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1. Introduction

The main geometric difference between the functions of bounded variation and the
generalized functions of bounded variation is that the latter may have an infinite approx-
imate limit on bigger sets. More precisely, the set of points where a function of bounded
variation defined on � � RN has an infinite approximate limit is negligible w.r.t. the
N � 1 dimensional Hausdorff measure, while it is easy to see that the generalized
functions of bounded variation may have an infinite approximate limit on the sets with
a Hausdorff dimension greater than N � 1. In the paper, we study this discrepancy.

LetL0.�/ be the collection of Lebesgue-measurable functions that are finite valued
almost everywhere. Given u 2 L0.�/, we denote by Qu.x/ its approximate limit at x
whenever it exists, and we say that a set C � � is L0-polar if there exists a function
v 2 L0.�/ such that C � ¹x 2 � W j Qv.x/j D C1º. Analogous definitions hold if u
is in the space BV.�/ of functions of bounded variation or in the space GBV.�/ of
generalized functions of bounded variation, and we denote the collections of polar sets,
respectively, with PL0 , PBV, and PGBV (Definition 3.1).

Employing results from the general theory of approximate limits and functions of
bounded variation, we show that PL0 is the class of sets that are negligible w.r.t. the
Lebesgue measure �N , while PBV is the class of sets that are negligible w.r.t. the Haus-
dorff measure HN�1, and we prove that all inclusions in the following chain are strict:

PBV � PGBV � PL0 :

https://creativecommons.org/licenses/by/4.0/
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The class PGBV cannot be characterized in terms of Hausdorff measures since one
can show that GBV-polar sets may have any Hausdorff dimension smaller than the
dimension of the ambient space.

To introduce our characterization of the class PGBV, we observe that the previous
results may be reformulated saying that a set C �� belongs to PL0 if and only if there
exists a collection of open sets ¹Ukºk2N containing C such that �N .Uk/! 0, while
it belongs to PBV if and only if in addition to the previous conditions we also have that
the perimeters P.Uk;�/ of the sets Uk tend to zero as k goes to infinity. We then prove
that a subset C �� belongs to PGBV if and only if there exists a collection ¹Ukºk2N of
open sets of a locally finite perimeter containing C whose Lebesgue measure decreases
to zero as k goes to infinity. The proof of this fact cannot be obtained through the same
tools used for PL0 and PBV and relies on a new approximation result for the sets of
finite perimeter which is interesting in itself.

More precisely, we prove that a set of finite perimeter C � � can be approximated
in a strict sense (i.e., in measure and with the perimeters of the approximating sets
approaching the perimeter of C ) by open sets containing the points of � where C has
density 1. We also show that one cannot replace the set of points where C has density 1
with C itself and that the approximating sets in general cannot have smooth boundary.
This approximation theorem is not directly implied by existing ones ([1, Theorem 3.42],
[2, 8]) and its proof relies on tools from the capacity theory combined with a strong
approximation result proved by Quentin de Gromard in [7].

The first section fixes the notation and contains preliminaries, and in Section 3, we
analyze the properties of polar sets, while the last section deals with the proof of the
aforementioned approximation result.

2. Notation and preliminaries

Let� be an open subset of RN . Given A�RN , we denote its indicator function by 1A.
We denote by !N the volume of the N -dimensional unit ball, and given a Borel set
A � �, we will denote by �N .A/ its Lebesgue measure, while HN�1.A/ will be its
N � 1 dimensional Hausdorff measure. Whenever we apply �N or HN�1 to a set, we
assume implicitly its �N - or HN�1-measurability. We say that a sequence ¹�kºk2N

of open subset of � is an exhaustion of � if for every k we have x�k � �kC1 and the
union of the sets �k is the whole �. It is well known that there exists an exhaustion of
� made of smooth sets.

Given x 2 �, the upper and lower density of A at x are defined, respectively, as

lim sup
�!0C

�N
�
A \ B�.x/

�
�N
�
B�.x/

� and lim inf
�!0C

�N
�
A \ B�.x/

�
�N
�
B�.x/

� ;
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while we say that A has density t at x (and we write �.A; x/ D t ) if t is both the upper
and the lower density of A at x. The set of points in � where A has density t will be
denoted by A.t/, while the set of points where A has strictly positive upper density will
be denoted by AC. We will indicate with L0.�/ the collection of �N -a.e. real-valued
Lebesgue measurable functions, and for any u 2 L0.�/, its approximate upper limit
at x is

uC.x/ WD inf
®
t 2 R W �

�
¹y 2 � W u.y/ > tº; x

�
D 0

¯
;

with the convention that inf.Ø/ D C1. Similarly, the approximate lower limit of u at
x is the value

u�.x/ WD sup
®
t 2 R W �

�®
y 2 � W u.y/ < t

¯
; x
�
D 0

¯
;

with the convention that sup.Ø/ D �1. If uC.x/ D u�.x/, their common value is
called the approximate limit of u at x and is denoted by Qu.x/. It follows from the
definition that for a continuous function u, we have Qu.x/ D u.x/ for every x 2 �. It
is also easy to see that if f W xR! xR is a continuous function and u 2 L0.�/ has
approximate limit Qu.x/ at x, then the approximate limit of f ı u at x is f . Qu.x//. We
will use the following theorem.

