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Weak-strong uniqueness for volume-preserving
mean curvature flow

Tim Laux

Abstract. In this note, we derive a stability and weak-strong uniqueness principle
for volume-preserving mean curvature flow. The proof is based on a new notion of
volume-preserving gradient flow calibrations, which is a natural extension of the con-
cept in the case without volume preservation recently introduced by Fischer, Hensel,
Laux and Simon (2021). The first main result shows that any strong solution with
certain regularity is calibrated. The second main result consists of a stability estimate
in terms of a relative entropy, which is valid in the class of distributional solutions to
volume-preserving mean curvature flow.

1. Introduction

Volume-preserving mean curvature flow is the most basic geometric evolution equation
for closed hypersurfaces that preserves the enclosed volume. More precisely, the equation
reads

V D �H C � on †.t/;(1.1)

where V andH denote the normal velocity and the mean curvature of the evolving surface
†.t/ D @�.t/, respectively, and

� D �.t/ WD
1

Hd�1.†.t//

Z
†.t/

H dHd�1(1.2)

is the Lagrange multiplier corresponding to the volume constraint j�.t/j D j�.0/j D m.
This system has a gradient-flow structure as is seen at the energy dissipation relation for
the area functional EŒ†� D Hd�1.†/,

d
dt
EŒ†.t/� D

Z
†.t/

VH dHd�1
D �

Z
†.t/

V 2 dHd�1;

which holds for sufficiently regular solutions of (1.1)–(1.2).
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Precisely, (1.1)–(1.2) is the L2-gradient flow of the area functional restricted to the
infinite dimensional “manifold” ¹† D @� � Rd W j�j D mº which encodes the volume
constraint. The equation arises as the singular limit of the nonlocal Allen–Cahn equation
by Rubinstein and Sternberg [32] and is a common model for coarsening processes in
which the phase volume is preserved.

Gage [10], and Escher and Simonett [6] established the existence of classical solu-
tions for volume-preserving mean curvature flow for short time in two respectively, higher
dimensions. However, singularities may appear in finite time, even in the case of planar
curves [29]. To describe the evolution through these singular events, several notions of
weak solutions have been considered. Mugnai, Seis and Spadaro [30] constructed solu-
tions based on an energy-convergence assumption using an (almost) volume-preserving
version of the scheme considered by Luckhaus and Sturzenhecker [28]. Swartz and the
author [26] proved the convergence of the volume-preserving thresholding scheme, an
efficient numerical algorithm, under a similar condition. The latter result also applies to
certain multiphase systems with a volume constraint. Also for the nonlocal Allen–Cahn
equation [32], such a convergence result can be derived, see the work of Simon and the
author [25]. In fact, this result applies to any number of phases any selection of which
may carry a volume constraint. Volume-preserving mean curvature flow can also be for-
mulated for evolving varifolds by extending Brakke’s notion [3] of mean curvature flow
to this volume-preserving case. Takasao [34] showed that solutions to a slightly modified
version of the nonlocal Allen–Cahn equation due to Golovaty [12] converge to this vari-
fold solution. Recently, Takasao [35] refined his methods by slightly relaxing the volume
constraint in the approximation and only recovering the precise volume preservation in the
sharp-interface limit, which in particular allowed him to extend his earlier result [34] to
higher dimensions. The idea of relaxing the volume constraint in the approximation is in
some sense inspired by [30]. Although volume-preserving mean curvature flow does not
obey a naive comparison principle, there is also a way to make the powerful machinery of
viscosity solutions work in the case of volume-preserving mean curvature flow by fixing
the Lagrange multiplier for competitors as was shown by Kim and Kwon [19].

In this note, we want to address the consistency of weak solutions from [25, 26, 30]
with classical solutions. A priori, it is not evident that these weak solutions agree with the
unique strong solution (as long as the latter exists). To draw this connection between these
solution concepts, we extend the notion of gradient-flow calibrations introduced in the
recent work by Fischer, Hensel, Simon and the author [7] to the volume-preserving case
and show that any sufficiently regular classical solution is calibrated in this sense, see The-
orem 2.2. Then, in Theorem 2.6, we show that every calibrated flow is unique and stable
in the class of distributional solutions. The proofs are self-contained and elementary. The
main novelty of this work is a suitable extension B of the velocity field in the definition of
gradient-flow calibrations. Instead of an ad-hoc extension by nearest-point projection onto
the classical solution, we solve a Neumann–Laplace equation to guarantee that next to the
usual conditions, B also satisfies the incompressibility condition r � B D 0, at least with
a linear error as one moves away from the interface. Surprisingly, with this construction,
no additional estimate on the closeness of the respective Lagrange multipliers is needed
to derive the relative entropy inequality.
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The relative entropy method and the notion of gradient-flow calibrations in [7] has
led to several recent results for geometric evolution equations. The method can be used to
prove quantitative convergence of the Allen–Cahn equation to mean curvature flow as was
shown by Fischer, Simon and the author [8]. One of the main advantages of the method
is its simplicity and its applicability in vectorial problems as it does not require a spectral
analysis of the linearized Allen–Cahn operator and is not based on the comparison princi-
ple. Liu and the author [23] combined the relative entropy method with weak convergence
methods to derive the sharp-interface dynamics of isotropic-nematic phase transitions in
liquid crystals. Most recently, Fischer and Marveggio [9] extended the result [8] to the
vector-valued Allen–Cahn equation and proved its convergence to multiphase mean curva-
ture flow. Previous to this result, only formal arguments [4] and the conditional result [25]
were known. One can also lower the assumptions on the weak solution to the bare min-
imum of a suitable optimal energy-dissipation relation as was shown by Hensel and the
author [14], which underlines the importance of the underlying gradient-flow structure
of (1.1)–(1.2). Also boundary conditions can be naturally incorporated in the method as
was shown by Hensel and Moser [15], and Hensel and the author [13].

