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The Poincaré problem for reducible curves

Pedro Fortuny Ayuso and Javier Ribón

Abstract. We provide sharp lower bounds for the multiplicity of a local holomorphic
foliation defined in a complex surface in terms of data associated to a germ of
invariant curve. Then we apply our methods to invariant curves whose branches are
isolated, i.e., they are never contained in non-trivial analytic families of equisingular
invariant curves. In this case, we show that the multiplicity of an invariant curve is
at most twice the multiplicity of the foliation. Finally, we apply the local methods to
foliations in the complex projective plane.

1. Introduction

The Poincaré problem (bounding the degree, or equivalently, the genus of an invariant
curve of a foliation in projective space) has been thoroughly studied lately [1,4,5,8,9,14,
15] (to cite several relevant instances). We want to obtain lower bounds for the complexity
of a foliation in terms of data associated to an invariant curve and as much as possible not
on the foliation itself, following an approach that is similar, in spirit, to the point of view
of Cerveau and Lins-Neto in [6]. Indeed, one of the main contributions of the paper is that
its methods do not depend on the reduction of singularities of the foliation, and moreover,
some of its results do not depend on the foliation and depend just on the invariant curve.

In a previous work [3] with J. Cano, we covered the local case for irreducible branches
(local analytic curves with a single irreducible component). There we defined the concept
of virtual multiplicity of an analytic branch  : if n is its multiplicity and p1=q1; : : : ;pg=qg
are its characteristic exponents, then �./ is the denominator of the last-but-one charac-
teristic exponent: �./ D qg�1. Despite its seemingly artificial nature, it has an intuitive
geometric interpretation: let � W .C2; 0/ ! .C2; 0/ be the ramification map �.u; y/ D
.un; y/, and let �� be the minimal resolution of singularities of ��1./ (which is a tree,
as ��1./ is a union of n non-singular branches). Then �./ is exactly the number of
irreducible components of the exceptional divisor E� D ��1� .0; 0/ which contain no cen-
ter of the sequence �� , or equivalently, components with �1 self-intersection (so to say,
terminal components).

In the case of a reducible curve � , we generalize the virtual multiplicity in two ways.
The first one is the obvious one: if � W.C2;0/! .C2;0/ is a ramification map which turns �
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into a union of smooth branches, and �� is the resolution of singularities of ��1.�/, then
one can define the terminal virtual multiplicity �T .�/ as the number of terminal compon-
ents in E� D ��1� .0; 0/. However (see Example 3.6), this number might be too low, and
one can also consider the set of irreducible components ofE� meeting one of the branches
of the strict transform of ��1.�/ by �� ; we call this number the divisorial virtual multi-
plicity �D.�/, which is at least equal to �T .�/. If � is irreducible, �D.�/D �T .�/ (and
both equal �.�/), but in the general case they may differ. We denote by �0.F / and �0.�/
the multiplicities at the origin of F and � , respectively. Our first result is the following.

Theorem 1.1. Let F be a germ of holomorphic foliation defined in a neighborhood of 0
in C2. Let � be a germ of singular invariant curve. Then we have

�0.F / � max
�
�T .�/;

�D.�/

2

�
:

Notice how only the geometric structure of the invariant curve � is relevant: there is no
hypothesis on F . We provide examples showing that the bound in Theorem 1.1 is sharp.
Moreover, the values of �T .�/ and �D.�/ can be calculated directly from the Puiseux
expansions of the irreducible components of � .

The irreducible components of ��1.�/ can be partitioned in packages, where each
package contains those components of ��1.�/ whose strict transform intersects the same
component of E� . If we consider a curve � 0 � ��1.�/ that contains exactly one curve in
each package, we obtain �D.�/ D �0.� 0/. So we obtain a linear lower bound �0.F / �
�0.�

0/=2 for the multiplicity of F in terms of the multiplicity of a subcurve � 0 of ��1.�/.
Moreover, since �0.�/ D �0.�

�1.�//, we get �0.F / � �0.�/=2 if there is exactly one
curve in each package.

Once the most general case is studied, we turn our sight to curves � from whose
multiplicity �0.�/ one can compute a non-trivial lower bound of �0.F /. It is here where �
needs to be related to F : following ideas by Corral and Fernández-Sánchez in [7], we
study the case where all the branches  of � are isolated invariant curves of F (cf. [2]):
separatrices  which do not belong to a non-constant one-dimensional analytic family of
equisingular curves invariant for F .

To tackle this problem, we introduce the less stringent notion of weak isolation for
invariant curves (cf. Definition 4.2), which includes both the isolated case treated in [7],
and the case where � has nodal singularities, treated in [6]. The value of this generalization
is that weak isolation is invariant by blow-ups (Proposition 4.4) and it only rules out very
specific families of equisingular invariant curves determined by � . We obtain an analogue
of Theorem 1.1 for the weakly isolated case.