Theorem 2.1 ([4, Theorem 2.9.13]). If u 2 L0.�/, then for �N -almost every x 2 �,
the approximate limit of u at x exists and is finite.

For the properties of the space BV.�/ of the functions of bounded variation, we
refer to [1, Chapter 3] and [3, Chapter 5]. Given u 2 L1loc.�/, we denote its total
variation [1, Definition 3.4] by V.u;�/. If u 2 L1.�/, then u 2 BV.�/ if and only if
V.u;�/ <C1. If u 2 BV.�/, thenDuwill be its distributional derivative (which is a
bounded Radon measure with values in RN ) and jDujwill be the variation ofDu, which
satisfies jDuj.�/DV.u;�/. It is known that the total variation is lower semicontinuous
with respect to convergence in L1loc.�/. Moreover, if u 2 BV.�/ and f W R! R is
Lipschitz with f .0/ D 0, then f ı u 2 BV.�/ and jDf.u/j.�/j � Lip.f /jDuj.�/.
We define the norm kukBV WD kukL1 C jDuj.�/, and we refer to convergence in the
BV norm as strong convergence.

We will indicate the perimeter of A in� [1, Definition 3.35] with P.A;�/, and we
say that A has a locally finite perimeter if its perimeter is finite in every precompact
open subset of �; in this case, @�A will be its reduced boundary [1, Definition 3.54].
If u 2 BV.�/, the coarea formula [1, Theorem 3.40] implies that

ˆ C1
�1

P
�
¹u > tº; �

�
dt D jDuj.�/:

By the blow-up properties of the reduced boundary, we have the following theorems.
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Theorem 2.2 ([1, Theorem 3.59]). Let A be a set of finite perimeter in �. Then,
P.A;�/ D HN�1.@�A \�/.

Theorem 2.3 ([1, Theorem 3.61]). Let A be a set of finite perimeter in �. Then,
@�A � A.

1=2/.

We will use also the following fine properties of BV functions.

Theorem 2.4 ([3, Theorems 2–3, Section 5.9]). If u 2 BV.�/, then forHN�1-almost
every x 2 �, we have that uC.x/ and u�.x/ are finite and

lim
�!0

 
B�.x/

u.y/ dy D
uC.x/C u�.x/

2
;

where the slashed integral denotes the mean value.

The next result is due to Quentin de Gromard and will be crucial in Section 4.

Theorem 2.5 ([7, Theorem 3.1]). Let B � � be a set of finite perimeter in � and
let " > 0 be fixed. There exists a relatively closed set L � � such that the following
properties hold:

(1) �N .B�L/ < ";

(2) jD.1B � 1L/j.�/ < ";

(3) HN�1..@L \�/ n @�L/ < ".

We now recall the definition of the generalized functions of bounded variation.

Definition 2.6. A function u W �! R is a generalized function of bounded variation
if for every m 2 RC, the truncated function at the level m, i.e., m ^ u _ �m, belongs
to BVloc.�/. We denote such truncation by um and the space of these functions by
GBV.�/.

If u W �! xR is real-valued �N -a.e. and satisfies the truncation condition of Defini-
tion 2.6, we say that u 2 GBV.�/, implicitly referring to its real-valued representative.
Some properties of GBV functions can be found in [1, Section 4.5]. Even if GBV.�/
is not a vector space, the sum of positive GBV functions is still in GBV.�/. We will
also use the following result.

Proposition 2.7 ([1, Theorem 4.34]). Let u 2 GBV.�/. Then, for �1-a.e. t 2 R, the
set ¹u > tº has a locally finite perimeter.

We now introduce the notation needed to apply the slicing techniques. Let � be a
vector in SN�1 and C � RN . We denote by �� the hyperplane of RN orthogonal to
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� and by C� the orthogonal projection of C on this hyperplane. For any y 2 �� , the
(possibly empty) set ¹t 2 R W y C t� 2 C º is denoted by C y� .

Given u W C ! xR, for every y 2 C� such that C y� ¤ ;, the function uy� W C
y
� !

xR

is defined by uy� .t/ WD u.y C t�/.