We expect that also in this volume-preserving version, the method will be a useful
tool for further work, such as quantitative convergence results for phase-field models in
the sharp-interface limit or the analysis of the long-time behavior of solutions. The former
has been done in a qualitative way in the previously mentioned works [25, 26, 34, 35].
The latter problem has been addressed with different methods in [5,6,10,16,17]. Another
interesting possible future application of these methods is a local minimality criterion for
constant mean curvature hypersurfaces with respect to volume-preserving distortions. We
mention that the methods developed here should naturally extend to the setting of varifold
solutions like the ones constructed by Takasao [34, 35]. In the unconstrained case of stan-
dard mean curvature flow, this has been shown in [14]. Also an extension to sufficiently
regular, strongly convex anisotropies in both surface tension and mobility function seems
feasible. In the case of standard mean curvature flow, this is part of the master’s thesis [36],
which also extends ideas from [20]. However, in the case of non-smooth or non-strongly
convex anisotropies, this has not yet been explored. Finally, let us mention the recent
work [18], in which with completely different methods, it is shown that the scheme [30]
converges to volume-preserving mean curvature flow before the onset of singularities.

The remainder of this paper is organized as follows. In Section 2, we state the main
definitions and results. In Section 3 we construct the gradient-flow calibrations to prove
Theorem 2.2. Finally, in Section 4, we prove Theorem 2.6 by deriving a relative entropy
inequality which allows to close a Gronwall argument.

We will use the following notation throughout the paper. We write a . b if there exists
a constant C <1 depending on d , T �, and†� D .†�.t//t2Œ0;T ��, such that a � Cb. The
Landau symbol O will be used frequently. Precisely, by a D O.b/ we mean that there
exists a constant C <1 depending on d , T �, and †� D .†�.t//t2Œ0;T �� defined below,
such that jaj � C jbj.
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2. Main results

Let us first define the notion of gradient flow calibrations in the context of volume-
preserving mean curvature flow.

Definition 2.1. Let †� D .†�.t//t2Œ0;T �� be a one-parameter family of closed surfaces
such that†�.t/D @��.t/� Rd . Let �;BWRd � Œ0; T ��! Rd , let # WRd � Œ0; T ��! R,
and let ��W Œ0; T ��! R. We call the tuple .�; B; #; ��/ a gradient-flow calibration for
volume-preserving mean curvature flow if the following statements hold true.

(i) Regularity. The vector field � and the function # satisfy

� 2 C 1c .R
d
� Œ0; T ��IRd / and # 2 C 0;1.Rd � Œ0; T ��/ \ L1.Rd � Œ0; T ��/:

Furthermore, for each t 2 Œ0; T �� it holds

B.�; t / 2 C 1;1.Rd IRd /:

(ii) Vanishing divergence. The vector field B satisfies for each t 2 Œ0; T ��

r � B.�; t / D O.dist.�; †�.t///:(2.1)

(iii) Normal extension and shortness. The vector field � extends the exterior unit normal
vector field of †�, i.e.,

�.�; t / D ��.�; t / on †�.t/;(2.2)

and it is short away from †� in the sense that there exists a constant c > 0 such
that

j�.�; t /j � max¹.1 � c dist2.x;†�.t//; 0º;(2.3)

(iv) Approximate transport equations. They weight # is transported to first order�
.@t# C .B � r/#

�
.�; t / D O.dist.�; †�.t///;(2.4)

and the length of � to second order�
@t j�j

2
C .B � r/j�j2

�
.�; t / D O.dist2.�; †�.t///:(2.5)

Furthermore, there exists a constant C <1 and a function f WRd � Œ0; T ��! R
with kf .�; t /kL1 � C for all t 2 Œ0; T �� such that the vector field � is almost
transported by B in the sense that�

@t� C .B � r/� C .rB/
T�
�
.�; t / D f .�; t / �.�; t /CO.dist.�; †�.t///:(2.6)

(v) Geometric evolution equation. It holds

B.�; t / � �.�; t /Cr � �.�; t / � ��.t/ D O.dist.�; †�.t///(2.7)

and the function ��W Œ0; T ��! R is given by

��.t/ WD
1

Hd�1.†�.t//

Z
†�.t/

r � �.�; t / dHd�1:(2.8)
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(vi) Sign condition on and coercivity of transported weight. We have

#.�; t / < 0 in ��.t/;

#.�; t / > 0 in Rd n��.t/:

Furthermore, there exists a constant c > 0 such that

min¹dist.�; †�.t//; cº � j#.�; t /j:(2.9)

In case such a gradient-flow calibration exists for †�, we call †� a calibrated flow.

All the quantities �,B , # and �� in the definition have natural interpretations. First, � is
an extension of the normal vector field ��. Second,B is an extension of the velocity vector
field V ��� with unprescribed tangential part but with the additional property that it is
solenoidal, which is compatible with the volume-preservation of the PDE (2.10). Third, #
is a suitably truncated version of the signed distance function to†�.t/. Lastly, �� D ��.t/
corresponds precisely to the Lagrange multiplier (1.2) appearing in the PDE (1.1).

Note carefully that the extended velocity vector field B.�; t / does not need to point in
normal direction on †�.t/. In fact, as will be seen in our construction, in general B.�; t /
will have a nontrivial tangential component, which is of course compatible with the geo-
metric invariance of the evolution equation (1.1)–(1.2).

On a technical note, it is interesting that we do not need to impose any assumption
on the dependence of B on the time variable t . The map t 7! B.�; t / does not have to be
measurable, let alone continuous in any sense.

The first main result states that every classical solution to volume-preserving mean
curvature flow (with some regularity assumption stated in Definition 2.3 below) is cali-
brated in the sense of Definition 2.1.

Theorem 2.2. Let †�D .†�.t//t2Œ0;T �� be a regular solution to volume-preserving mean
curvature flow in the sense of Definition 2.3 below. Then there exists a gradient-flow cali-
bration .�; B; #; ��/ of †�.

Definition 2.3. Let †� D .†�.t//t2Œ0;T �/, with †�.t/ D @��.t/ and ��.t/ bounded,
say,��.t/ � BR�.0/ for all t 2 Œ0; T ��. Then we call †�.t/ a regular solution of volume-
preserving mean curvature flow if †�.t/ is of class C 3;˛ with normal velocity field V � of
class C 2;˛ , and for all t 2 Œ0; T �� it holds

V � D �H� C �� on †�.t/;(2.10)

where the function �� D ��.t/ is the Lagrange multiplier corresponding to the volume-
constraint j�.t/j D j�.0/j DW m�, which is explicitly given by

��.t/ D
1

Hd�1.†�.t//

Z
†�.t/

H� dHd�1:(2.11)

We now want to state the precise definition of distributional solution to volume-pre-
serving mean curvature flow used in this work. To this end, let us introduce some notation
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from the theory of functions of bounded variation and sets of finite perimeter. We use the
(standard) notation

EŒ�.�; t /� WD

Z
Rd

jr�.�; t /j D sup
°Z

Rd

.r � �/�.�; t /dx W � 2C 1.Rd IRd /; j�j � 1 in Rd
±

to denote the total mass of the total variation measure of the time-slice r�.�; t /, which
corresponds to the perimeter of the set ¹�.�; t / D 1º. Furthermore, we denote by �.�; t / D
�r�.�; t /=jr�.�; t /j the (measure-theoretic) exterior normal to the set of finite perimeter
¹�.�; t / D 1º, which satisfies r�.�; t / D ��.�; t /jr�.�; t /j. Now we are in the position to
state the definition of distributional solutions.