Theorem 1.2. Let � be a singular curve that is invariant by a germ of holomorphic foli-
ation F defined in a neighborhood of the origin in C2. Assume that � is weakly isolated.
Then 2�0.F / � �0.�/.

In this case, the bound in Theorem 1.1 is improved dramatically, since we do not need
to remove any irreducible component of � .

Then we move on to addressing the global Poincaré problem. In order to do this,
lower bounds for the vanishing number ZP .F ; / along a branch  (equal to the GSV-
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index [10] except in the singular case) are required. We prove the following result relating
the vanishing number along  of F to that of df , where f D 0 is a reduced equation of � .

Theorem 1.3. Let F be a germ of foliation defined in a neighborhood of a point P in
a complex surface. Let � be a germ of weakly isolated F -invariant singular curve in
a neighborhood of P of reduced equation f D 0. Denote by H the foliation df D 0.
Consider a branch  of � at P . Then we have ZP .F ; / � ZP .H ; /=2.

Theorem 1.3 is the analogue of Theorem 1.2 for the vanishing number along a germ
of invariant curve.

Our results conclude with the following application of the previous ideas to the global
Poincaré problem for holomorphic foliations in the complex projective plane CP.2/.

Theorem 1.4. Let � be an algebraic curve that is invariant by a foliation F of CP.2/.
Suppose that all singular points P of � satisfy that the germ of � at P is weakly isolated.
Then deg.�/� 2deg.F /C 2. Moreover, deg.�/� 2deg.F /C 1 holds if � is irreducible.

Thus, improving the results of [7], we prove that the degree of � admits a linear bound
of slope 2 in terms of the degree of F .

We are convinced that the bound in Theorem 1.4 is optimal in the slope. It may be
possible to decrease the intercept 2 to a lower value, but we have not found any examples.

Finally, one of the most relevant properties of Theorems 1.1 , 1.2, 1.3 and 1.4 is that
they do not depend at all on the reduction of singularities of F or on the relation between
the desingularization of � and the pull-back of F to it. The only hypothesis relating �
to F is that the former is invariant by the latter (and the weak isolation properties in
Theorems 1.2, 1.3 and 1.4).

2. Setting

In this section, we introduce the invariants and main formulas that we are going to use
in order to obtain lower bounds for the multiplicity of a foliation in terms of an invariant
curve.

Definition 2.1. Let f 2 C¹x; yº n ¹0º. We define the multiplicity (or vanishing order)
�0.f / of f at 0 2 C2 as the unique k 2 N such that f 2 mk nmkC1, where m is the
maximal ideal of the local ring C¹x; yº. We define �0.0/ D1.

Let � be a germ of reduced complex analytic curve defined in a neighborhood of 0
in C2. It is given by a reduced equation f D 0, where f 2 C¹x; yº. We define the multi-
plicity �0.�/ of � at 0 2 C2 as �0.�/ D �0.f /.

Remark 2.2. Let � D 1 [ � � � [ n be the decomposition of � in irreducible compon-
ents. We have �0.�/ D �0.1/C � � � C �0.n/.

Next, we define the multiplicity of a foliation.

Definition 2.3. Let F be a germ of holomorphic foliation defined in a neighborhood of 0
in C2. Let X D a.x; y/@=@x C b.x; y/@=@y be a holomorphic vector field inducing the
foliation F and such that Sing.X/ � ¹0º. We define �0.F / D min.�0.a/; �0.b//.
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Hertling’s formula [11] (see equation (2.3) below) relates �0.F / to indices associated
to a sequence of blow-ups. The following definitions cover all the necessary concepts to
state it.

Definition 2.4. Consider the setting in Definition 2.3. Let  be a germ of irreducible
invariant curve for F , and consider a Puiseux parametrization ˛ of  . We defineZP .F ; /
as the vanishing order of ˛�X at the origin.

Definition 2.5. Consider the setting in Definition 2.3. Let  be an irreducible germ of
curve defined of irreducible equation f D 0, where f 2 C¹x; yº. We define the tangency
order between F and  at 0 as

tang0.F ; / D dimC
C¹x; yº

.f;X.f //
�

Remark 2.6. The indices defined in Definitions 2.4 and 2.5 are invariant under change of
coordinates, and hence they can be defined at any point of a smooth complex surface.

Remark 2.7. Notice that Z0.F ; / � 0 and tang0.F ; / � 0. Moreover, Z0.F ; / D 0
is equivalent to 0 62 Sing.F /. Moreover, tang0.F ; /D 0 holds if and only if 0 62 Sing.F /
and X is transverse to  at 0.

