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1. Introduction

Electromagnetic interactions play a key role in the history of physics since they are
related to the first successful example of unification of two apparently different fields,
the electric and the magnetic one, into a single body, the Faraday tensor. The latter tensor
contains all the physical information both at a classical and at a quantum level. Indeed,
as noted for example in [20], in all idealized and real experiments of the Aharonov–
Bohm kind, the true observable is actually the flux of the magnetic component of the
Faraday tensor which is present inside an impenetrable region, typically a cylinder.
It is far from the scope of this paper to discuss the details of this procedure, but it is
sufficient to say that, on Minkowski background and in absence of sources, the result
is pretty much satisfactory. Yet the situation starts to complicate itself as soon as it is
assumed that a spacetime M has a non-trivial geometry.

In this paper, we will be interested in the Cauchy problem for Maxwell’s equations
(for k-forms) ıF D j and dF D 0 on a globally hyperbolic manifold M with timelike
boundary [1]. Within this setting, boundary conditions have to be imposed to ensure the
well-posedness of the resulting Cauchy problem. For the case at end, we will impose
the vanishing of the normal component of the Faraday tensor F at the boundary.

The well-posedness of the Cauchy problem allows us to introduce advanced/retarded
propagators for the operator D D dC ı. This leads to the possibility of applying a
standard quantization scheme [11, Chap. 3] which is well-established for the case of
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the Faraday tensor on globally hyperbolic manifolds without boundaries [13, 14], for
U.1/-gauge theories [5–7] and for gauge theories on globally hyperbolic manifolds
with timelike boundary [8, 12].

Statement of the problem and main results. Through this paper, .M; g/ denotes a
globally hyperbolic manifold with timelike boundary @M as defined in [1, Def. 2.14];
see also e.g. [18, Def. 2.1]. In more detail, .M; g/ is a connected, oriented smooth
Lorentzian n-dimensional manifold M with boundary @M such that .@M; gj@M/ is a
Lorentzian manifold and there exists a smooth Cauchy temporal function t W M! R

such that

M D R �†; g D �ˇ2dt2 C ht ;

where ˇ WR�†!R is a smooth positive function, ht is a Riemannian metric on each
slice †t WD ¹tº �† varying smoothly with t , and these slices are spacelike Cauchy
hypersurfaces with boundary @†t WD ¹tº � @†, namely, achronal sets intersected
exactly once by every inextensible timelike curve.

The (sourceless) Maxwell equations for the Faraday tensor F 2 �k.M/ are given
by satisfying

dF D 0 and d �g F D 0:

Clearly, if the boundary of @M is not empty, then the uniqueness of a solution to the
Cauchy problem for F can be expected only if a boundary condition is imposed. To
this end, we shall consider the boundary condition

nyF D 0;

where the vector field n is the outward-pointing unit normal vector field along @M. If
we fix � 2 �.T �Mj@M/ to be a 1-form such that

ker �p D Tp@M; �p.np/ > 0; and L@t
� D 0;

for all p 2 @M, then there exists a positive smooth function ct on @M such that

np D ct�
]t

for all p 2 @M, where ]t WT �†! T† denotes the musical isomorphism associated
with ht . For later convenience, we set

�kc;n.M/ WD
®
F 2 �kc .M/ j nyF D 0

¯
;

��c;n;ı.M/ WD
®
˛ 2 ��c;n.M/ j ı˛ D 0

¯
;

��c;n;d.M/ WD
®
˛ 2 ��c;n.M/ j d˛ D 0

¯
:

Within this setting, the main result of the paper is the following.
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Theorem 1.1. Let .M; g/ be a globally hyperbolic manifold with timelike boundary
and let j 2 �k�1

c;n;ı
.M/, � 2 �kC1c;d .M/, and F0 2 �kc .M/ such that�

supp.�/ [ supp.j /
�
\†0 D ¿; supp.F0/ \ @M D ¿;

d†0
��†0
F0 D 0; d†0

��†0
�g F0 D 0:

Then, the Cauchy problem for the Faraday tensor

dF D �;(1.1a)
ıF D j;(1.1b)
nyF D 0;(1.1c)
F j†0

D F0(1.1d)

has a unique solution F 2 �ksc;n.M/. Moreover,

(1.2) supp.F / � J
�
supp.F0/ [ supp.j / [ supp.�/

�
;

where J.A/ denotes the causal development of A.

Remarks 1.2. (1) It is worth pointing out that Theorem 1.1 proves that any closed
compactly supported form � 2 �kC1c;d .M/ is necessarily exact, � D dF , for a spacelike
form F 2 �ksc.M/. (A similar argument applies for the coexactness of j in equation
(1.1b).) Actually, the inclusion �kC1c;d .M/ � d�k.M/ can be proved by cohomological
arguments1 and is based on the fact that M is homeomorphic to R � †. Indeed, let
f 2 C1c .R/ be such that

R
R f .t/dt D 1 and consider the following maps between

chain complexes:

���1c .†/
f dt^�
����! ��c.M/

Id
�! ��.M/

��
†
�! ��.†/;

where the Id is the identity map while ��† is the pull-back to †. All these maps induce
(de Rham) cohomology maps—denoted by Œf dt ^ ��, ŒId�, Œ��†�—and by [10, Prop. 4.7]
we have H ��1c .†/ ' H �c .M/, while [10, Prop. 4.1] proves that H �.M/ ' H �.†/. Let
now Œ!�c 2H �c .M/. SinceH �c .M/'H ��1c .M/, there exists Œ˛�c 2H ��1c .†/ such that
Œ!�c D Œf dt ^ ˛�c . Considering the equivalence class ŒId�Œf dt ^ ˛�c D Œf dt ^ ˛� 2
H �.M/ and the isomorphism H �.M/ ' H �.†/, we then find

Œf dt ^ ˛� D Œ��†�
�1Œ��†�Œf dt ^ ˛� D Œ��†�

�1
�
��†.f dt ^ ˛/

�
D Œ0�;

where in the last line we used �† ı f dt ^ � D 0. This proves that ŒId� is the zero map,
hence the claim.

(1) We are grateful to M. Benini for this observation.
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(2) Our analysis extends straightforwardly to the Cauchy problem for a Faraday
tensor coupled with the boundary condition ny �g F0 D 0:

(3) Theorem 1.1 can be generalized by dropping the assumption supp.F0/\ @MD¿
and .supp.�/[ supp.j //\†0 D ¿. This requires introducing suitable “compatibility
conditions” between F0 and j as described in [18]. We will refrain from discussing
this case as the hypotheses of Theorem 1.1 are sufficient for the application we have in
mind, cf. Proposition 5.1.

(4) The boundary condition (1.1c) can be derived with the following variational
argument—cf. [12, Rem. 27]. In this setting, one introduces the formal action

I.A/ D
1

2
.dA; dA/M D

1

2

Z
M

dA ^ �gdA;

where the convergence of the integral is not discussed. The homogeneous Maxwell
equations ıdA D 0 are recovered by requiring A to be a critical point of the formal
action I ; namely,

d
d"
I.AC "˛/

ˇ̌
"D0
D 0 8˛ 2 �k�1c .M/;

where ˛ 2�k�1c .M/ is an arbitrarily chosen compactly supported smooth .k � 1/-form.
Notably, although I.A/ may be ill-defined, the derivative d

d"I.AC "˛/j"D0 is always
well defined and it can be written as

d
d"
I.AC "˛/

ˇ̌
"D0
D .dA; d˛/M D .ıdA; ˛/M C .nydA; ��@M˛/@M;

where .�; �/@M is the canonical pairing between forms on @M. Because ˛ can be chosen
arbitrarily, this leads to ıdA D 0 and nydA D 0.