Definition 2.4. A measurable function �WRd � .0;T /!¹0;1º 2L1..0;T /IBV.Rd // is
called a distributional solution to volume-preserving mean curvature flow if there exist a
jr�j-measurable function V WRd � .0; T /! R and a measurable function �W .0; T /! R
such that the following statements hold.

(i) Normal velocity. For all test functions � 2 C 1.Rd � Œ0; T // and almost every T 0 2
.0; T /, it holdsZ

Rd

�.�; T 0/�.�; t / dx �
Z

Rd

�.�; 0/�.�; 0/ dx

D

Z
Rd�.0;T 0/

� @t� dx dt C
Z

Rd�.0;T 0/

� V jr�j dt:(2.12)

(ii) Evolution equation. For all test vector fields B 2 C 1.Rd IRd / and almost every
t 2 .0; T /, it holds

(2.13)
Z

Rd�¹tº

.r � B � � � rB �/ jr�j D �

Z
Rd�¹tº

.V � �/� � B jr�j:

(iii) Optimal energy dissipation rate. For almost every T 0 2 .0; T /, we have

EŒ�.�; T 0/�C

Z
Rd�.0;T 0/

V 2 jr�j dt � EŒ�.�; 0/�:(2.14)

(iv) Volume preservation. For almost every t 2 .0; T /,

(2.15)
Z

Rd

�.�; t / dx D
Z

Rd

�.�; 0/ dx:

(v) Square-integrable Lagrange multiplier. For any T 2 .0;T �/, there exists a constant
C�.T / <1 such that

(2.16)
Z T

0

�2.t/ dt � C 2� .T /:

Remark 2.5. Items (i)–(ii) precisely correspond to the weak formulation in [26].
The optimal energy-dissipation rate in item (iii) is the natural rate which is satisfied by

any classical solution. We note that such a sharp inequality is at the heart of the definition
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of gradient flows [2, 33] and has been verified for the standard mean curvature flow by
Otto and the author [24]; see also [22] for the case of multiple phases.

Finally, for the solutions constructed in [25, 26], the L2-bound holds with

C 2� .T / . .1C T /.1C .E.�.�; 0///4/;(2.17)

which follows immediately from the analogous bounds for the approximation schemes,
see Proposition 1.12 in [26] and Proposition 4.3 in [25], respectively.

In the case of the implicit time discretization from [30], theL2-bound on the Lagrange
multiplier has been established, too, while the sharp energy-dissipation relation above is
expected to hold for this scheme as well, but has not yet been derived.

As in the unconstrained case of standard mean curvature flow [7, 21], we define the
relative entropy

EŒ�;†��.t/ WD

Z
Rd�¹tº

.1 � �.x; t/ � �.x; t// jr�j

D EŒ�.�; t /� �

Z
Rd

�.x; t/.r � �/.x; t/ dx(2.18)

and the volume error

F Œ�;†��.t/ WD

Z
Rd

j�.x; t/ � ���.t/.x/j j#.x; t/j dx

D

Z
Rd

.�.x; t/ � ���.t/.x//#.x; t/ dx:(2.19)

Now we are in the position to formulate our second main result, which states that
any calibrated flow is unique and stable in the class of distributional solutions to volume-
preserving mean curvature flow.

Theorem 2.6. Let †� D .†�.t//t2Œ0;T �� be a calibrated flow according to Definition 2.1
and let � be a distributional solution of volume-preserving mean curvature flow in the
sense of Definition 2.4. Then the relative entropy E.t/ and the volume error F .t/ given
in (2.18) and (2.19), respectively, satisfy

EŒ�;†��.T /C F Œ�;†��.T / � eC
p
T .1CC�.T //

�
EŒ�;†��.0/C F Œ�;†��.0/

�
(2.20)

for a.e. T 2 .0; T �/. In particular, if �.x; 0/ D ��0.x/ for a.e. x 2 Rd , then

�.x; t/ D ���.t/.x/ for a.e. .x; t/ 2 Rd � .0; T �/:(2.21)

Clearly, Theorems 2.2 and 2.6 imply the weak-strong uniqueness of solutions to vol-
ume-preserving mean curvature flow.

Corollary 2.7. As long as a strong solution to volume-preserving mean curvature flow
according to Definition 2.3 exists, any weak solution in the sense of Definition 2.4 with the
same initial conditions has to agree with it.
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3. Construction of gradient-flow calibration for volume-preserving
mean curvature flow

The main purpose of this section is to prove Theorem 2.2. Before proving this general
result, it is worth mentioning the following basic example of the round sphere, for which
the construction of the gradient-flow calibration is straight-forward.

Example 3.1. Let ��.0/ D BR be a ball. Then the volume-preserving mean curvature
flow starting from ��.0/ is static: ��.t/ D BR. Then one may simply define �.x; t/ WD
�.x/D �.jxj �R/x=jxj and #.x; t/ WD #.x/D �.jxj �R/, where � is a cut-off around 0
and � is a smooth truncation of the identity. (These functions will be discussed in more
detail in the following proof for the general case.) Furthermore, we set B.x; t/ WD 0 and
��.t/ WD .d � 1/=R. It is now straight-forward to see that .�; B; ��/ is a gradient flow
calibration for †�.t/ D @��.t/.

The same reasoning also applies to a finite union of balls by making the localization
scale in the functions � and � sufficiently small.

In the general case, the construction of B is slightly more involved, and this is the
heart of the matter. Since the divergence-constraint (2.1) is underdetermined, it is rather
natural to make the ansatz B D r' for some potential 'WRd � Œ0; T ��! R.

