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Abstract. – Let @Q be the boundary of a convex polygon in R2, e˛ D .cos ˛; sin ˛/ and
e?˛ D .� sin ˛; cos ˛/ a basis of R2 for some ˛ 2 Œ0; 2�/ and ' W @Q ! R2 a continuous,
finitely piecewise linear injective map. We construct a finitely piecewise affine homeomorphism
v W Q! R2 coinciding with ' on @Q such that the following property holds: jhDv; e˛ij.Q/
(resp., hDv; e?˛ ij.Q/) is as close as we want to inf jhDu; e˛ij.Q/ (resp., inf jhDu; e?˛ ij.Q/)
where the infimum is meant over the class of all BV homeomorphisms u extending ' inside Q.
This result extends that already proven by Pratelli and the third author in [Atti Accad. Naz. Lincei
Rend. Lincei Mat. Appl. 29 (2018), no. 3, 511–555] in the shape of the domain.
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1. Introduction

In this paper, we are interested in the problem of extending injective continuous
and piecewise linear boundary values from a convex polygon by piecewise affine
homeomorphisms. The motivation for such a study arises in the context of approximation
problems found in regularity theory for non-linear elasticity. There is already a plurality
of extension results in a variety of contexts, which have been applied to solve various
approximation problems. Let us now give an overview of some examples.

In general, we are interested in the approximation of a weakly differentiable homeo-
morphism, which we would like to approximate by C1 homeomorphisms or by locally
finite piecewise affine homeomorphisms. The approximation of a planar W 1;p home-
omorphism 1 < p <1 in [9, 10] relies heavily on the injectivity of the harmonic
extension of convex boundary values. In [5], the authors were also able to approximate
a bi-Lipschitz map and its inverse simultaneously in the .p; p/-bi-Sobolev setting
and to do so used the extension result in [6]. In order to solve the W 1;1 case in [8],
the authors had to develop an independent extension result in that paper which was
further examined and improved in [1, 15]. The extension result was also utilized in
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the .1; 1/-bi-Sobolev setting in [12]. Finally, let us mention that the authors of [14]
approximate planar BV homeomorphisms using an extension result they proved in [13].

More than just the approximation of weakly differentiable homeomorphisms by
diffeomorphisms, these extension results have been key in examining the behavior of
weak and strong limits of homeomorphisms in their respective classes. Such results
include a categorization of the closure of Hom\W 1;p , p � 2, in [11], a categorization
of the closure of Hom\W 1;p , 1 < p < 2, in [7] and partial BV result in [2, 4].

It was demonstrated in [13] that their main extension result can be “rotated” to
approximate a BV homeomorphism strictly and similarly in [14] for the area-strict case.
Nevertheless, this approach makes the application of the extension result somewhat
cumbersome and technical. The main result of the present paper is a piecewise affine
homeomorphic extension that improves on that of [13]. More precisely, we consider
extensions of piecewise linear boundary values defined on a boundary of convex
quadrilaterals (and not only rectangles parallel to the coordinate axes as in [13]) which
are optimal in a particular BV sense. We emphasize that the generality of the class
of convex quadrilaterals includes the “rotated” version of the extension result of [13].
Also, our Theorem 1.2 is stronger than the extension theorem there (not only because
of the shape of Q) in the sense that it immediately implies their extension theorem but
the opposite is not true (see Remark 1.3). Nevertheless, this improvement is a case of
separating estimates already conducted in [13].

The motivation for our extension theorem is the full categorization result in [3],
where we identify a condition which guarantees that a map is a strict or area-strict
limit of BV homeomorphisms. In the course of the approximation, we want to work on
grids that are not only made up of rectangles, and we prefer to not have to rotate the
rectangles. In that sense, we need the current result, which we present below, after we
set some necessary notation.

Let Q�R2 be a convex polygon, let ˛ 2 Œ0; 2�/ be fixed and call e˛ D .cos˛; sin˛/
and e?˛ D .� sin˛; cos˛/.

We define the following numbers (see Figure 1):

(1.1)
a� WD inf

®
hx; e?˛ i W x 2 Q

¯
aC WD sup

®
hx; e?˛ i W x 2 Q

¯
;

b� WD inf
®
hx; e˛i W x 2 Q

¯
; bC WD sup

®
hx; e˛i W x 2 Q

¯
:

For each s 2 .a�; aC/, we define V 1s ; V 2s uniquely by the conditions

(1.2) V 1s ; V
2
s 2 @Q; hV

1
s ; e

?
˛ i D hV

2
s ; e

?
˛ i D s; hV

1
s ; e˛i < hV

2
s ; e˛i:

Similarly, for every t 2 .b�; bC/, we define H 1
t ;H

2
t uniquely by

(1.3) H 1
t ;H

2
t 2 @Q; hH

1
t ; e˛i D hH

2
t ; e˛i D t; hH

1
t ; e
?
˛ i < hH

2
t ; e
?
˛ i:
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𝑒𝛼

{⟨𝑥, 𝑒𝛼⟩ = 𝑏+}

{⟨𝑥, 𝑒𝛼⟩ = 𝑎−}{⟨𝑥, 𝑒𝛼⟩ = 𝑏−}

{⟨𝑥, 𝑒𝛼⟩ = 𝑎+}

𝐻1
𝑡

𝑉1
𝑠

𝐻2
𝑡

𝑉2
𝑠

Q

Figure 1. Polygon Q with 𝐻1
𝑡 , 𝐻

2
𝑡 , 𝑉
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by 𝜌P (A,B) the geodesic distance between A and B inside P. We define the quantity

Ψ𝛼 (𝜑) :=
∫ 𝑎+

𝑎−
𝜌P (𝜑(𝑉1

𝑠 ), 𝜑(𝑉2
𝑠 ))𝑑𝑠 +

∫ 𝑏+

𝑏−
𝜌P (𝜑(𝐻1

𝑡 ), 𝜑(𝐻2
𝑡 ))𝑑𝑡.

Loosely speaking, the quantity Ψ𝛼 (𝜑) accounts for the length of all the geodesics
inside P connecting pairs of points on 𝜑(𝜕Q) whose preimage in 𝜑 is a pair of points
in 𝜕Q lying on a line parallel to either 𝛼 or 𝛼⊥. Further for 𝑢 ∈ 𝐵𝑉 (Ω,R2) we denote
the 𝛼-Manhattan norm of 𝐷𝑢 as ∥ · ∥𝛼 which we define as

∥𝐷𝑢∥𝛼 (Q) := |⟨𝐷𝑢, 𝑒𝛼⟩|(Q) + |⟨𝐷𝑢, 𝑒⊥𝛼⟩|(Q).

The main results of the paper is are the follwoing.

Theorem 1.1. Let 𝛼 ∈ [0, 2𝜋) be fixed, Q ⊂ R2 be a convex polygon and 𝜑 : 𝜕Q → R2

be a continuous piecewise linear injective map. Then for every 𝜀 > 0 there exists a
finitely piecewise affine homeomorphism 𝑣 : Q → R2 extending 𝜑, such that

(1.4) ∥𝐷𝑣∥𝛼 (Q) ≤ Ψ𝛼 (𝜑) + 𝜀.

Figure 1. Polygon Q with H1t , H2t , V 1s and V 2s .

Let ' W @Q! R2 be continuous, injective and piecewise linear. We denote P as
the bounded component of R2 n '.@Q/. For every pair of points A;B 2 xP , we denote
by �P .A;B/ the geodesic distance between A and B inside xP . We define the quantity

‰˛.'/ WD

Z aC

a�
�P

�
'.V 1s /; '.V

2
s /
�
ds C

Z bC

b�
�P

�
'.H 1

t /; '.H
2
t /
�
dt:

Loosely speaking, the quantity‰˛.'/ accounts for the length of all the geodesics inside
P connecting pairs of points on '.@Q/ whose preimage in ' is a pair of points in @Q
lying on a line parallel to either ˛ or ˛?. Further, for u 2 BV.�;R2/, we denote the
˛-Manhattan norm of Du as k � k˛ which we define as

kDuk˛.Q/ WD
ˇ̌
hDu; e˛i

ˇ̌
.Q/C

ˇ̌
hDu; e?˛ i

ˇ̌
.Q/:

The main results of the paper are the following.

Theorem 1.1. Let ˛ 2 Œ0; 2�/ be fixed, Q � R2 a convex polygon and ' W @Q! R2 a
continuous piecewise linear injective map. Then, for every " > 0, there exists a finitely
piecewise affine homeomorphism v W Q! R2 extending ', such that

(1.4) kDvk˛.Q/ � ‰˛.'/C ":

Theorem 1.2. Let " > 0 and let v be the extension from Theorem 1.1. Then,

(1.5)

ˇ̌
hDv; e˛i

ˇ̌
.Q/ �

Z bC

b�
�P

�
'.H 1

t /; '.H
2
t /
�
dt C ";

ˇ̌
hDv; e?˛ i

ˇ̌
.Q/ �

Z aC

a�
�P

�
'.V 1s /; '.V

2
s /
�
ds C ":
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Remark 1.3. We observe that Theorem 1.1 is stronger than the result of [13] as it
provides the almost optimal extension with respect to any rotated Manhattan norm and
not just for the canonical one (where ˛ D 0).

Let us also remark that Theorem 1.2 immediately implies Theorem 1.1 but the
argument used to construct v is exactly the same. Also, it is immediate thatZ bC

b�
�P

�
'.H 1

t /; '.H
2
t /
�
dt

� inf
®ˇ̌
hDu; e˛i

ˇ̌
. xQ/ W u 2 Hom\BV. xQ;R2/; u D ' on @Q

¯
and Z aC

a�
�P

�
'.V 1s /; '.V

2
s /
�
ds

� inf
®ˇ̌
hDu; e?˛ i

ˇ̌
. xQ/ W u 2 Hom\BV. xQ;R2/; u D ' on @Q

¯
;

and our result in fact shows that there is a sequence of homeomorphisms achieving the
infimum and having variation converging to the left-hand side in the sense of (1.5). This
fact is actually a direct consequence of the proofs in [13], though it was not explicitly
remarked there. The key argument is in Theorem 2.9.

1.1. Sketch of the proof

Before expounding the proof in detail, let us look at an overview of the proof. We start
with a convex polygon Q. Up to a rotation of ˛, we may assume that ˛ D 0. Either
(the rotated) Q has horizontal sides, or after removing a tiny triangle called T1 close to
the lowest point of Q and a triangle called T2 close to the highest point of Q we get a
convex � that has a pair of horizontal sides (see Figure 2). We extend ' on @T1; @T2
so that it is continuous injective and piecewise linear. By making the triangles small
enough, we guarantee that ‰0.'.�//C ‰0.'.T1//C ‰0.'.T2// � ‰0.'.Q//C ".
Here, our new ' extends the original ' from @Q. This step is Lemma 3.2.