(5) The well-posedness of the Cauchy problem will guarantee the existence of Green
operators (cf. Proposition 5.1) which play a pivotal role in the algebraic approach to
linear quantum field theory; see e.g. [4, 11, 17] for textbooks and [3, 11, 16] for recent
reviews.

Plan of the proof. As a preliminary, in Section 2, we will decompose the Faraday
tensorF 2�k.M/ into its electric and magnetic componentsFE ;FB , cf. equation (2.1).
The equations of motion (1.1a)–(1.1b) are then written in terms of FE ; FB leading to
the standard formulation of Maxwell’s equations in terms of electric and magnetic
“fields”. Within this setting, the system made by (1.1a)–(1.1b) decouples in a system
of 2 dynamical equations, which determine FE ; FB once initial data and boundary
conditions are provided, and 2 constraint equations, which must be fulfilled along the
motion and in particular by the initial data. Similarly, the initial condition (1.1d) leads
to initial conditions for FE ; FB ; moreover, the same applies for the boundary condition
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(1.1c), which leads to 2 boundary conditions for FE and FB . As we will see more in
detail, the boundary conditions we obtain are somehow redundant. The first one can be
used to determine FE ; FB uniquely—together with the initial data and the dynamical
equations of motion—whereas the latter plays the role of a constraint. Summing up,
the initial-value problem with boundary conditions (1.1) for F will be turned into an
initial-value problem with boundary conditions and constraints for FE ; FB .

In Section 3, we will solve the initial-boundary value problem for FE ; FB relying
on the results of [18]. Henceforth, in Section 4, we will prove that the constraints are
fulfilled once they are fulfilled by the initial data. We conclude our paper with Section 5,
devoted to prove the existence of Green operators for the Faraday tensor. This leads to
a pre-symplectic form on the space of solutions to the Cauchy problem for the Faraday
tensor. To this end, however, one has to consider the Faraday of all degrees in a unified
non-trivial fashion.

2. Reformulation of the Cauchy problem

Let �2WM! † be the projection on the second factor in the Cartesian product M D
R �† and let V� WD ��2 .ƒ

�T �†/! M be the pull-back over M of the exterior bundle
of †. The electric and the magnetic components of a given F 2 �k.M/ are the forms
FB 2 �.Vk/ and FE 2 �.Vn�k/ defined by

(2.1) F D dt ^ �ht
FE C FB ;

where �ht
denotes the Hodge dual with respect to the metric ht . More explicitly, we

have
�ht

FE WD @tyF; FB D F � dt ^ �ht
FE ;

where @ty denotes the interior product with @t . Clearly, FE ; FB determine F uniquely
and vice versa.

Remark 2.1. For later convenience, we shall recollect here some useful identities
concerning the differential, codifferential, Hodge operators, pull-backs, and interior
products. Let .M; g/ be anm-dimensional pseudo-Riemannian manifold with possibly
non-empty boundary @M ; in most applications below, Mm will be either the space-
time M, its boundary @M together with its induced Lorentzian metric, or the Cauchy
hypersurface† with Riemannian metric ht . We denote by �M the index ofM . The ori-
entation of M will be chosen such that, for any oriented pointwise basis .e�1 ; : : : ; e

�
n�1/

of T �†, the n-tuple .dt; e�1 ; : : : ; e
�
n�1/ is an oriented basis of T �M. We denote

by d�W��.M/! ��C1.M/ the differential on M , while ��W��.M/! �m��.M/

denotes the Hodge dual of .M; g/. To emphasize the difference between operators on
M and on @M, the differential and Hodge dual of @M will be denoted by d@M� and �@M� ,
respectively—we will suppress the superscript when the latter is clear from the context.
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We then have

�m�k�k D .�1/
k.m�k/C�M

�
) �

�1
k D .�1/

k.m�k/C�M �m�k

�
;

ık D d�k D .�1/
k.�k�1/

�1dm�k�k;

�k�1ık D .�1/
kdm�k�k; ım�k�k D .�1/

kC1
�kC1 dk;

�
@M
k�1ny D �

�
@M�k;

ny�m�k D .�1/m�kC�MC�@M �
@M
m�k �

�
@M ;

X [ ^ �g! D .�1/
kC1
�g .Xy!/;

�g.X
[
^ !/ D .�1/kXy �g !;

ı@Mm�k�1nyj�m�k.M/ D �nyım�k;

for all ! 2 ƒkT �M and X 2 TM . Moreover, defining the pointwise nondegenerate
inner product h�; �i on ƒkT �M via

h!;!0i WD .�1/�M � �g.! ^ �g!
0/;

we have, for all X 2 TM , ! 2 ƒkT �M , and !0 2 ƒkC1T �M ,

hX [ ^ !;!0i D .�1/�M � �g.X
[
^ ! ^ �g!

0/

D .�1/�M � .�1/k � �g.! ^X
[
^ �g!

0/

D .�1/�M � .�1/k � .�1/k �g
�
! ^ �g.Xy!0/

�
D h!;Xy!0i:

Moreover, for all ! 2 ƒkT �M and !0 2 ƒm�kT �M ,

h�g!;!
0
i D .�1/k.m�k/C�M � h�g!;�

2
g!
0
i

D .�1/k.m�k/C2�M � h!;�g!
0
i

D .�1/k.m�k/ � h!;�g!
0
i:

The next lemma converts equations (1.1a)–(1.1b) into dynamical and constraint
equations for FE ; FB .

Lemma 2.2. A k-form F 2 �k.M/ solves (1.1a)–(1.1b) if and only if its electric and
magnetic components FE ; FB solve

ˇ�1L@t
.ˇ�1FE /C.�1/

.n�kC1/.kC1/C1ˇ�1d†.�ht
ˇFB/ D .�1/

.n�k/.kC1/
�ht

jB ;

(2.2a)

L@t
FB � d† �ht

FE D �ht
�E ;(2.2b)

d†.ˇ�1FE / D .�1/n�kˇ�1jE ;(2.2c)
d†FB D �B ;(2.2d)
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where d† denotes the differential on †, while jE 2 �.VnC1�k/ and jB 2 �.Vk�1/
are the electric and magnetic components of j 2 �k�1.M/.

Proof. We recall that the differential d on M and the differential d† on † are related
by

d! D dt ^ @tyd! C d†��†!;

for all ! 2 �k.M/. By direct inspection, we have

� D dF D �dt ^ d† �ht
FE C dt ^ @tydFB C d†FB .equation (2.1)/

D dt ^ ŒL@t
FB � d† �ht

FE �C d†FB ; .@tyFB D 0/;

which leads to equations (2.2b) and (2.2d) once we consider the decomposition � D
dt ^ �ht

�E C �B .
For what concerns equations (2.2a) and (2.2c), we consider the Hodge dual of

equation (1.1b):
�gj D �gıF D .�1/

kd �g F:

Moreover, for all ! 2 �.Vk/, we have ˇdt ^ �ht
! D .�1/k �g !, which implies

�gF D ˇ
�1
�g .ˇdt ^ �ht

FE /C �gFB

D .�1/n�kˇ�1 �2g FE C �gFB

D .�1/.n�k/.kC1/C�Mˇ�1FE C .�1/
kˇdt ^ �ht

FB

D .�1/.n�k/.kC1/C1ˇ�1FE C .�1/
kˇdt ^ �ht

FB

and similarly

�gj D �g.dt ^ �ht
jE C jB/

D ˇ�1 �g .ˇdt ^ �ht
jE /C �gjB

D .�1/n�kC1ˇ�1 �2g jE C .�1/
k�1ˇdt ^ �ht

jB

D .�1/n�kC1C.n�kC1/.k�1/C�Mˇ�1jE C .�1/
k�1ˇdt ^ �ht

jB

D .�1/k.n�kC1/C1ˇ�1jE C .�1/
k�1ˇdt ^ �ht

jB :