As a first (overoptimistic) idea, one could hope to find an extension B such that in
fact r � B.�; t / D 0 in all of Rd . This would imply that '.�; t / would solve the following
Neumann–Laplace problem:´

�'.�; t / D 0 in Rd n†�.t/;

��.�; t / � r'.�; t / D V �.�; t / on †�.t/:
(3.1)

However, it turns out that this is not compatible with the regularity requirements. It is
not even clear that the tangential component of B.�; t / would be continuous across the
interface †�.t/

Therefore, we will construct an extension B.�; t / which is be solenoidal only inside
†�.t/, which then implies the still slightly stronger version r �B.�; t /DO.dist.�;��.t///
of (2.1).

Proof of Theorem 2.2. By the assumed regularity of †�, there exists ı D ı.†�/ > 0 such
that for all t , the signed distance function s.�; t / has the same regularity as†� in the tubular
neighborhood Uı D ¹.x; t/ 2Rd � Œ0;T �� W js.x; t/j< ıº of†�, see for example Ambro-
sio’s beautiful contribution [1], or the author’s lecture notes [21]. Here and throughout, we
use the sign convention s.�; t / < 0 in��.t/ so that rs.�; t /D ��.�; t / on†�.t/. We denote
the timeslice of the neighborhood Uı by Uı.t/ WD ¹x 2Rd W js.x; t/j< ıº, for t 2 Œ0;T ��.

Step 1. Construction. The ansatz for the extension of the normal vector field and the
weight function are the ad-hoc constructions

�.x; t/ WD �.s.x; t//rs.x; t/ and #.x; t/ WD �.s.x; t//;

where � is a smooth cutoff function with �.0/ D 1 and �.z/ D 0 for jzj � ı, and � is
a smooth and non-decreasing truncation of the identity with �.z/ D z for jzj � ı=2 and
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�.z/ D sign.z/ for jzj � ı: The parameter �� is exactly given by its namesake, the La-
grange multiplier given in (2.11).

The construction of B is slightly more involved. We fix t 2 Œ0; T �� and let ' solve the
following Neumann–Laplace problem:

�' D 0 in ��.t/;(3.2)
�� � r' D V �.�; t / on †�.t/:(3.3)

The existence of this potential ' with
R
��.t/

' dx D 0 follows from elementary elliptic
theory thanks to the compatibility of the boundary datum with the vanishing right-hand
side: Z

†�.t/

V �.�; t / dHd�1
D

d
dt
j��.t/j D 0:

By Schauder boundary regularity theory for the Neumann problem, see Theorem 4.1
in [31] or Theorem 95 in [27], we have

k'kC 2;˛.��.t// � C.�
�.t//kV �.�; t /kC 1;˛.@��.t// � C.†

�.t//:

To improve the regularity, we differentiate the equation. Although this is folklore (in
particular away from the boundary), we provide a short argument to make sure that the
estimates hold uniformly on all of��.t/; to this end, we will choose a suitable coordinate
frame which is adapted to the geometry of @��.t/. More precisely, in order to show that
' 2C 3;˛.��.t//, or in other wordsr' 2C 2;˛.��.t//, it is sufficient to prove that for any
orthogonal frame .X1; : : : ;Xd / of classC 2;˛.��.t//withXi � ��D 0 for i D 1; : : : ;d � 1
and Xd D �� on @��.t/, we have Xi � r' 2 C 2;˛.��.t// for i D 1; : : : ; d , which we
will show now.

Given such a frame .X1; : : : ; Xd / and an index i D 1; : : : ; d � 1 belonging to a “tan-
gent” vector field, we see that  WD Xi � r' solves

� D �Xi � r' C 2rXi W r
2' in ��.t/;

�� � r D r' � .�� � r/Xi C .Xi � r/V
�.�; t / � r' � .Xi � r/�

� on †�.t/;

where we have used �' D 0 in the first line and �� � r' D V �.�; t / in the second one.
We now recognize that the right-hand side of the PDE is of class C 0;˛.��.t// and the
Neumann boundary datum is of class C 1;˛.@��.t// since V �.�; t / 2 C 2;˛.@��.t// and
@��.t/2C 3;˛ , which implies .Xi � r/�� 2C 1;˛.@��.t//. Hence we can once more apply
Schauder regularity for the Neumann–Laplace problem (Theorem 4.1 in [31]) to assert the
desired regularity  2 C 2;˛.��.t//. For the “normal” field Xd , we simply observe that
 WD Xd � r' solves the Dirichlet–Laplace problem

� D �Xd � r' C 2rXd W r
2' in ��.t/;

 D �� � r' D V �.�; t / on †�.t/:

The right-hand side of the PDE is identical to the previous case and the Dirichlet datum is
of class C 2;˛.@��.t// by assumption. Hence, we can apply standard Schauder boundary
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regularity theory for the Dirichlet–Laplace problem (Theorem 6.8 in [11]) to assert that
also in this case  2 C 2;˛.��.t//. Hence we obtain

k'kC 3;˛.��.t// � C.†
�.t//:

Now we extend ' using a standard extension theorem, see e.g. Lemma 6.37 in [11], to a
function N' 2 C 3;˛.Rd / with the same regularity such that N' D ' in ��.t/ and N' D 0 in
Rd n B2R�.0/; in particular, N' 2 C 2;1.Rd /. Then we set

B.�; t / WD r N' 2 C 1;1.Rd /:(3.4)

Step 2. Verification of all properties in Definition 2.1. Now we want to verify that the
tuple .�; B; #; ��/ is a gradient-flow calibration according to Definition 2.1.

The regularity in (i) directly follows from the construction in Step 1. The PDE (3.2)
guarantees r � B.�; t / D 0 in ��.t/, and by the regularity of N', we have the bound

r � B.�; t / D O.dist.�; ��.t///;(3.5)

which in particular implies item (ii). Item (iii) follows directly from the construction of �.
The evolution equation (2.7) in item (v) is also built into the construction of B , namely
through the boundary condition (3.3). This guarantees that on†�.t/, (2.7) simply reduces
to (2.10). By the Lipschitz continuity of all functions appearing on the left-hand side
of (2.7), this implies the validity of (2.7). Item (vi) follows directly from the construction
of # .

