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Calculus of Variations. – On the pythagorean structure of the optimal transport for
separable cost functions, by Gennaro Auricchio, communicated on 10 November
2023.

Abstract. – In this paper, we study the optimal transport problem induced by two measures
supported over two polish spaces, namely, X and Y , which are the product of n smaller polish
spaces, that is,X D�n

jD1
Xj and Y D�n

jD1
Yj . In particular, we focus on problems induced by

a cost function c WX � Y ! Œ0;C1/ that is separable; i.e., c is such that cD c1C � � � C cn, where
each cj depends only on the couple .xj ; yj /, and thus cj W Xj � Yj ! Œ0;C1/. Noticeably,
if X D Y D Rn, this class of cost functions includes all the lpp costs. Our main result proves
that the optimal transportation plan with respect to a separable cost function between two given
measures can be expressed as the composition of n different lower-dimensional transports, one for
each pair of coordinates .xi ; yi / in X � Y . This allows us to decompose the entire Wasserstein
cost as the sum of n lower-dimensional Wasserstein costs and to prove that there always exists an
optimal transportation plan whose random variable enjoys a conditional independence property
with respect to its marginals. We then show that our formalism allows us to explicitly compute the
optimal transportation plan between two probability measures when each measure has independent
marginals. Finally, we focus on two specific frameworks. In the first one, the cost function is
a separable distance, i.e., d D d1 C d2, where both d1 and d2 are distances themselves. In
the second one, both measures are supported over Rn and the cost function is of the form
c.x; y/ D h.jx1 � y1j/C h.jx2 � y2j/, where h is a convex function such that h.0/ D 0.

Keywords. – Wasserstein distance, optimal transport, structure of the optimal plan.
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1. Introduction

The optimal transport problem is a classical minimization problem that dates back to
the pioneering works of Monge [23] and Kantorovich [19, 20]. Given two probability
measures, namely, � and �, the objective of the problem is to identify the cheapest way
to reshape � into �. The expenditure of the transformation depends on a cost function,
which encapsulates the geometric characteristics of the underlying space. Within an
appropriate framework, this minimization problem induces a metric over the space of
probability measures.
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Figure 1. An exemplification of the .d C 1/-partite approach presented in [5] when d D 2.
Instead of moving a unit of mass from node a D .a1; a2/ to node b D .b1; b2/, we first move
the unit from a to .b1; a2/ and then from .b1; a2/ to b. The cost of performing this two-step
movement is the same as moving the mass from a to b since lpp .a; b/D l

p
p .a1; b1/C l

p
p .a2; b2/.

Throughout the last century, the optimal transport (OT) problem has emerged as a
highly valuable tool across several applied domains, such as the study of systems of
particles by Dobrushin [13], the Boltzmann equation by Tanaka [24,33,34], and the
field of fluidodynamics by Yann Brenier [9]. These contributions highlighted the power
of qualitative descriptions of optimal transport, providing insights into a multitude
of longstanding problems. Consequently, the optimal transport problem has emerged
as a topic of interest for analysts, probabilists, and statisticians [2, 31, 35]. Notably, a
plethora of results pertaining to the uniqueness [10, 14, 16], structure [1, 6, 11, 30], and
regularity [8, 22] of the optimal transportation plan within the continuous framework
have been established.

More recently, it has been observed that harnessing the properties of the transporta-
tion plan is advantageous also from a computational standpoint. This revelation aligns
with the growing prominence of the optimal transport problem as a crucial subproblem
across various domains, including computer vision [4,26,28,29] and machine learning
[3, 12, 15, 32]. Consequently, there has been an effort within the community to develop
efficient methods for solving the minimization problem associated with the optimal
transport problem. For instance, as shown in [5], if the two probability measures are
supported over two regular grids, the classic uncapacitated minimum cost flow prob-
lem [17, 25] can be reformulated as a .d C 1/-partite graph, a structure amenable
to efficient handling. The core concept behind the .d C 1/-partite graph formulation
lies in the fact that the lpp cost between two nodes on a bidimensional grid, that is,
l
p
p .x; y/ D jx1 � y1j

p C jx2 � y2j
p, can be decomposed as two lpp costs along the

two cardinal directions, i.e., lpp .x; y/D l
p
p .x1; y1/C l

p
p .x2; y2/, as shown in Figure 1.
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In this paper, we expand upon the framework introduced in [5], originally designed
for measures supported over regular grids. Our extension pertains to a more general
scenario where the measures are supported on two Polish spaces, denoted as X and Y ,
both of which are products of n smaller Polish spaces. Specifically, X is the Cartesian
product of n Polish spaces, defined as X D�njD1Xj . Likewise, Y is defined as Y D
�njD1 Yj . Instead of considering only the lpp costs, we generalize the discussion to
the wider class of separable cost functions. A cost function c is separable if c can
be decomposed into the sum of n functions, i.e., c D c1 C � � � C cn, with each cj
depending only on the pair .xj ; yj /; thus, cj W Xj � Yj ! Œ0;C1/.

We then introduce the notion of cardinal flows, formulate the related minimization
problem, and show that it is equivalent to the classic optimal transport problem. We
demonstrate that the separability of the cost function enables the separation of the total
transportation cost. In particular, given two probability measures � and � supported
over X D X1 �X2 and Y D Y1 � Y2, respectively, it holds that

Cc.�; �/ D

Z
X2

Cc1
.�jx2

; �jx2
/ d�2 C

Z
Y1

Cc2
.�jy1

; �jy1
/ d�1;

where � is a feasible probability measure, which we name pivot measure, and Cc.�; �/
is the optimal transportation cost between � and � associated with c. We then focus on
the relations between the pivot measures and the optimal transportation plan between
two measures. We show how to build an optimal transportation plan given a pivot
measure and prove that there always exists an optimal transportation plan whose
associated random variable enjoys a conditional independence property with respect to
its marginals. We conclude our study by considering two specific scenarios. In the first
scenario, the cost function is a separable distance d W X � Y ! Œ0;C1/, specifically
d D d1 C d2, where both d1 W X1 � Y1 ! Œ0;C1/ and d2 W X2 � Y2 ! Œ0;C1/

are distances. In the second scenario, both measures are defined over the Euclidean
space Rn, and the cost function takes the form c.x; y/D h.jx1 � y1j/C h.jx2 � y2j/,
where h represents a convex function such that h.0/ D 0.

1.1. Preliminaries and notations

We now fix our notation and recall the optimal transport problem. To keep the discussion
as general as possible, we only require X and Y to be Polish spaces. For a complete
introduction to the theory of optimal transportation, we refer to [2, 7, 35].

Given a Polish space .X;d/, we denote with P .X/ the set of all the Borel probability
measures over X and with Pp.X/ the subset of probability measures that have finite p-
moment. We denote with spt.�/ the support of the measure�. For any given measurable
function T W X ! Y , we denote with T#� 2 P .Y / the push-forward of � through T ,
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defined as T#�.A/ D �.T
�1.A// for every A � Y . We recall that if T W X ! Y and

S W Y !Z are both measurable functions, then, for any given� 2P .X/, the following
chain rule .S ı T /#� D S#.T#�/ holds.

