Rend. Lincei Mat. Appl. 19 (2008), 135[–140](#page-5-0)

Algebra. — *On a theorem of Schmid*, by FRANCESCO ESPOSITO and ANDREA MAFFEI, communicated on 14 December 2007.

ABSTRACT. — We establish for which parabolic subgroups P of a simply connected and semisimple algebraic group G with unipotent radical U and Levi factor H the rings $\Bbbk[G/H]^U$ and $\Bbbk[U^-]$ are isomorphic as Halgebras. We show a relation of this problem with a theorem of Schmid and we compare the multiplications in the rings $\Bbbk[U^-]$ and $\Bbbk[G/H]$.

KEY WORDS: Semisimple algebraic groups; homogeneous spaces; symmetric spaces; regular functions.

MATHEMATICS SUBJECT CLASSIFICATION (2000): 22E46, 20G05.

Let G be a simply connected and semisimple algebraic group over an algebraically closed field k. Let P be a parabolic subgroup of G, U its unipotent radical and H a Levi factor. Let also U^- be the unipotent radical of a parabolic opposite to P.

We want to describe the relation between the coordinate rings of G/H and U^- . We notice that since $U^- \cap H = \{1\}$ the inclusion of U^- in G induces an H-equivariant immersion $\iota: U^- \hookrightarrow G/H$. Moreover, since every orbit of a unipotent group acting on an affine variety is closed, ι is a closed immersion. So we have a surjective morphism of H-algebras $\iota^* : \Bbbk[G/H] \to \Bbbk[U^-]$. Let $\varphi : \Bbbk[G/H]^U \to \Bbbk[U^-]$ be the restriction of ι^* . Then our main result is the following

THEOREM. Let G be simple and $\&$ of characteristic 0. The map φ is an isomorphism if *and only if either* U *is commutative, or* G *is of type* F⁴ *and* P *is the maximal parabolic with semisimple Levi of type* C3*, or* G *is of type* Bⁿ *and* P *is the maximal parabolic with semisimple Levi of type* A_{n-1} *.*

The paper is organized as follows. In Section 1 we study the case of U commutative, in which we can give a simpler proof which partly holds in positive characteristic. This case is related to symmetric varieties. Indeed, for every such U , the Levi H is the subgroup of points fixed by an involution of G. In particular, we can use the theorem above to show that to determine the decomposition of $\mathbb{k}[U^-]$ into H-modules is equivalent to determining the decomposition of $\mathbb{K}[G/H]$ into G-modules. This relates a theorem of Schmid [\[5\]](#page-5-1) to a theorem of Helgason [\[3\]](#page-5-2). In the recent years there has been some interest in the products of irreducible modules in these two rings [\[1,](#page-5-3) [4,](#page-5-4) [2\]](#page-5-5) and we compare these two products. In the second section we prove the theorem in the general case.

1. THE SYMMETRIC CASE

We keep the notation introduced above. Let also $T \subset H$ be a maximal torus, $T \subset B_G \subset P$ a Borel subgroup and $B_G^ \overline{G}$ the opposite Borel. Notice that H acts on U^- by conjugation.

Notice that if V is a representation of G then the set V^U of points fixed by U is Hstable, in particular $\mathbb{K}[G/H]^U$ is an H-algebra and φ is a morphism of H-algebras. Notice also that since the image of $U \times U^-$ is dense in G/H the morphism φ is certainly injective.

Let also U_G be the unipotent radical of B_G and notice that $B_H := B_G \cap H$ is a Borel of H and that $U_H = U_G \cap H$ is the unipotent radical of B_H .

Finally, we will denote the Lie algebra of a group by the corresponding gothic letter.

THEOREM 1. *Assume that the Lie algebra* g *of* G *admits an invariant nondegenerate bilinear form and that* U *is commutative. Then:*

- (i) $\varphi : \Bbbk[G/H]^U \to \Bbbk[U^-]$ *is an isomorphism of H-algebras;*
- (ii) *the restriction of i to the* U_G -*invariants induces an isomorphism of algebras* ψ : $\Bbbk [G/H]^{U_G} \to \Bbbk [U^-]^{U_H}.$

PROOF. (i) We have already noticed that φ is injective; we now prove that it is surjective. Notice that $\mathfrak{g} = \mathfrak{u} \oplus \mathfrak{z} \oplus \mathfrak{h}' \oplus \mathfrak{u}^-$ where \mathfrak{u} is the Lie algebra of U, \mathfrak{u}^- of U^- , and \mathfrak{z} and \mathfrak{h}' are respectively the center and commutator of the Lie algebra of H. Let $z \in \mathfrak{z}$ be an element whose centralizer is equal to H. Since z is semisimple we have a closed immersion μ of G/H in g. Hence we have the following surjective morphisms of rings:

$$
S[\mathfrak{g}^*] \twoheadrightarrow \Bbbk[G/H] \twoheadrightarrow \Bbbk[U^-].
$$