Now we turn to the transport equations in item (iv). Next to B.�; t /, we will also
work with the trivial extension of B.�; t / to the neighborhood Uı.t/, which we denote by
NB.�; t / WD B.�; t / ı P†�.t/. We start with the derivation of (2.4). Since # is a function of

the signed distance function to †�.t/, it holds

@t# C . NB � r/# D 0 in Uı.t/;

cf. [1, 21], and hence

@t# C .B � r/# D .B � NB/ � r# in Uı.t/;

and the assertion follows from the Lipschitz continuity of the functionsB and # . To justify
the higher-order accuracy in the transport equation (2.5) for the length of �, we write

.@t C .B � r// j�j
2
D .@t C . NB � r//.�

2
ı s/C .B � NB/ � r.�2 ı s/:(3.6)

The first term vanishes exactly in the neighborhood Uı.t/. For the second one, we use the
Lipschitz estimate jB � NBj � C jsj and compute jr.�2 ı s/j D 2.� ı s/j�0 ı sjjrsj � C jsj,
where we have used �0.0/ D 0 and the regularity of all functions involved in the last step.
Hence the right-hand side of (3.6) is indeed O.s2/. The approximate transport equation
for � follows similarly: we compute

@t� C .B � r/� C .rB/
T� D ..@t C .B � r//.� ı s//rs

C .� ı s/
�
@trs C .B � r/rs C .rB/

T
rs
�
:
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Arguing as before, the first right-hand side term is O.s/. For the second term, next to NB ,
we also need to smuggle inr NB , which will produce the leading term f � on the right-hand
side of (2.6). In Uı.t/ � supp.� ı s/, we have

.@trs C .B � r/rs C .rB/
T
rs/ D .@trs C . NB � r/rs C .r NB/

T
rs/

C .B � NB/ � r2s C .rB � r NB/Trs:

The first right-hand side term vanishes identically in Uı.t/. The second term is O.s/,
while the last term satisfies

.rB � r NB/Trs D .rB � .rB ı P†�/rP†�/
T
rs

D .rB � rB ı P†�/
T
rs C .Id � rP†�/.rB ı P†�/

T
rs:

The first right-hand side term is O.s/ since rB is Lipschitz continuous. Furthermore,
since rP†� D Id � rs ˝rs CO.s/, the second term is of the form

rs ˝rs.rB ı P†�/
T
rs CO.s/ D .rs � .rB ı P†�/

T
rs/rs CO.s/:

Recalling that the whole error term was multiplied by � ı s, we obtain the approximate
transport equation (2.6) with f WD 1Uı .t/rs � .rB ı P†�/rs. Note that (3.4) implies
kf .�; t /kL1.Rd / � C.†

�/. This concludes the proof of Theorem 2.2.

4. Relative entropy inequality and weak-strong uniqueness principle

The main purpose of this section is the proof of the relative entropy inequality stated in
Theorem 2.6. Let us first collect the basic coercivity properties of the relative entropy
functional.

Lemma 4.1. The relative entropy E defined in (2.18) satisfiesZ
Rd�¹tº

1

2
j� � �j2 jr�j � EŒ�;†��.t/;(4.1) Z

Rd�¹tº

#2 jr�j . EŒ�;†��.t/:(4.2)

Proof. We use the trivial identity

2.1 � � � �/ D j�j2 C j�j2 � 2� � � C .1 � j�j2/ D j� � �j2 C .1C j�j/.1 � j�j/:

Since both terms on the right are non-negative (cf. (2.3)), the first estimate (4.1) then
follows directly from the definition (2.18), and the second estimate (4.2) follows from
the quantitative shortness condition (2.3) and the Lipschitz continuity of the weight func-
tion # .

Now we give the proof of Theorem 2.6, which partly follows the weak-strong unique-
ness proof in the unconstrained case of standard mean curvature flow [7]. To be self-
contained, we carry out the full proof here. Special attention will be given to the additional
difficulties arising in our case with the volume-constraint.
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Proof of Theorem 2.6. For notational convenience, we will suppress the dependence of
the functionals on � and †� and write E.t/ WD EŒ�;†��.t/ and F .t/ WD F Œ�;†��.t/.

Step 1. First manipulations of relative entropy and bulk error. For almost every in-
stance of time T 2 .0; T �/, using the definition (2.12) of V with � D r � �, we may
compute

E.T / � E.0/ D EŒ�.�; T /� �EŒ�.�; 0/�C

Z
Rd�.0;T /

�
� V.r � �/ � @t� � �

�
jr�j:

Using the optimal energy-dissipation relation (2.14) and the fact that
R

Rd�.0;T /
V jr�j D 0

(which follows from (2.12) with � D 1 together with (2.15)) to smuggle in the constant
�� D ��.t/, we obtain

(4.3) E.T / � E.0/ �

Z
Rd�.0;T /

�
� V 2 � V.r � � � ��/ � @t� � �

�
jr�j dt:

We denote the “(negative) dissipation functional” on the right by

D.t/ WD

Z
Rd�¹tº

�
� V 2 � V.r � � � ��/ � @t� � �

�
jr�j;

so that we have

E.T / � E.0/ �

Z T

0

D.t/ dt:

For the bulk error F .t/ defined in (2.19), using the definition (2.12) of the normal
velocity V and the fact that # D 0 on†�, we may compute, for almost every T 2 .0; T �/,

F .T / � F .0/ D

Z
Rd�.0;T /

@t#.� � ���/ dx dt C
Z

Rd�.0;T /

#V jr�j dt:

In analogy to the previous discussion for E.t/, we denote the integrand on the right-hand
side by

zD.t/ WD

Z
Rd�¹tº

@t#.� � ���/ dx C
Z

Rd�¹tº

#V jr�j:

Step 2: Dissipation estimates. We claim that there exists a null set N � .0; T �/ and a
constant C D C.d; T �;†�/ <1 such that for all t 2 .0; T �/ nN , we have the estimates

D.t/C
1

2

Z
Rd�¹tº

ˇ̌
V� � .B � �/�

ˇ̌2
jr�j � C.1C j�.t/j/.E.t/C F .t//(4.4)

and

zD.t/ � C.E.t/C F .t//C
1

2

Z
Rd�¹tº

ˇ̌
V� � .B � �/�

ˇ̌2
jr�j:(4.5)
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We fix a time t 2 .0; T �/ nN , where the null set N is chosen such that (2.13) holds
for any t 2 .0; T �/ nN . To ease notation, we omit the domain of integration Rd � ¹tº in
the following derivation of (4.4) and (4.5).

