS BOUNDED ABOVE BY 87 mapm. By formula
(2.4), we have

lim F,(t
t—>4o00 p()
3— 23— )

pT p
4r — 5 — f{u —a, (Z)}|Vu|Hd0+ f{u o, (t)}|Vu| do

= lm )
t—>1+oo 1/1

where the right-hand limit is an indeterminate form 0/0, by the expansion (2.7). Hence,
applying the generalized version of de I’Hopital’s theorem in [24, Theorem II], we
obtain the estimate

lim F,(¢)
d ’ 2G=p)
t 17
<lims d_z[477 _ f{u_ap(t)} [VulHdo + —5— f{u =ap (1)} Vul? da]
u
- t—>+ocl? _1/t2

i t/ |:|VZ|Vu||2+ JrlhlzJr 3—p ( 2|Vu| H)z}d
= 1msup — _— — o
t>too | Ju=apenl [Vul> 2 2(p=1) \2=2(1-u)
RZ H2
+t/ —da—t/ —do
(u=a,p ()} 2 (u=a, ()} 4

RE H2
flimsupt/ —da—t/ —do
t—to0  Ju=a,@)} 2 u=a, ()} 4

_hmsup—(l6n—/ sza),
t—>+oo 4 {u=a, (1)}

where the last identity follows by the Gauss—Bonnet theorem, as the level sets are all
diffeomorphic to a two-dimensional sphere, for ¢ large enough. Then, the way to deal

t
My(t) = Z (1671 —f H? da)
{u=ap ()}

is to compare it with the analogous quantity computed with respect to the Euclidean
background metric. By means of the knowledge of the behavior of u at infinity, formula
(2.7), one gets

— 1 I
My(t) = ~ (1671—/2 sza) +§/E divs, Y " do
t t

1 )
45 [ @y~ 07 da + (1),
Dy

with the term
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where the bar denotes the quantities in the Euclidean metric, Y is the vector field
defined by (g;; — 8;7)V'd; and Y T denotes its tangential component; namely, ¥ T =
Y — g(Y,v)v. The first term in the right-hand side of the equality is nonpositive by
the Euclidean Willmore inequality (see [26]), the second vanishes by the divergence
theorem and it is well known that the third one tends to 87 mapm, as t — 400 (see [4,
Proposition 4.1]). Thus,

lim Fy,(¢t) <limsup M,(t) < 8mwmapm. ]

I—=>+o0 t—+00

SteP 3. PROOF OF THE RIEMANNIAN PENROSE INEQUALITY — THEOREM 1.2. By in-
equality (2.6) and the above estimate, recalling expression (2.4) of F,, one gets

2 5—p
p—1 r—1
t
8wmapm > Fy(ty) = dnt, — L / |Vu|Hdo + pz / \Vul>do > 4rty,
D oM Cp oM

as{u = ap(tp)} = {u = 0} = AM is a minimal surface; hence, H = 0. Making explicit
¢p and ¢, with formulas (2.3) and (2.5), we obtain the following inequality involving
the p-capacity of M :

1(p—1 1= Cap, (M) =
MADM = = .
2\3-p 4

Then, the Riemannian Penrose inequality (1.3) follows by sending p — 17, as there
holds

lim Cap,(dM) = |0M |
p—1t

by [14, Theorem 1.2]. [ ]
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