Now, we separate� into thin horizontal stripsSi (see Figure 3), defining a continuous
injective piecewise linear ' on @Si so that

PM
iD1‰0.'.@Si // �‰0.'.@�//C "which

extends the original ' from @� [ @T1 [ @T2. This step is Lemma 3.3.
We separate each Si into a central rectangle and a pair of right-angle triangles at

each end. On the rectangular domains Ri , we can use Proposition 2.8 to extend the
boundary values and get a piecewise affine homeomorphism wi on theRi satisfying an
estimate on jDwi j.Ri /. In Lemma 4.2, we show how we extend the boundary values
to get a piecewise affine homeomorphism on the triangles at the ends of the strips; see
Figure 6. We do this by further separating them into even thinner rectangles where
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we can extend and estimate as above. The remaining part of the set is so small that its
contribution to the norm is bounded by 2�i".

The final part of the proof is collating the estimates and summing to estimate that
our mapping v satisfies (1.4).

2. Preliminaries

In this section, we recall a list of definitions and known geometrical results which are
already available in the literature. Most of them are taken from [13,14].

Notation 2.1. Throughout the paper, we endeavor to keep to the following norms of
notation:
• Q is a convex polygon,
• P is a 2-dimensional polygon with boundary @P . If ' W @Q! R2 is injective and

piecewise linear continuous, then P is the polygon corresponding to the bounded
component of R2 n '.@Q/ and P D '.@Q/,

• ˛ 2 Œ0; 2�/ is a given angle and the vector e˛ WD .cos ˛; sin ˛/. Also, we denote
e?˛ WD .cos.˛ C �=2/; sin.˛ C �=2//,

• u and v are planar BV mappings,
• a�; aC; b�; bC are the numbers from (1.1), typically s 2 .a�; aC/ and t 2 .b�; bC/

and ` D aC � a�, h D bC � b�,
• � is a convex polygon with 2 sides parallel to ˛,
• T; T1; T2; zT ; T

1
i ; T

2
i are all triangles,

• V 1s ; V
2
s ;H

1
t ;H

2
t are the points satisfying the conditions in (1.2) and (1.3) although

we may replace Q with another convex polygon, for example, � or T ,
• by RQ D Œa

�; aC�e˛ C Œb
�; bC�e?˛ we denote the smallest rectangle with sides

parallel to e˛ and e?˛ containing Q,
• c1; c2; d1; d2 2 R are ordinates,
• by zC we denote a generic constant whose precise value may vary between estimates,
• the points in the preimage are A;B;C;D;E; F;G; P;Q,1
• if ' is a piecewise linear injective map defined on the triangle ABC , we call

d WD j'.A/ � '.C /j the length of the image of the hypotenuse through ',

(1) We do not need to utilize the notation B.x; r/ D ¹y W jy � xj < rº so there is no danger
of confusion when using B to denote a point.
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• ˇ 2 .0; �
2
/ is the angle at A in the triangle ABC ,

• � > 0 is a small chosen parameter,
• the points in the image are written in bold font, e.g., A;B;C;D;X;Y;Z,
• P ;P0;P

C are polygons in the image, typically the piecewise affine image of a
polygon in the preimage, e.g., P D '.@Q/,

• ',  are continuous injective piecewise linear maps from one-dimensional “skele-
tons” (i.e., a finite union of segments) in the preimage,

• given a set A � R2 and a function ' W A! R2, we denote by 'eB the restriction
of ' to a subset B � A,

• A;B is the geodesic curve from A to B in P and �P .A;B/ is the length of that
curve.

Definition 2.2 (Geodesics and modified geodesics). Let P � R2 be a polygon, and
let A and B be any two distinct points in P . We define AB as the unique geodesic (i.e.,
curve of minimal length) connecting them, lying inside P . Notice that AB is a piecewise
linear curve, whose vertices are only A;B and some vertices of @P whose internal
angles have size at least � . Assume now that A;B 2 @P , and let W1;W2; : : : ;WK be
all the vertices of P met by AB, so that

AB D AW1;W2; : : : ;WKB:

Fix now any ı > 0. For every 1 � i � K, let zWi ¤Wi be some arbitrary point in the
internal bisector of the angle at Wi having distance from Wi smaller than ı. The piece-
wise linear curve zAB D A zW1; zW2; : : : ; zWKB is then called a ı-modification of AB.

Notice that there exists a constant xı.P / > 0, depending on P but not on A and B,
such that the interior of zAB is contained in the interior of P if ı < xı.P /, unless the
segment AB is already contained in @P , in which case K D 0 and zAB D AB � @P .

Lemma 2.3 ([13, Lemma 2.4]). Let A;B;C and D be four distinct points in a polygon P .
Then, the intersection AB \ CD is either empty or closed and connected. Assume now
also that A;B;C;D 2 @P and call @P1; @P2 the two components of @P n ¹C;Dº. If
A 2 @P1 and B 2 @P2, then AB \ CD ¤ ;. If A;B 2 @P1 and AB \ CD ¤ ;, then
the first and last point of this intersection must either be vertices of P or coincide with
one of the points A or B.

We remark that in the reference the lemma is stated without closedness of the
intersection but it follows from the following simple observation. If A;B;C and D are
four distinct points in P and the intersection AB \ CD is not empty, then it is either a
point (hence a closed set) or a piecewise linear curve which starts and ends at corners
of @P (thus being the finite union of closed connected segments).
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Lemma 2.4 ([13, Lemma 2.5]). Let P be a polygon, let A;B 2 @P be two points
such that the segment AB is not contained in @P , then let ı < xı.P / and let zAB be a
modified geodesic in the sense of Definition 2.2. Let also P1 and P2 be the two polygons
in which P is divided by zAB, and let " > 0 be a given constant. If ı is small enough,
depending only on " and P , then the following is true.

For any two points C;D 2 Pi for i 2 ¹1; 2º, one has

(2.1) �Pi .C;D/ < �P .C;D/C ":

If C 2 P1, D 2 P2 and E 2 @P1 \ @P2 is any point with distance at most ı from
CD, then

(2.2) �P1.C;E/C �P2.E;D/ < �P .C;D/C ":

Definition 2.5 (Set of vertices of a geodesic curve). Let P � R2 be a polygon. For
every A;B 2 @P , there is a unique ordered set X.A;B/ D ¹X1; : : : ;XN º such that
the geodesic AB is exactly the piecewise linear curve AX1; : : : ;XNB, and the points
Xj are all the vertices of P met by the geodesic AB (except A and B themselves, in
case they are already vertices). The set X.A;B/ is called the set of vertices of AB.

Definition 2.6 (ı-linearization of a Jordan curve). Let  be a Jordan curve with finite
length, and let ı > 0 be much smaller than the diameter of the bounded component
of R2 n  . Let _A1B1;

_A2B2; : : : ;
_ANBN be finitely many essentially disjoint arcs

contained in  . Let then ' be the closed curve obtained by replacing each arc _AiBi
with the segment AiBi . We say that ' is a ı-linearization of  if
• ' is injective,
• every arc _AiBi is such that H1.

_AiBi / < ı,
•

_AiBi \ ' � AiBi .
The ı-linearization is said complete if the union of the arcs _AiBi is the whole curve  ;
hence, ' is piecewise linear.

Lemma 2.7 ([13, Corollary 4.3]). Let� � R2 be a convex polygon, and let  W @�!
R2 be a parametrized Jordan curve with finite length and let ' W @� ! R2 be a
ı-linearization of  . Then, for every P;Q 2 @�, one has

�'.@�/
�
'.P /; '.Q/

�
� � .@�/

�
 .P /;  .Q/

�
C 2ı:

In particular, for every � 2 Œ0; 2�/, we deduce

‰� .'/ � ‰� . /C 2ıH
1.@�/:
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We conclude this section recalling two extension results that will be useful in the
sequel. The next proposition (Proposition 2.8) is proved in [13, Theorem A], and
Corollary 2.10 is a straightforward consequence of Proposition 2.8.

Proposition 2.8 (Minimal extension for standard Manhattan norm). Let R � R2 be
a rectangle of the form Œa�; aC� � Œb�; bC�, and let ' W @R ! R2 be a continuous
injective map. Then, for every " > 0, there exists a piecewise affine homeomorphism
v W R! R2 coinciding with ' on @R such that

kDvk0.R/ � ‰0.'/C ":

Moreover, if ' is piecewise linear, then the map v can be chosen finitely piecewise
affine.

Theorem 2.9 (Minimal extension for standard Manhattan norm). Let " > 0, and let v
be the mapping from Proposition 2.8. Then,

jD1vj.Q/ �

Z bC

b�
�P

�
'.H 1

t /; '.H
2
t /
�
dt C ";

jD2vj.Q/ �

Z aC

a�
�P

�
'.V 1s /; '.V

2
s /
�
ds C ":

Proof. The finitely piecewise affine homeomorphisms from a rectangle to a polygon
in [13] used in the proof of Proposition 2.8 are constructed in [13, Lemma 2.12]. The
key estimates we need to extract are the last two unnumbered equations of the proof,
found in [13, p. 543]. They say exactly that

jD1vj.Q/ �

Z bC

b�
�P

�
'.H 1

t /; '.H
2
t /
�
dt C ";

jD2vj.Q/ �

Z aC

a�
�P

�
'.V 1s /; '.V

2
s /
�
ds C ":

Corollary 2.10 (W 1;1 extension with non-optimal bound). There exists zC > 0 such
that the following holds. Let R � R2 be a rectangle, let @R be its boundary and let
' W @R! R2 be a continuous, piecewise linear and injective map. Then, there exists
a finitely piecewise affine homeomorphism v W R! R2 extending ' such that

kDvkL1.R/ � zCH1.@R/H1
�
'.@R/

�
:

Proof. The conclusion follows by applying Proposition 2.8 with

" D H1.@R/H1
�
'.@R/

�
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a� aC
b�

bC

Q
RQ

�

Figure 2. The figure shows the set-up in the case that ˛ D 0. We have the polygon Q constituted
of the green set � and the removed red triangle(s). In the case where the polygon Q has no sides
parallel to ˛ (corresponding to class (iii) from Remark 3.1 pictured on the left), we generate a
polygon with two sides, both parallel to ˛ by removing 2 triangles. If there is already one side
parallel to some ˛ (as pictured in the middle), then it is enough to remove one triangle and the
remaining set has two sides both parallel to ˛; this corresponds to class (ii) from Remark 3.1. In
the scenario, on the right, Q already has two sides parallel to ˛ (corresponding to class (i) from
Remark 3.1), and it is not necessary to remove any triangles.

and by observing that

kDvkL1.R/ � zC
�
jD1vj.R/C jD2vj.R/

�
D zCkDvk0.R/

and

‰0.'/ D

Z aC

a�
�'.@cR/

�
'.t; b�/; '.t; bC/

�
dt C

Z bC

b�
�'.@cR/

�
'.a�; t /; '.aC; t /

�
dt

� .aC � a� C bC � b�/H1
�
'.@R/

�
�
1

2
H1.@R/H1

�
'.@R/

�
:

3. Extension on a one-dimensional skeleton

Remark 3.1. If Q coincides with the rectangle RQ, then the conclusion of Theorem 1.1
follows directly by [13, Theorem A]. So, without loss of generality, we can assume
that Q ¤ RQ. Then, as sketched in Figure 2, there are three cases left to consider:
(i) Q has two parallel sides parallel to ˛;
(ii) Q has exactly one side parallel to ˛;
(iii) Q has no side parallel to ˛.