Notice that $\mu(U^-) = U^- \cdot z$ is contained in $z \oplus \mathfrak{u}^-$. Let now $\mathfrak{g}^* = \mathfrak{u}^* \oplus \mathfrak{z}^* \oplus (\mathfrak{h}')^* \oplus (\mathfrak{u}^-)^*$ be the decomposition \mathfrak{g}^* induced by the decomposition $\mathfrak{g} = \mathfrak{u} \oplus \mathfrak{z} \oplus \mathfrak{h}' \oplus \mathfrak{u}^-$. Notice that $\mu(U^-) = U^- \cdot z$ is contained in $z \oplus u^-$. Hence $(h')^*$ and u^* vanish on $z \oplus u^-$ and χ^* gives constant functions. So we have a surjective map from $S[(u^-)^*]$ to $\mathbb{k}[U^-]$. Notice now that since $\mathfrak{h}' \oplus \mathfrak{z} \oplus \mathfrak{u}$ is a U-stable subspace, so is $(\mathfrak{u}^-)^*$, and the restriction map from $S(\mathfrak{g}^*)$ to $S[(u^-)^*]$ is U-equivariant. Finally, notice that U^- commutative implies that the action of U on μ is trivial, and using the invariant form we see that this implies that the action of U on $(u^-)^*$ is trivial. Hence any function on U^- can be lifted to a \tilde{U} -invariant function on g, hence also on G/H .

(ii) follows immediately from (i). \Box

In Theorem 2 we will characterize all the possible H such that φ is an isomorphism in the case of characteristic zero.

From now on we assume the characteristic to be zero.

Let us introduce a little bit of notation. Let $\Lambda = \text{Hom}(T, \mathbb{k}^*)$ be the set of weights of T and let Λ^+_H $_H^+$ be the subset of weights dominant with respect to B_H , and Λ_G^+ $_G^+$ those dominant with respect to B_G . For each $\lambda \in \Lambda_G^+$ $_G^+$ (resp. Λ_H^+ $_H^+$) let V_λ (resp. W_λ) be the irreducible representation of G (resp. H) of highest weight λ ; notice that $\Lambda_G^+ \subset \Lambda_H^+$ H^+ and $V^U_\lambda \simeq W_\lambda$ as H-modules for each $\lambda \in \Lambda_G^+$ $_G^+$

For each $\lambda \in \Lambda_G^+$ $_G^+$ let $m_\lambda = \dim (V_\lambda^*)^H$ and let Ω be the set of dominant weights such that $m_{\lambda} > 0$. So from $\Bbbk[G] \simeq V \otimes V^*$ we obtain $\Bbbk[G/H] \simeq \bigoplus V_{\lambda} \otimes \Bbbk^{m_{\lambda}}$.

Before studying the general situation we want to explain the relation between Theorem 1 and a theorem of Schmid. We want to characterize first the cases in which U is commutative. We fix some notations. Let Φ be the root system of g with respect to the torus T, and Δ the simple roots corresponding to the choice of the Borel B. Moreover, for all $\alpha \in \Phi$ let x_{α} be a root vector of weight α . Let also $\Psi \subset \Phi$ be the root system of H. ON A THEOREM OF SCHMID 137

LEMMA 2. *Assume that* G *is simple. Then the following conditions are equivalent:*

- (i) U *is commutative;*
- (ii) u *is irreducible as an* H*-module;*
- (iii) P *is the maximal parabolic associated to a root* α *which appears with multiplicity* 1 *in the highest root;*
- (iv) *there is an involution* σ *such that* $H = G^{\sigma}$ *.*

PROOF. (ii) \Rightarrow (i). Indeed, [u, u] is an H-submodule of u different from u.

(i)⇒(iii). Assume first that P is not maximal and let $\alpha, \beta \in \Delta \setminus \Psi$ be distinct simple roots. Since G is simple, the Dynkin diagram is connected; let $\gamma_1, \dots, \gamma_n$ with $\gamma_1 = \alpha$ and $\gamma_n = \beta$ be a path in the Dynkin diagram from α to β . Let $\gamma = \gamma_1 + \cdots + \gamma_{n-1}$. Then $x_y, x_\beta \in \mathfrak{u}$ and $[x_y, x_\beta] \neq 0$. Let P be the maximal parabolic corresponding to the simple root α and assume that $α$ appears with multiplicity greater than or equal to 2 in the highest root. Then there is a root β such that α appears with multiplicity 1 in β and $\beta + \alpha \in \Phi$. So $x_{\beta}, x_{\alpha} \in \mathfrak{u}$ and $[x_{\alpha}, x_{\beta}] \neq 0$.