Throughout the paper, we assume that every Polish space X is the direct product of
at least two Polish spaces, namely,X1 andX2, so thatX DX1 �X2. In this framework,
the projections over X1 and X2 are then

.pX1
/.x/ WD x1 and .pX2

/.x/ WD x2;

respectively, for x D .x1; x2/ 2 X D X1 �X2.
The i -th marginal of � 2 P .X/ is the probability measure �i 2 P .Xi / defined as

�i WD .pXi
/#�. We say that � is an independent measure if its marginals, that is, �1 2

P .X1/ and�2 2 P .X2/, are independents. In this case, we write�D �1˝�2, where
˝ denotes the product between measures, so that�1˝�2.A1 �A2/D�1.A1/�2.A2/
for every Ai � Xi . Moreover, we denote with ¹�jxi

ºxi2Xi
the disintegration of � with

respect to the function .pXi
/. The measure �jxi

is called the conditional law of � given
xi and, with a slight abuse of notation, we write � D �jxi

˝ �i . We will also call �jxi

the conditional law of � with respect to its i -th marginal. For a complete discussion on
the existence and uniqueness of the conditional laws, we refer to [7, Chapter 10].

The first formulation of the transportation problem is due to Monge and, in modern
language, to Kantorovich. In [18], the author modelized the transhipment of mass
through a probability measure over the product spaceX � Y . He called these measures
transportation plans.

Definition 1 (Transportation plan). Let � and � be two measures over two Polish
spacesX and Y . A probability measure� 2P .X � Y / is a transportation plan between
� and � if

.pX /#� D � and .pY /#� D �:

We denote with ….�; �/ the set of all the transportation plans between � and �.

Definition 2 (Transportation functional). Let � 2 P .X/, � 2 P .Y /, and let c W
X � Y ! R [ ¹C1º be a lower semi-continuous function such that there exist two
upper semi-continuous functions a 2 L1� and b 2 L1� for which it holds true that
c.x; y/ � a.x/C b.x/ for each .x; y/ 2 X � Y . In this framework, the transportation
functional Tc W ….�; �/! R [ ¹C1º is defined as

(1.1) Tc.�/ WD

Z
X�Y

c d�:

The conditions imposed on the cost function in Definition 2 are the minimal ones
for which the integral in (1.1) is well defined. Under these assumptions, we define the
following minimum problem.
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Definition 3 (Minimal transportation cost). Let us take a cost function c W X � Y !
R[ ¹C1º as in Definition 2. The minimal transportation cost functional Cc WP .X/�
P .Y /! R [ ¹C1º is defined as

(1.2) .�; �/! Cc.�; �/ WD inf
�2….�;�/

Tc.�/:

The value Cc.�; �/ is also called the Wasserstein cost between � and �, with respect
to the cost function c.

By making further assumptions on c, it is possible to prove that the infimum in
(1.2) is a minimum. In particular, when the cost function is non-negative, a minimizing
solution exists. We denote with �o.�; �/ the set of minimizers.

2. The cardinal flow and the pivot measure formulation

From now on, we assume X and Y to be the product of two Polish spaces, i.e., X D
X1 � X2 and Y D Y1 � Y2. In this framework, we can introduce the separable cost
function and reformulate the optimal transport problem as an optimal cardinal flow
problem.

Definition 4 (Separable cost function). Let X D X1 �X2 and Y D Y1 � Y2 be two
Polish spaces. We say that c WX � Y !R is separable if there exists a pair of functions
c1 W X1 � Y1 ! R and c2 W X2 � Y2 ! R such that

c.x;y/ WD c1.x1; y1/C c2.x2; y2/

for each x D .x1; x2/ 2 X and for each y D .y1; y2/ 2 Y .

Definition 5 (Cardinal flow). Let � 2 P .X/ and � 2 P .Y /. We say that the couple
of measures .f .1/; f .2// 2 P .X � Y1/ � P .X2 � Y / is a cardinal flow between �
and � if it satisfies the following conditions.
• The marginal on X of f .1/ is equal to �, i.e.,

� D .pX /#f
.1/:

• The marginal on Y of f .2/ is equal to �, i.e.,

� D .pY /#f
.2/:

• The flows f .1/ and f .2/ have the same marginal on Y1 �X2, i.e.,

.pY1�X2
/#f

.1/
D .pY1�X2

/#f
.2/:



g. auricchio 750

We call the measuresf .1/ andf .2/first and second cardinal flow, respectively. Moreover,
we denote with F .�; �/ the set of all cardinal flows between � and �.

Remark 1. For any couple of probability measures � and �, the set F .�; �/ is
nonempty. In fact, the couple .f .1/; f .2//, defined as

f .1/ D �˝ �1 and f .2/ D �2 ˝ �;

belongs to F .�; �/. Moreover, the sets F .�; �/ and F .�; �/ are, in general, different.
For instance, let X D Y D R2, � D ı.0;0/, and � D ı.1;1/. In this case, F .�; �/ D

¹ı..0;0/I1/º, while F .�; �/ D ¹ı..1;1/I0/º.

Definition 6 (Cardinal flow functional). Given two probability measures � 2 P .X/,
� 2 P .Y /, and a separable cost function c D c1 C c2 over X � Y , we define the first
and second cardinal transportation functionals as

CT .1/
c .f .1// D

Z
X�Y1

c1 df
.1/ and CT .2/

c .f .2// D

Z
X2�Y

c2 df
.2/

where .f .1/; f .2// 2 F .�; �/. The total cardinal flow functional is then defined as

CT c.f
.1/; f .2// D CT .1/

c .f .1//CCT .2/
c .f .2//:

Theorem 1. Let � 2 P .X/, � 2 P .Y /, and let c W X � Y ! Œ0;C1/ be a separable
cost function. Then,

min
�2….�;�/

Tc.�/ D min
.f .1/;f .2//2F .�;�/

CT c.f
.1/; f .2//:

Proof. Let us consider two measures � 2 P .X/ and � 2 P .Y /. Given � 2….�; �/,
let f .1/ and f .2/ be the marginals of � over X � Y1 and X2 � Y , respectively. Then,
the following identity holds:Z

X�Y

c d� D

Z
X�Y1

c1 df
.1/
C

Z
X2�Y

c2 df
.2/
I

thus, Tc.�/ D CT c.f
.1/; f .2//. In particular, we infer

(2.1) min
�2….�;�/

Tc.�/ � min
.f .1/;f .2//2F .�;�/

CT c.f
.1/; f .2//:

To conclude, we show the inverse inequality. Let us now consider a cardinal flow
.f .1/; f .2//. By definition of cardinal flow, it holds that

.pY1�X2
/#f

.1/
D .pY1�X2

/#f
.2/:

Thus, owing to the gluing lemma (see [35, Section 1]), there exists a probability � 2
P .X � Y / whose marginal on X � Y1 is f .1/ and whose marginal on X2 � Y is f .2/.
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Moreover, we have that� 2….�;�/. Indeed, we have that .pX /#� D .pX /#..pX�Y1
/#�/

D .pX /#f
.1/ D �. Similarly, it holds that .pY /#� D �. We have then shown that, for

any given cardinal flow .f .1/; f .2//, there exists a transportation plan � for which it
holds that Tc.�/ D CT c.f

.1/; f .2//; thus,

min
�2….�;�/

Tc.�/ � min
.f .1/;f .2//2F .�;�/

CT c.f
.1/; f .2//;

which, combined with (2.1), concludes the proof.

