Rend. Lincei Mat. Appl. 34 (2023), 831–844 DOI 10.4171/RLM/1030

© 2024 Accademia Nazionale dei Lincei Published by EMS Press This work licensed under a CC BY 4.0 license

Partial Differential Equations. – An isoperimetric result for an energy related to the *p*-capacity, by PAOLO ACAMPORA and EMANUELE CRISTOFORONI, communicated on 10 November 2023.

ABSTRACT. – In this paper, we generalize the notion of the relative *p*-capacity of *K* with respect to Ω , by replacing the Dirichlet boundary condition with a Robin one. We show that, under volume constraints, our notion of *p*-capacity is minimal when *K* and Ω are concentric balls. We use the *H*-function (see Bossel (1986) and Daners (2006)) and a derearrangement technique.

KEYWORDS. - Robin, *p*-capacity, free boundary, isocapacitary inequality.

MATHEMATICS SUBJECT CLASSIFICATION 2020. - 49Q10 (primary); 35J66, 35J92 (secondary).

1. INTRODUCTION

Let p > 1, $\beta > 0$ be real numbers. For every open bounded set $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary, and every compact set $K \subseteq \overline{\Omega}$ with Lipschitz boundary, we define

(1.1)
$$E_{\beta,p}(K,\Omega) = \inf_{\substack{v \in W^{1,p}(\Omega) \\ v=1 \text{ in } K}} \left(\int_{\Omega} |\nabla v|^p \, dx + \beta \int_{\partial \Omega} |v|^p \, d\mathcal{H}^{n-1} \right).$$

We notice that it is sufficient to minimize among all functions $v \in H^1(\Omega)$ with v = 1in K and $0 \le v \le 1$ a.e. Moreover, if K, Ω are sufficiently smooth, a minimizer u satisfies

(1.2)
$$\begin{cases} u = 1 & \text{in } K, \\ \Delta_p u = 0 & \text{in } \Omega \setminus K, \\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu} + \beta |u|^{p-2} u = 0 & \text{on } \partial \Omega \setminus \partial K, \end{cases}$$

where $\Delta_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ is the *p*-Laplacian of *u* and *v* is the outer unit normal to $\partial\Omega$. If $\mathring{K} = \Omega$, equation (1.2) has to be understood as u = 1 in Ω , and the energy is

$$E_{\beta,p}(\Omega,\Omega) = \beta \mathcal{H}^{n-1}(\partial \Omega).$$

In general, equation (1.2) has to be interpreted in the weak sense; that is, for every $\varphi \in W^{1,p}(\Omega)$ such that $\varphi \equiv 0$ in K,

(1.3)
$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla \varphi \, d\mathcal{L}^n + \beta \int_{\partial \Omega} u^{p-1} \varphi \, d\mathcal{H}^{n-1} = 0.$$

In particular, if u is a minimizer, letting $\varphi = u - 1$, we have that

$$E_{\beta,p}(K,\Omega) = \int_{\Omega} |\nabla u|^p \, dx + \beta \int_{\partial\Omega} u^p \, d\mathcal{H}^{n-1} = \beta \int_{\partial\Omega} u^{p-1} \, d\mathcal{H}^{n-1}.$$

Moreover, from the strict convexity of the functional, the minimizer is the unique solution to (1.3).

This problem is related to the so-called *relative p-capacity of K with respect to* Ω , defined as

$$\operatorname{Cap}_{p}(K,\Omega) := \inf_{\substack{v \in W_{0}^{1,p}(\Omega) \\ v=1 \text{ in } K}} \left(\int_{\Omega} |\nabla v|^{p} \, dx \right).$$

In the case p = 2, it represents the electrostatic capacity of an annular condenser consisting of a conducting surface $\partial \Omega$, and a conductor K, where the electrostatic potential is prescribed to be 1 inside K and 0 outside Ω . Let ω_n be the measure of the unit sphere in \mathbb{R}^n , and let $M > \omega_n$; then, it is well known that there exists some $r \ge 1$ such that

$$\min_{\substack{|K|=\omega_n\\|\Omega|< M}} \operatorname{Cap}_p(K,\Omega) = \operatorname{Cap}_p(B_1, B_r).$$

This is an immediate consequence of the Pólya–Szegö inequality for the Schwarz rearrangement (see, for instance, [11, 14]). We are interested in studying the same problem for the energy defined in (1.1), which corresponds to changing the Dirichlet boundary condition on $\partial\Omega$ into a Robin boundary condition; namely, we consider the following problem:

(1.4)
$$\inf_{\substack{|K|=\omega_n\\ |\Omega|\leq M}} E_{\beta,p}(K,\Omega).$$

In this case, the previous symmetrization techniques cannot be employed anymore.