Testing the weak form (2.13) of the evolution equation with the vector field B from
the gradient-flow calibration, we may rewrite D.t/ as

D.t/ D

Z �
� V 2 � V.r � � � ��/C .V � �/� � B Cr � B � � � rB� � @t� � �

�
jr�j:

After first decomposing the vector field B into its “normal” and “tangential” compo-
nents B D .B � �/� C .Id � � ˝ �/B , then completing the two squares (involving V
and V�, respectively), and adding zero to make the transport term @t� C .B � r/� C

.rB/T� appear in the last integral, we arrive at

D.t/C
1

2

Z �
V Cr � � � ��

�2
jr�j C

1

2

Z ˇ̌
V� � .B � �/�

ˇ̌2
jr�j

�

Z
1

2

�
.r � � � ��/2 C .B � �/2j�j2

�
jr�j C

Z �
V� � .Id � � ˝ �/B � �� � B

�
jr�j

C

Z �
r � B � � � rB� C � � .B � r/� C � � .� � r/B

�
jr�j

�

Z
� �
�
@t� C .B � r/� C .rB/

T�
�
jr�j:

Now we complete another square, use that

�� ˝ � C � ˝ � D �.� � �/˝ .� � �/ � � ˝ � C � ˝ �;

and also manipulate the last term to express the right-hand side asZ
1

2

�
r � � � �� C B � �

�2
jr�j C

1

2

Z �
j�j2 � 1

�
.B � �/2 jr�j

�

Z
.r � � � ��/B � � jr�j C

Z �
V� � .Id � � ˝ �/B � �� � B

�
jr�j

C

Z
.r � B/.1 � � � �/ jr�j C

Z
.r � B/� � �jr�j �

Z
.� � �/ � rB.� � �/jr�j

�

Z
� � .� � r/Bjr�j C

Z
� � .B � r/�jr�j

�

Z
.� � �/ �

�
@t� C .B � r/� C .rB/

T�
�
jr�j �

Z
� � .@t� C .B � r/�/ jr�j:(4.6)

By symmetry and Gauss’ theorem,

0 D

Z
�r �

�
r � .B ˝ � � � ˝ B/

�
dx D

Z
� �
�
r � .B ˝ � � � ˝ B/

�
jr�j:

Expanding the divergence in the last integral and reordering terms yieldsZ �
.r � B/� � � � � � .� � r/B C � � .B � r/�

�
jr�j D

Z
.r � �/B � � jr�j:
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We may use this symmetry to replace three of the terms appearing in (4.6) by the single
term .r � �/B � � to write (4.6) asZ

1

2

�
r � � � �� C B � �

�2
jr�j C

1

2

Z �
j�j2 � 1

�
.B � �/2 jr�j

�

Z
.r � � � ��/B � � jr�j C

Z
.r � � � �/B � � jr�j C

Z
V� � .Id � � ˝ �/B jr�j

C

Z
.r � B/.1 � � � �/ jr�j �

Z
.� � �/ � rB.� � �/jr�j

�

Z
.� � �/ �

�
@t� C .B � r/� C .rB/

T�
�
jr�j �

1

2

Z �
@t j�j

2
C .B � r/j�j2

�
jr�j:

Finally, combining the third to fifth terms of the last display and using the elementary
identity B � .� � �/ � � � .Id � � ˝ �/B D .� � � � 1/.B � �/, we obtain in total

D.t/C
1

2

Z �
V Cr � � � ��

�2
jr�j C

1

2

Z ˇ̌
V� � .B � �/�

ˇ̌2
jr�j

�

Z
1

2

�
r � � � �� C B � �

�2
jr�j C

1

2

Z �
j�j2 � 1

�
.B � �/2 jr�j

�

Z
.r � � � ��/.1 � � � �/B � � jr�j C

Z
.�� � �/B � � jr�j

C

Z
.V Cr � � � ��/� � .Id � � ˝ �/B jr�j

C

Z
.r � B/.1 � � � �/ jr�j �

Z
.� � �/ � rB.� � �/jr�j

�

Z
.� � �/ �

�
@t� C .B � r/� C .rB/

T �
�
jr�j

�
1

2

Z �
@t j�j

2
C .B � r/ j�j2

�
jr�j:(4.7)

We claim that the right-hand side of (4.7) is estimated by C.1C j�.t/j/.E.t/CF .t// for
some C D C.†�/; we argue term-by-term.

We start with the two terms which have to be handled differently than in the case of
standard mean curvature flow: the fourth term

R
.�� � �/B � �jr�j looks rather worrying

and seems to require a stability analysis for the Lagrange multipliers � and ��. However,
since by (2.2), (2.7), and (2.8),Z

.r � B/��� dx D
Z
†�.t/

B � �� dHd�1
D

Z
†�.t/

B � � dHd�1

D

Z
†�.t/

.�r � � C ��/ dHd�1
D 0;

we haveZ
.�� � �/B � � jr�j D .�� � �/

Z
�.r � B/ dx

D .�� � �/

Z
.� � ���/.r � B/ dx . .1C j�j/F .t/;
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where we have crucially used the divergence condition (2.1) on B and the coercivity (2.9)
of the weight function. Note that we also used the very rough estimate j����j�j��jCj�j.
The other term for which we have to argue differently than in the case of standard mean
curvature flow is the penultimate term since the transport equation for � is not satisfied
exactly on the interface, cf. (2.6). Nevertheless, the leading term f � appearing on the
right-hand side of (2.6) is almost perpendicular to � � �:ˇ̌̌ Z

f � � .� � �/ jr�j
ˇ̌̌
� .sup jf j/

Z �
.1 � � � �/C .1 � j�j2/

�
jr�j;

which is again controlled by the relative entropy using the quantitative shortness (2.3)
of � . Now we argue for the remaining terms on the right-hand side of (4.7). Thanks to the
approximate evolution equation (2.7), the integrand of the first term is O.s2/, so by (2.9)
and (4.2), this term is of the desired order. The second term is small, but we do not need
to give an argument for this since the term is non-negative anyways. In the third term, we
simply pull out the maximum of

ˇ̌
.r � � � ��/B � �

ˇ̌
over BR�.0/ � Œ0; T �� and recognize

the relative entropy functional; an analogous argument works for the sixth term. The fifth
term is handled by Young’s inequality and absorption into the first dissipation term. For
the remaining term in Young’s inequality, we use j� � .Id � � ˝ �/j2 D j� � .� � �/�j2 .
j� � �j2C .1� � � �/, which gives a contribution controlled by the relative entropy thanks
to (4.1). Similarly, also the seventh term is controlled. For the last term, we simply use the
approximate transport equation (2.5).