Given �2P .X/ and �2P .Y /, we define the function L W ….�; �/!F .�; �/ as

L.�/ D
�
.pX�Y1

/#.�/; .pX2�Y /#.�/
�
:

By the chain rule for push-forwards, we infer that L.�/ 2 F .�; �/ for each � 2
….�; �/. Vice-versa, let us take .f .1/; f .2// 2 F .�; �/. Owing to the gluing lemma
[35, Chapter 1], we find � 2 ….�; �/ such that L.�/ D .f .1/; f .2//. We therefore
conclude that F .�; �/ D L.….�; �//. We notice that the functionals Tc and CT c are
related through the function L as follows:

Tc.�/ D CT c

�
L.�/

�
; 8� 2 ….�; �/:

This relation, together with the identity L.….�; �// D F .�; �/, allows us to conclude
that, in the framework described in Definition 2, the infimum of CT c is a minimum
and that the set of minimizers of CT c coincides with the image of �o.�; �/ through L.
As a straightforward consequence, we infer that any set of conditions that ensures
the uniqueness of the optimal transportation plan ensures also the uniqueness of the
optimal cardinal flow.

Corollary 1. Whenever the optimal transportation plan is unique, so is the optimal
cardinal flow.

Remark 2. Since the operator L is only surjective and not injective, the reverse
implication is not true; i.e., given an optimal cardinal flow .f .1/; f .2//, there might
exist several optimal transportation plans � such that L.�/ D .f .1/; f .2//.

Definition 7. Let � 2 P .X/ and � 2 P .Y /. We define the set of intermedium
measures between � and � as

	.�; �/ WD
®
� 2 P .Y1 �X2/ s.t. .pX2

/#.�/ D �2 and .pY2
/#.�/ D �1

¯
:

Given � 2 	.�; �/, we say that the cardinal flow .f .1/; f .2// 2 F .�; �/ glues on � if

.pY1�X2
/#f

.1/
D .pY1�X2

/#f
.2/
D �:

As from a cardinal flow we are always able to retrieve a transportation plan, from
any intermediate measure we are able to retrieve at least a cardinal flow that glues on it.



g. auricchio 752

Lemma 1. Let�2P .X/, � 2P .Y /, and�2	.�;�/. Then, there exists .f .1/;f .2//2
F .�; �/ such that

.pX2�Y1
/#f

.1/
D � D .pX2�Y1

/#f
.2/:

Proof. Let � 2 	.�; �/. By disintegrating �, we get

� D �jx2
˝ �2 D �jx2

˝ �2 and � D �jx2
˝ �2:

We define f .1/ 2 P .X � Y1/ as

f .1/ D .�jx2
˝ �jx2

/˝ �2:

It is easy to see that .pX /#f .1/ D � and .pX�Y1
/#f

.1/ D �. Similarly, we define f .2/

as
f .2/ D .�jy1

˝ �jy1
/˝ �1;

so that
� D .pY /#f

.2/ and � D .pY1�X2
/#f

.2/
I

hence, .f .1/; f .2// 2 F .�; �/.

Definition 8 (Pivot measure). Let � 2 P .X/, � 2 P .Y /, and let c be a separable
cost function. We say that � 2 P .Y1 �X2/ is a pivot measure between � and � if there
exists at least an optimal cardinal flow .f .1/; f .2// that glues on it.

Remark 3. Using the chain rule for push-forwards, we have that all the pivot measures
are also intermediate measures.

We are now ready to state our main result, which allows us to decompose the
Wasserstein cost along the coordinates of the space on which the measures � and � are
supported.

Theorem 2. Let � 2 P .X/, � 2 P .Y /, and let c D c1 C c2 be a separable cost
function. For any pivot measure �, it holds that

(2.2) Cc.�; �/ D

Z
X2

Cc1
.�jx2

; �jx2
/ d�2 C

Z
Y1

Cc2
.�jy1

; �jy1
/ d�1:

Proof. Let � be a pivot measure between � and �. From Remark 3, we know that
� 2 	.�; �/. The disintegration theorem (see [7, Chapter 10]) allows us to write

(2.3) � D �
.1/

jx2
˝ �2 and � D �

.2/

jy1
˝ �1:
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Similarly, we decompose � and � as

(2.4) � D �jx2
˝ �2 and � D �jy1

˝ �1;

respectively. Notice that, for �2-almost every x2 2 X2, the following quantity is well
defined

Cc1
.�jx2

; �
.1/

jx2
/ D inf

�
.1/

jx2
2….�jx2

;�
.1/

jx2
/

Z
X1�Y1

c1 d�
.1/

jx2
:

Moreover, since the maps x2 ! �jx2
and x2 ! �

.1/

jx2
are both measurable, there

exists a measurable selection of optimal plans �.1/
jx2

for which it holds true that

(2.5) Cc1
.�jx2

; �
.1/

jx2
/ D

Z
X1�Y1

c1 d�
.1/

jx2

for �2-almost every x2 2 X2 [35, Corollary 5.21]. Similarly, there exists a measurable
selection �.2/

jy1
for which, for �1-almost every y1 2 Y1,

(2.6) Cc2
.�
.2/

jy1
; �jy1

/ D

Z
X2�Y2

c2 d�
.2/

jy1
:

Let us now consider the measures f .1/ 2 P .X � Y1/ and f .2/ 2 P .X2 � Y /, defined
as

(2.7) f .1/ D �
.1/

jx2
˝ �2 and f .2/ D �

.2/

jy1
˝ �1:

The couple .f .1/; f .2// is a cardinal flow between � and �: in fact, given � 2 L1�, we
have Z

X

� d� D

Z
X2

�Z
X1

� d�jx2

�
d�2

D

Z
X2

�Z
X1

� d
�
.pX1

/#�
.1/

jx2

��
d�2

D

Z
X2

�Z
X1�Y1

� ı
�
.pX1

/; IdX2

�
d�

.1/

jx2

�
d�2

D

Z
X�Y1

� ı .pX / df
.1/

D

Z
X

� d
�
.pX /#f

.1/
�
I

hence, .pX /#f .1/ D �. Similarly, we get

.pY1�X2
/#f

.1/
D �; .pY1�X2

/#f
.2/
D �; .pY /#f

.2/
D �I
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hence, .f .1/; f .2// 2 F .�; �/. From the identities (2.5) and (2.6), we haveZ
X2