Problem (1.4) has been studied in the linear case p = 2 in [7], with more general boundary conditions on $\partial \Omega$; namely,

$$\frac{\partial u}{\partial v} + \frac{1}{2}\Theta'(u) = 0,$$

where Θ is a suitable increasing function vanishing at 0. This kind of problem has also been addressed in the context of thermal insulation (see, for instance, [1,2,8]). Our main result reads as follows.

THEOREM 1.1. Let $\beta > 0$ such that

$$\beta^{\frac{1}{p-1}} > \frac{n-p}{p-1}.$$

Then, for every $M > \omega_n$, the solution to problem (1.4) is given by two concentric balls (B_1, B_r) ; that is,

$$\min_{\substack{|K|=\omega_n\\|\Omega|\leq M}} E_{\beta,p}(K,\Omega) = E_{\beta,p}(B_1,B_r).$$

In particular, we have that either r = 1 or $M = \omega_n r^n$. Moreover, if $K_0 \subseteq \overline{\Omega}_0$ are such that

$$E_{\beta,p}(K_0,\Omega_0) = \min_{\substack{|K|=\omega_n\\|\Omega|\leq M}} E_{\beta,p}(K,\Omega),$$

and u is the minimizer of $E_{\beta,p}(K_0, \Omega_0)$, then the sets $\{u = 1\}$ and $\{u > 0\}$ coincide with two concentric balls up to a \mathcal{H}^{n-1} -negligible set.

REMARK 1.2. In the case

$$\beta^{\frac{1}{p-1}} \le \frac{n-p}{p-1},$$

adapting the symmetrization techniques used in [7], it can be proved that a solution to problem (1.4) is always given by the pair (B_1, B_1) .

We point out that the proof of the theorem relies on the techniques involving the H-function introduced in [5,9].

The case in which Ω is the Minkowski sum $\Omega = K + B_r(0)$, with the energy $E_{\beta,p}(K, \Omega)$, has been studied in [4] under suitable geometrical constraints (see also [10]).

2. Proof of the theorem

To prove Theorem 1.1, we start by studying the function

$$R \mapsto E_{\beta,p}(B_1, B_R).$$

A similar study of the previous function can also be found in [4]. Let

$$\Phi_{p,n}(\rho) = \begin{cases} \log(\rho) & \text{if } p = n, \\ -\frac{p-1}{n-p} \frac{1}{\rho^{\frac{n-p}{p-1}}} & \text{if } p \neq n. \end{cases}$$

For every R > 1, consider

(2.1)
$$u^{*}(x) = 1 - \frac{\beta^{\frac{1}{p-1}} \left(\Phi_{p,n}(|x|) - \Phi_{p,n}(1) \right)_{+}}{\Phi'_{p,n}(R) + \beta^{\frac{1}{p-1}} \left(\Phi_{p,n}(R) - \Phi_{p,n}(1) \right)},$$

P. ACAMPORA AND E. CRISTOFORONI

the solution to

$$\begin{cases} u^* = 1 & \text{in } B_1, \\ \Delta_p u^* = 0 & \text{in } B_R \setminus B_1, \\ |\nabla u^*|^{p-2} \frac{\partial u^*}{\partial v} + \beta |u^*|^{p-2} u^* = 0 & \text{on } \partial B_R. \end{cases}$$

We have that

(2.2)
$$E_{\beta,p}(B_1, B_R) = \int_{B_R} |\nabla u^*|^p \, dx + \beta \int_{\partial B_R} |u^*|^p \, d\mathcal{H}^{n-1} \\ = \frac{n\omega_n \beta}{\left[\Phi'_{p,n}(R) + \beta^{\frac{1}{p-1}} \left(\Phi_{p,n}(R) - \Phi_{p,n}(1)\right)\right]^{p-1}}.$$

Notice that $E_{\beta,p}(B_1, B_R)$ is decreasing in R > 0 if and only if

$$\frac{d}{dR}\left(\Phi'_{p,n}(R)+\beta^{\frac{1}{p-1}}\Phi_{p,n}(R)\right)\geq 0,$$

that is, if and only if

$$R \geq \frac{n-1}{p-1} \frac{1}{\beta^{\frac{1}{p-1}}} =: \alpha_{\beta,p}.$$

Moreover,

$$E_{\beta,p}(B_1, B_1) = n\omega_n\beta,$$

$$\lim_{R \to \infty} E_{\beta,p}(B_1, B_R) = \begin{cases} n\omega_n \left(\frac{n-p}{p-1}\right)^{p-1} & \text{if } p < n, \\ 0 & \text{if } p \ge n. \end{cases}$$