Regarding the bulk-dissipation zD.t/, we useZ
.B � r#/.� � ���/ dx D

Z
#B � �jr�j �

Z
.r � B/#.� � ���/ dx

to make the transport operator appear:

zD.t/ D

Z
Rd�¹tº

.@t# C B � r#/.� � ���/ dx C
Z

Rd�¹tº

.r � B/#.� � ���/ dx

C

Z
Rd�¹tº

#.V � B � �/ jr�j:

Now we argue term-by-term to bound the right-hand side of this identity. Using the trans-
port equation (2.4) and the coercivity (2.9) of the weight function, the first term is bounded
by C

R
j#jj� � ��� j dx D CF .t/. The second integral is bounded by .sup jr � Bj/F .t/.

For the third term, we use Young’s inequality and (4.2). This concludes the argument for
the estimates (4.4) and (4.5).

Step 3. Conclusion. Plugging the estimates (4.4) and (4.5) from Step 2 into Step 1, we
obtain, for almost every T 2 .0; T �/,

.E.T /C F .T // � .E.0/C F .0// � C

Z T

0

.1C j�.t/j/.E.t/C F .t// dt:

Hence, by the L2-bound (2.16), Gronwall’s inequality, and Jensen’s inequality we obtain

E.T /C F .T / � eC
R T
0 .1Cj�.t/j/ dt .E.0/C F .0// � eC

p
T .1CC�.T // .E.0/C F .0//
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for almost every T 2 .0; T �/. The uniqueness statement (2.21) in Theorem 2.6 now fol-
lows from the fact that F .t/ D 0 implies ��.�; t / D �.�; t / a.e. in Rd .

Acknowledgments. The content of this paper was developed and parts of the paper writ-
ten during a visit of the author to Centro de Investigación en Matemática Pura y Aplicada
(CIMPA) at Universidad de Costa Rica. The author would like to thank CIMPA and its
members for the hospitality and stimulating environment.

Funding. This project has received funding from the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy, EXC-2047/1
-390685813.

References

[1] Ambrosio, L. and Dancer, N.: Calculus of variations and partial differential equations. Topics
on geometrical evolution problems and degree theory. Springer, Berlin, 2000.

[2] Ambrosio, L., Gigli, N. and Savaré, G.: Gradient flows in metric spaces and in the space
of probability measures. Second edition. Lectures in Mathematics ETH Zürich, Birkhäuser,
Basel, 2008.

[3] Brakke, K. A.: The motion of a surface by its mean curvature. Mathematical Notes 20, Prince-
ton University Press, Princeton, NJ, 1978.

[4] Bronsard, L. and Reitich, F.: On three-phase boundary motion and the singular limit of a vec-
tor-valued Ginzburg–Landau equation. Arch. Rational Mech. Anal. 124 (1993), no. 4, 355–379.

[5] De Gennaro, D. and Kubin, A.: Long time behaviour of the discrete volume preserving mean
curvature flow in the flat torus. Calc. Var. Partial Differential Equations 62 (2023), no. 3,
article no. 103, 39 pp.

[6] Escher, J. and Simonett, G.: The volume preserving mean curvature flow near spheres. Proc.
Amer. Math. Soc. 126 (1998), no. 9, 2789–2796.

[7] Fischer, J., Hensel, S., Laux, T. and Simon, T. M.: The local structure of the energy landscape in
multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions. Preprint
2021, arXiv :2003.05478.

[8] Fischer, J., Laux, T. and Simon, T. M.: Convergence rates of the Allen–Cahn equation to mean
curvature flow: A short proof based on relative entropies. SIAM J. Math. Anal. 52 (2020), no. 6,
6222–6233.

[9] Fischer, J. and Marveggio, A.: Quantitative convergence of the vectorial Allen–Cahn equation
towards multiphase mean curvature flow. Preprint 2022, arXiv :2203.17143.

[10] Gage, M.: On an area-preserving evolution equation for plane curves. In Nonlinear problems
in geometry (Mobile, Ala., 1985), pp. 51–62. Contemp. Math. 51, American Mathematical
Society, Providence, RI, 1986.

[11] Gilbarg, D. and Trudinger, N. S.: Elliptic partial differential equations of second order. Clas-
sics in Mathematics, Springer, Berlin, 2001.

[12] Golovaty, D.: The volume-preserving motion by mean curvature as an asymptotic limit of
reaction-diffusion equations. Quart. Appl. Math. 55 (1997), no. 2, 243–298.

https://doi.org/10.1007/978-3-642-57186-2
https://doi.org/10.1007/978-3-642-57186-2
https://doi.org/10.1007/978-3-7643-8722-8
https://doi.org/10.1007/978-3-7643-8722-8
https://doi.org/10.1515/9781400867431
https://doi.org/10.1007/BF00375607
https://doi.org/10.1007/BF00375607
https://doi.org/10.1007/s00526-023-02439-0
https://doi.org/10.1007/s00526-023-02439-0
https://doi.org/10.1090/S0002-9939-98-04727-3
https://arxiv.org/abs/2003.05478
https://doi.org/10.1137/20M1322182
https://doi.org/10.1137/20M1322182
https://arxiv.org/abs/2203.17143
https://doi.org/10.1090/conm/051/848933
https://doi.org/10.1007/978-3-642-61798-0
https://doi.org/10.1090/qam/1447577
https://doi.org/10.1090/qam/1447577


Weak-strong uniqueness for volume-preserving mean curvature flow 109

[13] Hensel, S. and Laux, T.: BV solutions to mean curvature flow with static contact angle: Allen–
Cahn approximation and weak-strong uniqueness. To appear in Indiana Univ. Math. J.

[14] Hensel, S. and Laux, T.: A new varifold solution concept for mean curvature flow:
Convergence of the Allen–Cahn equation and weak-strong uniqueness. Preprint 2021,
arXiv :2109.04233.

[15] Hensel, S. and Moser, M.: Convergence rates for the Allen–Cahn equation with boundary con-
tact energy: The non-perturbative regime. Calc. Var. Partial Differential Equations 61 (2022),
article no. 201, 61 pp.

[16] Huisken, G.: The volume preserving mean curvature flow. J. Reine Angew. Math. 382 (1987),
35–48.

[17] Julin, V., Morini, M., Ponsiglione, M. and Spadaro, E.: The asymptotics of the area-preserving
mean curvature and the Mullins–Sekerka flow in two dimensions. Math. Ann. 387 (2023),
no. 3-4, 1969–1999.

