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Abstract. – In this paper, we generalize the notion of the relative p-capacity of K with respect
to �, by replacing the Dirichlet boundary condition with a Robin one. We show that, under
volume constraints, our notion of p-capacity is minimal when K and � are concentric balls. We
use the H -function (see Bossel (1986) and Daners (2006)) and a derearrangement technique.
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1. Introduction

Let p > 1, ˇ > 0 be real numbers. For every open bounded set� � Rn with Lipschitz
boundary, and every compact set K � x� with Lipschitz boundary, we define

(1.1) Eˇ;p.K;�/ D inf
v2W 1;p.�/
vD1 inK

�Z
�

jrvjp dx C ˇ

Z
@�

jvjp dHn�1

�
:

We notice that it is sufficient to minimize among all functions v 2 H 1.�/ with v D 1
in K and 0 � v � 1 a.e. Moreover, if K;� are sufficiently smooth, a minimizer u
satisfies

(1.2)

8̂̂<̂
:̂
u D 1 in K;
�pu D 0 in � nK;

jrujp�2 @u
@�
C ˇjujp�2u D 0 on @� n @K;

where �pu D div.jrujp�2ru/ is the p-Laplacian of u and � is the outer unit normal
to @�. If VK D �, equation (1.2) has to be understood as u D 1 in�, and the energy is

Eˇ;p.�;�/ D ˇHn�1.@�/:

In general, equation (1.2) has to be interpreted in the weak sense; that is, for every
' 2 W 1;p.�/ such that ' � 0 in K,

(1.3)
Z
�

jrujp�2rur' dLn
C ˇ

Z
@�

up�1' dHn�1
D 0:
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In particular, if u is a minimizer, letting ' D u � 1, we have that

Eˇ;p.K;�/ D

Z
�

jrujp dx C ˇ

Z
@�

up dHn�1
D ˇ

Z
@�

up�1 dHn�1:

Moreover, from the strict convexity of the functional, the minimizer is the unique
solution to (1.3).

This problem is related to the so-called relative p-capacity of K with respect to �,
defined as

Capp.K;�/ WD inf
v2W

1;p
0

.�/

vD1 inK

�Z
�

jrvjp dx

�
:

In the case p D 2, it represents the electrostatic capacity of an annular condenser
consisting of a conducting surface @�, and a conductor K, where the electrostatic
potential is prescribed to be 1 inside K and 0 outside �. Let !n be the measure of the
unit sphere in Rn, and let M > !n; then, it is well known that there exists some r � 1
such that

min
jKjD!n
j�j�M

Capp.K;�/ D Capp.B1; Br/:

This is an immediate consequence of the Pólya–Szegö inequality for the Schwarz
rearrangement (see, for instance, [11, 14]). We are interested in studying the same
problem for the energy defined in (1.1), which corresponds to changing the Dirichlet
boundary condition on @� into a Robin boundary condition; namely, we consider the
following problem:

(1.4) inf
jKjD!n
j�j�M

Eˇ;p.K;�/:

In this case, the previous symmetrization techniques cannot be employed anymore.
Problem (1.4) has been studied in the linear case p D 2 in [7], with more general

boundary conditions on @�; namely,

@u

@�
C
1

2
‚0.u/ D 0;

where‚ is a suitable increasing function vanishing at 0. This kind of problem has also
been addressed in the context of thermal insulation (see, for instance, [1, 2, 8]). Our
main result reads as follows.

Theorem 1.1. Let ˇ > 0 such that

ˇ
1
p�1 >

n � p

p � 1
:
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Then, for everyM > !n, the solution to problem (1.4) is given by two concentric balls
.B1; Br/; that is,

min
jKjD!n
j�j�M

Eˇ;p.K;�/ D Eˇ;p.B1; Br/:

In particular, we have that either r D 1 or M D !nrn.
Moreover, if K0 � x�0 are such that

Eˇ;p.K0; �0/ D min
jKjD!n
j�j�M

Eˇ;p.K;�/;

and u is the minimizer of Eˇ;p.K0; �0/, then the sets ¹u D 1º and ¹u > 0º coincide
with two concentric balls up to a Hn�1-negligible set.

Remark 1.2. In the case
ˇ

1
p�1 �

n � p

p � 1
;

adapting the symmetrization techniques used in [7], it can be proved that a solution to
problem (1.4) is always given by the pair .B1; B1/.

We point out that the proof of the theorem relies on the techniques involving the
H -function introduced in [5, 9].

The case in which � is the Minkowski sum � D K C Br.0/, with the energy
Eˇ;p.K;�/, has been studied in [4] under suitable geometrical constraints (see also [10]).