Therefore, there are three cases:

(i) if
$$\beta^{\frac{1}{p-1}} \ge \frac{n-1}{p-1}$$
,
 $R \in [1, +\infty) \mapsto E_{\beta,p}(B_1, B_R)$

is decreasing;

(ii) if
$$\frac{n-p}{p-1} < \beta^{\frac{1}{p-1}} < \frac{n-1}{p-1}$$
,
 $R \in [1, +\infty) \mapsto E_{\beta,p}(B_1, B_R)$

increases on $[1, \alpha_{\beta,p}]$ and decreases on $[\alpha_{\beta,p}, +\infty)$, with the existence of a unique $R_{\beta,p} > \alpha_{\beta,p}$ such that $E_{\beta,p}(B_1, B_{R_{\beta,p}}) = E_{\beta,p}(B_1, B_1)$;

(iii) if
$$\beta^{\frac{1}{p-1}} \leq \frac{n-p}{p-1}$$
,
 $R \in [1, +\infty) \mapsto E_{\beta,p}(B_1, B_R)$

reaches its minimum at R = 1.

FIGURE 1. $E_{\beta,p}(B_1, B_r)$ depending on the value of β .

See, for instance, Figure 1, where

$$\beta_1 = \left(\frac{n-p}{p-1}\right)^{p-1}, \quad \beta_2 = \left(\frac{n-1}{p-1}\right)^{p-1}, \quad p = 2.5, \ n = 3.$$

We will need the following.

LEMMA 2.1. Let R > 1, $\beta > 0$ and let u^* be the solution of the problem on (B_1, B_R) . Then,

$$\frac{|\nabla u^*|}{u^*} \le \beta^{\frac{1}{p-1}}$$

in $B_R \setminus B_1$ if and only if

$$E_{\beta,p}(B_1, B_\rho) \ge E_{\beta,p}(B_1, B_R)$$

for every $\rho \in [1, R]$.

PROOF. Recalling the expressions of u^* in (2.1), by straightforward computations, we have that

$$\frac{|\nabla u^*|}{u^*} \le \beta^{\frac{1}{p-1}}$$

in $B_R \setminus B_1$ if and only if

(2.3)
$$\Phi'_{p,n}(R) + \beta^{\frac{1}{p-1}} \left(\Phi_{p,n}(R) - \Phi_{p,n}(1) \right) \\ \geq \Phi'_{p,n}(\rho) + \beta^{\frac{1}{p-1}} \left(\Phi_{p,n}(\rho) - \Phi_{p,n}(1) \right)$$

for every $\rho \in [1, R]$. Using the expression of $E_{\beta, p}(B_1, B_{\rho})$ in (2.2), (2.3) is equivalent to

$$E_{\beta,p}(B_1, B_\rho) \ge E_{\beta,p}(B_1, B_R)$$

for every $\rho \in [1, R]$.

DEFINITION 2.2. Let $\Omega \subseteq \mathbb{R}^n$ be an open set, and let $U \subseteq \Omega$ be another set. We define the *internal boundary* of U as

$$\partial_{\mathbf{i}}U = \partial U \cap \Omega$$

and the *external boundary* of U as

$$\partial_{\mathbf{e}} U = \partial U \cap \partial \Omega.$$

Let $K \subseteq \overline{\Omega} \subseteq \mathbb{R}^n$ be open bounded sets, and let u be the minimizer of $E_{\beta,p}(K, \Omega)$. In the following, we denote

$$U_t = \left\{ x \in \Omega \mid u(x) > t \right\}.$$

DEFINITION 2.3 (*H*-function). Let $\varphi \in W^{1,p}(\Omega)$. We define

$$H(t,\varphi) = \int_{\partial_{i}U_{t}} |\varphi|^{p-1} d\mathcal{H}^{n-1} - (p-1) \int_{U_{t}} |\varphi|^{p} d\mathcal{L}^{n} + \beta \mathcal{H}^{n-1}(\partial_{e}U_{t}).$$

Notice that this definition is slightly different from the one given in [6].