(iii) \Rightarrow (i). We prove that x_α generates u as an H-module so u is an irreducible Hmodule of lowest weight α . Let $x_{\beta} \in \mathfrak{u}$. Then $\beta = \alpha + \sum_{i=1}^{n} \gamma_i$ with $\gamma_i \in \Delta \setminus \Psi$. We proceed by induction on *n*. If *κ* is the Killing form then $\kappa(\beta, \beta) > 0$ so either $\kappa(\beta, \alpha) > 0$ or $\kappa(\beta, \gamma_i) > 0$ for some *i*. In the first case $\gamma = \beta - \alpha \in \Psi$ so $x_{\gamma} \in \mathfrak{h}$ and x_{β} is a scalar multiple of $[x_{\gamma}, x_{\alpha}]$. In the second case $x_{\beta-\gamma_i} \in \mathfrak{u}$ and we conclude by induction.

(iii)⇒(iv). We can define an involution σ acting trivially on the root vectors x_β and $x_{-\beta}$ for $\beta \in \Delta \setminus \{\alpha\}$ and acting as −1 on the root vectors e_{α} and $e_{-\alpha}$.

(iv) \Rightarrow (i). Let $H = G^{\sigma}$. Then σ fixes the torus T and the roots Φ . So the action is given by multiplication by -1 on x_β for $\beta \in \Phi \setminus \Psi$ and by multiplication by 1 on x_β for $\beta \in \Psi$. Now we can argue as in (i) \Rightarrow (iii). \Box

It follows immediately that for G semisimple, U is commutative if and only if H is the subgroup of points fixed by an involution. In particular, B_G has an open orbit in G/H in this case, in particular $m_{\lambda} \leq 1$ for all λ . Hence if U is commutative we have

$$
\Bbbk[G/H]=\bigoplus_{\lambda\in\varOmega}V_{\lambda}
$$

and from Theorem 1 by taking U -invariants we get

$$
\Bbbk[U^-] = \bigoplus_{\lambda \in \Omega} W_{\lambda}.
$$

In particular, using Helgason's description [\[3\]](#page-5-2) of spherical representations (irreducible representations of G which have a nonzero vector fixed by H) we see how we can deduce the description of $\mathbb{k}[U]$ as an H-module given by Schmid [\[5\]](#page-5-1) for hermitian symmetric varieties.

REMARK 3. We want to compare the product of two G-submodules of $\mathbb{K}[G/H]$ under the usual multiplication in the ring with the product of H-submodules of $\Bbbk[U^-]$ in the case where U is commutative. Recently these products have been studied: in [\[4,](#page-5-4) [1\]](#page-5-3) for the case of G-submodules of $\mathbb{k}[G/H]$ and in [\[2\]](#page-5-5) for the case of H-submodules of $\mathbb{k}[U^-]$.

Given $\lambda, \mu \in \Omega$ let $V(\lambda, \mu) = \{v \in \Omega : V_v \subset V_\lambda \cdot V_\mu \subset \mathbb{K}[G/H]\}\$ and similarly define $W(\lambda, \mu) = \{v \in \Omega : W_v \subset W_{\lambda} \cdot W_{\mu} \subset \mathbb{k}[U^-]\}.$

From the previous constructions we obtain $W(\lambda, \mu) \subset V(\lambda, \mu)$. We now give an example where equality does not hold.

Let $X_1 = X_2 = \mathbb{k}^n$ and $X = X_1 \oplus X_2$. Let $G = SL(X)$ and let H be the Levi subgroup which stabilizes X_1 and X_2 . The center of H is the one-parameter subgroup $\gamma(t) = t \, id_{X_1} \oplus t^{-1} id_{X_2}$ and its semisimple part is $SL(X_1) \times SL(X_2)$. Let also $V = \mathfrak{sl}(X)$ be the representation of highest weight θ , the highest root of G, and notice that $W = V^U$ $X_1 \otimes X_2^*$ and that $\gamma(t)$ acts by multiplication by t^2 on W and so by multiplication by t^4 on $W \cdot \overline{W}$. In particular, $0 \notin W(\theta, \theta)$, while it is easy to see that $0 \in V(\theta, \theta)$ (see for example [\[1\]](#page-5-3)).

2. THE GENERAL CASE

We now go back to the general situation and we classify all H such that the map φ introduced in the first section is an isomorphism.