In this section, we introduce a suitable partition of Q, whose boundary will be
referred to as one-dimensional skeleton, and we define a continuous, injective and
piecewise linear extension of ' on the skeleton. This procedure will be done in two
different steps, which eventually correspond to the following technical lemmas.
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Lemma 3.2 (Skeleton-triangles). Let ˛ 2 Œ0; 2�/ be fixed, let Q � R2 be a convex
polygon and let ' W @Q! R2 be a continuous, piecewise linear, injective map.

Then, for every " > 0, one of the following holds:
• the set Q is of class (ii) from Remark 3.1, and there exists a triangle T satisfying

the following:
(a) two sides of T are contained in two sides of Q, so T and Q share the vertex W

and the side of T inside Q is parallel to ˛ (we refer to the point in the intersection
of the third side of T and the bisector of the vertex at W as W �),

(b) H1.@T / < ",
(c) Q D T [�, where @� is a convex polygon with two sides parallel to ˛ one of

which lies in @Q and the other one is the common side of @T and @�,
(d) ' is linear on each side of @T \ @Q,
(e) there exists x' W @T [ @�! R2 a continuous piecewise linear injective map

such that x' D ' on @Q, x' is exactly bi-linear on @T \ @� and the singular
point is precisely W �,

(f) the estimates
H1

�
x'.@T /

�
� ";

‰˛.x'e@T /C‰˛.x'e@�/ < ‰˛.'/C "

hold;
• the set Q is of class (iii) from Remark 3.1, and there exists a pair of disjoint triangles
T1; T2 satisfying the following:
(a) T1; T2 each contain a vertex of Q which we call W1 and W2, resp.,
(b) it holds that

(3.1) H1.@T1/;H
1.@T2/ < " ;

(c) Q D T1 [ T2 [�, where @� is a convex polygon with two sides parallel to ˛
one of which is the common side of @T1 and @� and the other is the common
side of @T2 and @�,

(d) ' is linear on each side of @T1 \ @Q and @T2 \ @Q,
(e) there exists x' W @T1 [ @T2 [ @�! R2 a continuous piecewise linear injective

map such that x' D ' on @Q, x' is exactly bi-linear on @T2 \ @� and on @T1 \ @�
and the singular points are precisely W �1 ; W �2 ,

(f) the estimates

(3.2) H1
�
x'.@T1/

�
CH1

�
x'.@T2/

�
� "
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and

(3.3) ‰˛.x'e@T1/C‰˛.x'e@�/C‰˛.x'e@T2/ < ‰˛.'/C "

hold.

Proof. It suffices to prove the claim for the case of Q being class (ii) since the class
(iii) case is just a repetition of the same argument used at a pair of opposing vertices
of Q.

Assume that Q is of class (ii), then there exists a side of RQ (the smallest rectangle
containing Q with sides parallel and perpendicular to e˛; e?˛ ) whose intersection with Q

is exactly the vertexW of Q. Up to a rotation of angle ˛ and a translation of .�a�;�b�/,
we may assume that RQ D Œ0; `� � Œ0; h� for ` D aC � a� and h D bC � b�. Further,
we may assume that the ˛ rotation of Q has a horizontal side lying in Œ0; `� � ¹hº such
that W D .w; 0/ for some w 2 Œ0; `�. It suffices to prove our claim for the ˛-rotated,
translated Q and replacing ‰˛ with ‰0.

Since Q is convex, it holds that for every t 2 .0; h/, one has that @Q \ .R � ¹tº/
consists of exactly two pointsH 1

t andH 2
t with 0 � .H 1

t /1 < .H
2
t /1 � `. Analogously,

for every s 2 .0; `/, one has that @Q \ .¹sº �R/ consists of exactly two points V 1s and
V 2s with 0 � .V 1s /1 < .V 2s /1 � h.

Let " > 0 be arbitrary fixed. We then let xı D xı.'.@Q// > 0 be the parameter
introduced directly after Definition 2.2, and let ı1 < xı be the parameter introduced in
Lemma 2.4 for the polygon given by '.@Q/ and the number "

2.hC`/
. Let

0 < �1 < min
²
"

24
;
ı1

4

³
:

For the following, recall the definition of the pointsH 1;2
t in (1.3). Since ' WQ!R2

is continuous, injective and piecewise linear, then we can find 0 < t� � h such that
the following properties hold:
(i) jH 1

t� �W j < �1, jH
2
t� �W j < �1;

(ii) ' is linear on each of the segments H 1
t�W , H 2

t�W ;
(iii) j'.H 1

t�/ � '.W /j < �1 and j'.H 2
t�/ � '.W /j < �1.

We denoteT the triangleWH 1
t�H

2
t� , and�DQ nT . We callW �D 1

2
.H 1

t� CH
2
t�/,

and then W � is the intersection of the segment H 1
t�H

2
t� and the bisector of the angle

at W . Then, claim (a) is immediate and claim (b) is immediate from the choice of t�.
By construction, � is convex and the third side of T is horizontal (i.e., parallel to ˛),
thus proving (c). By the triangular inequality and by property (i), we have that

H1.@T / < 4�1:
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We now consider � the geodesic connecting '.H 1
t�/ and '.H 1

t�/ inside the polygon
identified by '.@Q/. There are two possibilities: either � is a segment or � is a bi-
linear path lying inside '.@Q/ passing through '.W /. In both cases, we let X be on the
internal bisector of the corner '.W / such that jX � '.W /j < 2�1, and we call z� the
path '.H 1

t�/X'.H 2
t�/. Notice that, since 2�1 < ı1, z� is a ı1-modification of � in the

sense of Definition 2.2. Moreover, z� lies in the interior of '.@Q/ and H1.z�/ � 4�1.
We now construct the extension x' W @T [ @�! R2 that is continuous, piecewise

linear and injective. We let x' D ' on @Q, then we have claim (d) by the choice of t�

and we only need to define x' on the segment H 1
t�H

2
t� .

We set x'.W �/ WD X, and then we define x' WH 1
t�H

2
t� !R2 as the map that is linear

on H 1
t�W

� and W �H 2
t� , such that

x'.H 1
t�H

2
t�/ D z

�:

Then, we have claim (e). Thanks to property (iii) from the choice of t� and the bound
on H1.z�/, we can compute

H1
�
x'.@T /

�
� 6�1:

For claim (f), we now estimate the quantity ‰0.x'e@T /C‰0.x'e@�/. Thanks to our
choice of ı1 and (2.1) of Lemma 2.4, we can observe

�x'.@T /
�
x'.H 1

t /; x'.H
2
t /
�

� �'.@Q/
�
'.H 1

t /; '.H
2
t /
�
C

"

2.hC `/
for all t 2 .0; t�/;

�x'.@�/
�
x'.H 1

t /; x'.H
2
t /
�

� �'.@Q/
�
'.H 1

t /; '.H
2
t /
�
C

"

2.hC `/
for all t 2 .t�; h/;

�x'.@�/
�
x'.V 1s /; x'.V

2
s /
�

� �'.@Q/
�
'.V 1s /; '.V

2
s /
�
C

"

2.hC `/
for all s 2

�
0; .H 1

t�/1
�
[
�
.H 2

t�/1; `
�
:

On the other hand, for every s 2 ..H 1
t�/1; .H

2
t�/1/, we call V 3s D .s; t�/ and we

notice that the geodesic '.V 1s /'.V 2s / must intersect z�.
Since, by construction, x'.V 3s / 2 z�, then the maximal distance between x'.V 3s / and

z� \ '.V 1s /'.V 2s / is bounded by H1.z�/ � 4�1 < ı1. Then, from (2.2) of Lemma 2.4,
we get

�x'.@T /
�
x'.V 1s /; x'.V

3
s /
�
C �x'.@�/

�
x'.V 3s /; x'.V

2
s /
�

< �'.@Q/
�
'.V 1s /; '.V

2
s /
�
C

"

2.hC `/
:
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Therefore, we can compute

‰0.x'e@T /C‰0.x'e@�/

D

Z t�

0

�x'.@T /
�
x'.H 1

t /; x'.H
2
t /
�
dt C

Z .H2
t�
/1

.H1
t�
/1

�x'.@T /
�
x'.V 1s /; x'.V

3
s /
�
ds

C

Z h

t�
�x'.@�/

�
x'.H 1

t /; x'.H
2
t /
�
dt C

Z .H2
t�
/1

.H1
t�
/1

�x'.@�/
�
x'.V 3s /; x'.V

2
s /
�
ds

C

Z
.0;.H1

t�
/1/[..H

2
t�
/1;`/

�x'.@�/
�
x'.V 1s /; x'.V

2
s /
�
ds

�

Z h

0

�'.@Q/
�
'.V 1t /; '.V

2
t /
�
dt C

Z `

0

�'.@Q/
�
'.V 1s /; '.V

2
s /
�
ds

C .`C h/
"

2.hC `/

� ‰0.'/C
"

2
:

(3.4)

To finish the proof, it suffices to prove the claim in the case that Q is class (iii).
However, this is just a question of repeating the argument above for the opposing vertex
since the horizontal side of Q was not used at any point. Finally, in every case, @� has
two sides parallel to ˛.

The next result that we present concerns the extension of the boundary values inside
a convex polygon � having two non-consecutive parallel sides. This is an opportune
generalization of the analogous results on rectangles proved in [13, Lemma 2.11].
Loosely speaking, there are two differences between the current setting and the one
considered in [13, Lemma 2.11]. In [13], the rectangular domain is partitioned in
rectangular strips, while here the polygon � is partitioned into strips that are not
necessarily rectangular, which we later split further into a rectangle and two triangles,
one at either end.