LEMMA 2.4. Let $K \subseteq \Omega \subseteq \mathbb{R}^n$ be open bounded sets, and let u be the minimizer of $E_{\beta,p}(K, \Omega)$. Then, for a.e. $t \in (0, 1)$, we have

$$H\left(t,\frac{|\nabla u|}{u}\right) = E_{\beta,p}(K,\Omega).$$

PROOF. Recall that

(2.4)
$$E_{\beta,p}(K,\Omega) = \int_{\Omega} |\nabla u|^p \, d\mathcal{L}^n + \beta \int_{\partial\Omega} u^p \, d\mathcal{H}^{n-1}.$$
$$= \beta \int_{\partial\Omega} u^{p-1} \, d\mathcal{H}^{n-1}.$$

Let $t \in (0, 1)$. We construct the following test functions: let $\varepsilon > 0$, and let

$$\varphi_{\varepsilon}(x) = \begin{cases} -1 & \text{if } u(x) \leq t, \\ \frac{u(x)-t}{\varepsilon u(x)^{p-1}} - 1 & \text{if } t < u(x) \leq t + \varepsilon, \\ \frac{1}{u(x)^{p-1}} - 1 & \text{if } u(x) > t + \varepsilon, \end{cases}$$

so that φ_{ε} is an approximation to the function $(u^{1-p}\chi_{U_t} - 1)$, and

$$\nabla \varphi_{\varepsilon}(x) = \begin{cases} 0 & \text{if } u(x) \leq t, \\ \frac{1}{\varepsilon} \left(\frac{\nabla u(x)}{u(x)^{p-1}} - (p-1) \frac{\nabla u(x)(u(x)-t)}{u(x)^{p}} \right) & \text{if } t < u(x) \leq t + \varepsilon, \\ -(p-1) \frac{\nabla u(x)}{u(x)^{p}} & \text{if } u(x) > t + \varepsilon. \end{cases}$$

We have that φ_{ε} is an admissible test function for the Euler–Lagrange equation (1.3), which entails

$$\begin{split} 0 &= \frac{1}{\varepsilon} \int_{\{t < u \le t + \varepsilon\} \cap \Omega} \frac{|\nabla u|^{p-1}}{u^{p-1}} |\nabla u| \, d\mathcal{X}^n - (p-1) \int_{\{t < u \le t + \varepsilon\} \cap \Omega} \frac{|\nabla u|^p}{u^p} \frac{u-t}{\varepsilon} \, d\mathcal{X}^n \\ &- (p-1) \int_{\{u > t + \varepsilon\} \cap \Omega} \frac{|\nabla u|^p}{u^p} \, d\mathcal{X}^n + \beta \int_{\{t < u \le t + \varepsilon\} \cap \partial\Omega} \frac{u-t}{\varepsilon} \, d\mathcal{H}^{n-1} \\ &+ \beta \mathcal{H}^{n-1} \big(\partial\Omega \cap \{u > t + \varepsilon\} \big) - \beta \int_{\partial\Omega} u^{p-1} \, d\mathcal{H}^{n-1}. \end{split}$$

Letting now ε go to 0, by the coarea formula, we get that for a.e. $t \in (0, 1)$,

(2.5)
$$\beta \int_{\partial \Omega} u^{p-1} d\mathcal{H}^{n-1} = \int_{\partial_i U_t} \left(\frac{|\nabla u|}{u}\right)^{p-1} d\mathcal{H}^{n-1} - (p-1) \int_{U_t} \left(\frac{|\nabla u|}{u}\right)^p d\mathcal{L}^n + \beta \mathcal{H}^{n-1}(\partial_e U_t).$$

Joining (2.4) and (2.5), the lemma is proven.

REMARK 2.5. Notice that if K and Ω are two concentric balls, the minimizer u is the one written in (2.1), for which the statement of the above lemma holds for every $t \in (0, 1)$.

LEMMA 2.6. Let $\varphi \in L^{\infty}(\Omega)$. Then, there exists $t \in (0, 1)$ such that

$$H(t,\varphi) \leq E_{\beta,p}(K,\Omega).$$

PROOF. Let

$$w = |\varphi|^{p-1} - \left(\frac{|\nabla u|}{u}\right)^{p-1}.$$

Then, we evaluate

$$H(t,\varphi) - H\left(t,\frac{|\nabla u|}{u}\right)$$

= $\int_{\partial_{i}U_{t}} w \, d\mathcal{H}^{n-1} - (p-1) \int_{U_{t}} \left(|\varphi|^{p} - \left(\frac{|\nabla u|}{u}\right)^{p}\right) d\mathcal{L}^{n}$

P. ACAMPORA AND E. CRISTOFORONI

$$\leq \int_{\partial_{i}U_{t}} w \, d \, \mathcal{H}^{n-1} - p \int_{U_{t}} \frac{|\nabla u|}{u} w \, d \, \mathcal{L}^{n}$$
$$= -\frac{1}{t^{p-1}} \frac{d}{dt} \left(t^{p} \int_{U_{t}} \frac{|\nabla u|}{u} w \, d \, \mathcal{L}^{n} \right),$$

where we used the inequality

(2.6)
$$a^{p} - b^{p} \le \frac{p}{p-1} a \left(a^{p-1} - b^{p-1} \right) \quad \forall a, b \ge 0.$$

Multiplying by t^{p-1} and integrating, we get

(2.7)
$$\int_0^1 t^{p-1} \left(H(t,\varphi) - H\left(t,\frac{|\nabla u|}{u}\right) \right) dt \leq -\left[t^p \int_{U_t} \frac{|\nabla u|}{u} w \, d\mathcal{L}^n \right]_0^1 = 0,$$

from which we obtain the conclusion of the proof.

