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ABsTRACT. — In this paper, the existence of non-trivial weak solutions for some problems with
Navier boundary conditions driven by the p(-)-biharmonic operator is investigated. The proofs
combine variational methods with topological arguments.
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1. INTRODUCTION

The paper is devoted to study of a class of elliptic problems driven by p(-)-biharmonic
operator. In particular, we deal with the existence and multiplicity of solutions for the
problem

(Py)

A(AU|PD72Au) = Af(x, u(x)) in 2,
u =Au =0in 0%,

where Q is an open bounded subset of RY (N > 1) with smooth boundary 92,
p € C(Q) with
N _ . +
(1.1) maxil,—¢ < p~ :minp(x) < p* :max p(x) < 400,
2 x€Q xeQ
AZ

p(x)”" "
f € C%Q x R), and A is a positive parameter.

u = A(|Au|P®~2 Ay) is the operator which is often called p(-)-biharmonic,

Due to the simultaneous involvement of the variable exponent p(-) and the bihar-
monic operator, problems as (P ) are of interest to several fields of application of the
study of elliptic problems.

The presence of variable exponent allows to frame the problem within the modeling
of various physical phenomena such as flows of electrorheological fluids or fluids with
temperature-dependent viscosity and nonlinear viscoelasticity; even filtration processes
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through a porous media and image processing give rise to equations with nonstandard
growth conditions, that is, equations with variable exponents of nonlinearities (see
[11,14,36] for more details).

On the other hand, the presence of biharmonic operator allows the problem to be
framed in the study of fourth-order differential equations that arise from the study of
beam deflection problems on nonlinear elastic foundation, first dealt by Necas and
Kratochvil in [31].

In the literature, there are several papers in which existence and multiplicity of solu-
tions related to problems involving the p(-)-biharmonic operator has been investigated.
Below we list some of the most recent publications in which these issues have been
addressed:

+ nonlocal elliptic problem involving p(-)-biharmonic operator with Navier boundary
conditions (see for instance [1,12,13,19,21,24,28,39]);

(p(-), g(-))-biharmonic systems (see for instance [4]);

elliptic problems involving p(-)-biharmonic operator with different boundary condi-
tions (see for instance [2,3,10,13,15,16,18,20,22,23,25,27,29,32,37,38,40,41,43]).

Many of the results are obtained through variational methods by applying mountain
pass theorem, Krasnosel’skii genus theory and critical point theorems established by
Bonanno—Marano [9] and Ricceri [35] (see also [5, 6]).

In this paper, we prove the existence of at least two non-zero weak solutions for
problem (P;) assuming that the nonlinear term f verifies (AR)-condition and its
antiderivative has a suitable growth (see Theorem 3.1). This result will be extended to
the more general problem

» A(|Au|P®72Au) = Af (x,u(x)) + pg(x,u(x)) in 2,
) {u=Au=0in8£2
(see Theorem 3.2) and, by way of application, we present a consequence of obtained
results (see Theorem 3.3) with an example. It is opportune to precise that the results
presented are a generalization of those ones obtained in [7] when exponent p is assumed
constant.

The abstract result we will use is contained in [8] and concerns the existence of at
least two non-trivial critical points for an appropriate functional.

2. PRELIMINARIES

In order to introduce the space in which solutions of problem (P ) are defined, it is
necessary to recall some definitions concerning the variable exponent spaces. We refer
to the monograph by Radulescu and Repovs [34] (see also [30]) for more details.
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With p € C(Q) such that
(2.1) 1 < p~ =:min p(x) < p™ =: max p(x) < +o0,
xX€Q xR
the variable exponent Lebesgue space L2 (Q) is defined as
LPON(Q) = {u : @ — R : measurable and pp(x)(u) := / lu(x)|P™ dx < —|—OO}
Q

and
p(x)

u(x)

(2.2) ull Lrco (g := inf {8 >0: / dx < 1}
Q

defines a norm on it. The function p,y) is called “modular” and it is in close relation
with the norm (2.2) as pointed out by Fan and Zhao in [17, Theorem 1.3].