Cc1
.�jx2

; �jx2
/ d�2 C

Z
Y1

Cc2
.�jy1

; �jy1
/ d�1

D

Z
X2

Z
X1�Y1

c1 d�
.1/

jx2
d�2 C

Z
Y1

Z
X2�Y2

c2 d�
.2/

jy1
d�1

D

Z
X�Y1

c1 df
.1/
C

Z
X2�Y

c2 df
.2/;

so that Z
X2

Cc1
.�jx2

; �jx2
/ d�2 C

Z
Y1

Cc2
.�jy1

; �jy1
/ d�1

� min
.f .1/;f .2//

CT c.f
.1/; f .2//:

(2.8)

To prove the other inequality, let us take .f .1/; f .2// 2 F .�; �/. By definition, we
have

.pX2
/#f

.1/
D .pX2

/#� D �2 and .pY1
/#f

.2/
D .pY1

/#� D �1:

By disintegrating f .1/ and f .2/ with respect to x2 and y1, respectively, we find

f .1/ D  jx2
˝ �2 and f .2/ D �jy1

˝ �1:

Let � be the measure on which f .1/ and f .2/ glue, and we have  jx2
2 ….�jx2

; �jx2
/

�2-a.e. and �jy1
2 ….�jy1

; �jy1
/ �1-a.e. Indeed,

� D .pX /#f
.1/
D .pX /#. jx2

˝ �2/ D
�
.pX /# jx2

�
˝ �2

so that, by the uniqueness of the conditional law, we have

.pX /# jx2
D �jx2

and .pY1�X2
/# jx2

D �jx2
I

therefore,  jx2
2….�jx2

; �jx2
/, for �2-a.e. x2 2 X2. Similarly, we can find a family of

measures such that �jy1
2 ….�jy1

; �jy1
/, for �1-a.e. y1 2 Y1. Finally, we observe thatZ

X�Y1

c1 df
.1/
D

Z
X2

Z
X1�Y1

c1 d jx2
d�2 �

Z
X2

Cc1
.�jx2

; �jx2
/ d�2(2.9)

and Z
X2�Y

c2 df
.2/
D

Z
Y1

Z
X2�Y2

c2 d�jy1
d�1 �

Z
Y1

Cc2
.�jy1

; �jy1
/ d�1:(2.10)
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By summing up the relations (2.9) and (2.10), we conclude that

Cc.�; �/ �

Z
X2

Cc1
.�jx2

; �jx2
/ d�2 C

Z
Y1

Cc2
.�jy1

; �jy1
/ d�1;

which, along with (2.8), concludes the proof.

Remark 4 (The Monge minimizers). A Monge minimizer is defined as an optimal
transportation plan of the form �T D .IdX ; T /#�, where IdX W X ! X is the identity
function over the set X , and T W X ! Y is a measurable function satisfying the
condition T#�D �. The function T represents the optimal way to transfer the mass
from X to Y ; that is, the mass that � assigns to x 2 X is relocated to T .x/ 2 Y . We
will also say that �T is induced by T . If the optimal transportation plan is a Monge
minimizer, the optimal cardinal flows and the pivot measure associated with it can
be described through the function T D .T1; T2/ as well. Indeed, owing to the chain
rule, we have that f .1/ D .pX�Y1

/#..IdX ; T /#�/ D .IdX ; T1/#�. Similarly, it holds
that f .2/ D .IdX2

; T /#� and � D .T1; IdX2
/#�. Furthermore, according to Theorem 2,

there exist two functions, denoted as H W X � Y1 ! Y1 �X2 and V W X2 � Y1 ! Y ,
such that

(i) x2 ! H2.x1; x2/ D x2 for �2-a.e. x2 2 X2 and y1 ! V1.y1; x2/ D y1 for
�1-a.e. y1 2 Y1;

(ii) for �2-a.e. x2 2 X2, the function

Hx2
W x1 ! H1.x1; x2/

is such that .Hx2
; IdX2

/#�jx2
is an optimal transportation plan between �jx2

and
�jx2

, with respect to c1. Similarly, for �1-a.e. y1 2 Y1, the function

Vy1
W x2 ! V2.y1; x2/

is such that .IdY1
; Vy1

/#�jy1
is an optimal transportation plan between �jy1

and
�jy1

, with respect to c2.

Using again the chain rule, it is easy to see thatH.x1; x2/D .T1.x1; x2/; x2/; however,
V has no explicit form in terms of T , but it is characterized by the identity V ıH D T .
In particular, it holds that V1.y1; x2/ D y1 and V2.T1.x1; x2/; x2/ D T2.x1; x2/.

When both X and Y are the product of more than two Polish spaces, we can
iteratively use Theorem 2 and retrieve the following more general result.

Theorem 3. Let X D
�n
iD1 Xi and Y D

�n
iD1 Yi be Polish spaces such that Xi

and Yi are Polish spaces for every i D 1; : : : ; n. Moreover, let c W X � Y ! R be a
separable cost function, that is, c.x;y/D

Pn
iD1 ci .xi ; yi /. Then, given� 2P .X/ and

� 2P .Y /, there exists a family of .nC 1/ probability measures, namely, ¹�.i/ºiD0;1;:::;n,
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such that
• �.0/ D � and �.n/ D �,
• �.i/ 2 P ..

�i
jD1 Yj / � .

�n
jDiC1Xj //, for every i D 1; 2; : : : ; n � 1,

• Cc.�; �/ D
Pn
iD1

R
.
�i�1

jD1 Yj /�.
�n

jDiC1Xj /
Cci

.�
.i�1/

j�i
; �
.i/

j�i
/ d�

.i�1/
�i ,

where �.i�1/
�i is the marginal of �.i�1/ over .

�i�1
jD1 Yj / � .

�n
jDiC1Xj / and �.i�1/

j�i
is

the conditional law of �.i�1/ given

z�i D .y1; : : : ; yi�1; xiC1; : : : ; xn/ 2

� i�1�
jD1

Yj

�
�

� n�
jDiC1

Xj

�
:

Similarly, �.i/
j�i

is the conditional law of the marginal �.i/ given

z�i 2

� i�1�
jD1

Yj

�
�

� n�
jDiC1

Xj

�
:

Proof. For the sake of simplicity, we prove the statement for nD 3. Let us setX 01DX1,
X 02 D X2 �X3, Y

0
1 D Y1, and Y 02 D Y2 � Y3. Moreover, let us consider the functions

c01 D c1 and c02 D c2 C c3, so that c D c01 C c
0
2. From Theorem 2, we find a measure

� 2 P .Y 01 �X
0
2/ such that

(2.11) Cc.�; �/ D

Z
X 0

2

Cc0
1
.�jx0

2
; �jx0

2
/ d�2 C

Z
Y 0

1

Cc0
2
.�jy0

1
; �jy0

1
/ d�1;

where �2 is the marginal of � over X 02 D X2 � X3 and �1 is the marginal of � over
Y 01 D Y1. For �1-almost every y01, we have �jy0