Therefore,

d �g F D .�1/.n�k/.kC1/C1d.ˇ�1FE /C .�1/kd.dt ^ �ht
ˇFB/

D .�1/.n�k/.kC1/C1dt ^ @ty d.ˇ�1FE /C .�1/.n�k/.kC1/C1d†.ˇ�1FE /

C .�1/kC1dt ^ d†.�ht
ˇFB/

D dt ^
�
.�1/.n�k/.kC1/C1L@t

.ˇ�1FE /C .�1/
kC1d†.�ht

ˇFB/
�

C .�1/.n�k/.kC1/C1d†.ˇ�1FE /:
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It can be deduced that d �g F D .�1/k �g j if and only if´
.�1/.n�k/.kC1/C1L@t

.ˇ�1FE /C .�1/
kC1d†.�ht

ˇFB/ D �ˇ �ht
jB ;

.�1/.n�k/.kC1/C1d†.ˇ�1FE / D .�1/k.n�k/C1ˇ�1jE I

that is,´
ˇ�1L@t

.ˇ�1FE /C.�1/
.n�kC1/.kC1/C1ˇ�1d†.�ht

ˇFB/ D .�1/
.n�k/.kC1/

�ht
jB ;

d†.ˇ�1FE / D .�1/n�kˇ�1jE :

This leads to equations (2.2a) and (2.2c).

Remark 2.3. The constraint ıj D0 on the current j 2�k�1
c;n;ı

.M/ assumed in Theo-
rem 1.1 reduces to the standard continuity equation in terms of jE ; jB :

(2.3) L@t
Œˇ�1jE �C .�1/

k.n�k/C1d†Œˇ �ht
jB � D 0; d†Œˇ�1jE � D 0:

Similarly, � 2 �kC1c;d .M/ has to be closed; therefore,

L@t
�B � d† �ht

�E D 0; d†�B D 0:

Thus, equations (1.1a)–(1.1b) can be recast into equations (2.2). Notice that the
latter consists of two dynamical equations (2.2a)–(2.2b) and two constraint equations
(2.2c)–(2.2d). In the next section, we will prove that equations (2.2a)–(2.2b) define
a symmetric hyperbolic system [18, Defs. 2.4–2.5]. Before that, we observe that the
boundary condition (1.1c) can be equivalently written in terms of the electric and
magnetic components FE ; FB as

ny �ht
FE D 0 ., ��@†t

FE D 0/;(2.4)

nyFB D 0 ., ��@†t
�ht

FB D 0/:(2.5)

As we will see, in order to apply the results of [18], only one among (2.4)–(2.5) is
needed—in the following, we will choose (2.4). The remaining boundary condition is
redundant; in fact, it plays the role of an additional constrained boundary condition.

3. Maxwell’s equations as a constrained symmetric hyperbolic system

We now recast equations (2.2a)–(2.2b) into a symmetric hyperbolic system (see also
[15] for a weaker notion of symmetric hyperbolicity). Following [18, Defs. 2.4–2.5],
we recall that a differential operator SW�.E/! �.E/ on a Riemannian vector bundle
E! M is called a symmetric hyperbolic system over M if

(S) the principal symbol �S.�/WEp ! Ep is pointwise self-adjoint resp. symmetric
with respect to � � j � �p for every � 2 T�pM and for every p 2 M—here, � � j � �p
denotes the Riemannian resp. symmetric fiber pairing at Ep;
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(H) for every future-directed timelike covector �2T�pM, the bilinear form��S.�/� j ��p

is positive definite on Ep for every p 2 M.

A symmetric hyperbolic system S is said to be of constant characteristic if dimker�S.n
[/

is constant, where �S.n
[/ 2 End.T �Mj@M/. In particular, if �S.n

[/ has maximal rank
at each point of @M, we say that S is nowhere characteristic.

Concerning boundary conditions for a symmetric hyperbolic system S with constant
characteristic, we quote from [18, Def. 2.13]. A smooth subbundle B of Ej@M is called
a self-adjoint admissible boundary condition for S if

(i) the quadratic form ‰ 7!� �S.�/‰ j ‰ �p vanishes on B—here, � 2 �1.M/ is
any form such that

ker �x D Tx@M for all x 2 @MI

(ii) the rank of B is equal to the number of pointwise non-negative eigenvalues of
�S.�/ counting multiplicity;

(iii) the identity B D B� holds, where B� WD Œ�S.n
[/B�? and the symbol .�/? denotes

the pointwise orthogonal complement with respect to � � j � �.

The next proposition shows that equations (2.2a)–(2.2b) can be interpreted as
a symmetric hyperbolic system of constant characteristic. Moreover, the boundary
condition (2.4) is a self-adjoint boundary condition for that symmetric hyperbolic
system.

Proposition 3.1. Let E D Vn�k ˚ Vk ! M be the vector bundle over M with the
standard positive-definite fiber metric � � j � � between forms. Actually, for FB ; F 0B 2
�.Vk/, we have

� FB j F
0
B � WD �ht

ŒFB ^ �ht
F 0B � D � �g ŒFB ^ �gF

0
B �:

Then, the following hold.

(1) The first-order differential operator SW�.E/! �.E/ defined by

S

"
FE

FB

#
D

 
ˇ�1L@t

ı ˇ�1 .�1/.n�kC1/.kC1/C1ˇ�1d† �ht
ˇ

�d†�ht
L@t

!"
FE

FB

#
is a symmetric hyperbolic system of constant characteristic.

(2) The subbundle B � Ej@M defined by

B WD
®
.FE ; FB/ 2 Ej@M j nyFB D 0

¯
WD
®
.FE ; FB/ 2 Ej@M j � ^ �ht

FB D 0
¯(3.1)

defines a self-adjoint admissible boundary condition for S.
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Proof. (1) The principal symbol of S at � 2 T �p M, p 2 †t , is given by

�S.�/ D

 
ˇ�2�.@t /IdVn�k jp

.�1/.n�kC1/.kC1/C1�†t
^ �ht

��†t
^ �ht

�.@t /IdVk jp

!
;

where �†t
WD ��†t

� and �†t
W†t ! M. By direct inspection, we have, for all FE 2 Vn�kp ,

FB 2 Vkp , and � 2 T �p M,

� ��†t
^ �ht

FE j FB � D � � �ht
FE j �

]t

†t
yFB �

D �.�1/.n�k/.k�1/ � FE j �ht
.�
]t

†t
yFB/ �

D �.�1/.n�k/.k�1/CkC1 � FE j �†t
^ �ht

FB �

D .�1/.n�kC1/.kC1/C1 � FE j �†t
^ �ht

FB �;

which shows that �S.�/
� D �S.�/ and therefore that condition (S) holds.