Proposition 2.8 ([1, Proposition 4.35]). Let u 2 GBV.�/ and � 2 SN�1. Then, for
HN�1-a.e. y 2 �� , we have that uy� 2 GBV.�y� / and

.u˙/y� .t/ D .u
y
� /
˙.t/;

for every t 2 �y� .

Finally, we need some results about the 1-capacity of a set. For these results, we refer
to [3, Section 4.7] and [5]. Using the notation of [3], we say that a positive function u
belongs to K1 if it is in L N

N�1 .RN / and its distributional derivative is a vector-valued
function ru whose modulus is in L1.RN /.

Definition 2.9. The 1-capacity of a set E � RN is defined as the quantity

Cap1.E/ WD inf
²ˆ

RN

ˇ̌
ru.x/

ˇ̌
dx W u2K1; u�1 �N -a.e. on a neighborhood of E

³
;

with the usual convention that inf Ø WD C1.

We will often refer to the 1-capacity simply as the capacity. The next propositions
summarize some of the main properties of the capacity.

Proposition 2.10 ([3, Section 4.7, Theorem 1]). The set function Cap1.�/, defined on
the power set of RN , is increasing and countably subadditive.

Proposition 2.11 ([3, Section 5.6, Theorem 3]). A setE �RN satisfies Cap1.E/D 0
if and only if HN�1.E/ D 0.

The next proposition gives a characterization of the capacity that will be used in
Proposition 2.13.

Proposition 2.12. Given E � RN , the capacity of E coincides with the following
quantities:

a.E/ D inf
®
P.B;RN / W B �N -measurable; �N .B/ < C1; E � VB

¯
;

b.E/ D inf
®
jDuj.RN / W u 2 BV.RN /; u � 1 �N -a.e. on a neigh. of E

¯
:

Proof. The equivalence of Cap1.E/with a.E/ follows by [5, p. 145], so we only prove
the equivalence of a.E/ and b.E/. We only prove that b.E/ � a.E/ since the other
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implication is trivial. To do this, we prove that if u 2 BV.RN / and u � 1 �N -a.e. on a
neighborhood of E, then there exists B as in a.E/ such that P.B;RN / � jDuj.RN /.
To this aim, we set v 2 BV.RN / as v WD 0 _ u ^ 1, and we observe that jDvj.RN / �
jDuj.RN /. Moreover, by the coarea formula, we have that

ˆ 1

0

P
�
¹v > tº;RN

�
dt D jDvj.RN / � jDuj.RN /;

so that there exists t0 2 .0; 1/ such that P.¹v > t0º;RN / � jDuj.RN /.
We now note that ¹v > t0º � ¹u � 1º; since u � 1 at �N -a.e. every point of a

neighborhood of E, there exists a �N -null set A such that ¹v > t0º [ A contains a
neighborhood of E. Observe then that P.¹v > t0º [ A;RN / D P.¹v > t0º;RN / so
that setting B WD ¹v > t0º [ A, we conclude.

Proposition 2.13. There exists a dimensional constant c > 0 such that for every
u 2 BV.RN / and " > 0, the following estimate is satisfied:

Cap1

²
x W 9� 2 RC W

 
B�.x/

u.y/ dy > "

³
�
c

"
jDuj.RN /:

Proof. The desired estimate is proved for every u 2 K1 in [3, Lemma 1, Section 4.8].
To prove our version, one simply repeats the exact same argument of [3] using the
equivalence between Cap1.E/ and b.E/ proved in Proposition 2.12.

3. Polar sets

In this section, we introduce the classes of polar sets PL0 , PBV, and PGBV. First, we
characterize PL0 and PBV, respectively, as the class of �N - andHN�1-negligible sets,
and we observe that these conditions can both be expressed in terms of intersections of
open sets (with a perimeter constraint in the BV case). Then, we use these characteri-
zations to prove that the inclusions in the chain PBV � PGBV � PL0 are strict. To this
aim, we prove that any relatively closed �N -negligible set C � � belongs to PGBV

and that GBV-polar sets behave well w.r.t. one-dimensional slicings.
In the final part of the section, assuming a result which will be later proved in

Section 4, we characterize PGBV in terms of intersections of open sets with a locally
finite perimeter (Theorem 3.11), completing the picture on polar sets.

Definition 3.1. A set C �� is calledL0 polar (respectively, BV polar or GBV polar)
if there exists a function u in L0.�/ (respectively, in BV.�/ or in GBV.�/) such
that C � ¹x 2 � W j Qu.x/j D C1º. We denote the collection of these sets with PL0

(respectively, with PBV or PGBV).
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Replacing u with juj in the previous definition, we obtain that a set C � � is
(L0, BV or GBV) polar if and only if there exists a positive function v (in L0.�/,
BV.�/ or GBV.�/) such that C � ¹x 2 � W Qv.x/ D C1º.