1
2P .X 02/ and �jy0

1
2P .Y 02/. Then, since

X 02 D X2 �X3, Y
0
2 D Y2 � Y3, and c02 D c2 C c3, we can apply Theorem 2 again and

find a family of measures depending on y01, namely, �.y01/, such that �.y01/ 2P .Y2 �X3/

and

Cc0
2
.�jy0

1
; �jy0

1
/ D

Z
X3

Cc2

�
.�jy0

1
/jx3

; .�.y
0
1
//jx3

�
d.�jy0

1
/3

C

Z
Y2

Cc3

�
.�.y

0
1
//jx2

; .�jy0
1
/jy2

�
d.�jy0

1
/2;

(2.12)

for �1-almost everywhere. We then define

� D �.y
0
1
/
˝ �1 2 P .Y1 � Y2 �X3/:

Notice that � is well defined since the family of measures ¹�.y01/ºy0
1
2Y 0

1
is measurable (it

follows from [35, Corollary 5.21] and from the fact that being measurable is preserved
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by the pushforward operation). Then, by combining (2.12) with (2.11), we find

Cc.�; �/ D

Z
X2�X3

Cc1
.�j.x2;x3/; �j.x2;x3// d��1

C

Z
Y1�X3

Cc2
.�j.y1;x3/; �j.y1;x3// d��2

C

Z
Y1�Y2

Cc3
.�j.y1;y2/; �j.y1;y2// d��3:

Moreover, by construction, � 2 P .Y 01 �X
0
2/ D P .Y1 �X2 �X3/. We therefore con-

clude the thesis by setting �.0/ D �, �.1/ D �, �.2/ D �, �.3/ D �, and by recalling
that x01 D x1, y

0
1 D y1, and c01 D c1. The result for n � 3 is recovered by applying the

previous argument n � 1 times.

From formula (2.3), we deduce that solving the optimal transport problem between
two generic measures can be achieved in two steps: detecting the pivotal measure and
solving a family of lower dimensional problems. In particular, if we are able to solve
the lower dimensional transportation problems, the only unknown left to determine is
the pivot measure.

Definition 9 (Pivoting functional). Given � 2 P .X/, � 2 P .Y /, and a separable
cost function c D c1 C c2, we define the pivoting functional Zc W 	.�; �/! R as

Zc W � !

Z
X2

Cc1
.�jx2

; �jx2
/ d�2 C

Z
Y1

Cc2
.�jy1

; �jy1
/ d�1:

Due to the convexity and the lower semi-continuity of the Wasserstein costs (see
[35, Chapter 4]), we infer the following lemma.

Lemma 2. For every � 2 P .X/ and every � 2 P .Y /, the functional Zc is convex and
lower semi-continuous over 	.�; �/. Therefore, Zc admits a minimizer over 	.�; �/.

To conclude, we prove that the minimum of Zc over 	.�; �/ is the Wasserstein cost
between � and �.

Theorem 4. Given �; � 2 P .R2/, and a separable cost function c D c1 C c2, it holds
that

Cc.�; �/ D min
�2	.�;�/

Zc.�/:

Proof. Since any pivot measure � is an element of 	.�; �/, Theorem 2 ensures that

Cc.�; �/ � min
�2	.�;�/

Zc.�/:

To conclude the proof, we prove the other inequality.
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Let us fix � 2 	.�; �/. Following the steps of the proof of Theorem 2, we disin-
tegrate �, �, and � (see (2.3)–(2.4)), find the optimal transportation plans between the
conditional measures, and define the cardinal flow as done in (2.7). Finally, since the
couple .f .1/; f .2// 2 F .�; �/, we have

Zc.�/ D CT c.f
.1/; f .2// � min

.f .1/;f .2//2F .�;�/
CT c.f

.1/; f .2//I

hence,

min
�2	.�;�/

Zc.�/ � min
.f .1/;f .2//2F .�;�/

CT c.f
.1/; f .2// D Cc.�; �/;

which concludes the proof.

2.1. Independence of the optimal coupling

In Remark 2, we noticed that any optimal transportation plan determines one and
only one optimal cardinal flow, while the opposite is not true. The following example
showcases how, even if we have a unique pivot measure and a unique optimal cardinal
flow, we might retrieve an infinite number of optimal transportation plans.

Example 1. Let us take two probability measures on R2, � and �, defined as

� WD
1

2
.ı.1;0/ C ı.2;0// and � WD

1

2
.ı.0;1/ C ı.0;2//;

where ı.x1;x1/ is the Dirac delta centered in .x1; x2/ 2 R2. Since 	.�; �/ D ¹ı.0;0/º,
the only possible pivot measure is � D ı.0;0/; hence, the only (and therefore optimal)
cardinal flow is

f .1/ WD
1

2
.ı..1;0/I0/ C ı..2;0/I0// and f .2/ WD

1

2
.ı..0;0/I1/ C ı..0;0/I2//:

However, the transportation plans �; �1, and �2, defined as

� WD
1

4
.ı..1;0/I.0;1// C ı..1;0/I.0;2// C ı..2;0/I.0;1// C ı..2;0/I.0;2///;

�1 WD
1

2
.ı..1;0/I.0;1// C ı..2;0/I.0;2///;

�2 WD
1

2
.ı..1;0/I.0;2// C ı..2;0/I.0;1///;

are all optimal transportation plans between � and � since they all induce the same
cardinal flow .f .1/; f .2//. Moreover, it is worthy of notice that since Tc is convex, any
convex combination of �1 and �2 is an optimal transportation plan between � and �.
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(a) (b) (c) (d)

Figure 2. The lack of uniqueness we showcased in Example 1. The support of � is indicated
by light grey circles, the support of � by dark grey circles. In Figure (A), we showcase the
optimal cardinal flow. The support of the pivot measure � is indicated by the black triangle.
Figures (B), (C), and (D) showcase the transportation plans �1, �2, and � , respectively. Each of
these transportation plans induces the cardinal flow described in (A).

The lack of uniqueness is due to a natural lack of memory. Roughly speaking, once
the first cardinal flow f .1/ allocates the mass into .0; 0/, the mass coming from .1; 0/

and .2; 0/ merges into one point and loses its identity. Therefore, when the second
cardinal flow f .2/ reallocates the mass in .0; 0/ and moves it vertically to complete the
transportation, we are unable to tell how much of the mass that ended in .0; 1/ came
from the point .1; 0/ or .2; 0/. The plans � , �1, and �2 are different for this reason:
for � , just half of the mass in .1; 0/ goes to .0; 1/, for �1, all the mass in .1; 0/ goes to
.0; 1/, and, for �2, none of the mass in .1; 0/ goes to .0; 1/ (see Figure 2).

As Example 1 shows, for any pivot measure �, there might exist more than one
optimal transportation plan whose marginal on Y1 �X2 is equal to �. In the following,
we characterize this lack of uniqueness and prove that, given a pivot measure �, there
always exists a unique optimal transportation plan � that induces � and enjoys a
conditional independence property with respect to its marginals.