2. Proof of the theorem

To prove Theorem 1.1, we start by studying the function

R 7! Eˇ;p.B1; BR/:

A similar study of the previous function can also be found in [4]. Let

p̂;n.�/ D

8<: log.�/ if p D n;

�
p�1
n�p

1

�
n�p
p�1

if p ¤ n:

For every R > 1, consider

(2.1) u�.x/ D 1 �
ˇ

1
p�1

�
p̂;n

�
jxj
�
� p̂;n.1/

�
C

ˆ0p;n.R/C ˇ
1
p�1

�
p̂;n.R/ � p̂;n.1/

� ;
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the solution to 8̂̂<̂
:̂
u� D 1 in B1;
�pu

� D 0 in BR n B1;

jru�jp�2 @u
�

@�
C ˇju�jp�2u� D 0 on @BR:

We have that

Eˇ;p.B1; BR/ D

Z
BR

jru�jp dx C ˇ

Z
@BR

ju�jp dHn�1

D
n!nˇ�

ˆ0p;n.R/C ˇ
1
p�1

�
p̂;n.R/ � p̂;n.1/

��p�1 :
(2.2)

Notice that Eˇ;p.B1; BR/ is decreasing in R > 0 if and only if

d

dR

�
ˆ0p;n.R/C ˇ

1
p�1

p̂;n.R/
�
� 0;

that is, if and only if

R �
n � 1

p � 1

1

ˇ
1
p�1

DW ˛ˇ;p:

Moreover,

Eˇ;p.B1; B1/ D n!nˇ;

lim
R!1

Eˇ;p.B1; BR/ D

8<:n!n
�
n�p
p�1

�p�1 if p < n;

0 if p � n:

Therefore, there are three cases:

(i) if ˇ
1
p�1 �

n�1
p�1

,
R 2 Œ1;C1/ 7! Eˇ;p.B1; BR/

is decreasing;

(ii) if n�p
p�1

< ˇ
1
p�1 < n�1

p�1
,

R 2 Œ1;C1/ 7! Eˇ;p.B1; BR/

increases on Œ1; ˛ˇ;p� and decreases on Œ˛ˇ;p;C1/, with the existence of a
unique Rˇ;p > ˛ˇ;p such that Eˇ;p.B1; BRˇ;p / D Eˇ;p.B1; B1/;

(iii) if ˇ
1
p�1 �

n�p
p�1

,
R 2 Œ1;C1/ 7! Eˇ;p.B1; BR/

reaches its minimum at R D 1.
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Eˇ;p.B1; Br /

r

ˇ � ˇ2

ˇ1 < ˇ < ˇ2

ˇ � ˇ1

Figure 1. Eˇ;p.B1; Br / depending on the value of ˇ.

See, for instance, Figure 1, where

ˇ1 D

�
n � p

p � 1

�p�1
; ˇ2 D

�
n � 1

p � 1

�p�1
; p D 2:5; n D 3:

We will need the following.

Lemma 2.1. Let R > 1, ˇ > 0 and let u� be the solution of the problem on .B1; BR/.
Then,

jru�j

u�
� ˇ

1
p�1

in BR n B1 if and only if

Eˇ;p.B1; B�/ � Eˇ;p.B1; BR/

for every � 2 Œ1; R�.

Proof. Recalling the expressions of u� in (2.1), by straightforward computations, we
have that

jru�j

u�
� ˇ

1
p�1

in BR n B1 if and only if

ˆ0p;n.R/C ˇ
1
p�1

�
p̂;n.R/ � p̂;n.1/

�
� ˆ0p;n.�/C ˇ

1
p�1

�
p̂;n.�/ � p̂;n.1/

�(2.3)
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for every � 2 Œ1;R�. Using the expression of Eˇ;p.B1; B�/ in (2.2), (2.3) is equivalent
to

Eˇ;p.B1; B�/ � Eˇ;p.B1; BR/

for every � 2 Œ1; R�.

Definition 2.2. Let� � Rn be an open set, and let U � � be another set. We define
the internal boundary of U as

@iU D @U \�

and the external boundary of U as

@eU D @U \ @�:

LetK � x� � Rn be open bounded sets, and let u be the minimizer of Eˇ:p.K;�/.
In the following, we denote

Ut D
®
x 2 � j u.x/ > t

¯
:

Definition 2.3 (H -function). Let ' 2 W 1;p.�/. We define

H.t; '/ D

Z
@iUt

j'jp�1 dHn�1
� .p � 1/

Z
Ut

j'jp dLn
C ˇHn�1.@eUt /:

Notice that this definition is slightly different from the one given in [6].