PrOPOSITION 2.1. Letu € LPX(Q); then

W) [l <1 (=15 > 1) <= ppa@) <1(=1; > 1);
@ i sy > 1 then 1l gy < P @) < Ml o gy
3) if lullpreo(@y < 1, then ||“||11j:<x>(9) < ppxn) () = ”M“i;(x)(g)'

For m € N, we introduce the variable exponent Sobolev space W?*)(Q) defined
as
wmPeN(Q) = {u € LPO(Q) : D € LPY(Q), Y|a| < m}

and relative norm

”u”m,p(x) = Z ”Dau”LP(x)(Q)

lee|]<m

with @ = (0, a2, ..., ay) multi-index of RV,

i=1

o] = Zal— and D% = DI D32--- DIN.
N

Condition p~ > 1 in (2.1) ensures that L?®) (Q) and W™?®)(Q) are separable
and reflexive Banach spaces for each m € N (see for instance [17]).

We put X := W22™)(Q) N Wol’p(x) (2), where Wol’p(x)(Q) is the closure of
CE(Q)inwhr &) (Q). As proved by Zang and Fu in [42], a norm on X equivalent to
the standard one || - ||2, p(x) is the following:

ull := AullLrco @)

foreachu € X
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By standard results on variable exponent Sobolev spaces (see for example [26,
Theorem 3.1]) we know that the embedding

X = w2 (@) nw,? (Q)

is continuous. Moreover, by extension of Rellich—-Kondrachov theorem to spaces
W™P(Q), condition p~ > % in (1.1) ensures that W22~ (Q) is compactly embedded
in C%(Q2) and so the embedding X < C°(Q) is compact. In particular, there exists
k > 0 such that

ulloo < kllul

foreachu € X.
In the sequel, for & > 0 and ¢ € C(Q) with ¢~ > 1, we put

[]? := max{a? , a‘1+},
o]y == min{ozq_,ozq+}-
It is easy to verify that
(i) [a]é = max{a%‘,aqj},
(ii) [a]é = min{af%_,aqj},
(i) [o]i =a < a=[a[2]7 =a <> a=[d],

(iv) |alg[Blg = [efly < [ap]? < [a]?[B]7.

Following what was done in several papers, we denote by D and x, respectively,

Bl

the radius and the center of the greatest ball contained in 2; i.e.

D :=supsup{r>0:B(x,r) C Q}

xeR

and B(xg, D) C Q.
Put h(t) :==t?(t — D)? foreacht € R, and fixed § > 0; we denote by v the function

0 x e\ B(x° D),
vs(x) = § 2e16h(lx —x°|) x € B(x°, D)\ B(x°,2),
] X € B(xo,g).

Clearly, vs € X for each § > 0 and Figure 1 shows the trend of the function vg for
N =2.

The following proposition provides the estimate of p,(x)(vs) which will play an
important role in what we will say.
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Ficure 1. Example of vs for N = 2.

ProposITION 2.2. For each § > 0, it results that

Pp(x) (US) = [8]plD ,

[32(N+527” v (DY
=S en) (2" (3))

and m denotes the measure of unit ball of RV .

where

731

Proor. By standard arguments, for each x € Q andi € {1,2,..., N}, it results that
0 x €Q\ B(x", D),
3_2()5) = %16h’(|x—x0|) I);l—_;‘?\ x € B(x°, D)\ B(x° 2),
0 x € B(x% 2)
and
0 x € Q\ B(x°, D),
Gy B L = e = e
ax; x € B(x*, D)\ B(x°, 2),
0 x € B(x% 2).

Therefore, one has

0 x € Q\Bx° D),
5%[2(1\7 +2)|x = x> =3D(N + 1)|x — x°| + ND?],
x € B(x% D)\ B(x°, %),

0 X € B(xo,%).

Avg(x) =

In order to estimate p,(x)(vs), we consider the function

K(t) == 2(N +2)t> =3D(N + 1)t + ND?
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and we observe that

D2 D .