Lemma 3. Let us take � 2 P .X/, � 2 P .Y /, and c W X � Y ! Œ0;C1/ a separable
cost function. Moreover, let .f .1/; f .2// be an optimal cardinal flow, let � be the pivotal
measure related to .f .1/; f .2//, and let f .1/

j.y1;x2/
and f .2/

j.y1;x2/
be the conditional laws

of f .1/ and f .2/ given .y1; x2/. Then, any measurable family of probability measures

.y1;x2/ satisfying

(2.13) 
.y1;x2/ 2 ….f
.1/

j.y1;x2/
; f

.2/

j.y1;x2/
/; �-a.e. on Y1 �X2;

is such that

.y1;x2/ ˝ � 2 �o.�; �/:

Proof. Let� 2….�;�/ be defined as in (2.13). Since it holds thatL.�/D .f .1/;f .2//
and .f .1/; f .2// is optimal, we conclude that � 2 �o.�; �/.
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Theorem 5. Let�2P .X/, � 2P .Y /, and let cD c1C c2 be a separable cost function.
Then, for any given pivot measure �, there exists a unique optimal transportation plan
� such that .pY1�X2

/#� D � and such that the conditional law of � given .y1; x2/ is
an independent measure for �-a.e. on Y1 �X2. Moreover, the plan � is given by

(2.14) � WD
�
f
.1/

j.y1;x2/
˝ f

.2/

j.y1;x2/

�
˝ �

where .f .1/; f .2// D L.�/.

Proof. It follows from the fact that ¹f .1/
j.y1;x2/

˝ f
.2/

j.y1;x2/
º.y1;x2/2Y1�X2

is the family
of measures that satisfies the requirements of Lemma 5 and it is independent �-a.e.
over Y1 �X2.

Remark 5. Going back to Example 1, the optimal transportation plan described in
Theorem 5 is

� WD
1

4
.ı..1;0/I.0;1// C ı..1;0/I.0;2// C ı..2;0/I.0;1// C ı..2;0/I.0;2///:

When the optimal transportation plan is unique, we can enhance the previous result
as follows.

Corollary 2. Let � 2 P .X/, � 2 P .Y /, and let c D c1 C c2 be a separable cost
function. Let us assume that the transportation problem between � and � has a unique
solution � . Then, if .X1; X2; Y1; Y2/ is the optimal coupling inducing the law � , we
have the following:

(1) X1 and Y2 are conditionally independent given X2 and Y1,

(2) X2 and Y1 are conditionally independent given X1 and Y2.

Proof. Let � be the optimal transportation plan, .f .1/; f .2// D L.�/, and let � be
the pivot measure. Since the plan (2.14) is optimal, we have

� D
�
f
.1/

j.y1;x2/
˝ f

.2/

j.y1;x2/

�
˝ �:

By the uniqueness of the disintegration, we find �j.y1;x2/ D f
.1/

j.y1;x2/
˝ f

.2/

j.y1;x2/
, which

proves (1). To prove (2), it suffice to swap the roles of � and �.

Corollary 3. Let � 2 P .X/, � 2 P .Y /. If there exists Nx2 2 X2 for which

(2.15) �2
�
¹ Nx2º

�
D �

�
X1 � ¹ Nx2º

�
D 1;

then � D �1 ˝ ı Nx2
is the unique pivot measure between � and �. Similarly, if there

exists Ny1 such that

(2.16) �1
�
¹ Ny1º

�
D �

�
¹ Ny1º � Y2

�
D 1;
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the unique pivot measure is given by � D ı Ny1
˝ �2. Moreover, if there exists a couple

. Ny1; Nx2/ satisfying both (2.15) and (2.16), then � D ı. Ny1; Nx2/ is the pivot measure and
every � 2 ….�; �/ is optimal.

Proof. The first two statements follow from the fact that 	.�; �/ contains only one
measure, which is �1 ˝ ı Nx2

in the first case and ı Ny1
˝ �2 in the second one. If both

(2.15) and (2.16) hold, also F .�; �/ contains only one element,

.f .1/; f .2// D .�˝ ı Ny1
; ı Nx2
˝ �/:

In particular,L.�/D.f .1/;f .2// for each�2….�;�/, and therefore each � 2….�; �/
is optimal.

We conclude the section by showing that if both � and � are independent measures,
that is, � D �1 ˝ �2 and � D �1 ˝ �2, Corollary 2 can be enhanced further as it
follows.

Corollary 4. In the framework of Corollary 2, assume that both� and � are independ-
ent, that is,�D�1˝�2 and � D �1˝ �2. Then, there exists an optimal transportation
plan between � and �, namely, � , such that if .X1;X2; Y1; Y2/ is the coupling inducing
the law � , the couple .X1; Y1/ is independent from .X2; Y2/. Moreover, we have

Cc.�; �/ D Cc1
.�1; �1/C Cc2

.�2; �2/:

Proof. Let us define the intermedium measure � WD �1 ˝ �2. By definition, � is
independent and therefore we have that �jx2

D �1 and �jx2
D �1 for any x2 2 X2. Let

�.1/ be the optimal transportation plan between �1 and �1 with respect to c1, and let
us define f .1/ WD �.1/ ˝ �2. Similarly, we define f .2/ WD �.2/ ˝ �1, where �.2/ is
the optimal transportation plan between �2 and �2 with respect to c2.

It is easy to see that .f .1/; f .2// is a cardinal flow between � and � that glues on �.
Following formula (2.14), the measure defined as

(2.17) � D
�
f
.1/

j.y1;x2/
˝ f

.2/

j.y1;x2/

�
˝ �

is a transportation plan between � and �. Moreover, according to the definitions of �,
f .1/, and f .2/, equation (2.17) boils down to

� D
�
f
.1/

jy1
˝ f

.2/

jx2

�
˝ .�1 ˝ �2/ D �

.1/
˝ �.2/:

We now show that � is c-cyclically monotone, which implies that � is an optimal
transportation plan (see [31, Theorem 1.49]). By contradiction, let us assume that there
exists N 2 N and a set of points®

.x.i/; y.i//
¯
iD1;2;:::;N

D
®
.x
.i/
1 ; x

.i/
2 ; y

.i/
1 ; y

.i/
2 /
¯
iD1;2;:::;N

� spt.�/
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such that

(2.18)
NX
iD1

c.x.i/; y.iC1// <

NX
iD1

c.x.i/; y.i//;

where x.NC1/ D x.1/ and y.NC1/ D y.1/. Since c D c1C c2 is separable, from (2.18),
we infer

NX
iD1

c.x.i/; y.iC1// D

NX
iD1

�
c1.x

.i/
1 ; y

.iC1/
1 /C c2.x

.i/
2 ; y

.iC1/
2 /

�
and, similarly,

NX
iD1

c.x.i/; y.i// D

NX
iD1

�
c1.x

.i/
1 ; y

.i/
1 /C c2.x

.i/
2 ; y

.i/
2 /
�
:

Therefore, we rewrite (2.18) as
NX
iD1

c1.x
.i/
1 ; y

.iC1/
1 /C

NX
iD1

c2.x
.i/
2 ; y

.iC1/
2 / <

NX
iD1

c1.x
.i/
1 ; y

.i/
1 /C

NX
iD1

c2.x
.i/
2 ; y

.i/
2 /;

which allows us to conclude that either one of the two inequalities must hold:

NX
iD1

c1.x
.i/
1 ; y

.iC1/
1 / <

NX
iD1

c1.x
.i/
1 ; y

.i/
1 / or

NX
iD1

c2.x
.i/
2 ; y

.iC1/
2 / <

NX
iD1

c2.x
.i/
2 ; y

.i/
2 /:

(2.19)

By definition of � , we have ¹.x.i/1 ; x
.i/
2 ; y

.i/
1 ; y

.i/
2 /ºiD1;2;:::;N � spt.�/ if and only if®

.x
.i/
1 ; y

.i/
1 /
¯
iD1;2;:::;N

� spt.�.1// and
®
.x
.i/
2 ; y

.i/
2 /
¯
iD1;2;:::;N

� spt.�.2//:

We therefore conclude that both inequalities in (2.19) can not hold, as the support of
�.1/ is c1-cyclically monotone and the support of �.2/ is c2-cyclically monotone.