Proposition 3.2. Let C � �. The following conditions are equivalent:

(a) C 2 PL0;

(b) �N .C / D 0;

(c) there exists a sequence of open sets ¹Ukºk2N containingC such that �N .Uk/! 0.

Proof. If C 2 PL0 , then �N .C / D 0 by Theorem 2.1.
If �N .C / D 0, then there exists the desired sequence of open sets by the outer

regularity of the Lebesgue measure.
Suppose now that we have a sequence as in (c). Passing to a (not relabeled) subse-

quence ¹Ukºi2N , we may suppose that �N .Uk/ � k�2. Now, define

v W �! R [ ¹C1º

by
v.x/ WD

X
k2N

1Uk .x/;

and observe that by the monotone convergence theorem,ˆ
�

ˇ̌
v.x/

ˇ̌
dx D

X
k2N

�N .Uk/ �
X
k2N

k�2 < C1;

so that v is real-valued �N -almost everywhere. Moreover, for every k0 2 N, we have
that v � k0 on

Tk0
kD1

Uk , and since this is an open set containing C , we deduce that
for every x 2 C , we have u�.x/ � k0. By the arbitrariness of k0, we conclude.

The next lemma is needed to characterize PBV and will be used also in Section 4.
We denote by SN � 1 the unit sphere in RN and by �N�1 its surface area.

Lemma 3.3. Let Z � � be such that HN�1.Z/ < C1. There exists a dimensional
constant � such that for every " > 0, there exists an open set V" � Z with �N .V"/ � "
and P.V"; �/ � �.HN�1.Z/C "/.

Proof. To lighten the notation, we set c WD HN�1.Z/. Let " > 0 and ı > 0; by the
definition of Hausdorff measure, there exists a sequence of open balls ¹Biºi2N each
with radius ri less than ı, such that their union contains Z and

(3.1)
!N�1

2N�1

X
i2N

rN�1i � c C ":
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Define nowUı WD
S
i2N Bi \� and note that this set is open and containsZ. Moreover,

since each ri is less than ı, taking (3.1) into consideration, we get

�N .Uı/ �
X
i2N

!N r
N
i � ı

X
i2N

!N r
N�1
i � ı

!N 2
N�1

!N�1
.c C "/:

Hence, choosing ı small enough, we have �N .Uı/ < ". Reasoning similarly, we obtain

P.Uı ; �/ �
X
i2N

P.Bi \�;�/ � �N�1
X
i2N

rN�1i �
2N�1�N�1

!N�1
.c C "/:

In conclusion, if ı is chosen small enough, we can define V" WD Uı .

We are now ready to characterize the class PBV.

Proposition 3.4. Let C � �. The following conditions are equivalent:

(a) C 2 PBV;

(b) HN�1.C / D 0;

(c) there exists a sequence of open sets ¹Ukºk2N containingC such that �N .Uk/! 0

and P.Uk; �/! 0.

Proof. If C 2 PBV, then HN�1.C / D 0 by Theorem 2.4, while if HN�1.C / D 0,
there exists a sequence ¹Ukºk2N of open sets as in c by Lemma 3.3.

Suppose now that there exists a sequence of open sets as in (c). Passing to a (not
relabeled) subsequence ¹Ukºk2N , we may suppose that

�N .Uk/ � k
�2 and P.Uk; �/ � k

�2:

Reasoning as in Proposition 3.2, we define v W �! R [ ¹C1º by

v.x/ WD
X
k2N

1Uk .x/;

and we have that v 2 L1.�/ and C � ¹x W Qv.x/ D C1º. Moreover, v is the limit in
L1.�/ of its partial sums, whose total variations are equibounded by the perimeter
condition on ¹Ukºk2N . By the lower semicontinuity of the variation, we deduce that
v 2 BV.�/.

We now turn our attention to PGBV.

Proposition 3.5. Let C � � be a relatively closed set such that �N .C / D 0. Then,
C 2 PGBV.
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Proof. Consider u W �! xR defined by

u.x/ WD
1

d.x; C /
:

Since C is a �N -null set, then u is real-valued �N -almost everywhere. Fix m > 0 and
note that the truncated function um satisfies

um.x/ D
1

d.x; C / _m�1
:

Being the reciprocal of a Lipschitz function strictly greater than 1
m

, the function um is
itself Lipschitz and belongs to BVloc.�/, implying that u 2 GBV.�/. Moreover, since
u is continuous, we have that ¹y W j Qu.y/j D C1º D u�1.C1/ D C .

The previous proposition implies that GBV-polar sets may have any Hausdorff
dimension smaller than the dimension of the ambient space, so that the inclusion
PBV � PGBV is strict. The next proposition concerns GBV-polar sets in dimension 1
and will be used to find a necessary condition for a set to be GBV-polar by means of a
slicing argument.