REMARK 2.7. Notice that inequality (2.6) holds as equality if and only if a = b. Therefore, if $\varphi \neq \frac{|\nabla u|}{u}$ on a set of positive measure, then inequality (2.7) is strict since

$$\left|\left\{\varphi\neq\frac{\nabla u}{u}\right\}\cap U_t\right|>0$$

for small enough *t*. Therefore, there exists $S \subset (0, 1)$ such that $\mathcal{L}^1(S) > 0$, and for every $t \in S$,

$$H(t,\varphi) < E_{\beta,p}(K,\Omega).$$

In the following, we fix a radius R such that $|B_R| \ge |\Omega|$, u^* the minimizer of $E_{\beta,p}(B_1, B_R)$, and

$$H^*(t,\varphi) = \int_{\partial \{u^* > t\} \cap B_R} |\varphi|^{p-1} d\mathcal{H}^{n-1} - (p-1) \int_{\{u^* > t\}} |\varphi|^p d\mathcal{L}^n + \beta \mathcal{H}^{n-1} (\partial \{u^* < t\} \cap \partial B_R).$$

Here, we recall the isoperimetric inequality (see, for example, [12]), which will be useful in what follows.

DEFINITION 2.8. Let *E* be a measurable set. For every $t \in [0, 1]$, let

$$E^{(t)} = \left\{ x \in \mathbb{R}^n \mid \lim_{r \to 0} \frac{\mathcal{L}^n \left(E \cap B_r(x) \right)}{\mathcal{L}^n \left(B_r(x) \right)} = t \right\}$$

be the set of all points where E has density t. We define the *essential boundary* of E as the set

$$\partial^{\mathrm{ess}} E = \mathbb{R}^n \setminus (E^{(0)} \cup E^{(1)}).$$

Notice that $\partial^{ess} E \subseteq \partial E$.

THEOREM 2.9 (Isoperimetric inequality). Let *E* be a measurable set, and let *B* be the ball such that $\mathcal{L}^n(B) = \mathcal{L}^n(E)$. Then,

$$\mathcal{H}^{n-1}(\partial^{\mathrm{ess}} E) \ge \mathcal{H}^{n-1}(\partial B),$$

and the equality holds if and only if E = B up to a set of measure 0.

PROPOSITION 2.10. Let $\beta > 0$. Assume that

(2.8)
$$\frac{|\nabla u^*|}{u^*} \le \beta^{\frac{1}{p-1}}$$

Then, we have that

$$E_{\beta,p}(K,\Omega) \ge E_{\beta,p}(B_1,B_R).$$

PROOF. In the following, if v is a radial function on B_R and $r \in (0, R)$, we denote with abuse of notation

$$v(r) = v(x),$$

where x is any point on ∂B_r . By Lemma 2.4, we know that for every $t \in (0, 1)$,

(2.9)
$$H^*\left(t, \frac{|\nabla u^*|}{u^*}\right) = E_{\beta,p}(B_1, B_R),$$

while by Lemma 2.6, for every $\varphi \in L^{\infty}(\Omega)$, there exists $t \in (0, 1)$ such that

(2.10)
$$E_{\beta,p}(K,\Omega) \ge H(t,\varphi).$$

We aim to find a suitable φ such that, for some t,

(2.11)
$$H(t,\varphi) \ge H^*\left(t,\frac{|\nabla u^*|}{u^*}\right),$$

so that combining (2.10), (2.11), and (2.9), we conclude the proof. In order to construct φ , for every $t \in (0, 1)$, we define

(2.12)
$$r(t) = \left(\frac{|U_t|}{\omega_n}\right)^{\frac{1}{n}};$$

then, we set, for every $x \in \Omega$,

$$\varphi(x) = \frac{|\nabla u^*|}{u^*} \big(r\big(u(x)\big) \big).$$

CLAIM. The functions $\varphi \chi_{U_t}$ and $\frac{|\nabla u^*|}{u^*} \chi_{B_{r(t)}}$ are equi-measurable; in particular,

(2.13)
$$\int_{U_l} \varphi^p \, d\, \mathcal{L}^n = \int_{B_{r(l)}} \left(\frac{|\nabla u^*|}{u^*} \right)^p \, d\, \mathcal{L}^n.$$