Next, we prove condition (H). Let � D �.@t /dt C �†t
2 T �p M be any future-directed

timelike covector; that is, k�†t
k2
ht
< ˇ�2�.@t /

2 and �.@t / > 0. For any FE 2 Vkp and
FB 2 Vn�kp , we have

� �S.�/.FE ; FB/ j .FE ; FB/� D ˇ
�2�.@t /� FE j FE � C�.@t /� FB j FB�

� 2� �†t
^ �ht

FE j FB�

� ˇ�2�.@t /� FE j FE � C�.@t /� FB j FB�

� 2k�†t
kht
� FE j FE �

1=2
� FB j FB�

1=2

� ˇ�2�.@t /� FE j FE � C�.@t /� FB j FB�

� 2ˇ�1�.@t /� FE j FE �
1=2
� FB j FB�

1=2

D �.@t /
�
ˇ�1� FE j FE �

1=2
�� FB j FB�

1=2
�2

� 0:

Moreover, if � �S.�/.FE ; FB/ j .FE ; FB/ �D 0, then the above inequalities imply

k�†t
kht
� FE j FE �� FB j FB �D ˇ

�2�.@t /
2
� FE j FE �� FB j FB �;

which forces FE D 0 and FB D 0 due to the condition k�†t
k2
ht
< �.@t /

2ˇ�2. This
proves that �S.�/ is positive definite and therefore condition (H) holds.

Finally, since �S.�/ is given by

�S.�/ D

 
0 .�1/k.n�k/� ^ �ht

�� ^ �ht
0

!
;
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it follows that

ker �S.�/ D
®
.FE ; FB/ 2 Vn�k ˚ Vk j nyFE D 0 D nyFB

¯
D ��2ƒ

n�kT �@†˚ ��2ƒ
kT �@†;

which proves that S is of constant characteristic.
(2) We now prove that the subbundle B introduced in equation (3.1) identifies a

future admissible boundary condition for S. By direct inspection we have

Ej@M D ker �S.�/˚ ker
�
�S.�/C 1

�
˚ ker

�
�S.�/ � 1

�
;

where

ker �S.�/ ' �
�
2ƒ

n�kT �@†˚ ��2ƒ
kT �@†;

kerŒ�S.�/ � "� D
®
.FE ;�"� ^ �ht

FE / 2 Ej@M j �ht
FE 2 �

�
2ƒ

k�1T �@†
¯
;

for " 2 ¹1;�1º. Notice dim ker �S.�/ D
�
n�2
n�k

�
C
�
n�2
k

�
; moreover, each eigenspace

associated with " 2 ¹˙1º has pointwise rank
�
n�2
k�1

�
. Thus, an admissible boundary

condition must have rank
�
n�2
k

�
C
�
n�2
k�1

�
C
�
n�2
n�k

�
because of condition (ii). However,

this is exactly the case for B, whose dimension is
�
n�1
k�1

�
C
�
n�2
k

�
so that condition (ii)

is fulfilled. Moreover, for all .FE ; FB/ 2 B, it holds that

� �S.�/.FE ; FB/ j .FE ; FB/ �D �2 � FE j � ^ �ht
FB �D 0:

The latter equality implies condition (i). Finally, since B D Vn�k ˚ ��2ƒ
kT �@† and

�S.�/.B/ D ¹.0;�� ^ �ht
FE / j FE 2 Vn�kº, we have that

B� D Vn�k ˚ ��2ƒ
kT �@† D BI

i.e., condition (iii) is fulfilled.
This concludes our proof.

4. The Cauchy problem for the Faraday tensor

We have finally all the ingredients to prove our main theorem.

Proof of Theorem 1.1. On account of Lemma 2.2, we may reduce our problem to
the initial-value problem

S.FE ; FB/ D
�
.�1/.n�k/.kC1/ �ht

jB ;�ht
�E
�
;(4.1a)

.FE ; FB/j†0
D .F0;E ; F0;B/;(4.1b)

.FE ; FB/j@M 2 B(4.1c)

subjected to the constraint equations

(4.2) d†Œˇ�1FE � D .�1/n�kˇ�1jE ; d†FB D �B ; ��@†t
FE D 0:
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Here, F0;E;, F0;B denote the electric and magnetic component of the initial datum
F0 2 �

k.M/. Notice that the assumptions on the initial data F0 imply

.F0;E ; F0;B/ 2 B; d†Œˇ�1F0;E � D 0; d†F0;B D 0:

Since S is symmetric hyperbolic and B is an admissible self-adjoint boundary condition
for S, we may apply [18, Thm. 1.2]. Notice that the compatibility conditions mentioned
therein—cf. [18, Eq. (4.3)]—are automatically fulfilled on account of our assumption
that supp.F0/ \ @M D ¿ and .supp.�/ [ supp.j // \†0 D ¿.

Then, [18, Thm. 1.2] guarantees the existence of a unique solution .FE ; FB/ 2
�.Vn�k ˚ Vk/ to (4.1). Moreover, [18, Prop. 3.3] entails (1.2) and thus F 2 �ksc.M/,
where F D dt ^ �ht

FE C FB .
It remains to prove that (4.2) holds—notice that this would also prove that F 2

�kc;n.M/. In fact, by direct inspection, we find

L@t
d†Œˇ�1FE � D d†L@t

Œˇ�1FE �

D .�1/.n�kC1/.kC1/������d2†Œ�ht
ˇFB �C .�1/

.n�k/.kC1/d†Œˇ �ht
jB �

D .�1/n�kL@t
Œˇ�1jE �;

L@t
d†FB D d†L@t

FB D�����
d2†Œ�ht

FE �C d†Œ�ht
�E � D L@t

�B ;

L@t
��@†ˇ

�1FE D �
�
@†L@t

Œˇ�1FE � D 0;

where we used equations (2.2a), (2.2b), and (2.3) and in the last equality we also used
that nyj D 0 is equivalent to ��

@†
Œ�ht

jB �D 0 together with equations (2.2a)–(2.4). The
latter equations prove that (4.2) is fulfilled if it is for the initial datum F0. This is the
case by assumption.

5. Existence of Green operators and pre-symplectic structures

In this section, we establish the existence of the Green operators for the differential
operator D D ı C d acting on k-forms and with boundary conditions (1.1c). To this
end, we will profit from [3,12,18] (see also [9, 19] for a more homotopical algebraic
approach). For later convenience, we recall that �k

sfc
.M/ (resp. �kspc.M/) denotes

the space of strictly future- (resp. past-) compactly supported k-forms, that is, of
all F 2 �k.M/ such that supp.F / � J�.K/ (resp. supp.F / � JC.K/) for a suitable
compact subsetK �M. We also set�ksc.M/ WD�ksfc.M/˚�

k
spc.M/. Similarly,�k

fc
.M/

(resp. �kpc.M/) denotes the space of future- (resp. past-) compactly supported k-forms,
that is, of all F 2 �k.M/ such that supp.F / \ JC.x/ (resp. supp.F / \ J�.x/) is
compact for all x 2 M. We set �ktc.M/ WD �kfc.M/\�

k
pc.M/.



the cauchy problem for fadaray tensor 821

Proposition 5.1. Let k 2 ¹0; : : : ; nº and let DW�k.M/! �k�1.M/˚�kC1.M/ be
the differential operator D! WD ı! C d!. There exist linear operators

GC
k
W�k�1c;n;ı.M/˚�

kC1
c;d .M/! �kspc;n.M/;

G�k W�
k�1
c;n;ı.M/˚�

kC1
c;d .M/! �ksfc;n.M/;

which fulfil the following properties:

dG˙k .˛k�1 ˚ �kC1/ D �kC1;(5.1)
ıG˙k .˛k�1 ˚ �kC1/ D ˛k�1;(5.2)

G˙k .ı!k ˚ d!k/ D !k 8!k 2 �
k
c;n.M/;(5.3)

suppG˙k .˛k�1 ˚ �kC1/ � J
˙
�

supp.˛k�1/ [ supp.�kC1/
�
:(5.4)