Proposition 3.6. Let� � R and let C be a subset of�. Then, C 2 PGBV if and only
if �1. xC \�/ D 0.

Proof. By Proposition 3.5, we know that if �1. xC \�/ D 0, then C 2 PGBV.
Vice versa, suppose that C 2 PGBV and let u 2 GBV.�/ be a positive function such

thatC � ¹y W Qu.y/DC1º. Denote byRu the set of points where the approximate limit
of u exists, and recall that �1.� nRu/ D 0. Fixm 2 N and observe that um WD m^ u
has approximate limit m at every point of C . We claim that its approximate limit is m
at every point of xC \Ru.

To this aim, consider the left continuous representative of um [1, Theorem 3.28]
and observe that it must have approximate limitm at any point of Ru (here, um has the
approximate limit) that can be approximated from the left with points in C (so that the
approximate limit of um must be greater than m). Analogously, the right continuous
representative of um will have approximate limit m at any point of Ru that can be
approximated from the right with points in C . Since the approximate limit does not
depend on the representative, we deduce that um has approximate limit m at every
point of xC \Ru. Hence, umust have an infinite approximate limit on every such point,
implying by Theorem 2.1 that �1. xC \�/ D �1. xC \Ru/ D 0.

Proposition 3.7. Let � 2 SN�1 and C 2 PGBV. Then, for HN�1-a.e. y 2 C� , we
have �1.C y� \�

y
� / D 0.
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Proof. By Proposition 2.8 for HN�1-a.e. y 2 C� , we have uy� 2 GBV.�y� / and®
t 2 �y� W

fuy� .t/ D C1¯ D ®x 2 � W Qu.x/ D C1¯y� � C y� ;
so that Proposition 3.6 implies that �1.C y� \�

y
� / D 0.

The previous proposition implies that the inclusion PGBV � PL0 is strict. An
example of a L0-polar set which is not GBV-polar is the cartesian product of Q with
any set A � RN�1 such that �N�1.A/ > 0, taking � WD RN .

The remaining part of the section is devoted to proving Theorem 3.11, which
characterizes PGBV along the lines of conditions (c) in Propositions 3.2 and 3.4. We
will use Proposition 3.8, which follows by Theorem 4.7 (whose proof is postponed to
Section 4) by a standard localization argument.

Proposition 3.8. Let A � � be a set having a locally finite perimeter in�. Then, for
every " > 0, there exists U � �, open set with a locally finite perimeter in �, such
that U � A.1/ and �N .U n A/ � ".

The following lemma is needed in view of Proposition 3.10.

Lemma 3.9. LetC 2PGBV. Then, there exists a positive functionu2L1.�/ \ GBV.�/
such that C � ¹x 2 � W Qu.x/ D C1º.

Proof. Let v 2 GBV.�/ be a positive function such that

C �
®
x 2 � W Qv.x/ D C1

¯
:

Let then ¹�kºk2N be an exhaustion of � made of smooth sets and define �0 WD Ø.
Now, consider for every k � 2, the sets Bk WD �k n x�k�2 and note that the product
v1Bk is in GBV.�/ for every k and that �N .Bk/ < C1. As a consequence for every
k 2N, we can choose a sequence ¹tki ºi2N �RC such that ti "C1 as i goes to infinity
and

(3.2) P
�
¹v > tki º \ Bk; �

�
< C1; �N

�
¹v > tki º \ Bk

�
<
1

2i
:

We now define vk W �! R [ ¹C1º by

vk.x/ WD
1

2k
1Bk .x/

X
i2N

1
¹v>tk

i
º
.x/;

and we note that because of (3.2), we have vk 2 GBV.�/ and

(3.3)
ˆ
�

ˇ̌
vk.x/

ˇ̌
dx �

1

2k
:
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Moreover, by construction,

C \ Bk �
®
x 2 � W evk.x/ D C1¯:

Define now u W �! R [ ¹C1º by

u WD
X
k2N

vk

and observe that this function is in L1.�/ by (3.3) and that u 2 GBV.�/ as it is a
locally finite sum of positive GBV functions. Moreover, if x 2 C , then x 2 C \ Bk
for some k 2 N so that Qu.x/ D C1 by construction.

The next proposition provides a first characterization of PGBV.

Proposition 3.10. Let C � �. Then, C 2 PGBV if and only if there exists a sequence
¹Akºk2N of sets with a locally finite perimeter in � such that

�N .Ak/! 0 and �.Ak; x/ D 1

for every x 2 C and for every k 2 N.