Moreover, arguing as in [7], we obtain that

p(avs) = [ vy dx
Q

326 P
=/ (—4|K(|x—x0|)|) dx
B(xo,D)\B(xO,Q) D
B / (323 (N + 5)2)1’(")
= JB(x0.p)\B(x0,2) \ D* 8(N +2)

328 (N +5)277 v (D"
< | —=— DY — | — < [8)%1p.
_|:D48(N+2)] m( 2 =BlPlp -
Now, we introduce the functionals ®, ¥ : X — R defined as follows:
1
Dd(u) :=/ —iAu(x)ip(x) dx,
o p(x)
Y(u) = / F(x,u(x))dx
Q

for each u € X, where F(x,t) := fot f(x,€&)dE for each (x,7) € Q x R. Standard
arguments ensure that ® and ¥ are in C'(X) with

(@' (), v) =/ ’Au(x)|p(x)_2Au(x)Av(x) dx,
Q

(W' (u), v) =/Qf(x,u(x))v(x) dx

for each u, v € X. These relations highlight the variational meaning of problem (7} )
in the sense that for each A > 0, the critical points of the functional 7, := ® — AW are
its weak solutions.

The main tool that will allow us to obtain weak solutions of (7)) is the following
result of Bonanno and D’Agui (see [8]) in which existence of at least two non-zero
critical points for functionals type [ is guaranteed.

THeorEM 2.1. Let X be a real Banach space and let ,V : X — R be two continuously
Gateaux differentiable functionals such that infxc x ®(x) = ©(0) = W(0) = 0. Assume
that there existr > 0 and X € X, with 0 < ®(X) < r, such that

SUPP(x)<r W(x) Y(x)
(@) =7 < 3
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(as) foreach A € A, := ]%, m[, the functional I : ® — AV satisfies

(PS)-condition and it is unbounded from below.

Then, for each A € A, the functional I, admits at least two non-zero critical points
Up 1. Upp Such that 1 (uy 1) <0 < Iy (uy2).

3. EXISTENCE OF TWO WEAK NON-ZERO SOLUTIONS

A first result on problem (P;) concerns the existence of at lest two non-zero weak
solutions. In the sequel, with@ > 0 and H € C%(Q x R), we put

H” :=/ max H(x,§&)dx
Q l§l<a

and we observe that H* > 0 for each o > 0.

Tueorem 3.1. Assume that

(f1) there exist 8,y € R, with 0 < § <y, such that

FY 3 EIB(xO,%) F(x,8)dx
[ A
k(pT)yr=dp

(f2) F(x,t) >0 foreveryx € Q and forallt € [0, §],

(f3) there existm > p™, s > 0 such that
0<mF(x,t) <tf(x,t)

Joreach x € Q and |t]| > s.

Then, put

o]
A ,_} [6]71p k(pt) 7= p[
YT fypo py F 8 dx T Fr [

foreach A € A, 5 the problem (P)) admits at least two non-zero weak solutions.
Proor. Fixing y,d asin (f1) and A € A, 5, we apply Theorem 2.1 to the functional
I :®— AV

by choosing

3.1) r= [Ll} .
k(pt)7=dp
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First, we observe that condition ( f3) ensures (PS)-condition and unboundedness from
below for functional 7, for each A > 0. To reach this condition, it is enough to use
arguments similar to those contained in [33] taking into account that the functional ®
is related to norm defined on X.

From (2) and (3) of Proposition 2.1, it results that

[l], = [1Aully)], < Ppoy(Au) < [l Aullpe ] = [llull]”
and so
L], < o) < —[ul)?
p P p
for each u € X. In particular, if ®(u) < r, then one has [||u||], < p™r that, thanks to
(3.1) and (iv), is equivalent to
1
lull < [p*rle.
The continuous embedding X < C () leads to
1 1.1 1.1
lulloo < kllull < klp*r]? <klp*17[r]7 = k(pH)?~[r]? =y
and so
Y(u) = / F(x,u(x))dx < / max F(x,£§)dx = F?.
Q Q =y
Therefore, it turns out that

1 1
(3.2) — sup ¥(u) < -F7.
T d@w)<r r

Moreover, as proven in Proposition 2.2, if we consider vg, it results that
1 1
D (vs) < —ppx)(vs) < —I[8]7Ip
p p

while, taking into account that vg(x) € [0, §] for each x € 2, condition ( f3) ensures
that

\D(vg)z/s;F(x,vg(x))dx Z/ F(x,8)dx.