Lemma 2.4. Let K � � � Rn be open bounded sets, and let u be the minimizer of
Eˇ;p.K;�/. Then, for a.e. t 2 .0; 1/, we have

H

�
t;
jruj

u

�
D Eˇ;p.K;�/:

Proof. Recall that

Eˇ;p.K;�/ D

Z
�

jrujp dLn
C ˇ

Z
@�

up

D ˇ

Z
@�

up�1 dHn�1:

(2.4)

Let t 2 .0; 1/. We construct the following test functions: let " > 0, and let

'".x/ D

8̂̂<̂
:̂
�1 if u.x/ � t;
u.x/�t

"u.x/p�1 � 1 if t < u.x/ � t C ";
1

u.x/p�1 � 1 if u.x/ > t C ";
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so that '" is an approximation to the function .u1�p�Ut � 1/, and

r'".x/ D

8̂̂<̂
:̂
0 if u.x/ � t;
1
"

�
ru.x/

u.x/p�1 � .p � 1/
ru.x/.u.x/�t/

u.x/p

�
if t < u.x/ � t C ";

�.p � 1/ru.x/
u.x/p

if u.x/ > t C ":

We have that '" is an admissible test function for the Euler–Lagrange equation (1.3),
which entails

0 D
1

"

Z
¹t<u�tC"º\�

jrujp�1

up�1
jruj dLn

� .p � 1/

Z
¹t<u�tC"º\�

jrujp

up
u � t

"
dLn

� .p � 1/

Z
¹u>tC"º\�

jrujp

up
dLn

C ˇ

Z
¹t<u�tC"º\@�

u � t

"
dHn�1

C ˇHn�1
�
@� \ ¹u > t C "º

�
� ˇ

Z
@�

up�1 dHn�1:

Letting now " go to 0, by the coarea formula, we get that for a.e. t 2 .0; 1/,

ˇ

Z
@�

up�1 dHn�1
D

Z
@iUt

�
jruj

u

�p�1
dHn�1

� .p � 1/

Z
Ut

�
jruj

u

�p
dLn

C ˇHn�1.@eUt /:

(2.5)

Joining (2.4) and (2.5), the lemma is proven.

Remark 2.5. Notice that if K and � are two concentric balls, the minimizer u is
the one written in (2.1), for which the statement of the above lemma holds for every
t 2 .0; 1/.

Lemma 2.6. Let ' 2 L1.�/. Then, there exists t 2 .0; 1/ such that

H.t; '/ � Eˇ;p.K;�/:

Proof. Let

w D j'jp�1 �

�
jruj

u

�p�1
:

Then, we evaluate

H.t; '/ �H

�
t;
jruj

u

�
D

Z
@iUt

w dHn�1
� .p � 1/

Z
Ut

 
j'jp �

�
jruj

u

�p!
dLn
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�

Z
@iUt

w dHn�1
� p

Z
Ut

jruj

u
w dLn

D �
1

tp�1
d

dt

�
tp
Z
Ut

jruj

u
w dLn

�
;

where we used the inequality

(2.6) ap � bp �
p

p � 1
a .ap�1 � bp�1/ 8a; b � 0:

Multiplying by tp�1 and integrating, we get

(2.7)
Z 1

0

tp�1
�
H.t; '/ �H

�
t;
jruj

u

��
dt � �

�
tp
Z
Ut

jruj

u
w dLn

�1
0

D 0;

from which we obtain the conclusion of the proof.

Remark 2.7. Notice that inequality (2.6) holds as equality if and only if a D b.
Therefore, if ' ¤ jruj

u
on a set of positive measure, then inequality (2.7) is strict sinceˇ̌̌̌²

' ¤
ru

u

³
\ Ut

ˇ̌̌̌
> 0

for small enough t . Therefore, there exists S � .0; 1/ such that L1.S/ > 0, and for
every t 2 S ,

H.t; '/ < Eˇ;p.K;�/:

In the following, we fix a radius R such that jBRj � j�j, u� the minimizer of
Eˇ;p.B1; BR/, and

H�.t; '/ D

Z
@¹u�>tº\BR

j'jp�1 dHn�1
� .p � 1/

Z
¹u�>tº

j'jp dLn

C ˇHn�1
�
@¹u� < tº \ @BR

�
:

Here, we recall the isoperimetric inequality (see, for example, [12]), which will be
useful in what follows.