Proof. Suppose first that we have a collection ¹Akºk2N as in the statement. It is not
restrictive to assume AkC1 � Ak for every k 2 N (taking the intersection of the first k
sets). Then, define u W �! R [C1 by

u.x/ WD
X
k2N

1Ak .x/

and note that u is real-valued �N -a.e. and that u 2 GBV.�/ since its truncations are a
finite sum of characteristic functions of sets having a locally finite perimeter. If x 2 C ,
for every k 2 N, we have

�
�
¹u < kº; x

�
� �.� n Ak; x/ D 0;

proving that Qu.x/ D C1. Hence, C 2 PGBV.
Vice versa, let C 2 PGBV. By Lemma 3.9, there exists a positive function u 2

GBV.�/ \ L1.�/ such that Qu.x/ D C1 for every x 2 C . Note that this means that
for every t 2R and for every x 2 C , we have �.¹u > tº; x/D 1. Since u 2GBV.�/, by
Proposition 2.7, we can find a sequence ¹tkºk2N with tk " C1 such that ¹u > tkº has a
locally finite perimeter in�, and sinceu2L1.�/, we also obtain that�N .¹u> tkº/ # 0.
Defining Ak WD ¹u > tkº, we conclude.

The next theorem, together with Propositions 3.2 and 3.4, completes the picture of
polar sets.
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Theorem 3.11. Let C � �. Then, C 2 PGBV if and only if there exists a sequence of
open sets ¹Ukºk2N having a locally finite perimeter in � and containing C such that
�N .Uk/! 0.

Proof. If we have such a collection ¹Ukºk2N , the statement follows by Proposition 3.10
since we have stronger hypotheses.

Vice versa, suppose that C 2 PGBV. By Proposition 3.10, there exists a sequence
¹Akºk2N of sets with a locally finite perimeter in � such that

�N .Ak/! 0 and �.Ak; x/ D 1

for everyx2C and everyk2N. By Proposition 3.8, for everyk2N, there exists an open
set Uk with a locally finite perimeter in� such that Uk � A

.1/

k
and �N .Uk nAk/ � 1

k
.

This last fact, since �N .Ak/! 0, implies that �N .Uk/! 0. Finally, for every k 2 N,
we have that Uk � A

.1/

k
� C , concluding the proof.

4. Outer approximation of sets of finite perimeter with open sets

The goal of the section is to prove that if A � � is a set of finite perimeter in �, then
for every " > 0, there exists an open set U such that U � A.1/, �N .U n A/ < ", and
jP.U;�/�P.A;�/j < " (Theorem 4.7). This fact then implies the result that we used
in the previous section (Proposition 3.8). To prove the aforementioned theorem, we first
need to show that strong convergence in BV implies (up to passing to a subsequence)
convergence HN�1-almost everywhere (Theorem 4.2). This fact seems to be known
(for example, it is considered in the general setting of metric spaces in [6]) but does not
appear in the standard references about functions of bounded variation. Since it is an
easy consequence of Proposition 2.13, we give a complete proof. The next proposition
is a preliminary version of Theorem 4.2.

Proposition 4.1. Let ¹ukºk2N be a sequence of positive functions of bounded variation
such that uk ! 0 strongly in BV.RN /. Then, there is a (not relabeled) subsequence
such that uC

k
.x/! 0 for HN�1-almost every x 2 R.

Proof. Passing to a subsequence, we may suppose that for every k 2 N, we have
kukkBV < 2

�k , and with this extra hypothesis, we fix " > 0 and we prove that the set

A WD
®
x 2 RN W 8n 2 N 9k 2 N W k � n and uC

k
.x/ > 2"

¯
has HN�1 zero measure. If we are able to do this, then the statement follows by the
arbitrariness of ". SinceHN�1.A/D0 if and only if Cap1.A/D0, by Proposition 2.11,
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we prove the latter. To this aim, observe that

A D
\
n2N

[
k�n

®
x W uC

k
.x/ > 2"

¯
;

so that the monotonicity and the subadditivity of the capacity (Proposition 2.10) give
that for every n 2 N, we have

(4.1) Cap1.A/ �
X
k�n

Cap1
�®
x W uC

k
.x/ > 2"

¯�
:

Taking into account that u is positive together with Theorem 2.4, we get that®
x W uC

k
.x/ > 2"

¯
�

²
x W

uC
k
.x/C u�

k
.x/

2
> "

³
�

²
x W 9� > 0 W

 
B�.x/

uk.y/ dy > "

³
;

which implies by Proposition 2.13 that there exists a constant C > 0 such that

Cap1
�®
x W uC

k
.x/ > 2"

¯�
� C jDukj.R

n/:

Combining this with (4.1), we deduce that for every n 2 N, we have

Cap1.A/ � C
X
k�n

kukkBV � C
X
k�n

2�k;

and letting n increase to infinity, we get that Cap1.A/ D 0.