Lemma 3.3 (Skeleton-strips). Let h; ` > 0, let� � Œ0; `� � Œ0; h� be a convex polygon
and let Œ0; `� � Œ0; h� be the smallest rectangle containing �. Further, assume that
@� has a pair of horizontal sides, one of which lies in Œ0; `� � ¹0º and the other in
Œ0; `� � ¹hº. For every ' W @�! R2 continuous piecewise linear injective map and
for every " > 0, there exist M 2 N and values

0 D t0 < t1 < � � � < tM�1 < tM D h

such that the following properties hold:
(i) tiC1 � ti < " for every i D 0; : : : ;M � 1,
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(ii) for every i D 0; : : : ; M � 1, call Si WD � \ .R � Œti ; tiC1�/ (which we call a
horizontal strip). Then, ' is linear on I 1i and I 2i , where I 1i , I 2i are the two
non-horizontal segments of @Si \ @�. Moreover,

(3.5) H1
�
'.I 1i /

�
CH1

�
'.I 2i /

�
< ";

(iii) there exists x' W
SM�1
iD0 @Si ! R2 a continuous, piecewise linear, injective map

such that x' D ' on @� and

(3.6)
M�1X
iD0

‰0.x'e@Si / � ‰0.'/C ";

(iv) for every i D 0; : : : ; M � 1, the quadrilateral Si can be decomposed in the
essentially disjoint union T 1i [Ri [ T 2i , whereRi is a rectangle with horizontal
and vertical sides and T 1i ; T 2i are right angle triangles whose hypotenuses are
I 1i ; I

2
i the two segments of @� \ @Si ,

(v) there exists z' W
SM�1
iD0 @T 1i [ @Ri [ @T

2
i ! R2 a continuous, piecewise linear,

injective map such that z' D x' on
SM�1
iD0 @Si , and

(3.7)
M�1X
iD0

�
‰0.z'e@T 1

i
/C‰0.z'e@Ri /C‰0.z'e@T 2

i
/
�
� ‰0.'/C ":

Proof. Let " > 0 be fixed. Throughout the proof, we denote by P the polygon of
boundary '.@�/.

Step I. Finding the value M and fixing .ti /iD0;:::;M . There are a finite number of
vertices of �; call it M1. There are similarly a finite number of vertices of P ; call
it M2. Since jD�'j 2 L1.@�/, we have that any segment on @� of length at most
".1C kD�'k1/

�1 has image whose length is at most ". Further, since H1.@�/ <1,
we find a number M3 bounded by "�1H1.@�/.1C kD�'k1/ splitting @� into M3

segments; then, the length of the segments and their images is bounded by ".
We take the set of all Qt 2 .0; h/ as the t-coordinates such that � has a vertex with

t-coordinate equal to Qt (their number is bounded by M1); further, all Qt 2 .0; h/ such
that @�' does not exist (their number is bounded by M2), and then add a finite number
(bounded by M3) of Qt such that whenever Qt , Qt� are a pair of neighbors (with respect to
the order <), we have

jH 1
Qt
�H 1

Qt�
j < " > jH 2

Qt
�H 2

Qt�
j and jH1

Qt
�H1

Qt�
j < " > jH2

Qt
�H2

Qt�
j;

where we use the convention that the letters in bold style H correspond to'.H/. Indexing
this set from ¹1; : : : ;M � 1º and calling t0 D 0 and tM D h, we determine ti and the
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�C

S0

P

PC

P0

x1

H2t1H1t1 H1t1

H2t1V 1s

V 3s

V 2s

V3s
V2sV1s

Figure 3. The figure shows the slicing of the set� into�C [ S0 by the horizontal line R� ¹t1º

and P into PC [P0 by the modified geodesic called x1.

numberM , whereM �M1CM2CM3. We define the stripsSi D .R� Œti ; tiC1�/\�.
They are all convex quadrilaterals with two horizontal sides.

Step II. Definition of the curve x1 D x'.�\ .R� ¹t1º// and the polygons�C [ S0 D�
and PC [ P0 D P . The goal of this step is to define the piecewise linear curve x1,
internal to P , which will be the image of the segmentH 1

t1
H 2
t1

in a map x' extending '.
The precise parametrization of x' will be presented in the next step; here we only aim
to define the curve x1 � P .

Our argument is recursive and so we deal with the first curve x1 defined onH 1
t1
H 2
t1

separating � into S0 and � \R � Œt1; h� D �C (see Figure 3). Similarly, the curve
x1 means dividing the polygon P into two further polygons: a polygon P0 (which will
be the image of S0) containing the curve '.H 1

t0
H 2
t0
/ and another polygon PC (which

will be the image of �C) (see Figure 3).
Since P is a non-degenerate polygon, let xı.P />0 be the parameter of Definition 2.2

and let ı1 > 0 be so small that

ı1 < min
²
xı.P /;

".t1 � t0/

8hH1.@P /
;
h

23
;
"

2

³
and Lemma 2.4 applies with ı1 for P and

".t1 � t0/

8h.`C h/
:

We define

x1 as a ı1-modification of the geodesic in P connecting H1
t1

and H2
t1
:

Step III. Definition of x' on @S0. In this step, we care about the definition of x' on @S0.
More precisely, we let x' D ' on @� and we specify the parametrization

x' W @�C \
�
R � ¹t1º

�
! x1

so that x' is continuous, injective and piecewise linear, and

(3.8) ‰0.x'e@S0/C‰0.x'e@�C/ � ‰0.'/C
"

2h
.t1 � t0/:
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Let us observe that thanks to Lemma 2.7 it is enough to look for a continuous and
injective parametrization  W @�C [ @S0 ! R2 coinciding with ' on @� such that
(3.8) holds for  with error "

4h
.t1 � t0/; namely,

‰0. e@S0/C‰0. e@�C/ < ‰0.'/C
"

4h
.t1 � t0/:

Indeed, the correct x' can be found as a ı-linearization of  for some ı small enough
depending on "

4h
.t1 � t0/ such that

‰0.x'e@S0/C‰0.x'e@�C/ < ‰0. e@S0/C‰0. e@�C/C
"

4h
.t1 � t0/:

Thanks to our choice of ı1 and the fact that x1 is a ı1-modification with variable
endpoints of the geodesic connecting H1

t1
and H2

t1
, hence splitting P into the two

polygons P0 and PC, we can apply Lemma 2.4 to get that

(3.9)
�P0

�
H1
t ;H2

t

�
� �P

�
H1
t ;H2

t

�
C
".t1 � t0/

8h.`C h/
for any t0 < t < t1;

�PC

�
H1
t ;H2

t

�
� �P

�
H1
t ;H2

t

�
C
".t1 � t0/

8h.`C h/
for any t1 < t < tM :

For short, denote c1 D .H 1
t1
/1 and c2 D .H 2

t1
/1. Then, 0 � c1 < c2 � `. For every

0 < s < `, we call s the geodesic inside P connecting V1s and V2s . Moreover, whenever
c1 < s < c2, we also set V 3s WD .s; t1/ the point in the intersection of H 1

t1
H 2
t1

with
V 1s V

2
s . For every s 2 .0; c1/ [ .c2; `/, we have that either V 1s ; V 2s 2 S0 and using

Lemma 2.4,
�P0.V1s ;V2s / � �P .V1s ;V2s /C

".t1 � t0/

8h.`C h/
;

or V 1s ; V 2s 2 �C and by Lemma 2.4,

�PC.V1s ;V2s / � �P .V1s ;V2s /C
".t1 � t0/

8h.`C h/
:

The two equations above can be expressed simultaneously as

(3.10) max
®
�P0.V1s ;V2s /; �PC.V1s ;V2s /

¯
� �P .V1s ;V2s /C

".t1 � t0/

8h.`C h/

for all s 2 .0; c1/ [ .c2; `/.
On the other hand, whenever s 2 .c1; c2/, the points V1s 2P0 and V2s 2PC; thus, the

geodesic s necessarily intersects x1. Let � be the (injective and continuous) constant-
speed parametrization of x1 from Œ0;H1.x1/�, �.0/D H1

t1
and �.H1.x1//D H2

t1
. For

every s 2 .c1; c2/, we then let X.s/ be the point in s \ x1 such that

X.s/ D �
�

max
®
x 2

�
0;H1.x1/

�
W �.x/ 2 s \ x1

¯�
:
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Then, thanks to Lemma 2.3, it is easy to see that the map s ! ��1.X.s// is non-
decreasing; therefore, if c1 < s < s0 < c2, then

X.s0/ 2 �
��
��1.X.s//;H1.x1/

��
:

Notice that, in general, the function s ! ��1 ı X.s/ is not continuous, nor injective
nor surjective. However, any one-dimensional monotone function can be approximated
uniformly by strictly monotone functions. Further, it is always possible to slightly modify
these strictly monotone approximations in such a way that they become continuous
and the price of this is loosing the control on the uniform distance from the original
function on a subset whose measure can be made as small as desired. Then, for every
� > 0, it is always possible to find a continuous bijection X� of Œc1; c2� onto x1 such
that

(3.11) H1.J� / < � where J� WD
®
s 2 .c1; c2/ W

ˇ̌
X� .s/ � X.s/

ˇ̌
> �

¯
:

We can then fix � D ı1
2

and apply Lemma 2.4 to get that

(3.12) �P0

�
V1s ;X ı1

2

.s/
�
C �PC

�
X ı1
2

.s/;V2s
�
� �P .V1s ;V2s /C

".t1 � t0/

8h.`C h/

for all s 2 .c1; c2/ n J ı1
2

. On the other hand, we have the trivial estimate

(3.13) �P0

�
V1s ;X ı1

2

.s/
�
C �PC

�
X ı1
2

.s/;V2s
�
� H1.@P /CH1.x1/ < 2H

1.@P /

for all s 2 J ı1
2

.
We define  W @�C [ @S0! R2 as  D ' on @� and  .V 3s / D X ı1

2

.s/ for every
s 2 .c1; c2/. In particular,  is continuous and injective and fails to be piecewise linear
only on the segment H 1

t1
H 2
t1

. Moreover, gathering together (3.9), (3.10), (3.12) and
(3.13), we deduce that

‰0. e@S0/C‰0. e@�C/

D

Z t1

0

�P0

�
 .H 1

t /;  .H
2
t /
�
dt C

Z h

t1

�PC

�
 .H 1

t /;  .H
2
t /
�
dt

C

Z
.0;c1/[.c2;`/

min
®
�P0.V1s ;V2s /C �PC.V1s ;V2s /

¯
C

Z
.c1;c2/nJ ı1

2

�P0

�
 .V 1s /;  .V

3
s /
�
C �PC

�
 .V 3s /;  .V

2
s /
�

C

Z
J ı1
2

�P0

�
 .V 2s /;  .V

3
s /
�
C �PC

�
 .V 3s /;  .V

2
s /
�
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�

Z h

0

�P

�
'.H 1

t /; '.H
2
t /
�
dt C

Z
.0;`/nJ ı1

2

�P

�
'.V 1s /; '.V

2
s /
�
ds

C
".t1 � t0/

8h.`C h/

�
`C h �H1

�
J ı1
2

��
CH1

�
J ı1
2

�
2H1.@P /

� ‰0.'/C
"

4h
.t1 � t0/;

where in the last inequality we used (3.11) and the fact that ı1 < ".t1�t0/

8hH1.@P /
.