[18] Julin, V. and Niinikoski, J.: Consistency of the flat flow solution to the volume preserving mean
curvature flow. Arch. Ration. Mech. Anal. 248 (2024), no. 1, article no. 1, 58 pp.

[19] Kim, I. and Kwon, D.: Volume preserving mean curvature flow for star-shaped sets. Calc. Var.
Partial Differential Equations 59 (2020), no. 2, article no. 81, 40 pp.

[20] Laux, T.: A gradient-flow approach for the convergence of the anisotropic Allen–Cahn equa-
tion. In Geometric aspects of solutions to partial differential equations, pp. 32–34. RIMS
Kôkyûroku 2172, Research Institute for Mathematical Sciences, Kyoto University, Japan,
2020.

[21] Laux, T.: Distributional solutions to mean curvature flow. Preprint 2021, arXiv :2108.08347.

[22] Laux, T. and Lelmi, J.: De Giorgi’s inequality for the thresholding scheme with arbitrary
mobilities and surface tensions. Calc. Var. Partial Differential Equations 61 (2022), no. 1,
article no. 35, 42 pp.

[23] Laux, T. and Liu, Y.: Nematic-isotropic phase transition in liquid crystals: a variational deriva-
tion of effective geometric motions. Arch. Ration. Mech. Anal. 241 (2021), no. 3, 1785–1814.

[24] Laux, T. and Otto, F.: The thresholding scheme for mean curvature flow and De Giorgi’s ideas
for minimizing movements. In The role of metrics in the theory of partial differential equa-
tions, pp. 63–93. Adv. Stud. Pure Math. 85, The Mathematical Society of Japan, Tokyo, 2020.

[25] Laux, T. and Simon, T. M.: Convergence of the Allen–Cahn equation to multiphase mean cur-
vature flow. Comm. Pure Appl. Math. 71 (2018), no. 8, 1597–1647.

[26] Laux, T. and Swartz, D.: Convergence of thresholding schemes incorporating bulk effects.
Interfaces Free Bound. 19 (2017), no. 2, 273–304.

[27] Leoni, G.: Partial differential equations I. Lecture notes, 2013. Electronically available at:
http://giovannileoni.weebly.com/teaching.html, visited on February 2, 2024.

[28] Luckhaus, S. and Sturzenhecker, T.: Implicit time discretization for the mean curvature flow
equation. Calc. Var. Partial Differential Equations 3 (1995), no. 2, 253–271.

[29] Mayer, U. F. and Simonett, G.: Self-intersections for the surface diffusion and the volume-
preserving mean curvature flow. Differential Integral Equations 13 (2000), no. 7-9,
1189–1199.

[30] Mugnai, L., Seis, C. and Spadaro, E.: Global solutions to the volume-preserving mean-
curvature flow. Calc. Var. Partial Differential Equations 55 (2016), no. 1, article no. 18, 23 pp.

https://arxiv.org/abs/2109.04233
https://doi.org/10.1007/s00526-022-02307-3
https://doi.org/10.1007/s00526-022-02307-3
https://doi.org/10.1515/crll.1987.382.35
https://doi.org/10.1007/s00208-022-02497-3
https://doi.org/10.1007/s00208-022-02497-3
https://doi.org/10.1007/s00205-023-01944-y
https://doi.org/10.1007/s00205-023-01944-y
https://doi.org/10.1007/s00526-020-01738-0
https://arxiv.org/abs/2108.08347
https://doi.org/10.1007/s00526-021-02146-8
https://doi.org/10.1007/s00526-021-02146-8
https://doi.org/10.1007/s00205-021-01681-0
https://doi.org/10.1007/s00205-021-01681-0
https://doi.org/10.2969/aspm/08510063
https://doi.org/10.2969/aspm/08510063
https://doi.org/10.1002/cpa.21747
https://doi.org/10.1002/cpa.21747
https://doi.org/10.4171/IFB/383
http://giovannileoni.weebly.com/teaching.html
https://doi.org/10.1007/BF01205007
https://doi.org/10.1007/BF01205007
https://doi.org/10.57262/die/1356061216
https://doi.org/10.57262/die/1356061216
https://doi.org/10.1007/s00526-015-0943-x
https://doi.org/10.1007/s00526-015-0943-x


T. Laux 110

[31] Nardi, G.: Schauder estimate for solutions of Poisson’s equation with Neumann boundary
condition. Enseign. Math. 60 (2014), no. 3-4, 421–435.

[32] Rubinstein, J. and Sternberg, P.: Nonlocal reaction-diffusion equations and nucleation. IMA J.
Appl. Math. 48 (1992), no. 3, 249–264.

[33] Serfaty, S.: Gamma-convergence of gradient flows on Hilbert and metric spaces and applica-
tions. Discrete Contin. Dyn. Syst. 31 (2011), no. 4, 1427–1451.

[34] Takasao, K.: Existence of weak solution for volume-preserving mean curvature flow via phase
field method. Indiana Univ. Math. J. 66 (2017), no. 6, 2015–2035.

[35] Takasao, K.: The existence of a weak solution to volume preserving mean curvature flow in
higher dimensions. Arch. Ration. Mech. Anal. 247 (2023), no. 3, article no. 52, 53 pp.

[36] Ullrich, C.: Diffuse-interface approximation and weak-strong uniqueness for anisotropic mean
curvature flow. Master Thesis, University of Bonn, 2022.

Received May 30, 2022; revised September 28, 2022. Published online November 3, 2022.

Tim Laux
Hausdorff Center for Mathematics, University of Bonn,
Villa Maria, Endenicher Allee 62, 53115 Bonn, Germany;
tim.laux@hcm.uni-bonn.de

https://doi.org/10.4171/LEM/60-3/4-9
https://doi.org/10.4171/LEM/60-3/4-9
https://doi.org/10.1093/imamat/48.3.249
https://doi.org/10.3934/dcds.2011.31.1427
https://doi.org/10.3934/dcds.2011.31.1427
https://doi.org/10.1512/iumj.2017.66.6183
https://doi.org/10.1512/iumj.2017.66.6183
https://doi.org/10.1007/s00205-023-01881-w
https://doi.org/10.1007/s00205-023-01881-w
mailto:tim.laux@hcm.uni-bonn.de

	1. Introduction
	2. Main results
	3. Construction of gradient-flow calibration for volume-preserving mean curvature flow
	4. Relative entropy inequality and weak-strong uniqueness principle
	References