Finally, we notice that, in this framework, Formula (2.2) simplifies to

Cc.�; �/ D

Z
X2

Cc1
.�jx2

; �jx2
/ d�2 C

Z
Y1

Cc2
.�jy1

; �jy1
/ d�1

D

Z
X2

Cc1
.�1; �1/ d�2 C

Z
Y1

Cc2
.�2; �2/ d�1

D Cc1
.�2; �2/C Cc2

.�2; �2/;

which concludes the proof.
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3. Two examples

We conclude our paper with two examples. In the first one, the cost function is a
separable distance over a polish space X D X1 �X2, i.e., c WD d1 C d2, where d1 W
X1 �X1! Œ0;C1/ is a distance overX1 and d2 W X2 �X2! Œ0;C1/ is a distance
over X2. In the second one, the measures are supported over R2 and the cost function
c has the form c.x; y/ D h.jx1 � y1j/C h.jx2 � y2j/, where h W R! R is a convex
function such that h.0/ D 0. Albeit the second example is presented in R2, Theorem 3
allows us to extend all the results to the case Rn with n � 2.

3.1. Wasserstein distance

If we take X D Y and choose the distance d as a cost function, the optimal transport
problem lifts the distance d over the space Pp.X/. The resulting distance is called the
Wasserstein distance.

Definition 10 (Wasserstein distance). Let .X; d/ be a Polish space and p 2 Œ1;C1/.
The p-order Wasserstein distance between the probability measures � and � on X is
defined as

(3.1) W
p

dp .�; �/ WD inf
�2….�;�/

Tdp .�/:

When p D 1, the 1-Wasserstein distance is also known as the Kantorovich–Rubistein
distance.

Remark 6. The infimum in (3.1) could actually be C1, to avoid that it suffices to
restrict Wp to Pp.X/.

Theorem 6 ([35, Chapter 6]). TheWdp distance is a finite distance over Pp.X/. When
the setX is bounded, theWdp distance induces the weak topology on the space Pp.X/.
Moreover, .Pp.X/;Wdp / is a Polish space.

We now prove that when d is separable, the induced distance Wd inherits a weaker
version of the separability, that is,

(3.2) Wd .�; �/ D Wd .�; �/CWd .�; �/;

for any pivot measure �.
Since X D Y , we need to slightly change the notation in order to avoid confusion.

We denote the generic point .x.1/;x.2// 2 X �X with

.x.1/;x.2// D
�
.x
.1/
1 ; x

.1/
2 /; .x

.2/
1 ; x

.2/
2 /

�
I
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hence, we denote with x.i/ the i-th component in the space X � X and we denote
with x.i/j the j -th component of x.i/. The projections .p/.i/ W X �X ! X and p.i/j W
X �X ! Xj are defined as

.p/.i/.x.1/;x.2// WD x.i/ and p
.i/
j .x.1/;x.2// WD x

.i/
j

for i D 1; 2 and j D 1; 2. In particular, we have

.p/.i/ D .p
.i/
1 ; p

.i/
2 /:

Theorem 7. Let us take �; � 2 P .X/, where X D X1 �X2, and let d be a separable
distance over X , i.e.,

d.x.1/;x.2// D d1.x
.1/
1 ; x

.2/
1 /C d2.x

.1/
2 ; x

.2/
2 /; 8x.1/;x.2/ 2 X;

where d1 W X1 � X1 ! R and d2 W X2 � X2 ! R are two distances. Then, for any
pivot measure � 2 	.�; �/, we have

Wd .�; �/ D Wd .�; �/CWd .�; �/:

Proof. Since Wd is a distance over P .X/, by the triangular inequality, we have

(3.3) Wd .�; �/ � Wd .�; �/CWd .�; �/;

for any � 2 P .X/ and, in particular, for any pivot measure �.
To prove the other inequality, let .f .1/; f .2// 2 F .�; �/ be an optimal cardinal

flow. We define

�.1/ D
�
.p/.1/; .p

.2/
1 ; p

.1/
2 /

�
#f

.1/ and �.2/ D
�
.p
.2/
1 ; p

.1/
2 /; .p/.2/

�
#f

.2/:

By definition, we have

(3.4) .p/.1/ ı
�
.p/.1/; .p

.2/
1 ; p

.1/
2 /

�
D .p

.1/
1 ; p

.1/
2 /

and

(3.5) .p/.2/ ı
�
.p/.1/; .p

.2/
1 ; p

.1/
2 /

�
D .p

.2/
1 ; p

.1/
2 /:

Through the relations (3.4), (3.5), and the chain rule for the push-forwards, we get

.p/
.1/
# �.1/ D .p

.1/
1 ; p

.1/
2 /#

��
.p/.1/; .p

.2/
1 ; p

.1/
2 /

�
#f

.1/
�
D .p

.1/
1 ; p

.1/
2 /#f

.1/
D �

and
.p/

.2/
# �.1/ D �I
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hence, �.1/ 2 ….�; �/. Similarly, we get �.2/ 2 ….�; �/. Finally, by Theorem 1, we
have that

Wd .�; �/ D

Z
X�X1

d1 df
.1/
C

Z
X2�X

d2 df
.2/

D

Z
X�X1

d ı
�
.p/.1/; .p

.2/
1 ; p

.1/
2 /

�
df .1/

C

Z
X2�X

d ı
�
.p
.2/
1 ; p

.1/
2 /; .p/.2/

�
df .2/

D

Z
X�X

d d�.1/ C

Z
X�X

d d�.2/

� Wd .�; �/CWd .�; �/:

The latter inequality, in conjunction with (3.3), allows us to conclude that

Wd .�; �/ D Wd .�; �/CWd .�; �/

for any pivot measure �.

It is easy to see that when both � and � are supported over X D
�n
iD1Xi and the

distance d is separable, that is,

d.x; y/ D

nX
iD1

di .xi ; yi /;

we can combine Theorems 3 and 7 to generalize equation (3.2) to

Wd .�; �/ D

nX
iD1

Wdi
.�.i�1/; �.i//;

where ¹�.i/ºiD0;1;:::;n is a suitable family of measures.