Indeed, let $g(r) = \frac{|\nabla u^*|}{u^*}(r)$, and by the coarea formula,

$$(2.14) \qquad |U_t \cap \{\varphi > s\}| = \int_{U_t \cap \{g(r(u(x))) > s\}} d\mathcal{L}^n$$
$$= \int_t^{+\infty} \int_{\partial^* U_\tau \cap \{g(r(\tau)) > s\}} \frac{1}{|\nabla u(x)|} d\mathcal{H}^{n-1}(x) d\tau$$
$$= \int_0^{r(t)} \int_{\partial^* U_{r^{-1}(\sigma)}} \frac{1}{|\nabla u(x)| |r'(r^{-1}(\sigma))|} \chi_{\{g(\sigma) > s\}} d\mathcal{H}^{n-1}(x) d\sigma.$$

Notice now that since

$$\omega_n r(\tau)^n = |U_\tau|,$$

then

(2.15)
$$r'(\tau) = -\frac{1}{n\omega_n r(\tau)^{n-1}} \int_{\partial^* U_\tau} \frac{1}{|\nabla u(x)|} \, d \, \mathcal{H}^{n-1}(x).$$

Therefore, substituting in (2.14), we get

$$\left|U_{t} \cap \{\varphi > s\}\right| = \int_{0}^{r(t)} n\omega_{n}\sigma^{n-1}\chi_{\{g(\sigma) > s\}} d\sigma = \left|B_{r(t)} \cap \left\{\frac{|\nabla u^{*}|}{u^{*}} > s\right\}\right|,$$

where we have used polar coordinates to get the last equality. Thus, the claim is proved.

Recalling the definition of φ , (2.8) reads

$$\beta \ge \varphi^{p-1},$$

and then using (2.13) and the definition of H (see Definition 2.3), we have

$$(2.16) \quad H(t,\varphi) = \beta \mathcal{H}^{n-1}(\partial_{e}U_{t}) + \int_{\partial_{i}U_{t}} \varphi^{p-1} d\mathcal{H}^{n-1} - (p-1) \int_{U_{t}} \varphi^{p} d\mathcal{L}^{n}$$

$$\geq \int_{\partial U_{t}} \varphi^{p-1} d\mathcal{H}^{n-1} - (p-1) \int_{B_{r(t)}} \left(\frac{|\nabla u^{*}|}{u^{*}}\right)^{p} d\mathcal{L}^{n}$$

$$\geq \int_{\partial B_{r(t)}} \left(\frac{|\nabla u^{*}|}{u^{*}}\right)^{p-1} d\mathcal{H}^{n-1} - (p-1) \int_{B_{r(t)}} \left(\frac{|\nabla u^{*}|}{u^{*}}\right)^{p} d\mathcal{L}^{n}$$

$$= H^{*} \left(u^{*}(r(t)), \frac{|\nabla u^{*}|}{u^{*}}\right)$$

$$= E_{\beta, p}(B_{1}, B_{R}),$$

where in the last inequality we have used the isoperimetric inequality and the fact that φ is constant on ∂U_t .

REMARK 2.11. By Remark 2.7, we have that if K and Ω are such that

$$E_{\beta,p}(K,\Omega) = E_{\beta,p}(B_1, B_R),$$

then

$$\varphi = \frac{|\nabla u|}{u}$$
 for a. e. $x \in \Omega$

so that, by Lemma 2.4, we have equality in (2.16) for a.e. $t \in (0, 1)$. Thus, by the rigidity of the isoperimetric inequality, we get that U_t coincides with a ball up to a \mathcal{H}^{n-1} -negligible set for a.e. $t \in (0, 1)$. In particular,

$$\{u > 0\} = \bigcup_t U_t \text{ and } \{u = 1\} = \bigcap_t U_t$$

coincide with two balls up to a \mathcal{H}^{n-1} -negligible set.

PROOF OF THEOREM 1.1. Fix $M = \omega_n R^n$ with R > 1. We divide the proof of the minimality of balls into two cases, and subsequently, we study the equality case.

Let us assume that

$$\beta^{\frac{1}{p-1}} \ge \frac{n-1}{p-1},$$

and recall that in this case the function

$$\rho \in [1, +\infty) \mapsto E_{\beta, p}(B_1, B_\rho)$$

is decreasing. Let u^* be the minimizer of $E_{\beta,p}(B_1, B_R)$; by Lemma 2.1, condition (2.8) holds and, by Proposition 2.10, we have that a solution to (1.4) is given by the concentric balls (B_1, B_R) .