Finally, thanks to Lemma 2.7 and the considerations of the first part of the step, we
can find a function x' W @�C [ @S0 ! R2 that is continuous, injective and piecewise
linear and such that (3.8) holds.

Step IV. Definition of z' on @T 10 [ @R0 [ @T 20 . In this step, we further subdivide the
strip S0 in the essentially disjoint union of two triangles T 10 , T 20 and a rectangle R0
with the following properties. The rectangle R0 is the biggest rectangle with horizontal
and vertical sides inside S0, such that the horizontal sides are contained in @S0, while
T 10 , T 20 are the two disjoint right-angle triangles containing I 10 , I 20 , respectively.

We continue to define some new

z' W @�C [ @T 10 [ @R0 [ @T
2
0 ! R2

coinciding with x' on @�C [ @S0 such that z' is injective, continuous and piecewise
linear and satisfies the following estimate:

(3.14) ‰0.z'e@T 1
0
/C‰0.z'e@R0/C‰0.z'e@T 2

0
/ � ‰0.x'e@S0/C

"

2h
.t1 � t0/:

Let us emphasize that z' will be defined so that z'.@T 10 [ @R0 [ @T 20 / � P0.
We denote by d1 and d2 the two values such that the projection of @S0 onto R� ¹0º is

exactly Œd1;d2�� ¹0º, and we call x1 and x2 those values for which the projection of @R0
onto R � ¹0º is the segment Œx1; x2� � ¹0º. Notice that d1 � c1 � x1 < x2 � c2 � d2.

Since P0 is a non-degenerate polygon, we let xı.P0/ be the parameter of Defini-
tion 2.2 and take

ı01 < min
²
xı.P0/;

".t1 � t0/

32hH1.@P0/

³
and Lemma 2.4 applies with ı01 for P0 and ".t1�t0/

16h.`Ch/
.

Let now �x1 be the geodesic inside P0 connecting x'.V 1x1/ and x'.V 3x1/ and let x�x1
be its ı01-modification in the sense of Definition 2.2. In particular, x�x1 splits P0 into
two non-degenerate polygons P 1

0 and U, where P 1
0 contains x'.I 10 / and U contains

x'.I 20 /, where I 1;20 are the two non-horizontal segments of @S0 \ @�. This situation is
depicted in Figure 4.
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𝑇1
0

𝑇2
0𝑅0

𝐻1
𝑡1

𝐻2
𝑡1

𝐻1
𝑡

𝐻2
𝑡

𝐻3
𝑡

U

P1
0

𝑉1
𝑥1

𝑉3
𝑥1

�̄�𝑥1

H1
𝑡

H2
𝑡

Y(𝑡)

Figure 4. The sets 𝑇1
0 , 𝑇

2
0 and 𝑅0, and P1

0 and U in Step IV.

while for the remaining 𝑡 ∈ 𝐽𝑙
𝛿′1
2

we get

(3.19)
𝜌P1

0

(
𝜓1(𝐻1

𝑡 ), 𝜓1(𝐻3
𝑡 )
) + 𝜌U (

𝜓1(𝐻3
𝑡 ), 𝜓1(𝐻2

𝑡 ),
) ≤ H1(�̄�𝑥1) + H1(𝜕P0)
≤ 2H1(𝜕P0).

Then (3.16), (3.17), (3.18) and (3.19) give

Ψ0(𝜓1
⌉𝜕𝑇1

0
)+Ψ0(𝜓1

⌉𝜕(𝑆0\𝑇1
0 )
)

≤
∫ 𝑐1

𝑑1

𝜌P0

(
�̄�(𝑉1

𝑠 ), �̄�(𝑉2
𝑠 )
) + 𝜀(𝑡1 − 𝑡0)

16ℎ(ℓ + ℎ) 𝑑𝑠

+
∫ 𝑐2

𝑐1

𝜌P0

(
�̄�(𝑉1

𝑠 ), �̄�(𝑉3
𝑠 )
) + 𝜀(𝑡1 − 𝑡0)

16ℎ(ℓ + ℎ) 𝑑𝑠

+
∫ 𝑑2

𝑐2

𝜌P0

(
�̄�(𝑉1

𝑠 ), �̄�(𝑉2
𝑠 )
) + 𝜀(𝑡1 − 𝑡0)

16ℎ(ℓ + ℎ) 𝑑𝑠

+
∫
(0,𝑡1 )\𝐽1

𝛿′1
2

𝜌P0

(
�̄�(𝐻1

𝑡 ), �̄�(𝐻2
𝑡 )
) + 𝜀(𝑡1 − 𝑡0)

16ℎ(ℓ + ℎ) 𝑑𝑡

+ 2H1 (𝐽1
𝛿′1
2

)H1(𝜕P0)

≤Ψ0(�̄�⌉P0) +
𝜀

8ℎ
(𝑡1 − 𝑡0),

and, as in step III, Lemma 2.7 ensures that there is some continuous, injective and
piecewise linear map �̃�1 : 𝜕𝑇1

0 ∪ 𝜕𝑆0 → R2 such that �̃�1 = 𝜓1 = �̄� on 𝜕𝑆0 and

Ψ0(�̃�1
⌉𝜕𝑇1

0
) + Ψ0(�̃�1

⌉𝜕(𝑆0\𝑇1
0 )
) ≤ Ψ0(�̄�⌉P0) +

𝜀

4ℎ
(𝑡1 − 𝑡0).

To conclude the step we need to repeat the very same argument on �̃�1
⌉𝜕(𝑆0\𝑇1

0 )
by

replacing P0 with U and considering a 𝛿′′1 -modification of 𝜈𝑥2 , where 𝛿′′1 is chosen so

Figure 4. The sets T 1
0

, T 2
0

, R0, P 1
0

and U in Step IV.

Thanks to Lemma 2.4, we have

(3.15)
�U

�
x'.V 1s /; x'.V

3
s /
�
��P0

�
x'.V 1s /; x'.V

3
s /
�
C
".t1 � t0/

16h.`Ch/
; for all s2.x1; x2/;

�U

�
x'.V 1s /; x'.V

2
s /
�
��P0

�
x'.V 1s /; x'.V

2
s /
�
C
".t1 � t0/

16h.`Ch/
; for all s2.x2; d2/;

while for all s 2 .d1; x1/,

(3.16) �P1
0

�
x'.V 1s /; x'.V

2
s /
�
� �P0

�
x'.V 1s /; x'.V

2
s /
�
C

".t1 � t0/

16h.`C h/
:

We continue similarly as described in Step III. For every t 2 .0; t1/, we denote the
point x'.H 1

t / D H1
t 2 P 1

0 and x'.H 2
t / D H2

t 2U; thus, the geodesic �t connecting H1
t

and H2
t inside P0 must intersect x�x1 . So also in this case, for every t 2 .0; t1/, we can

find a map Y.t/ identifying the last point of the intersection �t \ x�x1 running x�x1 from
x'.V 1x1/ to x'.V 3x1/. Moreover, exactly as explained in Step III, we can find a continuous
and injective approximation Y ı0

1
2

such that

ˇ̌
Y.t/ � Y ı0

1
2

.t/
ˇ̌
<
ı01
2

for all t 2 .0; t1/ n J 1ı0
1
2

and H1
�
J 1
ı0
1
2

�
<
ı01
2
:

So if we now callH 3
t WD .t; x1/, then we can define  1 W @T 10 [ @S0! R2 in this

way:  1 D x' on @S0 and

 1.H 3
t / D Y ı0

1
2

.t/ for all t 2 .0; t1/:

Then, the map  1 is continuous and injective and fails to be piecewise linear only on
the segment ¹x1º � Œ0; t1�. Using Lemma 2.4, for all t 2 .0; t1/ n J 1ı0

1
2

, we can estimate

�P1
0

�
 1.H 1

t /;  
1.H 3

t /
�
C �U

�
 1.H 3

t /;  
1.H 2

t /
�

� �P0

�
x'.H 1

t /; x'.H
2
t /
�
C

".t1 � t0/

16h.`C h/
;

(3.17)
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while for the remaining t 2 J l
ı0
1
2

, we get

�P1
0

�
 1.H 1

t /;  
1.H 3

t /
�
C �U

�
 1.H 3

t /;  
1.H 2

t /
�

� H1.x�x1/CH1.@P0/ � 2H
1.@P0/:

(3.18)

Then, (3.15), (3.16), (3.17) and (3.18) give

‰0
�
 1
e@T 1

0

�
C‰0

�
 1
e@.S0nT

1
0
/

�
�

Z c1

d1

�P0

�
x'.V 1s /; x'.V

2
s /
�
C

".t1 � t0/

16h.`C h/
ds

C

Z c2

c1

�P0

�
x'.V 1s /; x'.V

3
s /
�
C

".t1 � t0/

16h.`C h/
ds

C

Z d2

c2

�P0

�
x'.V 1s /; x'.V

2
s /
�
C

".t1 � t0/

16h.`C h/
ds

C

Z
.0;t1/nJ

1

ı0
1
2

�P0

�
x'.H 1

t /; x'.H
2
t /
�
C

".t1 � t0/

16h.`C h/
dt C 2H1

�
J 1
ı0
1
2

�
H1.@P0/

� ‰0.x'eP0/C
"

8h
.t1 � t0/;

and, as in Step III, Lemma 2.7 ensures that there is some continuous, injective and
piecewise linear map z'1 W @T 10 [ @S0 ! R2 such that z'1 D  1 D x' on @S0 and

‰0
�
z'1
e@T 1

0

�
C‰0

�
z'1
e@.S0nT

1
0
/

�
� ‰0.x'eP0/C

"

4h
.t1 � t0/:

To conclude the step, we need to repeat the very same argument on z'1
e@.S0nT

1
0
/

by
replacing P0 with U and considering a ı001-modification of �x2 , where ı001 is chosen so
that

ı001 < min
²
xı.U/;

".t1 � t0/

32`H1.@U/

³
and Lemma 2.4 applies with ı001 for U and ".t1�t0/

16h.`Ch/
.