Moreover, G˙
k

can be extended to

GC
k
W�k�1spc;n;ı.M/˚�

kC1
spc;d.M/! �kspc;n.M/;

G�k W�
k�1
sfc;n;ı.M/˚�

kC1
sfc;d.M/! �ksfc;n.M/;

(5.5)

still preserving properties (5.1)–(5.4).
Finally, if Gk WD GCk �G

�
k

, then there exists a short exact sequence

¹0º ! �kc;n.M/
D
�! �k�1c;n;ı.M/˚�

kC1
c;d .M/

Gk
�! �ksc;n.M/

D
�! ı�ksc;n.M/˚ d�ksc.M/! ¹0º:

(5.6)

Proof. Let k 2 ¹0; : : : ; nº. Following [3, 12–14,18], we define

GC
k
W�k�1c;n;ı.M/˚�

kC1
c;d .M/! �kspc;n.M/

so that GC
k
.˛k�1 ˚ �kC1/ is the unique solution !k 2 �k.M/ to the initial-value

problem with boundary conditions

(5.7) d!k D �kC1; ı!k D ˛k�1; ny!k D 0; !kj† D 0;

where † is an arbitrary but fixed Cauchy surface such that

J�.†/ \
�

supp.˛k�1/ [ supp.�kC1/
�
D ¿:

The existence and uniqueness of GC
k
.˛k�1 ˚ �kC1/ follow from Theorem 1.1. More-

over, GC
k

is easily shown to be linear and independent on the chosen †. The map G�
k

is similarly defined by assigning vanishing Cauchy data on a Cauchy surface † so that
JC.†/ \ Œsupp.˛k�1/ [ supp.�kC1/� D ¿.
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Equations (5.1)–(5.2) follow from the definition of G˙
k
˛, while the inclusion (5.4)

is a consequence of (1.2). Finally, equation (5.3) follows from the uniqueness of (5.7)
together with the condition ny!k D 0. Notice that the latter condition is necessary for
(5.3) as the latter equation implies ny!k D nyG˙k .ı!k ˚ d!k/ D 0.

Extension (5.5) is obtained by using property (5.4), cf. [2, Thm. 3.8] whose proof we
mimic for the sake of the self-containedness of the article. To wit, let˛k�12�k�1spc;n;ı

.M/
and �kC1 2 �kC1spc;d.M/. We define GC

k
.˛k�1 ˚ �kC1/ as follows—a similar argument

goes for G�
k

. For fixed x 2 M, let Kx WD J�.x/ \ Œsupp.˛k�1 ˚ �kC1/�. Then, Kx is
compact and we may choose � 2 C1c .M/ such that �jKx

D 1. For any such �, we set

(5.8) GC
k
.˛k�1 ˚ �kC1/jx WD G

C

k
.�˛k�1 ˚ ��kC1/jx :

Note that supp.�/ being compact ensures that �˛k�1 and ��kC1 are compactly sup-
ported. Moreover,

supp
�
dŒ��kC1�

�
\ J�.x/ D ¿

and similarly supp.ıŒ�˛k�1�/\ J�.x/D ¿. On account of property (5.4), this entails
that GC

k
.�˛k�1 ˚ ��kC1/jx is well-posed and defines the wanted extension.

The resulting map GC
k

is independent of the particular choice of �. Indeed, any
pair of functions �; �0 with the above properties fulfil suppŒ.�� �0/.˛k�1 ˚ �kC1/�\
J�.x/ D ¿; therefore, GC

k
Œ�˛k�1 ˚ ��kC1�jx D G

C

k
Œ�0˛k�1 ˚ �

0�kC1�jx .
The �-independence implies the linearity of the resulting map GC

k
. Indeed, if

˛k�1˚�kC1 and˛0
k�1
˚�0

kC1
are in�k�1

spc;n;ı
.M/˚�kC1spc;d.M/, then for allx2M, we may

choose�2C1.M/ so that�D1 on J�.x/\Œsupp.˛k�1˚�kC1/[supp.˛0
k�1
˚�0

kC1
/�.

Thus,

GC
k

�
.˛k�1 C ˛

0
k�1/˚ .�kC1 C �

0
kC1/

�
jx

D GC
k

�
.�˛k�1 C �˛

0
k�1/˚ .��kC1 C ��

0
kC1/

�
jx

D GC
k
Œ�˛k�1 ˚ ��kC1�jx CG

C

k
Œ�˛0k�1 ˚ ��

0
kC1�jx

D GC
k
Œ˛k�1 ˚ �kC1�jx CG

C

k
Œ˛0k�1 ˚ �

0
kC1�jx :

Property (5.4) follows from equation (5.8). The same holds for properties (5.2)–(5.1).
Note also that because it is of vanishing order, the boundary condition

nyGC
k
.˛k�1 ˚ �kC1/ D 0

is also a straightforward consequence of the definition of GC
k

. For what concerns (5.3),
we observe that, for all !k 2 �kspc;n.M/, it holds that

GC
k
.ı!k ˚ d!k/jx D GCk .�ı!k ˚ �d!k/jx D GCk .ı�!k ˚ d�!k/jx

D �!kjx D !kjx;

where we used supp.d�/ \ supp.˛k�1 ˚ �kC1/ \ J�.x/ D ¿.
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We now prove the exactness of (5.6). To begin with, notice that if ˛k 2 �kc;n.M/ is
such thatD˛k D 0—i.e. ı˛k D 0 and d˛k D 0—then we have˛k DGCk .ı˛k;d˛k/D 0:
This shows exactness in the first arrow of (5.6).

If ˛k 2�kc;n.M/, thenGkD˛k D GCk .ı˛k; d˛k/�G
�
k
.ı˛k; d˛k/D ˛k � ˛k D 0,

proving thatD�kc;n.M/� kerGk . Conversely, if ˛k�1˚ �kC1 2�k�1c;n;ı
.M/˚�kc;d.M/

is such that Gk.˛k�1 ˚ �kC1/ D 0, then

GC
k
.˛k�1 ˚ �kC1/ D G

�
k .˛k�1 ˚ �kC1/ 2 �

k
c;n.M/

is such that

DGC
k
.˛k�1 ˚ �kC1/D ıG

C

k
.˛k�1 ˚ �kC1/C dGC

k
.˛k�1 ˚ �kC1/D ˛k�1 ˚ �kC1:

This proves the exactness of (5.6) in the second arrow.
Let ˛k�1 ˚ �kC1 2 �k�1c;n;ı

.M/˚�kC1c;d .M/. Then,

ıGk.˛k�1 ˚ �kC1/ D ıG
C

k
.˛k�1 ˚ �kC1/ � ıG

�
k .˛k�1 ˚ �kC1/

D ˛k�1 � ˛k�1 D 0;

and similarly dGk.˛k�1 ˚ �kC1/ D 0. This shows that DGk.˛k�1 ˚ �kC1/ D 0 and
thus GkŒ�k�1c;n;ı

.M/˚�kC1c;d .M/� � kerD. Moreover, let !k 2 �ksc;n.M/ be such that
D!k D 0. Consider a function � 2 C1.M/ such that d� 2 span dt and such that
�.t/ D 1 for t � t0, t0 2 R being arbitrary, and �.t/ D 0 for t � �t0. Let !C

k
WD

�!k and !�
k
WD .1 � �/!k . Then, !C

k
2 �kspc;n.M/ and !�

k
2 �k

sfc;n
.M/. Moreover,

ı!C
k
D �ı!�

k
2 �k�1c;n .M/ and similarly d!˙

k
2 �kC1c .M/. Finally,

Gk.ı!
C

k
˚ d!C

k
/ D GC

k
.ı!C

k
˚ d!C

k
/ �G�k .ı!