Assume now that

$$\frac{n-p}{p-1} < \beta^{\frac{1}{p-1}} < \frac{n-1}{p-1};$$

then, in this case, letting

$$\alpha_{\beta,p} = \frac{(n-1)}{(p-1)\beta^{\frac{1}{p-1}}},$$

the function

$$\rho \in [1, +\infty) \mapsto E_{\beta, p}(B_1, B_\rho)$$

increases on $[1, \alpha_{\beta,p}]$ and decreases on $[\alpha_{\beta,p}, +\infty)$, and there exists a unique $R_{\beta,p} > \alpha_{\beta,p}$ such that

$$E_{\beta,p}(B_1, B_{R_{\beta,p}}) = E_{\beta,p}(B_1, B_1).$$

If $R \ge R_{\beta,p}$, the function u^* , the minimizer of $E_{\beta,p}(B_1, B_R)$, still satisfies condition (2.8), and, as in the previous case, a solution to (1.4) is given by the concentric balls

 (B_1, B_R) . On the other hand, if $R < R_{\beta,p}$, we can consider $u_{\beta,p}^*$ the minimizer of $E_{\beta,p}(B_1, B_{R_{\beta,p}})$. By Lemma 2.1, we have that, for the function $u_{\beta,p}^*$, condition (2.8) holds, and, by Proposition 2.10, we have that if K and Ω are open bounded Lipschitz sets with $K \subseteq \Omega$, $|K| = \omega_n$, and $|\Omega| \le M$, then

$$E_{\beta,p}(K,\Omega) \ge E_{\beta,p}(B_1, B_{R_{\beta,p}}) = E_{\beta,p}(B_1, B_1)$$

and a solution to (1.4) is given by the pair (B_1, B_1) .

For what concerns the equality case, we will follow the outline of the rigidity problem given in [13, Section 3] (see also [3, Section 2]). Let $K_0 \subseteq \overline{\Omega}_0$ be such that

$$E_{\beta,p}(K_0,\Omega_0) = \min_{\substack{|K|=\omega_n\\|\Omega|\leq M}} E_{\beta,p}(K,\Omega).$$

Let *u* be the minimizer of $E_{\beta,p}(K_0, \Omega_0)$. If $\mathring{K}_0 = \Omega_0$, then $|\Omega_0| = |B_1|$ and the isoperimetric inequality yields

$$\mathcal{H}^{n-1}(\partial\Omega_0) \geq \mathcal{H}^{n-1}(\partial B_1),$$

while, from the minimality of (K_0, Ω_0) , we have that

$$E_{\beta,p}(K_0,\Omega_0) = \beta \mathcal{H}^{n-1}(\partial \Omega_0) \le E_{\beta,p}(B_1,B_1) = \beta \mathcal{H}^{n-1}(\partial B_1),$$

so that $\mathcal{H}^{n-1}(\Omega_0) = \mathcal{H}^{n-1}(\partial B_1)$. Hence, by the rigidity of the isoperimetric inequality, we have that $\mathring{K}_0 = \Omega_0$ are balls of radius 1. On the other hand, if $\mathring{K}_0 \neq \Omega_0$, from the first part of the proof, there exists $R_0 > 1$ such that $|B_{R_0}| \geq M$ and

$$E_{\beta,p}(K_0, \Omega_0) = E_{\beta,p}(B_1, B_{R_0}).$$

Therefore, by Remark 2.11, we have that for a.e. $t \in (0, 1)$, the superlevel sets U_t coincide with balls up to \mathcal{H}^{n-1} -negligible sets, and $\{u = 1\}$ and $\{u > 0\}$ coincide with balls, up to \mathcal{H}^{n-1} -negligible sets, as well. We only have to show that $\{u = 1\}$ and $\{u > 0\}$ are concentric balls. To this aim, let us denote by x(t) the center of the ball U_t and by r(t) the radius of U_t , as already done in (2.12). In addition, we also have that

$$\frac{|\nabla u^*|}{u^*} (r(u(x))) = \varphi(x) = \frac{|\nabla u|}{u} (x).$$

so that if u(x) = t, then $|\nabla u(x)| = C_t > 0$. This ensures that we can write

$$\begin{aligned} x(t) &= \frac{1}{|U_t|} \int_{U_t} x \, d\mathcal{L}^n(x) \\ &= \frac{1}{|U_t|} \left(\int_t^1 \int_{\partial U_s} \frac{x}{|\nabla u(x)|} \, d\mathcal{H}^{n-1}(x) \, ds + \int_K x \, d\mathcal{L}^n(x) \right), \end{aligned}$$

and we can infer that x(t) is an absolutely continuous function since $|\nabla u| > 0$ implies that $|U_t|$ is an absolutely continuous function as well. Moreover, on ∂U_t , we have that for every $v \in \mathbb{S}^{n-1}$,