This would provide a continuous, injective and piecewise linear map z' W @T 10 [
@R0 [ @T

2
0 ! R2 extending z'1 (hence, ultimately, x') such that

‰0.z'e@T 1
0
/C‰0.z'e@R0/C‰0.z'e@T 2

0
/ � ‰0

�
z'1
e@.S0nT

1
0
/

�
C

"

4h
.t1 � t0/

� ‰0.x'eP0/C
"

2h
.t1 � t0/

thus proving (3.14) and concluding the step.
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Step V. Recursion and conclusion. In this final step, we want to conclude our construction
by recursion. In Steps III and IV, we divided � into a new convex polygon with two
horizontal sides�C and a horizontal strip S0 given by a rectangleR0 and two triangles
T 10 , T 20 .

Then, we defined continuous, injective and piecewise linear functions x'; z' such
that x' D z' on @�C satisfies (by (3.8), (3.14) and our choice of ı1)

‰0.x'e@S0/C‰0.x'e@�C/ � ‰0.'/C
"

2h
.t1 � t0 C 2ı1/

� ‰0.'/C
"

2h
.t1 � t0/C

"

4

1

2
;

‰0.z'e@T 1
0
/C‰0.z'e@R0/C‰0.z'e@T 2

0
/ � ‰0.x'e@S0/C

"

2h
.t1 � t0 C 2ı1/

� ‰0.x'e@S0/C
"

2h
.t1 � t0/C

"

4

1

2
:

Iterating the construction and choosing for every i the parameter ıi suitably small
depending on ti�1, h

2iC1
and the polygon PC D P n

Si�1
jD0 Pj , we then find

M�1X
iD0

‰0.x'e@Si / � ‰0.'/C
"

2h

M�1X
iD0

.tiC1 � ti /C
"

4

M�1X
iD0

1

2i

and
M�1X
iD0

‰0.z'e@T 1
i
/C‰0.z'e@Ri /C‰0.z'e@T 2

i
/

�

M�1X
iD0

‰0.x'e@Si /C
"

2h

M�1X
iD0

.tiC1 � ti /C
"

4

M�1X
iD0

1

2i
;

which finally imply (3.6) and (3.7), respectively.

4. Piecewise affine extension

In this section, we investigate two possible finitely piecewise affine homeomorphic
extension inside triangles.

Lemma 4.1 (Extension-direct). Let T � R2 be a triangle of corners A;B;C such that
BC is horizontal andA� is the intersection ofBC with the bisector of the angle atA. If
' W @T !R2 is continuous, injective and linear on each of the segmentsAB;AC;BA�
and A�C , then there exists a bi-affine homeomorphism v W T ! R2 such that v D '
on @T and

kDvk0.T / � H1
�
'.@T /

�
H1.@T /:
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Proof. The proof is immediate, and indeed it is enough to consider the continuous
map v which is affine on each of the triangles T1 WD ABA�, T2 WD BA�C . Then, we
can compute

D1veT1 D
'.A�/ � '.B/

.A�/1 � .B/1
L2; D1veT2 D

'.C / � '.A�/

.C /1 � .A�/1
L2

and

D2veT1 D
'.A/ � '.A�/ �D1veT1

�
.A/1 � .A

�/1
�

.A/2 � .A�/2
L2;

D2veT2 D
'.A/ � '.A�/ �D1veT2

�
.A/1 � .A

�/1
�

.A/2 � .A�/2
L2:

In particular, one can estimate

kDvk0.T / D jD1vj.T1/C jD2vj.T1/C jD1vj.T2/C jD2vj.T2/

�
1

2

ˇ̌
'.A�/ � '.B/

ˇ̌�ˇ̌
.A/2 � .A

�/2
ˇ̌
C
ˇ̌
.A/1 � .A

�/1
ˇ̌�

C
1

2

ˇ̌
'.A�/ � '.A/

ˇ̌ˇ̌
.B/1 � .A

�/1
ˇ̌

C
1

2

ˇ̌
'.C / � '.A�/

ˇ̌�ˇ̌
.A/2 � .A

�/2
ˇ̌
C
ˇ̌
.A/1 � .A

�/1
ˇ̌�

C
1

2

ˇ̌
'.A�/ � '.A/

ˇ̌ˇ̌
.C /1 � .A

�/1
ˇ̌

� H1
�
'.@T /

�1
2

�
4jA � A�j C jB � C j

�
� H1

�
'.@T /

�1
2

�
2jA � Bj C 2jA � C j C 2jB � C j

�
� H1

�
'.@T /

�
H1.@T /:

Lemma 4.2 (Extension-indirect). Let T � R2 be a triangle of corners A;B;C such
that AB is horizontal, BC is vertical and let ' W @T ! R2 be a continuous, piecewise
linear, injective map such that ' is linear on the hypotenuseAC . For every " > 0, there
exists a finitely piecewise affine homeomorphism v W T ! R2 such that v D ' on @T
and

kDvk0.T / � ‰0.'/C 242H
1.@T /H1

�
'.AC/

�
C ":

Proof. Let " > 0 be fixed arbitrary small.
For simplicity of notation, through the proof we refer to ˇ as the internal angle

of the corner A D .0; 0/ and we will denote d WD j'.A/ � '.C /j D H1.'.AC// and
d D jA � C j. Clearly, since the internal angle in B is �=2, then ˇ 2 .0; �=2/.
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X

YZ

A B

C

'.A/

'.C/

D

E

F
zTG

H1
t H2

t H3
t

V 3s

V 2s

V 1s

PADEC P�

P zT

Q

�

z'.D/'.E/

P

'.D/

'.F /

ˇ

Figure 5. The decomposition of T into T D � [ zT [ ADEC , and the corresponding decom-
position of int'.@T / into P� [P zT [PADEC .

Since the polygon of boundary'.@T / is non-degenerate, then Definition 2.2 provides
some constant xı > 0, and then we consider

(4.1) � <

²
1;
d

2
;
xı

4
;

d
14
;
"

4
;

�
1C

1

2 tanˇ

��1
; kD'k�11

³
:

The basic idea of the proof is to find a suitable one-dimensional skeleton‡ inside T ,
construct a continuous, piecewise linear and injective map z' W ‡ ! R2 coinciding
with ' on @T and finally perform a suitable piecewise affine extension inside each
component of the partition of T identified by ‡ .

For clarity, we present the proof in three separate steps.

Step I. Definition of a first skeleton „ and a continuous piecewise linear injective map
'1 W „! R2. In this step, we would like to construct a one-dimensional skeleton of
the form „ D @T [DE [ FG, for some suitably chosen points D;E;F;G, and we
will define an extension '1 of ' onDE [ FG that is still continuous, piecewise linear
and injective. See Figure 5 for an illustration.

We will select D;E;F;G so that

D 2 AB; E; F 2 BC; G 2 DE; FG k AB and DE k AC;

satisfying the following estimates:

(4.2)

jA �Dj < � and jC �Ej < �;

H1
�
'1.@ zT /

�
< 4�;

‰0.'
1
e@�/ � ‰0.'/C .dC 14�/H1.@T /;

where zT � T is the triangle of corners E;F;G and� � T is the trapezoid of corners
D;B;F;G.
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Having fixed �, by the assumptions on', we can chooseD2AB and E2BC so that
(i) jA �Dj < � and jC �Ej < �;
(ii) j'.A/ � '.D/j < � and j'.C / � '.E/j < �;
(iii) the restriction of ' is linear on AD and CE;
(iv) DE is parallel to AC ;
(v) the point X is on the internal bisector of '.A/ and Y on the internal bisector

of '.C / such that j'.A/ � Xj < 2� and j'.C / � Yj < 2� and the piecewise
linear path z'.D/'.E/ WD '.D/XY'.E/ lies in the interior of '.@T / and is a
xı=2-modification of the geodesic '.D/'.E/ in the sense of Definition 2.2.

Observe that (ii) and (v) imply that j'.D/ � Xj; j'.E/ � Yj < 3� and also

H1.z'.D/'.E// < j'.D/ � Xj C jX � Yj C j'.E/ � Yj
< 6�C j'.A/ � Xj C j'.A/ � '.C /j C j'.C / � Yj
< dC 10�:

(4.3)

We find a point F on the segment EB , a point G 2 DE and a point Z 2 ŒY'.E/�
such that
(vi) jF �Ej < � and j'.F / � '.E/j < �;
(vii) ' is linear on EF ;
(viii) j'.E/ � Zj < � and Œ'.F /Z� lies in int'.@T /, and as a consequence,

j'.F / � Zj < 2�;
(ix) G2 D F2, jG �Ej < �.sinˇ/�1 and jG � F j < �.tanˇ/�1.

This concludes the definition of „. Indeed, (i) ensures the first equation of (4.2),
then zT is a right-angle triangle and � is a trapezoid inside T .

We now proceed to construct a function '1 W „! R2 extending ' such that the
second and third estimates of (4.2) are satisfied. In order to do that, we consider two
further auxiliary points P;Q 2 DG so that
(x) jP �Dj < � and jQ �Gj < �;
and we set

'1.P / WD X; '1.Q/ WD Y and '1.G/ WD Z:
We then define '1 W „! R2 so that '1 D ' on @T , '1

eDP
is the parametrization at

constant speed of the segment '.D/X, '1
ePQ

is the parametrization at constant speed
of the segment XY, '1

eQG
is the parametrization at constant speed of the segment

YZ, '1
eGE

is the parametrization at constant speed of the segment Z'.E/ and, finally,
'1
eGF

is the parametrization at constant speed of the segment Z'.F /. A sketch of the
situation is presented in Figure 5.
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The second estimate of (4.2) is a direct consequence of (vi) and (viii); indeed, '1 is
linear in each of the segments EF;FG;EG, and by triangular inequality, we have

H1
�
'1.@ zT /

�
D
ˇ̌
'.E/ � '.F /

ˇ̌
C
ˇ̌
'.E/ � Z

ˇ̌
C
ˇ̌
Z � '.F /

ˇ̌
� 2

�ˇ̌
'.E/ � '.F /

ˇ̌
C
ˇ̌
'.E/ � Z

ˇ̌�
� 4�:

The remaining part of the step is devoted to the proof of the third estimate of (4.2).
In the following, Xi is the i-th coordinate of the point X . For every t 2 Œ0; E1�, we
denote by H 1

t ;H
2
t ;H

3
t the intersections between the horizontal line R � ¹tº and the

curvesAC;DE;BF , respectively. Clearly,H 1
0 DA,H 2

0 DD,H 3
0 DB ,H 2

F2
DG and

H 3
F2
D F . Similarly, for every s 2 ŒD1;B1�, we denote by V 1s ; V 2s ; V 3s the intersections

between the vertical line ¹sº �R and the setsDB;DG [GF;AC , respectively. Then,

V 1D1 D V
2
D1
D D; V 3B1 D C; V 2B1 D F and V 1B1 D B:

We recall that, by definition, ‰0.'1e@�/ corresponds to the following quantity:Z F1

0

�P�

�
'1.H 2

t /; '
1.H 3

t /
�
dt C

Z B1

D1

�P�

�
'1.V 1s /; '

1.V 2s /
�
ds;

where P� is the non-degenerate polygon identified by '1.@�/.
Notice that, by construction, the curve '1.DG/ is exactly the piecewise linear curve

'.D/XYZ, so '1.H 2
t / and '1.V 2s / will lie on '.D/XYZ for every t 2 Œ0; F2� and

s 2 ŒD1; G1�. On the other hand, when s 2 ŒG1; B1�, we get that '1.V 2s / lies on the
segment Z'.F /.