Theorem 4.2. Let ¹ukºk2N be a sequence converging strongly in BV.RN / to u 2
BV.RN /. Then, there exists a (not relabeled) subsequence such that uC

k
.x/! uC.x/

for HN�1-almost every x 2 RN .

Proof. We will prove that juC
k
� uCj � juk � uj

C, and applying Proposition 4.1 to
(a subsequence of) ju � ukj, we will then obtain that for HN�1-almost every x 2 �,

lim sup
k!C1

ˇ̌
uC
k
.x/ � uC.x/

ˇ̌
� lim
k!C1

juk � uj
C.x/ D 0;

which implies the statement of the theorem.
We now prove that juC

k
� uCj � juk � uj

C. By the triangle inequality, we have
uk � u C juk � uj, and passing to the approximate upper limit on both sides, we
get uC

k
� .u C juk � uj/

C � uC C juk � uj
C, giving uC

k
� uC � juk � uj

C. By
symmetry, we deduce that juC

k
� uCj � juk � uj

C.

The next corollary is obtained from the previous theorem by a standard localization
argument.
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Corollary 4.3. Let ¹ukºk2N � BVloc.�/ be a sequence converging strongly in
BVloc.�/ to u 2 BVloc.�/. There exists a (not relabeled) subsequence such that
uC
k
.x/! uC.x/ for HN�1-almost every x 2 �.

We recall that given E � �, we denote by E.1/ the set of points in � where E
has density 1 and by EC the set of points where E has positive upper density. By the
Lebesgue differentiation theorem, for �N -almost every x in �, we have

1E .x/ D 1EC.x/ D 1E .1/.x/:

Moreover, from the definition of upper density, it easily follows that 1CE .x/ D 1EC.x/
and that E.1/ D c..cE/C/, where cE WD � nE. The next three lemmas provide the
intermediate steps needed to prove Theorem 4.7.

Lemma 4.4. Let C � � be a relatively closed set of finite perimeter in �. Then,

CC [
�
.� \ @C / n @�C

�
D C:

Proof. Note that by Theorem 2.3, we have CC � VC [ @�C , so that

CC [
�
.� \ @C / n @�C

�
� VC [ .� \ @C / � C:

Vice versa, since C is relatively closed, we have CC [ .� \ @C / � C , so that also
CC [ Œ.� \ @C / n @�C � � C .

Lemma 4.5. Let B � � be a set of finite perimeter in �. For every " > 0, there exist
a sequence ¹Ckºk2N of relatively closed sets of finite perimeter in � and a Borel set
Z � � with the following properties:

(a) jD.1B � 1Ck /j.�/! 0 and �N .B�Ck/! 0;

(b) for every x … Z, we have that 1Ck .x/! 1BC.x/;

(c) HN�1.Z/ < ".

Proof. By Theorem 2.5, there exists a sequence ¹Ckºk2N of relatively closed sets
with finite perimeter in � such that �N .Ck�B/! 0, jD.1Ck � 1B/j.�/! 0, and

(4.2) HN�1
�
.@Ck \�/ n @

�Ck
�
<

"

2k
:

By Corollary 4.3, there exists aHN�1-null set zZ �� and a (not relabeled) subsequence
of ¹Ckºk2N such that for every x … zZ, we have 1CCk .x/! 1CB .x/, and, taking into
account that 1CA D 1AC , we deduce that for every such x, we have

(4.3) 1
C
C

k

.x/! 1BC.x/:
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Define now
Z WD zZ [

[
k2N

�
.@Ck \�/ n @

�Ck
�
;

and note that by (4.2), we have thatHN�1.Z/ < ". Since every Ck is relatively closed
in�, by Lemma 4.4, we have thatCC

k
nZ D Ck nZ, which together with (4.3) implies

that for every x … Z, we have 1Ck .x/! 1BC.x/.

Lemma 4.6. Let A � � be a set of finite perimeter in �. Then, for every " > 0, there
exist Z � � such that HN�1.Z/ < " and an open set U such that U [ Z � A.1/,
�N .U n A/ < ", and P.U;�/ < P.A;�/C ".

Proof. Let B WD � n A and note that P.B;�/ D P.A;�/ < C1. By Lemma 4.5,
there exists a sequence ¹Ckºk2N of relatively closed sets with finite perimeter in �
and a Borel set Z � � such that

(a) jD.1B � 1Ck /j.�/ < "2
�k and �N .B�Ck/ < "2�k;

(b) for every x … Z, we have 1Ck .x/! 1BC.x/;

(c) HN�1.Z/ < ".