LEMMA 4. Assume that G is simple. If $\varphi : \Bbbk[G/H]^U \to \Bbbk[U^-]$ is an isomorphism then *either* **u** *is irreducible or* G *is not simply laced and* $\mathfrak{u} \simeq W_{\theta} \oplus W_{\theta'}$ *as H-modules where* θ *is the highest root of* $\mathfrak g$ *and* θ' *is the highest short root.*

PROOF. From $\Bbbk [G/H]^U \simeq \Bbbk [U^-]$ as H-modules we deduce that

$$
\Bbbk[U^-] \simeq \bigoplus_{\lambda \in \Lambda_G^+} W_{\lambda} \otimes \Bbbk^{m_{\lambda}};
$$

in particular, all the H-modules which appear in $\mathbb{k}[U^-]$ have a highest weight which is dominant with respect to B_G .

Notice also that the exponential map gives an algebraic H-equivariant isomorphism between u⁻ and U^- and in particular $\Bbbk[U^-] \simeq \Bbbk[\mu^-] \simeq S(\mu)$ as \hat{H} -algebras. In particular, the representation $u = S^1(u)$ must appear in the sum $\bigoplus_{\lambda \in \Lambda_G^+} W_{\lambda} \otimes \mathbb{k}^{m_{\lambda}}$. But $u \subset u_G$, the Lie algebra of U_G whose weights are given by positive roots. Now if G is simply laced there is only one such root which is dominant with respect to B_G and that is the highest root. So in this case $\mu = W_\theta$ and it is irreducible. On the other hand, if G is not simply laced there can be two such roots: θ and θ' , and u can be either irreducible or isomorphic to $W_{\theta} \oplus W_{\theta'}$. \Box

When μ is an irreducible H -module, we are back in the commutative case, so we will have to analyze the other case.

LEMMA 5. Assume that G is a simple Lie group not simply laced. If $\mathfrak{u} \simeq W_{\theta} \oplus W_{\theta'}$ as H*-modules then* P *is a maximal parabolic corresponding to a simple root* α *which appears* with multiplicity 2 in the highest root and with multiplicity 1 in θ' .

PROOF. Assume first P is not maximal and consider simple roots α , β which are not in the root system of H. Let u₁ be the span of the root spaces \mathfrak{g}_{γ} with γ a positive root where α appears with multiplicity 1 and $β$ with multiplicity 0; similarly, let u_2 be the span of the root spaces \mathfrak{g}_{γ} with γ a positive root where β appears with multiplicity 1 and α with multiplicity 0; finally, let u₃ be the span of the root spaces g_{γ} with γ a positive root where both α and β appear with multiplicity 1. These spaces are not zero and H-stable, contrary to the fact that u is the sum of two irreducible H -modules. Similarly one can treat the case in which P is the maximal parabolic corresponding to a root α which appears with multiplicity at least 3 in the highest root or with multiplicity 2 in both θ and θ' (this last case actually cannot occur under our hypothesis). \Box

PROPOSITION 6. *Assume that* G *is a simple Lie group not simply laced and that* P *is a maximal parabolic corresponding to a simple root* α *which appears with multiplicity* 2 *in the highest root and with multiplicity* 1 *in* θ' *and that* $\mu \simeq W_{\theta} \oplus W_{\theta'}$ *. Then* φ *is an isomorphism if and only if* $m_{\theta'} = 1$ *and* W_{θ} *is not an irreducible factor of* $S^2(W_{\theta'})$ *.*

PROOF. We notice first that $(V_{\theta}^*)^H = \mathfrak{g}^H = Z(\mathfrak{h}) = \mathfrak{z}$, the center of the Lie algebra of H, is one-dimensional and spanned by the fundamental coweight $z = \omega_\alpha^\vee$ relative to the root α . In particular, $m_{\theta} = 1$.

Notice also that z acts as $\langle \lambda, z \rangle$ times the identity on the representation of W_{λ} . In particular, it acts as the identity on $W_{\theta'}$ and twice the identity on W_{θ} . So, since $S^1(\mathfrak{u}) =$ $W_{\theta} \oplus W_{\theta'}$ generates $S(u)$ and the multiplication is equivariant, if we look at the action of z on $S(u)$ we see that $W_{\theta'}$ can appear only in $S^1(u)$ and W_{θ} can appear only as a factor of $S^1(\mathfrak{u})$ and in $S^2(\mathfrak{u})$ as a factor of $S^2(W_{\theta})$.