Remark 7. As a straightforward consequence of Theorem 7, we infer that any pivot
measure is a minimizer of the functional

‚ W �! Wd .�; �/CWd .�; �/;

over the space P .X/. However, the reverse implication is not true. Let us consider, for
instance,

X D R2; � D
1

2
Œı.0;0/ C ı.7;1/�; � D

1

2
Œı.1;1/ C ı.8;0/�:

It is easy to see that the only pivot measure is

� D
1

2
Œı.1;0/ C ı.8;1/�:
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Moreover, since �2 D �2, we have � 2 	.�; �/ and, therefore,

Wd .�; �/ D inf
�2	.�;�/

Wd .�; �/CWd .�; �/ � Wd .�; �/CWd .�; �/ D Wd .�; �/I

hence, � minimizes ‚ although it is not the pivot measure.

3.2. Cardinal flow in the Euclidean space

When both the measures � and � are supported on R and the cost function c is convex,
the solution is unique and is characterized by the pseudo-inverse function of � and �.

Definition 11. Given�;� 2P .R/, the co-monotone transportation plan 
mon between
� and � is defined as


mon WD .F
Œ�1�
� ; F Œ�1�� /#LjŒ0;1�;

where F Œ�1�� and F Œ�1�� are the pseudo-inverse of the cumulative functions of � and �,
respectively, and LjŒ0;1� is the Lebesgue measure restricted on Œ0; 1�.

Theorem 8 ([31, Chapter 2, Theorem 2.9]). Let h W R! RC be a strictly convex
function such that h.0/ D 0 and �; � 2 P .R/. Consider the cost

c.x; y/ D h
�
jx � yj

�
and suppose that this cost is feasible for the transportation problem. Then, the optimal
transport problem has a unique solution which is 
mon.

Remark 8. We recall that if h is convex, but not strictly convex, the monotone trans-
portation plan is still a solution of the optimal transport problem; however, it might not
be the only solution.

A straightforward consequence of Theorem 8 allows us to compute the Wasserstein
cost through the pseudo-inverse of the cumulative functions of � and �.

Corollary 5 ([31, Chapter 2, Proposition 2.17]). Let us take�;� 2P .R/. If c.x;y/D
jx � yjp; with p � 1, then

W p
p .�; �/ D

Z
Œ0;1�

ˇ̌
F Œ�1�� � F Œ�1��

ˇ̌p
dL;

where L is the Lebesgue measure over Œ0; 1�. Moreover, for p D 1, we have

W1.�; �/ D

Z
R

ˇ̌
F�.t/ � F�.t/

ˇ̌
dt:

Corollary 5 allows us to rewrite (2.2) in terms of pseudo-inverse function if c D
c1 C c2, with

ci .xi ; yi / D h
�
jxi � yi j

�
;
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7

f (1)

8

f (2)

1

Figure 3. The cardinal flow found in Theorem 9.

where h W R! Œ0;C1/ is a convex function such that h.0/D 0.1 In particular, it holds
that

Wc.�; �/ D

Z
R

Z
Œ0;1�

h
�ˇ̌
F Œ�1��jx2

.s/ � F
Œ�1�

�jx2

.s/
ˇ̌�
ds d�2

C

Z
R

Z
Œ0;1�

h
�ˇ̌
F
Œ�1�

�jy1

.t/ � F Œ�1��jy1
.t/
ˇ̌�
dt d�1;

whereF Œ�1��jx2
;F

Œ�1�

�jx2

;F
Œ�1�

�jy1

, andF Œ�1��jy1
are the pseudo-inverse functions of the cumulative

function of �jx2
; �jx2

; �jy1
, and �jy1

, respectively.

Theorem 9. Let �; � 2 P .R2/ and assume that � satisfies

�
�
¹x2 D 0º

�
D 1:

Then, the optimal cardinal flow .f .1/; f .2// between � and � is defined as

(3.6) f .1/ WD .F Œ�1��1
; F Œ�1��1

/#LjŒ0;1� ˝ ı0

and

(3.7) f .2/ WD
�
ı0 ˝ .F

Œ�1�
�jy1

/#LjŒ0;1�
�
˝ �1:

In particular, we have

Cc.�; �/ D Cc1
.�1; �1/C

Z
R

Cc2
.ı0; �jy1

/ d�1

D Cc1
.�1; �1/C

Z
R

Z
R
c2.0; y2/ d�jy1

d�1

D Cc1
.�1; �1/C

Z
R2

c2.0; y2/ d�:

(3.8)

(1) Notice that we do not need c1 and c2 to be induced by the same function h. Hence, all
the results are valid whenever c.x; y/ D h1.jx1 � y1j/C h2.jx2 � y2j/ where h1; h2 W R! R

are convex and such that h1.0/ D h2.0/ D 0.
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Proof. From Corollary 3, we have that the pivot measure between � and � is

� D �1 ˝ ı0:

Then, we have
f .1/ D 


.1/

jx2
˝ ı0 and f .2/ D 


.2/

jy1
˝ �1;

where 
 .1/
jx2

is the measurable family of optimal transportation plans between�jx2
D �1

and �jx2
D �1. Similarly, 
 .2/

jy1
is the measurable family of optimal transportation plans

between �jy1
D ı0 and �jy1

. Finally, using Theorem 8, we retrieve the identities in (3.6)
and (3.7). Identity (3.8) follows by evaluating the functional CT c in .f .1/; f .2//.

Remark 9. The cardinal flow defined in (3.6) and (3.7) is the cardinal flow induced
by the Knothe–Rosenblatt rearrangement that moves � into � [21,27]. In particular,
from Theorem 9, we infer that the Knothe–Rosenblatt rearrangement is an optimal
transportation plan if the cost function is separable and the starting measure � is such
that �.¹x1 D Nxº/ D 1, for a given Nx 2 R.

Theorem 9 becomes particularly useful when we take the squared Euclidean distance
as cost function, i.e.,

c.x;y/ WD jx1 � y1j
2
C jx2 � y2j

2:

Indeed, since c is invariant under isometries, Theorem 9 generalizes to any� supported
on a straight line.

Corollary 6. Let �; � 2 P .R2/, and c.x;y/ WD jx1 � y1j2 C jx2 � y2j2. If there
exists a triple a; b; q 2 R such that

�
�
¹ax1 C bx2 D qº

�
D 1;

then the optimal transportation plan between � and � is �O WD .O; O/#� , where
O W R2 ! R2 is a rotation that sends the set ¹x2 D 0º in ¹ax1 C bx2 D qº and � is
the optimal transportation plan between .O.�1//#� and .O.�1//#�.

Proof. Since the Euclidean distance is invariant under isometries, we have

Tc.�/ D Tc
�
.O.�1/; O.�1//#�

�
for any rotation O and, therefore,

W 2
2

�
.O.�1//#�; .O

.�1//#�
�
D W 2

2 .�; �/:

Since .O.�1//#� satisfies the hypothesis of Theorem 9, we conclude the thesis.
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