C

k
˚ d!C

k
/

D GC
k
.ı!C

k
˚ d!C

k
/CG�k .ı!

�
k ˚ d!�k /

D !C
k
C !�k

D !k;

where we used the extension (5.5). This shows exactness in the third arrow of (5.6).
Finally, let ˛k 2 �ksc;n.M/ and ˇk 2 �ksc.M/. We wish to prove the existence of

!k 2 �
k
sc;n.M/ such that D!k D ı˛k ˚ dˇk ; that is, ı!k D ı˛k and d!k D dˇk . To

this end, we consider� 2C1.M/ as above and let ˛k D ˛Ck C ˛
�
k

, where ˛C
k
WD �˛k�1

and ˛�
k
WD .1 � �/˛�

k
and similarly ˇk D ˇCk C ˇ

�
k

. Notice that, per construction,
˛C
k
2�Cspc;n.M/,˛�k 2�

k
sfc;n

.M/, and similarly,ˇC
k
2�kspc.M/ andˇ�

k
2�k

sfc
.M/. We

then set !k WD GCk .ı˛
C

k
˚ dˇC

k
/CG�

k
.ı˛�

k
˚ dˇ�

k
/. Per definition, !k 2 �ksc;n.M/;

moreover,D!k D ı˛Ck ˚ dˇC
k
C ı˛�

k
˚ dˇ�

k
D ı˛k ˚ dˇk , where we used the exten-

sion (5.5). This shows the exactness of (5.6) in the fourth and last arrow.
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Remark 5.2. From (5.5), it follows that the causal propagator Gk extends to a linear
map Gk W�k�1tc;n;ı

.M/˚�kC1tc;d .M/! �kn .M/, cf. [2, Thm. 3.8]. Furthermore, one may
generalize the exact sequence (5.6) by relaxing the compactness support assumption to
timelike compactness, while dropping the spacelike compactness condition:

¹0º ! �ktc;n.M/
D
�! �k�1tc;n;ı.M/˚�

kC1
tc;d .M/

Gk
��! �kn .M/

D
�! ı�kn .M/˚ d�k.M/! ¹0º:

The exactness of (5.6) leads to the following isomorphism, which provides a com-
plete description of the solution space to Maxwell’s equations by generalizing the
well-known situation on a globally hyperbolic spacetime without boundary:

Solksc;n.M/ WD
®
Fk 2 �

k
sc.M/ j ıFk D 0; dFk D 0; nyFk D 0

¯
' Gk

�
�k�1c;n;ı.M/˚�

kC1
c;d .M/

�
'
�k�1
c;n;ı

.M/˚�kC1c;d .M/

D�kc;n.M/
:

5.1. Causal propagator and the pre-symplectic structure

We conclude the paper by endowing the space of homogeneous solutions to the Faraday
Cauchy problem with a pre-symplectic form. The latter is constructed out of the causal
propagators ¹GkºnkD1 introduced in Proposition 5.1. The resulting pre-symplectic
structure requires us to consider all k-forms at once in a non-trivial fashion. To this
end, we set �˚.M/ WD ˚n

kD0
�k.M/. An element of this latter space will be denoted

by F D
Pn
kD0 Fk , Fk 2 �k.M/. The natural pairing �˚.M/2 ! R inherited from

the pairings on �k.M/ is denoted by .�; �/˚. Let

� WD
®
F 2 �˚sc;n.M/ j DF D 0

¯
D
®
F 2 �˚sc.M/ j Fk 2 �

k
sc;n.M/; dFk D 0; ıFk D 0; 8k 2 ¹0; : : : ; nº

¯
:

Notice that F0 D 0; moreover,

(5.9) .DF .1/; F .2//˚ D .F
.1/;DF .2//˚

for all F .1/; F .2/ 2 �˚n .M/; supp.F .1// \ supp.F .2// compact.
A direct application of Proposition 5.1 leads to the following isomorphism of vector

spaces:

(5.10)
nM
kD1

�k�1
c;n;ı

.M/˚�kC1c;d .M/

D�kc;n.M/
'

nM
kD1

Solksc;n.M/ D � ; ˛ ˚ � 7! G .˛ ˚ �/;

where G WD ˚n
kD1

Gk .
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Proposition 5.3. With the notation introduced above, let �� W� � �!R be defined by

�� .F
.1/; F .2// WD .DF .1/;C; F .2//˚;

where F .1/ D F .1/;C C F .1/;�, F .1/;C 2 �˚
sfc;n

.M/, F .1/;� 2 �˚spc;n.M/, is an arbi-
trary decomposition of F .1/ in strictly future/past compactly supported forms.

Then, �� is a well-defined pre-symplectic structure on � . Moreover, if M admits a
finite good cover [10, 21], it holds that

�� .�; F / D 0 ” F D dA D ıB;

whereA 2�˚sc.M/ andB 2�˚sc;n.M/—in particular,A 2�˚sc.M/ is such that ıdAD 0
and nydA D 0.

Proof. We adapt the arguments of [5, 12] to the current case. To begin with, we
observe that a decomposition of the form F D FC C F � can always be realized by
multiplying F by a suitable time-dependent function � 2 C1.M/. Notice that this
also preserves the boundary conditions. Moreover, if DF D 0, then DFC D �DF �;
therefore, DFC 2 �˚c .M/. This implies that the pairing .DF .1/;C; F .2//˚ is well
defined for all F .1/; F .2/ 2 � .

Next, we observe that F .1/; F .2/ 7! .DF .1/;C; F .2//˚ is in fact independent of
the splitting F .1/ D F .1/;C C F .1/;�. Indeed, if F .1/ D F .1/;C0 C F .1/;�0 is another
such splitting, we have F .1/;C0 � F .1/;C D F .1/;� � F .1/;�0 which ensures that

F .1/;C0 � F .1/;C 2 �kc;n.M/:

This implies that

.DF .1/;C0; F .2//˚ � .DF
.1/;C; F .2//˚ D

�
D.F .1/;C0 � F .1/;C/; F .2/

�
˚

D .F .1/;C0 � F .1/;C;DF .2//˚ D 0;

where we applied equation (5.9).
Thus, the map �� W �

2 ! R is well-defined and readily bilinear. We now prove that
it is skew-symmetric; therefore, it provides a pre-symplectic structure on � . To this
end, let F .1/; F .2/ 2 � and consider two decompositions F .j / D F .j /;C C F .j /;�,
j 2 ¹1; 2º, as above. Then, repeatedly using equation (5.9), we have

�� .F
.1/; F .2// D .DF .1/;C; F .2//˚

D .DF .1/;C; F .2/;C/˚ C .DF
.1/;C; F .2/;�/˚

D �.DF .1/;�; F .2/;C/˚ C .F
.1/;C;DF .2/;�/˚

D �.F .1/;�;DF .2/;C/˚ � .F
.1/;C;DF .2/;C/˚

D �.F .1/;DF .2/;C/˚ D ��� .F
.1/; F .2//:
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Finally, assume that M has a finite cover and let F 2 � be such that �� .F
0; F / D 0.