We define
C WD

\
k2N

Ck

and U WD � n C , and we claim that U has the required properties. By (b), we get that
BC nZ � C nZ, and passing to the complement in this inclusion, keeping in mind
that A.1/ D c.BC/, we get A.1/ � Z [ U . Moreover,

�N .U nA/ �
X
k2N

�N
�
.� n Ck/ nA

�
�

X
k2N

�N
�
.� nA/�Ck

�
D

X
k2N

�N .Ck�B/;

and the last term of the chain is less than " by (a).
To conclude the proof, we only need to show thatP.U;�/<P.A;�/C". To achieve

this, we prove that the function 1U�1A is in BVloc.�/ and satisfies jD.1U�1A/j.�/<",
so that we obtain

P.U;�/ D jD1U j.�/ �
ˇ̌
D.1U � 1A/

ˇ̌
.�/C jD1Aj.�/ < P.A;�/C ":

Observe that 1U � 1A D .1 � 1C / � .1 � 1B/ D 1B � 1C so that it is sufficient to
show that 1B � 1C 2 BVloc.�/ and satisfies jD.1B � 1C /j.�/ < ".

To this aim, let f W R! R be the truncation function at the levels zero and one,
i.e., f .t/ WD 0 _ t ^ 1, and we claim that the following identity holds �N -almost
everywhere in �:

(4.4) 1B � 1C D f
�X
k2N

.1B � 1Ck /
�
:
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First of all, observe that for every x … Z, the term 1BC.x/� 1Ck .x/ is eventually zero
by the condition (b), so that since �N .Z/ D 0 and �N .B�BC/ D 0, we have that the
series in the r.h.s. of (4.4) is well-defined �N -almost everywhere. Another consequence
of (b) is that �N -almost every point of C belongs to BC so that �N -almost every such
point is in B . Taking this into account, (4.4) follows. As a consequence, the function
1B � 1C is the limit in L1loc.�/ of the sequence ¹fj ºj2N given by

fj WD f

 
jX
kD1

.1B � 1Ck /

!
;

and since f is Lipschitz with Lipschitz constant one, each function fj belongs to
BVloc.�/ and satisfies

jDfj j.�/ �
X
k2N

ˇ̌
D.1B � 1Ck /

ˇ̌
.�/ < ":

This implies that also 1B � 1C belongs to BVloc.�/ and satisfies jD.1B � 1C /j.�/ < ",
concluding the proof.

Theorem 4.7. Let A � � be a set of finite perimeter in�. Then, for every " > 0, there
exists an open set U such that U �A.1/, �N .U nA/<", and jP.U;�/�P.A;�/j<".

Proof. By Lemma 4.6, for every n 2 N, we find an open set Vn and a setZn such that
Vn [Zn � A

.1/, �N .Vn nA/ < 1
n

, P.Vn;�/ < P.A;�/C 1
n

, andHN�1.Z/ < 1
�n

,
where � is the dimensional constant of Lemma 3.3.

By the aforementioned lemma, we then find an open setWn�Zn such that�N .Wn/<
1
n

and P.Wn;�/ < 1
n

, and we define Un WD Vn [Wn. In this way, we have a sequence
¹Unºn2N of open sets containing A.1/, converging to A in measure such that

P.Un; �/ � P.Vn; �/C P.Wn; �/ � P.A;�/C
2

n
:

Then, by the lower semicontinuity of the perimeter w.r.t. convergence in measure, it is
sufficient to define U WD Un for n sufficiently large.

Remark 4.8. The previous theorem makes sense even if the set A is defined modulo
�N -negligible sets, as all the terms involved are invariant under modifications on
�N -null sets.

Remark 4.9. Theorem 4.7 fails if we replace the condition that U � A.1/ with U � A.
We show this by considering the case when �N .A/ D 0. Indeed, if we could find
a sequence of open sets ¹Unº containing A with Lebesgue measure and perimeter
decreasing to zero, we would obtain by Proposition 3.4 that A 2 PBV, while the same
proposition shows that this is in general not possible.
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The next example shows that we cannot require the smoothness of the approximating
set in Theorem 4.7 when N � 2.

Example 4.10. Let � WD RN and let A � RN be an open dense set with a finite
perimeter and a finite Lebesgue measure (for example, a countable union of balls with
dense centers and sufficiently small radii). Suppose by contradiction that there exists
a smooth open set U such that U � A.1/ � A and �N .U / < C1. If we had such a
set U , we would then get that xU D RN , so that

�N .@U / D �N . xU/ � �N .U / D C1:

On the other hand, the smoothness of U implies that �N .@U / D 0, giving the desired
contradiction.

Acknowledgments. – I would like to thank Prof. Gianni Dal Maso for his valuable
advice. Most results of this paper were first obtained in the context of my master’s
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