In particular, if W_{θ} is not an irreducible factor of $S^2(W_{\theta'})$ then W_{θ} and $W_{\theta'}$ appear with multiplicity one in $S(u)$ and their sum is equal to $u = S^1(u)$. Moreover, if $m_{\theta'} = 1$ then W_{θ} and $W_{\theta'}$ also appear with multiplicity 1 in $\mathbb{k}[G/H]^U$. So since φ is always injective its image contains $S^1(\mathfrak{u})$ which generates $S(\mathfrak{u})$, hence it is surjective.

Conversely, assume that φ is an isomorphism. Then $S[u] \simeq \bigoplus_{\lambda \in \Omega} W_{\lambda} \otimes k^{m_{\lambda}}$. We have already noticed that $m_\theta = 1$ in this case and W_θ indeed appears in degree one. So it cannot appear also in degree two as a factor of $S^2(W_{\theta'})$, hence W_{θ} is not an irreducible factor of $S^2(W_{\theta})$. Also we have already noticed that W_{θ} can appear only in degree one where it appears with multiplicity 1, so we must have $m_{\theta'} = 1$. \Box

THEOREM 7. Let G be simple. Then φ is an isomorphism if and only if either U is *commutative, or* G *is of type* F⁴ *and* P *is the maximal parabolic with semisimple Levi of type* C3*, or* G *is of type* Bⁿ *and* P *is the maximal parabolic with semisimple Levi of type* A_{n−1}.

PROOF. From Lemma 1 we must analyze the following cases (the simple roots α_i and the fundamental weights ω_i are numbered as in Bourbaki):

CASE 1: G of type B_n and P a maximal parabolic corresponding to the *i*-th simple root with $i = 2, ..., n$. We have $\theta' = \sum \alpha_i = \omega_1$ and $\theta = \alpha_1 + 2 \sum_{i > 1} \alpha_i = \omega_2$. In particular, $V_{\theta'}^H = 0$ if $i \neq n$ and is one-dimensional for $i = n$. Finally, $S^2(W_{\theta'}) = S^2(\mathbb{k}^n)$ is irreducible in this case and does not contain $W_{\theta} = \Lambda^2(\mathbb{k}^n)$ and Proposition 6 applies.

CASE 2: G of type C_n and P a maximal parabolic corresponding to the n-th simple root. We have $\theta' = \alpha_1 + 2 \sum_{1 \le i \le n} \alpha_i + \alpha_n = \omega_2$ and $\theta = 2 \sum_{i \le n} \alpha_i + \alpha_n$. In particular $S^2(W_{\theta'}) = S^2(\Lambda^2(\mathbb{k}^{2n})/\mathbb{k}) \supset W_{\theta} = S^2(\mathbb{k}^{2n})$ and Proposition 6 applies.

CASE 3: G of type F_4 and P a maximal parabolic corresponding to the first simple root. We have $\theta' = \alpha_1 + 2\alpha_2 + 3\alpha_3 + 2\alpha_4 = \omega_4$ and $\theta = 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4 = \omega_1$. Both conditions of Proposition 6 can be easily checked.

CASE 4: G of type G_2 and P a maximal parabolic corresponding to the second simple root. We have $\theta' = 2\alpha_1 + \alpha_2 = \omega_1$ and $\theta = 3\alpha_1 + 2\alpha_2 = \omega_2$. In this case $W_{\theta'}^H = 0$ and Proposition 6 applies. \Box

As already noticed in the introduction, for a general semisimple G it immediately follows that φ is an isomorphism if and only if $G \supset H$ is a product of the cases listed in the Theorem.

REFERENCES

- [1] R. CHIRIVÌ - A. MAFFEI, *Projective normality of complete symmetric varieties*. Duke Math. J. 122 (2004), 93–123.
- [2] T. ENRIGHT - N. WALLACH, *A Pieri rule for Hermitian symmetric pairs. II*. Pacific J. Math. 216 (2004), 51–61.
- [3] S. HELGASON, *A duality for symmetric spaces with applications to group representations*. Adv. Math. 5 (1970), 1–154.
- [4] S. KANNAN, *Projective normality of the wonderful compactification of semisimple adjoint groups*. Math. Z. 239 (2002), 673–682.
- [5] W. SCHMID, *Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Raumen ¨* . Invent. Math. 9 (1969/1970), 61–80.

Received 20 November 2007, and in revised form 20 December 2007.

> Andrea Maffei Dipartimento di Matematica Universita di Roma "La Sapienza" ` piazzale Aldo Moro 5 00185 ROMA, Italy amaffei@mat.uniroma1.it

Francesco Esposito Dipartimento di Matematica Pura e Applicata Universita degli Studi di Padova ` via Trieste 63 35121 PADOVA, Italy esposito@math.unipd.it