B(x9,2)
In conclusion, one has
W(s) _ p~ Jaeop) Fx.8)dx
P(vs) ~ Ip [6]7
Conditions (3.2), (3.3), and ( f1) ensure that

(3.3)

1 v
— sup Y(u) < (s)
' ®w)<r (D(US)
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and so condition (a;) requested in Theorem 2.1 is verified. Finally, we verify that

Pvg) <r = [Ll] .
k(p*)7=dp

If ®(vg) > r, then we obtain

1
p—_[S]”lD = O(vs) = 7

Taking into account that y > §, one has

max F(x,§&) > F(x,6)
€<y

andso F” > [p. ) F(x,8)dx. This leads to

FY _ EfB(xo’%) F(x,8)dx
Y 1 — 1 §1p ’
[k(p+)v%]” P i

D(vs) r [
) 4 VY(vs)* suppy<r W) L
Theorem 2.1 ensures that functional I, admits at least two non-zero critical points that,

which is in contradiction with condition (f1). Since A € A, 5 ]

as observed before, are non-trivial weak solutions of problem (}). ]
REMARK 3.1. When F? = 0, it results that M = 0 and so
[6]71p [
A 8 = ] , +00] .
Y p_fB(xO,%) F(X,S)dx

In this case, condition ( f3) implies that s > y, while condition ( f>) leadsto F(x,&) =0
for each £ € [0, §] for a.e. x € Q.

Remark 3.2. If f(x,0) = 0, then in Theorem 3.1 condition ( f3) can be replaced by
the weaker condition

(fg,) there exist m > p*,s > 0 such that
0<mF(x,t) <tf(x,t)

foreachx € Qandt > s

in order to obtain the existence of at least two non-zero and non-negative weak solutions
for problem (P,).

Now we present an existence result for the perturbed problem (7} ).
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THEOREM 3.2. Assume that f € C%(Q2 x R) verifies conditions (1), (f2), and (f3)
of Theorem 3.1.
Then, for each A € A5 and g € C°(Q x R) verifying that

(g2) G(x,t) >0 forevery x € Q and forallt € [0, 6],

(g3) |g(x,t)] < ai|t|* 4+ ay for each (x,t) € Q x R and for some ay, a, > 0 and
O<a<pt—1,

there exists 13,4 > 0 with

3.4 _ Ay p~ Jpeo,p) F(x.8) dx Py
B4 mg= E[W]p Ip [5]7 - [%]
k(ptyr— -p

such that for all p € 10, ¢[ the problem (P} ;) admits at least two non-zero weak
solutions.

Proor. Fixing A € A, 5, g verifying (g2) and (g3) and € ]0, n; ¢[, we apply Theo-
rem 2.1 by choosing

-l
F=\\—"
k(p*)?=dp
and taking into account that the energy functional related to problem (P ,,) is

IA,;L OB A\Ifl,u

with

U, () = /Q (F(x,u(x)) + %G(x,u(x))) dx

for each u € X. Conditions ( f3) and (g3) ensure that I , satisfies (PS)-condition and
it is unbounded from below.
Arguing as in Theorem 3.1, thanks to (g») one has

U; u(vs) = / (F(x, vs(x)) + %G(x, vg(x))) dx > / F(x,8)dx
Q B(x0,2)
and this ensures
fB(XO,%) F(x, 8) dx
[8]7

"IJ)L,M(US) E
3:3) o) ~ Ip

Moreover, if ®(u) < r, then one has ||u||oc < y (see Proof of Theorem 3.1) and so

W) = /9 (F(x,u(X)) + %G(x,u(x))) dx < F” + %GV
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from which