We observe that each component Fk of F 2 � induces an element, still denoted by Fk ,
of the dual space Hk;c;n.M/� where

Hk;c;n.M/ WD

®
˛k 2 �

k
c;n.M/ j ı˛k D 0

¯
ı�kC1c;n .M/

:

Indeed, Fk.Œ˛k�/ WD .˛k; Fk/ is well defined for all Œ˛� 2 Hk;c;n.M/ on account of the
identity .ıˇkC1; Fk/D .ˇkC1;dFk/D 0 for all ˇkC1 2�kC1c;n .M/. Notice that since M
has a good cover, Hk;c;n.M/� ' H k.M/, where H k.M/ is the standard k-th de Rham
cohomology group, cf. [10, 21] and [12, App. C]. A similar argument shows that the
assignment ˛k 7! Fk.Œ�k�/ WD .�k; Fk/ defines an element in H k

c .M/
� ' Hk;n.M/.

On account of (5.10), we have

F 0 D G.˛ ˚ �/; ˛ ˚ � 2

nM
kD1

�k�1
c;n;ı

.M/˚�kC1c;d .M/

D�kc;n.M/
:

Thus, we may set F 0;C WD GC.˛ ˚ �/ which leads to

�� .F
0; F / D

�
DGC.˛ ˚ �/; F

�
˚
D .˛ ˚ �; F /˚:

The condition �� .F
0; F / D 0 and the arbitrariness of ˛ imply in particular that

.˛k; Fk/ D 0 for all ˛k 2 �kc;n;ı.M/ and k 2 ¹0; : : : ; nº. This entails that Fk D 0 2
Hk;c;n.M/� ' H k.M/; that is, Fk D dAk�1. Thus, F D dA. With a similar argu-
ment, the arbitrariness of � leads to .�k; Fk/ D 0 for all �k 2 �kc;d.M/ which implies
Fk D 0 2 H

k
c .M/

� ' Hk;n.M/; therefore, Fk D ıBkC1 for BkC1 2 �kC1n .M/.
Conversely, by direct inspection, any element F 2 � such that F D dA D ıB for

B 2 �˚n .M/ fulfils �� . ; F / D 0.

Remarks 5.4. (1) The pre-symplectic form �� involves forms of different degrees in a
non-trivial fashion. In particular, this spoils the possibility of inducing a pre-symplectic
form on a single component of F 2 � . At its core, this difficulty is due to the different
degrees in the domain and codomain of the operatorsG˙

k
, cf. Proposition 5.1. Moreover,

the degeneracy space of �� coincides with the space of spacelike solutions to Maxwell’s
equation for the electromagnetic potential [12, Def. 28]. These two facts do not allow a
clear physical interpretation of the resulting structure.

For the purpose of quantizing the solution space Solksc;n.M/ for fixed k, it is likely
more appropriate to proceed as in [13], which is based on the connection with the
solution space to the wave operator �. For the case at hand, such connection would
require the identification of appropriate boundary conditions which guarantee the formal
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self-adjointness of�. The latter can be easily determined by observing that any F 2
Solksc;n.M/ fulfils nyF D 0 as well as nydF D 0. Moreover, .�˛k; ˇk/D .˛k;�ˇk/ if
˛k; ˇk 2�

k.M/ are such that supp.˛k/\ supp.ˇk/ is compact and ny˛k D nyˇk D 0
as well as nyd˛k D nydˇk D 0. Forms abiding by these boundary conditions were
investigated in [12], which deals with the quantization of the electromagnetic vector
potential in the framework of gauge theories.

(2) Similarly to [5, 12], one may promote the isomorphism of vector spaces (5.10)
to an isomorphism of pre-symplectic vector spaces. This requires us to define a pre-
symplectic form

&� W

� nM
kD1

�k�1
c;n;ı

.M/˚�kC1c;d .M/

D�kc;n.M/

�2
! R;

&� .˛
.1/
˚ �.1/; ˛.2/ ˚ �.2// WD

�
˛.1/ ˚ �.1/; G.˛.2/ ˚ �.2//

�
˚
;

from which �� .G.˛
.1/˚ �.1//;G.˛.2/˚ �.2///D &� .˛

.1/˚ �.1/;˛.2/˚ �.2// follows
by decomposing G.˛.1/ ˚ �.1// D GC.˛.1/ ˚ �.1//�G�.˛.1/ ˚ �.1// together with
the observation that DGC.˛.1/ ˚ �.1// D ˛.1/ ˚ �.1/.

Acknowledgments. – We are grateful to Marco Benini and Igor Khavkine for helpful
discussions related to the topic of this paper. This work was produced within the activities
of the INdAM-GNFM.

Funding. – N. Drago acknowledges the support of the GNFM-INdAM Progetto
Giovani Non-linear sigma models and the Lorentzian Wetterich equation. S. Murro
acknowledges the support of the INFN-sezione di Genova as well as the support of the
GNFM-INdAM Progetto Giovani Feynman propagator for Dirac fields: a microlocal
analytic approach.

References

[1] L. Aké – J. L. Flores – M. Sánchez, Structure of globally hyperbolic spacetimes-with-
timelike-boundary. Rev. Mat. Iberoam. 37 (2021), no. 1, 45–94. Zbl 1475.53074
MR 4201406

[2] C. Bär, Green-hyperbolic operators on globally hyperbolic spacetimes. Comm. Math. Phys.
333 (2015), no. 3, 1585–1615. Zbl 1316.58027 MR 3302643

[3] C. Bär – N. Ginoux, Classical and quantum fields on Lorentzian manifolds. In Global
differential geometry, pp. 359–400, Springer Proc. Math. 17, Springer, Heidelberg, 2012.
Zbl 1254.81044 MR 3289848

https://doi.org/10.4171/rmi/1201
https://doi.org/10.4171/rmi/1201
https://zbmath.org/?q=an:1475.53074
https://mathscinet.ams.org/mathscinet-getitem?mr=4201406
https://doi.org/10.1007/s00220-014-2097-7
https://zbmath.org/?q=an:1316.58027
https://mathscinet.ams.org/mathscinet-getitem?mr=3302643
https://doi.org/10.1007/978-3-642-22842-1_12
https://zbmath.org/?q=an:1254.81044
https://mathscinet.ams.org/mathscinet-getitem?mr=3289848


n. drago, n. ginoux and s. murro 828

[4] C. Bär – N. Ginoux – F. Pfäffle, Wave equations on Lorentzian manifolds and quantiza-
tion. ESI Lect. Math. Phys., European Mathematical Society (EMS), Zürich, 2007.
Zbl 1118.58016 MR 2298021

[5] M. Benini, Optimal space of linear classical observables for Maxwell k-forms via spacelike
and timelike compact de Rham cohomologies. J. Math. Phys. 57 (2016), no. 5, article no.
053502. Zbl 1381.83045 MR 3493300

[6] M. Benini – C. Dappiaggi – T.-P. Hack – A. Schenkel, A C�-algebra for quantized
principal U.1/-connections on globally hyperbolic Lorentzian manifolds. Comm. Math.
Phys. 332 (2014), no. 1, 477–504. Zbl 1300.83006 MR 3253710

[7] M. Benini – C. Dappiaggi – A. Schenkel, Quantized Abelian principal connections on
Lorentzian manifolds. Comm. Math. Phys. 330 (2014), no. 1, 123–152. Zbl 1295.83033
MR 3215580

[8] M. Benini – C. Dappiaggi – A. Schenkel, Algebraic quantum field theory on spacetimes
with timelike boundary. Ann. Henri Poincaré 19 (2018), no. 8, 2401–2433.
Zbl 1408.81022 MR 3830218