Definition 2.8. Let E be a measurable set. For every t 2 Œ0; 1�, let

E.t/ D

²
x 2 Rn j lim

r!0

Ln
�
E \ Br.x/

�
Ln
�
Br.x/

� D t

³
be the set of all points where E has density t . We define the essential boundary of E
as the set

@essE D Rn n .E.0/ [E.1//:

Notice that @essE � @E.
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Theorem 2.9 (Isoperimetric inequality). Let E be a measurable set, and let B be the
ball such that Ln.B/ D Ln.E/. Then,

Hn�1.@essE/ � Hn�1.@B/;

and the equality holds if and only if E D B up to a set of measure 0.

Proposition 2.10. Let ˇ > 0. Assume that

(2.8)
jru�j

u�
� ˇ

1
p�1 :

Then, we have that
Eˇ;p.K;�/ � Eˇ;p.B1; BR/:

Proof. In the following, if v is a radial function on BR and r 2 .0; R/, we denote
with abuse of notation

v.r/ D v.x/;

where x is any point on @Br . By Lemma 2.4, we know that for every t 2 .0; 1/,

(2.9) H�
�
t;
jru�j

u�

�
D Eˇ;p.B1; BR/;

while by Lemma 2.6, for every ' 2 L1.�/, there exists t 2 .0; 1/ such that

(2.10) Eˇ;p.K;�/ � H.t; '/:

We aim to find a suitable ' such that, for some t ,

(2.11) H.t; '/ � H�
�
t;
jru�j

u�

�
;

so that combining (2.10), (2.11), and (2.9), we conclude the proof. In order to con-
struct ', for every t 2 .0; 1/, we define

(2.12) r.t/ D

�
jUt j

!n

� 1
n

I

then, we set, for every x 2 �,

'.x/ D
jru�j

u�

�
r
�
u.x/

��
:

Claim. The functions '�Ut and jru
�j

u� �Br.t/ are equi-measurable; in particular,

(2.13)
Z
Ut

'p dLn
D

Z
Br.t/

�
jru�j

u�

�p
dLn:
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Indeed, let g.r/ D jru
�j

u� .r/, and by the coarea formula,ˇ̌
Ut \ ¹' > sº

ˇ̌
D

Z
Ut\¹g.r.u.x///>sº

dLn

D

Z C1
t

Z
@�U�\¹g.r.�//>sº

1ˇ̌
ru.x/

ˇ̌ dHn�1.x/ d�

D

Z r.t/

0

Z
@�U

r�1.�/

1ˇ̌
ru.x/

ˇ̌ˇ̌
r 0
�
r�1.�/

�ˇ̌�¹g.�/>sº dHn�1.x/ d�:

(2.14)

Notice now that since
!nr.�/

n
D jU� j;

then

(2.15) r 0.�/ D �
1

n!nr.�/n�1

Z
@�U�

1ˇ̌
ru.x/

ˇ̌ dHn�1.x/:

Therefore, substituting in (2.14), we getˇ̌
Ut \ ¹' > sº

ˇ̌
D

Z r.t/

0

n!n�
n�1�¹g.�/>sº d� D

ˇ̌̌̌
Br.t/ \

²
jru�j

u�
> s

³ˇ̌̌̌
;

where we have used polar coordinates to get the last equality. Thus, the claim is proved.

Recalling the definition of ', (2.8) reads

ˇ � 'p�1;

and then using (2.13) and the definition of H (see Definition 2.3), we have

H.t; '/ D ˇHn�1.@eUt /C

Z
@iUt

'p�1 dHn�1
� .p � 1/

Z
Ut

'p dLn

�

Z
@Ut

'p�1 dHn�1
� .p � 1/

Z
Br.t/

�
jru�j

u�

�p
dLn

�

Z
@Br.t/

�
jru�j

u�

�p�1
dHn�1

� .p � 1/

Z
Br.t/

�
jru�j

u�

�p
dLn

D H�
�
u�
�
r.t/

�
;
jru�j

u�

�
D Eˇ;p.B1; BR/;

(2.16)

where in the last inequality we have used the isoperimetric inequality and the fact that
' is constant on @Ut .
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Remark 2.11. By Remark 2.7, we have that if K and � are such that

Eˇ;p.K;�/ D Eˇ;p.B1; BR/;

then
' D

jruj

u
for a. e. x 2 �;

so that, by Lemma 2.4, we have equality in (2.16) for a.e. t 2 .0; 1/. Thus, by the
rigidity of the isoperimetric inequality, we get that Ut coincides with a ball up to a
Hn�1-negligible set for a.e. t 2 .0; 1/. In particular,

¹u > 0º D
[
t

Ut and ¹u D 1º D
\
t

Ut

coincide with two balls up to a Hn�1-negligible set.