(2.17)
$$u(x(t) + r(t)v) = t,$$

from which

(2.18)
$$\nabla u (x(t) + r(t)v) = -C_t v$$

Differentiating (2.17), and using (2.18), we obtain

(2.19)
$$-C_t x'(t) \cdot v - C_t r'(t) = 1.$$

Finally, joining (2.19) and (2.15), along with the fact that $|\nabla u| = C_t$ on ∂U_t , we get

 $x'(t) \cdot v = 0$

for every $v \in \mathbb{S}^{n-1}$, so that x(t) is constant and U_t are concentric balls for a.e. $t \in (0, 1)$. In particular, $\{u = 1\} = \bigcap_t U_t$ and $\{u > 0\} = \bigcup_t U_t$ share the same center.

FUNDING. – This work was partially supported by the Research Project GNAMPA, 2023, "Symmetry and Asymmetry in PDE's", CUP_E53C22001930001.

References

- P. ACAMPORA E. CRISTOFORONI, A free boundary problem for the *p*-Laplacian with nonlinear boundary conditions. *Ann. Mat. Pura Appl.* 203 (2024), 1–20.
- [2] P. ACAMPORA E. CRISTOFORONI C. NITSCH C. TROMBETTI, A free boundary problem in thermal insulation with a prescribed heat source. *ESAIM Control Optim. Calc. Var.* 29 (2023), article no. 3. Zbl 1509.35387 MR 4531396
- [3] G. ARONSSON G. TALENTI, Estimating the integral of a function in terms of a distribution function of its gradient. *Boll. Un. Mat. Ital. B* (5) 18 (1981), no. 3, 885–894.
 Zbl 0476.49030 MR 641744
- [4] R. BARBATO, Shape optimization for a nonlinear elliptic problem related to thermal insulation. 2022, arXiv:2207.03775.
- [5] M.-H. Bossel, Longueurs extrémales et fonctionnelles de domaine. Complex Variables Theory Appl. 6 (1986), no. 2–4, 203–234. Zbl 0623.31002 MR 871731
- [6] D. BUCUR D. DANERS, An alternative approach to the Faber-Krahn inequality for Robin problems. *Calc. Var. Partial Differential Equations* 37 (2010), no. 1–2, 75–86.
 Zbl 1186.35118 MR 2564398

- [7] D. BUCUR M. NAHON C. NITSCH C. TROMBETTI, Shape optimization of a thermal insulation problem. *Calc. Var. Partial Differential Equations* 61 (2022), no. 5, article no. 186. Zbl 1496.35383 MR 4457936
- [8] L. A. CAFFARELLI D. KRIVENTSOV, A free boundary problem related to thermal insulation. *Comm. Partial Differential Equations* 41 (2016), no. 7, 1149–1182. Zbl 1351.35268 MR 3528530
- [9] D. DANERS, A Faber-Krahn inequality for Robin problems in any space dimension. *Math. Ann.* 335 (2006), no. 4, 767–785. Zbl 1220.35103 MR 2232016
- [10] F. DELLA PIETRA C. NITSCH C. TROMBETTI, An optimal insulation problem. *Math. Ann.* 382 (2022), no. 1-2, 745–759. Zbl 1496.35189 MR 4377316
- [11] S. KESAVAN, Symmetrization & applications. Ser. Anal. 3, World Scientific Publishing, Hackensack, NJ, 2006. Zbl 1110.35002 MR 2238193
- [12] F. MAGGI, Sets of finite perimeter and geometric variational problems. An introduction to geometric measure theory. Cambridge Stud. Adv. Math. 135, Cambridge University Press, Cambridge, 2012. Zbl 1255.49074 MR 2976521
- [13] A. L. MASIELLO G. PAOLI, A rigidity result for the Robin torsion problem. J. Geom. Anal. 33 (2023), no. 5, article no. 149. Zbl 1512.35176 MR 4554054
- [14] G. Pólya G. Szegö, *Isoperimetric inequalities in mathematical physics*. Ann. of Math. Stud. 27, Princeton University Press, Princeton, NJ, 1951. Zbl 0044.38301 MR 43486

Received 26 January 2023, and in revised form 12 October 2023

Paolo Acampora Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Università degli Studi di Napoli Federico II Via Cintia, Complesso Universitario Monte S. Angelo, 80126 Napoli, Italy paolo.acampora@unina.it

Emanuele Cristoforoni Mathematical and Physical Sciences for Advanced Materials and Technologies, Scuola Superiore Meridionale Largo San Marcellino 10, 80126 Napoli, Italy emanuele.cristoforoni@unina.it