[9] M. Benini – G. Musante – A. Schenkel, Green hyperbolic complexes on Lorentzian
manifolds. Comm. Math. Phys. 403 (2023), no. 2, 699–744. Zbl 07746827
MR 4645727

[10] R. Bott – L. W. Tu, Differential forms in algebraic topology. Grad. Texts in Math. 82,
Springer, New York, 1982. Zbl 0496.55001 MR 658304

[11] R. Brunetti – C. Dappiaggi – K. Fredenhagen – J. Yngvason (eds.), Advances in
algebraic quantum field theory. Math. Phys. Stud., Springer, Cham, 2015.
Zbl 1329.81022 MR 3381848

[12] C. Dappiaggi – N. Drago – R. Longhi, On Maxwell’s equations on globally hyperbolic
spacetimes with timelike boundary. Ann. Henri Poincaré 21 (2020), no. 7, 2367–2409.
Zbl 1442.81055 MR 4117496

[13] C. Dappiaggi – B. Lang, Quantization of Maxwell’s equations on curved backgrounds
and general local covariance. Lett. Math. Phys. 101 (2012), no. 3, 265–287.
Zbl 1257.81063 MR 2956819

[14] J. Dimock, Quantized electromagnetic field on a manifold. Rev. Math. Phys. 4 (1992), no. 2,
223–233. Zbl 0760.53049 MR 1174247

[15] N. Drago – N. Ginoux – S. Murro, Møller operators and Hadamard states for Dirac
fields with MIT boundary conditions. Doc. Math. 27 (2022), 1693–1737.
Zbl 1501.35256 MR 4574224

[16] K. Fredenhagen – K. Rejzner, Quantum field theory on curved spacetimes: axiomatic
framework and examples. J. Math. Phys. 57 (2016), no. 3, article no. 031101.
Zbl 1338.81299 MR 3470430

[17] C. Gérard, Microlocal analysis of quantum fields on curved spacetimes. ESI Lect. Math.
Phys., EMS Publishing House, Berlin, 2019. Zbl 1444.35008 MR 3972066

https://doi.org/10.4171/037
https://doi.org/10.4171/037
https://zbmath.org/?q=an:1118.58016
https://mathscinet.ams.org/mathscinet-getitem?mr=2298021
https://doi.org/10.1063/1.4947563
https://doi.org/10.1063/1.4947563
https://zbmath.org/?q=an:1381.83045
https://mathscinet.ams.org/mathscinet-getitem?mr=3493300
https://doi.org/10.1007/s00220-014-2100-3
https://doi.org/10.1007/s00220-014-2100-3
https://zbmath.org/?q=an:1300.83006
https://mathscinet.ams.org/mathscinet-getitem?mr=3253710
https://doi.org/10.1007/s00220-014-1917-0
https://doi.org/10.1007/s00220-014-1917-0
https://zbmath.org/?q=an:1295.83033
https://mathscinet.ams.org/mathscinet-getitem?mr=3215580
https://doi.org/10.1007/s00023-018-0687-1
https://doi.org/10.1007/s00023-018-0687-1
https://zbmath.org/?q=an:1408.81022
https://mathscinet.ams.org/mathscinet-getitem?mr=3830218
https://doi.org/10.1007/s00220-023-04807-5
https://doi.org/10.1007/s00220-023-04807-5
https://zbmath.org/?q=an:07746827
https://mathscinet.ams.org/mathscinet-getitem?mr=4645727
https://doi.org/10.1007/978-1-4757-3951-0
https://zbmath.org/?q=an:0496.55001
https://mathscinet.ams.org/mathscinet-getitem?mr=658304
https://doi.org/10.1007/978-3-319-21353-8
https://doi.org/10.1007/978-3-319-21353-8
https://zbmath.org/?q=an:1329.81022
https://mathscinet.ams.org/mathscinet-getitem?mr=3381848
https://doi.org/10.1007/s00023-020-00929-x
https://doi.org/10.1007/s00023-020-00929-x
https://zbmath.org/?q=an:1442.81055
https://mathscinet.ams.org/mathscinet-getitem?mr=4117496
https://doi.org/10.1007/s11005-012-0571-8
https://doi.org/10.1007/s11005-012-0571-8
https://zbmath.org/?q=an:1257.81063
https://mathscinet.ams.org/mathscinet-getitem?mr=2956819
https://doi.org/10.1142/S0129055X92000078
https://zbmath.org/?q=an:0760.53049
https://mathscinet.ams.org/mathscinet-getitem?mr=1174247
https://doi.org/10.4171/dm/x16
https://doi.org/10.4171/dm/x16
https://zbmath.org/?q=an:1501.35256
https://mathscinet.ams.org/mathscinet-getitem?mr=4574224
https://doi.org/10.1063/1.4939955
https://doi.org/10.1063/1.4939955
https://zbmath.org/?q=an:1338.81299
https://mathscinet.ams.org/mathscinet-getitem?mr=3470430
https://doi.org/10.4171/094
https://zbmath.org/?q=an:1444.35008
https://mathscinet.ams.org/mathscinet-getitem?mr=3972066


the cauchy problem for fadaray tensor 829

[18] N. Ginoux – S. Murro, On the Cauchy problem for Friedrichs systems on globally
hyperbolic manifolds with timelike boundary. Adv. Differential Equations 27 (2022), no.
7–8, 497–542. Zbl 1493.53090 MR 4413543

[19] U. Lupo, Aspects of (quantum) field theory on curved spacetimes, particularly in the
presence of boundaries. Ph.D. thesis, University of York, 2015.

[20] J. J. Sakurai, Modern quantum mechanics. Addison-Wesley Publishing, Boston, MA,
1994.

[21] G. Schwarz, Hodge decomposition—a method for solving boundary value problems.
Lecture Notes in Math. 1607, Springer, Berlin, 1995. Zbl 0828.58002 MR 1367287

Received 16 June 2023,
and in revised form 29 September 2023

Nicoló Drago
Dipartimento di Matematica, Università di Trento
Via Sommarive, 14, 38123 Povo (TN)
Trento Institute for Fundamental Physics and Applications
Via Sommarive, 14, 38123 Povo (TN), Italy
nicolo.drago@unitn.it

Nicolas Ginoux
Institut Élie Cartan de Lorraine, Université de Lorraine, CNRS
3, rue Augustin Fresnel, 57000 Metz, France
nicolas.ginoux@univ-lorraine.fr

Simone Murro
Dipartimento di Matematica, Università di Genova
Via Dodecaneso, 35, 16146 Genova
Istituto Nazionale di Alta Matematica “Francesco Severi”
Piazzale Aldo Moro, 5, 00185 Roma
Istituto Nazionale di Fisica Nucleare, sezione di Genova
Via Dodecaneso, 33, 16146 Genova, Italy
murro@dima.unige.it

https://doi.org/10.1017/bsl.2022.1
https://doi.org/10.1017/bsl.2022.1
https://zbmath.org/?q=an:1493.53090
https://mathscinet.ams.org/mathscinet-getitem?mr=4413543
https://doi.org/10.1007/BFb0095978
https://zbmath.org/?q=an:0828.58002
https://mathscinet.ams.org/mathscinet-getitem?mr=1367287
mailto:nicolo.drago@unitn.it
mailto:nicolas.ginoux@univ-lorraine.fr
mailto:murro@dima.unige.it

	1. Introduction
	2. Reformulation of the Cauchy problem
	3. Maxwell's equations as a constrained symmetric hyperbolic system
	4. The Cauchy problem for the Faraday tensor
	5. Existence of Green operators and pre-symplectic structures
	5.1. Causal propagator and the pre-symplectic structure

	References