Obviously, one can construct a path in P� from '1.H 3
t / to '1.H 2

t / by following
'.H1t /'.H

3
t /
\P� and when necessary going around P zT on its boundary and travelling

along z'.D/'.E/ till one gets to '1.H 2
t /. The length of this curve bounds the length of

the geodesic in P� between '1.H 2
t / and '1.H 3

t /. Further,

�P�

�
'1.H 2

t /; '
1.H 3

t /
�

� H1
�
'.H1t /'.H

3
t /
\P�

�
CH1.@P zT /CH1.z'.D/'.E//

� �'.@T /
�
'.H 1

t /; '.H
3
t /
�
C dC 14�;

(4.4)

where in the last inequality we used the second of (4.2) and (4.3). Analogously, for
every s 2 .D1; B1/, it holds that

�P�

�
'1.V 1s /; '

1.V 2s /
�

� H1
�
'.V 1s /'.V 3s / \P�

�
CH1.@P zT /CH1.z'.D/'.E//

� �'.@T /
�
'.V 1s /; '.V

3
s /
�
C dC 14�:

(4.5)
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Gathering the last two estimates together, we obtain

‰0.'
1
e@�/ D

Z F2

0

�P�

�
'1.H 2

t /; '
1.H 3

t /
�
dtC

Z B1

D1

�P�

�
'1.V 1s /; '

1.V 2s /
�
ds

�

Z F2

0

�'.@T /
�
'.H 1

t /; '.H
3
t /
�
dtC

Z B1

D1

�'.@T /
�
'.V 1s /; '.V

3
s /
�
ds

C .dC 14�/
�
jF � Bj C jD � Bj

�
� ‰0.'/C .dC 14�/H1.@T /;

(4.6)

which is exactly the third estimate of (4.2).

Step II. Definition of the final skeleton ‡ and the continuous piecewise linear injective
map z' W ‡ ! R2. The aim of this step is to define a set ‡ depicted in Figure 6 and a
map z' satisfying the following properties:
(1) the set ‡ subdivides T in the essentially disjoint union yT [ zT [ P [

SM�1
iD0 Ri ,

where P is a polygon which is zC -bi-Lipschitz ( zC is a universal constant) equivalent
to the rectangle Œ0; jA�C j�� Œ0; jA�Dj sinˇ�, yT is a triangle near eitherA or C ,
zT is the triangle defined in Step I of corners E; F; G and Ri are M pairwise
essentially disjoint rectangles having horizontal and vertical sides.

(2) z' W ‡ ! R2 is piecewise linear, continuous and injective; moreover, it coincides
with '1 on „ (where „ is the set defined in Step I) and satisfies the following
estimates:

(4.7)
M�1X
iD0

‰0
�
z'e@Ri

�
� ‰0.'/C .dC 14�/H1.@T /C

�

50
:

We use Lemma 3.3 on '1 and on � with

� <
1

100
min

²
sinˇ dist.D;AC/;

�

2d

³
and get a number M 2 N and M values

0 D t0 < t1 < � � � < tM�1 < tM D F2

such that jtiC1 � ti j < � for every i D 1; : : : ;M � 1. We remark that it is also possible
to choose � D ". Moreover, it is possible to decompose � into the essentially disjoint
union of M � 1 horizontal strips Si D R � Œti�1; ti � \ � such that '1 is linear on
Ii WD @Si \DG and on @Si \ FB and H1.'1.Ii // � �. Further, we deduce from
Lemma 3.3 the existence of a continuous, piecewise linear and injective

'2 W @T [DE [ FG [

M�1[
iD1

@Si ! R2
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such that '2 D '1 on @T [DE [ FG and
M�1X
iD0

‰0
�
'2
e@Si

�
� ‰0

�
'1
e@�

�
C �:

A consequence of the above inequality, the choice of � and the third estimate of (4.2)
is that

M�1X
iD0

‰0
�
'2
e@Si

�
� ‰0.'/C .dC 14�/H1.@T /C �

< ‰0.'/C .dC 14�/H1.@T /C
�

100
:

(4.8)

We now proceed to construct the skeleton ‡ and the final map z'. Observe that
for every i D 0; : : : ;M � 1, the right-angle triangle Ti of hypotenuse Ii constructed
at the exterior of � is still contained in T and does not intersect AC . Indeed, by
construction, one has that H1.@Si \ FB/ D jtiC1 � ti j < � and hence H1.Ii / <
�

sinˇ and the distance between any point of Ti and the segment AC must be at least
dist.D;AC/ � �

sinˇ >
99
100

dist.D;AC/, thus ensuring that Ti � T . Clearly, Ti \ Tj
is either empty or containing at most one corner (this corresponds to the case where
j D i ˙ 1).

Then, connecting the horizontal and vertical sides of Ti for every i D 0; : : : ;M � 1,
we obtain a continuous piecewise linear path � connecting D and G that lies inside T
and, at the same time, outside the trapezoid�. Moreover, by construction, we have that

dist.AC; �/ �
99

100
dist.D;AC/ D

99

100
jA �Dj sinˇ

and

(4.9) H1.�/ � 2jD �Gj C jE �Gj � 2jD �Ej � 2h:

Assuming that ˇ is bounded away from 0 and �
2

, we have that the non-degenerate
polygon P � T of boundaryAC [AD [ � [GE [EC is zC -bi-Lipschitz equivalent
to a rectangle of side-lengths jA � C j D d and jA � Dj sin ˇ. On the other hand,
if ˇ is very close to 0, it suffices to take away the triangle yT with vertexes at A,
A=2CD=2 and a third vertex on AC with angle �=2. Then, the remaining part of
P is again zC -bi-Lipschitz equivalent to a rectangle of side-lengths jA � C j D d and
jA �Dj sin ˇ. Similarly, if ˇ is close to �=2, we subtract a triangle yT close to C
and then the remaining set is zC -bi-Lipschitz equivalent to a rectangle of side-lengths
jA � C j D d and jA �Dj sinˇ.

Let us now observe that, by construction, the polygon of boundary DB [ FB [
FG [ � can be seen as the essentially disjoint union ofM rectangles Ri of horizontal
and vertical sides such that Si D Ri \� and Ti D Ri n�.
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X

YZ

A B

C

'.A/

'.C/

D

E

F
zT

yT

G

Q

P

Si

Ri�2

Ti

P

Figure 6. The division of T into T D P [ zT [
S
i Ri and Ri D Ti [ Si where one vertex of

Ri lies on DE. The set P is uniformly bi-Lipschitz equivalent to the rectangle Œ0; jA � C j� �
Œ0; jA �Dj�. The usage of yT is optional and is used near either A or C when the hypotenuse is
close to being either horizontal or vertical.

Notice that the rectangles Ri are pairwise essentially disjoint; moreover, they are
essentially disjoint from P and zT . We are finally in position to define the set

‡ WD @P [ @ yT [ @ zT [
M�1[
iD0

@Ri ;

satisfying all conditions of property (1).
We now focus on the definition of z' W ‡ ! R2. We set

z' WD '2 on
�
„ [

M�1[
iD0

@Si

�
nDG:

Then, we only need to care about the definition of z' on� . The idea is to let z'.@Ti n Ii /D
'2.Ii / and decide the parametrization in such a way that ‰0.z'e@Ri / / ‰0.'

2
e@Si

/.
For this reason, for every i D 0; : : : ;M � 1, we define z' W @Ti n Ii ! R2 as the

bi-linear map that parametrizes the segment '2.Ii / at constant speed. We recall that
Lemma 3.3 gives a'2 that is linear and equal to'1 on each Ii , and H1.'2.Ii // < � . As a
consequence, for any choice ofX2�\@Ti and Y 2Ii , we get that jz'.X/ � '2.Y /j< � ,
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and since any horizontal/vertical slice of Ri intersects @Si , it is immediate to deduce
that

‰0.z'e@Ri / � ‰0
�
'2
e@Si

�
C �H1.� \ @Ti /

for every i D 0; : : : ;M � 1.
Recalling the first of (4.2), (4.9) and the bound on � , thanks to (4.8), we deduce

M�1X
iD0

‰0.z'e@Ri / �

M�1X
iD0

�
‰0
�
'2
e@Si

�
C �H1.� \ @Ti /

�
� ‰0.'/C .dC 14�/H1.@T /C

�

100
C �H1.�/

� ‰0.'/C .dC 14�/H1.@T /C
�

50

which is exactly (4.7). Then, the fact that z' is continuous and injective and coincides
with '2 D '1 on „ nDG implies property (2), hence the conclusion of the step.

Step III. Piecewise affine extensions in the components of T n ‡ and conclusion. In
this conclusive step, we perform independently piecewise affine extensions in the
different components of T n‡ . Indeed, thanks to Step II, we have that T is the disjoint
union of P , zT , possibly yT and M rectangles Ri and z' is continuous, injective and
piecewise linear on the respective boundaries. This allows us to work separately in
each component with piecewise affine extensions that coincide with the restriction of
z' on the boundary of the considered component.

Let us first consider the rectangle Ri for some i D 0; : : : ;M � 1. Proposition 2.8
applied to Ri and z'e@Ri with parameter "

2i
provides a finitely piecewise affine homeo-

morphism vi W Ri ! R2 extending z' on @Ri such that

(4.10) kDvik0.Ri / � ‰0.z'e@Ri /C
"

2i
:

We pass now to consider the extension inside the triangle zT . Since z' is linear on
each side of @ zT , then we define w W zT ! R2 as the unique affine extension of the
boundary value z'. We recall that whenever one considers two triples of distinct points
in the plane, then there is only one affine function mapping the first triple into the
second one. We can then directly compute

D1w D
z'.F / � z'.G/

jF �Gj
and D2w D

z'.E/ � z'.F /

jE � F j
:

Therefore, recalling (vi), (vii), (viii), (ix) and the fact that

z'.G/ D Z; z'.E/ D '.E/; z'.F / D '.F /;
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from Step I, we get

kDwk0. zT / D
1

2

�
jE � F j

ˇ̌
z'.G/ � z'.F /

ˇ̌
C jF �Gj

ˇ̌
z'.E/ � z'.F /

ˇ̌�
�
�

2

�ˇ̌
Z � z'.F /

ˇ̌
C jF �Gj

�
� �2

�
1C

1

2 tanˇ

�
:

(4.11)

To extend in yT , we use Lemma 4.1. We have H1.@ yT / � zC� and H1.z'.@ yT // �
zCkD'k1�. Recalling (4.1), we get a bi-affine homeomorphism v equal to z' on @ yT
and kDvk0.T / � � � ".