1 1

(3.6) Sosup W) < —(FV n EGV).
I o, )< r A

Because of the condition (3.4), it results that

e fB(xo’%) F(x,8)dx

Ip (617 ’

1 M

Aryr L By

. (F + 7 G ) <
and so, by (3.5) and (3.6),

1 1\
' ®w)<r Dy, (vs)

which is the assumption (a;) requested in Theorem 2.1. ]

REMARK 3.3. The values of A, 5 and 71, , in the various particular cases are shown
below:

- FYGY >0
v

N [6]171p [k(p"i‘)#]p

YT P Jpop) FOL &) dxT T FY ’

2 |: y ] e fB(xO,%) F(x,8)dx Fv
Mg == | ——| | 7= - ;
£ Gy k(pt)7=dp\ I [617 [#}]
k(ptyr~ 4p

« FV>0,G"=0

]
, } [§]171p k(p+) 7= p[
Ay78 = bl

’ = +00;
P~ Jpio, ) F(x.8) dx Fv Nh.g
FY=0,G" >0
[8171p [
Ays ::i| ,+ool,
" P fB(xO,g) F(x,8)dx
A [ y ] p= Jpeo 2y F(x.8) dx .
Me == ——F r B ;
oo k(P+)1+_ P Ip [6]7 [%]
k(pty?— p
FYy=GY =90
[8171p

Ays :=] +oo|:, Ny,g = +00.

p fB(xO,g) F(x,8)dx’
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A more applicable version of result presented in Theorem 3.2 is the following.

THEOREM 3.3. Assume that f € C°(Q x R) verifies condition ( f3) of Theorem 3.1.
Moreover, we suppose that the following assumptions are verified:
(f1) limsup,_,q+ e FCD = oo,
(f5) F(x.,t) > 0 forevery x € Q and forall t € [0, k(p+)l%_].
Then, put y := k(p"')ﬂé and

1 Vd F’j > 0,

+o00 FY =0,

for each A €10, A*[, for each g € C°(Q2 x R) verifying (g3) of Theorem 3.2 and
(&2) G(x,t) = 0forevery x € Q and forallt € |0, k(p+)l+_]

and for each . € 0 (1 — AFY)][, the problem (P;._,,) admits at least two non-zero

weak solutions.

L
7G)7

Proor. Fix A €]0,1*[, g, and p as requested in the thesis. By (fl) there exists § <
min{1, '} such that
_ N .
pm(2)" infreq F(x,1) 1

3.7 — > —.
3.7 §PIp A

We apply Theorem 3.2 by choosing § = § and y = y and by taking into account that

[8]? = 67 . Condition (3.7) ensures that

EIB(XO,%) F(x.8)dx . pm(2)Y infreq F(x,1) 1
Ip [§]7 - 87" Ip

and so condition ( f) is verified. Moreover, because of the choice of ¥ conditions ( f;)
and (g,) imply, respectively, ( f2) and (g2). Since it results that

0. 5 (1= AR < 10.mal

Theorem 3.2 ensures the existence of at lest two non-zero solutions for problem (P; ).
[

Remark 34. If f(x,0) = g(x,0) = 0, then in Theorems 3.2 and 3.3 condition ( f3)
can be replaced by the weaker condition:

(fg,) there exist m > p*, s > 0 such that
0<mF(x,t) <tf(x,t)

foreachx € Qandr > s
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in order to obtain the existence of at least two non-zero and non-negative weak solutions
for problem (P; ;).

Finally, we present an example of application of the previous result.
ExampLE 3.1. Lets, ¢, h €]0, 400[ such that s # ¢g and
0 <min{s,g}+ 1< p~ < pt < max{s.q} + 1.

Then, for each A € 10, ——_+———[,0<h < pT — 1 and
] 215 +V;’+ﬁl)[ P

h 1 s+1 q+1
e o2 (1oaq o+
|Q|yh+1 s+1 - g+1

{A(|Au|p(x)_2Au) = A(|t]" +1¢19) + pt|" in Q,

problem

u=Au=01in9dQ

admits at least two non-zero and non-negative weak solutions.
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