Proof of Theorem 1.1. Fix M D !nR
n with R > 1. We divide the proof of the

minimality of balls into two cases, and subsequently, we study the equality case.
Let us assume that

ˇ
1
p�1 �

n � 1

p � 1
;

and recall that in this case the function

� 2 Œ1;C1/ 7! Eˇ;p.B1; B�/

is decreasing. Let u� be the minimizer of Eˇ;p.B1; BR/; by Lemma 2.1, condition
(2.8) holds and, by Proposition 2.10, we have that a solution to (1.4) is given by the
concentric balls .B1; BR/.

Assume now that
n � p

p � 1
< ˇ

1
p�1 <

n � 1

p � 1
I

then, in this case, letting

˛ˇ;p D
.n � 1/

.p � 1/ˇ
1
p�1

;

the function
� 2 Œ1;C1/ 7! Eˇ;p.B1; B�/

increases on Œ1; ˛ˇ;p� and decreases on Œ˛ˇ;p;C1/, and there exists a unique Rˇ;p >
˛ˇ;p such that

Eˇ;p.B1; BRˇ;p / D Eˇ;p.B1; B1/:

If R � Rˇ;p , the function u�, the minimizer of Eˇ;p.B1; BR/, still satisfies condition
(2.8), and, as in the previous case, a solution to (1.4) is given by the concentric balls
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.B1; BR/. On the other hand, if R < Rˇ;p, we can consider u�
ˇ;p

the minimizer of
Eˇ;p.B1; BRˇ;p /. By Lemma 2.1, we have that, for the function u�

ˇ;p
, condition (2.8)

holds, and, by Proposition 2.10, we have that if K and � are open bounded Lipschitz
sets with K � �, jKj D !n, and j�j �M , then

Eˇ;p.K;�/ � Eˇ;p.B1; BRˇ;p / D Eˇ;p.B1; B1/

and a solution to (1.4) is given by the pair .B1; B1/.
For what concerns the equality case, we will follow the outline of the rigidity

problem given in [13, Section 3] (see also [3, Section 2]). Let K0 � x�0 be such that

Eˇ;p.K0; �0/ D min
jKjD!n
j�j�M

Eˇ;p.K;�/:

Let u be the minimizer of Eˇ;p.K0; �0/. If VK0 D �0, then j�0j D jB1j and the
isoperimetric inequality yields

Hn�1.@�0/ � Hn�1.@B1/;

while, from the minimality of .K0; �0/, we have that

Eˇ;p.K0; �0/ D ˇHn�1.@�0/ � Eˇ;p.B1; B1/ D ˇHn�1.@B1/;

so that Hn�1.�0/DHn�1.@B1/. Hence, by the rigidity of the isoperimetric inequality,
we have that VK0 D �0 are balls of radius 1. On the other hand, if VK0 ¤ �0, from the
first part of the proof, there exists R0 > 1 such that jBR0 j �M and

Eˇ;p.K0; �0/ D Eˇ;p.B1; BR0/:

Therefore, by Remark 2.11, we have that for a.e. t 2 .0; 1/, the superlevel sets Ut
coincide with balls up to Hn�1-negligible sets, and ¹u D 1º and ¹u > 0º coincide
with balls, up to Hn�1-negligible sets, as well. We only have to show that ¹u D 1º and
¹u > 0º are concentric balls. To this aim, let us denote by x.t/ the center of the ball Ut
and by r.t/ the radius of Ut , as already done in (2.12). In addition, we also have that

jru�j

u�

�
r
�
u.x/

��
D '.x/ D

jruj

u
.x/;

so that if u.x/ D t , then jru.x/j D Ct > 0. This ensures that we can write

x.t/ D
1

jUt j

Z
Ut

x dLn.x/

D
1

jUt j

�Z 1

t

Z
@Us

xˇ̌
ru.x/

ˇ̌ dHn�1.x/ ds C

Z
K

x dLn.x/

�
;
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and we can infer that x.t/ is an absolutely continuous function since jruj > 0 implies
that jUt j is an absolutely continuous function as well. Moreover, on @Ut , we have that
for every � 2 Sn�1,

(2.17) u
�
x.t/C r.t/�

�
D t;

from which

(2.18) ru
�
x.t/C r.t/�

�
D �Ct�:

Differentiating (2.17), and using (2.18), we obtain

(2.19) �Ct x
0.t/ � � � Ct r

0.t/ D 1:

Finally, joining (2.19) and (2.15), along with the fact that jruj D Ct on @Ut , we get

x0.t/ � � D 0

for every � 2 Sn�1, so that x.t/ is constant andUt are concentric balls for a.e. t 2 .0; 1/.
In particular, ¹u D 1º D

T
t Ut and ¹u > 0º D

S
t Ut share the same center.
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