At last, we discuss the extension inside P . Since P is zC -bi-Lipschitz equivalent
to R WD Œ0; jA � C j� � Œ0; jA �Dj sinˇ�, then there exists a zC -bi-Lipschitz finitely
piecewise affine homeomorphism ' W P ! R. We now observe that by construction,
@R is a rectangle and  WD z' ı '�1 is a piecewise linear injective map defined on
@R; thus, we are in position to apply Corollary 2.10 to  W @R! R2 to get a finitely
piecewise affine homeomorphism z! W R! R2 coinciding with  on @R such that

kD z!kL1.R/ � zCH1.@R/H1
�
 .@R/

�
:

Then, the map ! WD z! ı ' W P ! R2 is a finitely piecewise affine homeomorphism
coinciding with z' on @P and satisfying

kD!kL1.P/ � zCkD z!kL1.R/ � zCH1
�
'.@P /

�
H1

�
z' ı '�1.@R/

�
� zCH1.@P /H1

�
z'.@P /

�
:

Once here we recall (4.9) and the first of (4.2) to get that

H1.@P / � jA � C j C jD � Aj C jC �Ej CH1.�/C jE �Gj � 4d C 2�;

while from (ii), the fact that z'.� [EG/D '1.DE/D z'.D/'.E/ and (4.3), we deduce

H1
�
z'.@P /

�
� H1

�
'.AC/

�
CH1

�
'.AD/

�
CH1

�
'.CE/

�
CH1

�
'1.ED/

�
�
ˇ̌
'.A/�'.C /

ˇ̌
C
ˇ̌
'.A/�'.D/

ˇ̌
C
ˇ̌
'.C /�'.E/

ˇ̌
CH1.z'.D/'.E//

� 2dC 12�:

Then, the last two observations together with the estimate on D! imply

(4.12) kD!k0.P / � zCkD!kL1.P/ � zC.d C �/.dC �/ � zCdd:

We finally define v W T ! R2 the finitely piecewise affine map such that

veP D !; v
e zT D w and veRi D vi for every i D 0; : : : ;M � 1:
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We observe that v is continuous and injective, hence a homeomorphism, since v D z'
on ‡ . From the same observation, we also deduce that v D ' on @T because z' D '
there. Gathering together (4.10), (4.11), (4.12) and (4.7), we find

kDvk0.T / D kD!k0.P /C kDwk0. zT /C
M�1X
iD0

kDvik0.Ri /C kDvk0. yT /

� zCddC �2
�
1C

1

2 tanˇ

�
C

M�1X
iD0

�
‰0.z'e@Ri /C

"

2i

�
C d"

� zCddC �2
�
1C

1

2 tanˇ

�
C‰0.'/C CdH1.@T /C zC"

� ‰0.'/C zCH1.@T /H1
�
'.AC/

�
C zC";

where in the last inequality, we used that

d D jA � C j � H1.@T / and d D
ˇ̌
'
�
A � '.C /

�ˇ̌
:

5. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Let " > 0 be arbitrary fixed and let

(5.1) 0 < � < min
²
1;

"

zC C zCH1.Q/

³
for some large appropriate but fixed geometric constant zC . We describe in detail the
proof when Q is of class (iii) in the sense of Remark 3.1, while the other cases are an
obvious modification of the current argument.

Applying Lemma 3.2 to Q; '; ˛ and the parameter �, we can partition Q in two
triangles T1; T2 and a convex polygon � and find a continuous, piecewise linear,
injective map x' W @T1 [ @T2 [ @�! R2 with the properties listed in the statement of
Lemma 3.2. In particular, from (3.3), it follows that

(5.2) ‰˛.x'e@�/ � ‰˛.'/C �;

where (3.1) and (3.2) ensure that

(5.3) H1.@T1/CH1.@T2/ < �; H1
�
x'.@T1/

�
CH1

�
x'.@T2/

�
< �:

Furthermore, since� is a convex polygon with two parallel sides in direction ˛, we
can apply the ˛-rotated version of Lemma 3.3 to �, x'1 and the parameter � to find M
increasing values .ti /M�1iD0 and ˛-rotated strips Si , which can be seen as the union of a
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rectangle Ri and two triangles T 1i and T 2i , and a continuous piecewise linear injective
map O' W

SM�1
iD0 @T 1i [ @Ri [ @T

2
i ! R2 coinciding with x' on @� with the properties

of Lemma 3.3. In particular, thanks to (3.7), we deduce

(5.4)
M�1X
iD0

�
‰˛
�
O'
e@T 1

i

�
C‰˛

�
O'e@Ri

�
C‰˛

�
O'
e@T 2

i

��
� ‰˛

�
x'1
e@�

�
C �;

while (3.5) ensures that

(5.5) H1
�
O'.I 1i /

�
CH1

�
O'.I 2i /

�
< �

where I 1i D @T
1
i \ @� and I 2i D @T

2
i \ @�.

We are finally in position to define a function

z' W @T1 [

 
M�1[
iD0

@T 1i [ @Ri [ @T
2
i

!
[ @T2 ! R2

that is continuous, injective, finitely piecewise linear and such that z' D x'1 on @T1 [ @T2
and z' D O' on

SM�1
iD0 @T 1i [ @Ri [ @T

2
i .

Once here we will perform the homeomorphic piecewise affine extension on
T1; T2; T

1
i ; T

2
i and Ri independently for every i D 0; : : : ; M � 1. We first focus

on the extension inside the strips Si . Let i 2 ¹0; : : : ;M � 1º be fixed; we then apply
the ˛-rotated version of Proposition 2.8 to Ri ; z'e@Ri and parameter �.tiC1 � ti / to find
finitely piecewise affine homeomorphisms vi W Ri ! R2 coinciding with z' on @Ri
such that

(5.6) kDvik˛.Ri / � ‰˛.z'e@Ri /C �.tiC1 � ti /:

By construction, we have that T 1i ; T
2
i are right-angle triangles whose hypotenuse is

contained in @� \ @Q, and we can apply the ˛-rotated version of Lemma 4.2 to T 1;2i ,
z'
e@T

1;2
i

and parameter �.tiC1 � ti / to find finitely piecewise affine homeomorphisms

w
1;2
i W T

1;2
i ! R2

coinciding with z' on @T 1;2i such that

kDw
1;2
i k˛.T

1;2
i / � ‰˛

�
z'
e@T

1;2
i

�
C zCH1.@T

1;2
i /H1

�
z'.I

1;2
i /

�
C zC�.tiC1 � ti /;

which thanks to (5.5) implies

kDw1i k˛.T
1
i /C kDw

2
i k˛.T

2
i /

� ‰˛
�
z'
e@T 1

i

�
C‰˛

�
z'
e@T 2

i

�
C
�
zC
�
H1.@T 1i /CH1.@T 2i /

�
C zC.tiC1�ti /

�
�:

(5.7)
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Let us also notice that, for future need, since the triangles T 1;2i have one angle
equal to �=2 and, by construction, their hypotenuse is I 1;2i , then one has H1.@T

1;2
i / �

3H1.I
1;2
i / for every i . Moreover, having I 1;2i � .@�\ @Q/ and the triangles pairwise

essentially disjoint, we deduce

(5.8)
M�1X
iD0

�
H1.@T 1i /CH1.@T 2i /

�
� 3

M�1X
iD0

�
H1.I 1i /CH1.I 2i /

�
� 3H1.@Q/:

Let us now consider the extension inside the triangles T1; T2. In this case, by
construction, we are in position to apply the ˛-rotated version of Lemma 4.1 to T1;2
and z'e@T1;2 to find bi-affine homeomorphisms w1;2 W T1;2 ! R2 such that

kDw1;2k˛.T1;2/ � H1
�
z'.@T1;2/

�
H1

�
@T1;2

�
which, thanks to (5.3), gives

(5.9) kDw1k˛.T1/C kDw2k˛.T2/ < 2�
2:

We can finally define v W Q! R2 to be the piecewise affine function such that

vDw1;2 on T1;2; vDw
1;2
i on T 1;2i and vDvi on Ri for every iD0; : : : ;M�1:

By construction, v is continuous because v D z' on the one-dimensional skeleton
@T1 [ .

SM�1
iD0 @T 1i [ @Ri [ @T

2
i / [ @T2, and, moreover, v coincides with z' D '

on @Q. To conclude, it is only left to verify the validity of (1.4), but this is now a
straightforward consequence of (5.6), (5.7), (5.9), (5.4), (5.8) and (5.2). Indeed, we get

kDvk˛.Q/ D kDw1k˛.T1/C kDw2k˛.T2/

C

M�1X
iD0

�
kDw1i k˛.T

1
i /C kDvik˛.Ri /C kDw

2
i k˛.T

2
i /
�

�

M�1X
iD0

�
‰˛
�
O'
e@T 1

i

�
C‰˛

�
O'e@Ri

�
C‰˛

�
O'
e@T 2

i

��
C 4�2 C zC�

M�1X
iD0

��
H1.@T 1i /CH1.@T 2i /

�
C .tiC1 � ti /

�
� ‰˛.x'

1
e@�/C �C 4�

2
C zC�

�
H1.@Q/C diam Q

�
� ‰˛.x'e@�/C 6�C zC�

�
H1.@Q/

�
;

� ‰˛.'/C zC�
�
1CH1.@Q/

�
;

and then estimate (1.4) follows since � has been chosen as in (5.1).
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5.1. Proof of Theorem 1.2

To prove the claim, it suffices to repeat the proof of the above lemmas as before but using
the estimates from Theorem 2.9 instead of from Proposition 2.8. In all of our calculations,
we estimate

R
�P�.'

1.H 2
t /;'

1.H 3
t //dt and

R B1
D1
�P�.'

1.V 1s /;'
1.V 2s //ds separately.

Now it suffices to keep them separate instead of summing them.
The key estimates in Lemma 3.2 are (3.4), in Lemma 3.3 they are (3.12), (3.13) and

the calculation following, and in Lemma 4.2 they are (4.4), (4.5), (4.6).
We can then repeat the proof of Theorem 1.1 with the difference that in (5.4), (5.6)

and so on we use the separate estimates, rather than the summed estimates expressed
using ‰˛ .
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