Remark 2.8. The index Z0.F ; / coincides with the GSV index (Gómez Mont–Seade–
Verjovsky) if  is smooth [10].

Let .M; P0/ be a germ of complex analytic surface, and let � D �1 ı � � � ı �k be
a sequence of blow-ups, where �1 is the blow-up of P0 and, for 1 � l � k, �l is the
blow-up of a point Pl�1 in .�1 ı � � � ı �l�1/�1.P0/. For 1 � l � k, we shall denote Q�l D
�1 ı � � � ı �l the composition, and El D Q��1.P0/, E D ��1.P0/ and Dl D ��1l .Pl�1/.
Abusing notation, we shall also call Dl the strict transform of Dl by Q�lC1; : : : ; Q�k�1 and
the whole blow-up process � . The following notion is just a matter of brevity: a trace
point of Dl � Ej is a non-singular point of Ej belonging to Dl . A point in Ej which is
not a trace point will be called a corner (of either Ej or Dl � Ej ).

Given a germ of complex foliation F in .M; P0/, and a germ of analytic curve �
at P0, we denote by Fl and �l , respectively, their strict transforms by Q�l , setting F0 D F

and �0 D � for completeness.

Definition 2.9. We denote by Inv.E/ the union of the irreducible components of E that
are invariant for the foliation Fk . An irreducible component of E in Inv.E/ will be called
an invariant component, whereas one not in Inv.E/ will be called a dicritical component.

Definition 2.10. The set of connected components of Inv.E/ will be denoted I. An ele-
ment H 2 I will be interpreted (without confusion) as such a connected component, or
as a set whose elements are the irreducible components of E contained in H . The set I is
empty if E has no invariant irreducible components.

Definition 2.11. Given an irreducible componentDj of E (1 � j � k), its weight w.Dj /
is the multiplicity of any germ of analytic branch  such that its strict transform j is
smooth and intersects transversally Dj at a trace point.
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Remark 2.12. It is easy to see that if Pj is a trace point of some Dl � Ej , we have
w.DjC1/ D w.Dl /. On the other hand, if Pj is a corner point belonging to irreducible
components Dl and Dl 0 of Ej , we have w.DjC1/ D w.Dl /C w.Dl 0/.

Definition 2.13. LetDj be a dicritical component ofE. The non-dicritical valence ofDj ,
vd .Dj /, is the number of invariant components Dl of E such that Dj \Dl ¤ ;.

Definition 2.14. Given an irreducible component Dj � E, and P 2 Dj , we define
• �P .Fk ;Dj / D tangP .Fk ;Dj / if Dj 62 Inv.E/. Otherwise,
• �P .Fk ;Dj / D ZP .Fk ;Dj /� 1 if P is a corner point of E and both irreducible com-

ponents Dj and Dl of E containing P are invariant, or finally,
• �P .Fk ;Dj / D ZP .Fk ;Dj / if Dj is invariant but we are not in the preceding case.

Remark 2.15. The index �P .Fk ;Dj / is non-negative, and it is zero only when
• P is a regular point of Fk and the separatrix of Fk through P is either Dj , or trans-

verse to Dj ,
• or P is a corner point, the germ of E at P is invariant, and ZP .Fk ;Dj / D 1.

Finally, as we shall use this concept frequently, we say, in general, that a germ of
foliation at .M;P0/ is 1-dicritical if the exceptional divisor D1 is non-invariant.

The initial formulas relating the multiplicity �P0.F / to vanishing or tangency indexes
after blow-up are

(2.1) �P0.F / D
X

P2��11 .P0/

ZP .F1;D1/ � 1

if F is non-1-dicritical at P0, and

(2.2) �P0.F / D
X

P2��11 .P0/

tangP .F1;D1/C 1

otherwise. Equation (2.1) was generalized in [2] by Camacho, Lins Neto and Sad for
the case where Fk is non-dicritical, i.e., Dj is invariant for any 1 � j � k. The general
formula that holds for every situation was discovered by Hertling [11]:

(2.3) �P0.F /C 1 D
X
Dj

X
P2Dj

w.Dj / �P .Fk ;Dj /C
X

Dj 6� Inv.E/

w.Dj /.2 � vd .Dj //:

Remark 2.16. In Hertling’s formula, for any H 2 I, we have

(2.4)
X
Dj2H

X
P2Dj

w.Dj / �P .Fk ;Dj / � min
Dj2H

w.Dj /

by Proposition 3.7 in [3]. This will be one of the main tools in our approach, since we
can detect “hidden” index contributions associated to components H in I whose inter-
section with the strict transform of an invariant curve is empty. Moreover, the previous
inequality is extremely useful, as we do not need to require that Fk is a reduction of sin-
gularities of F . It is one of the reasons why we do not need a desingularization of F in
our arguments.
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We are also interested in how the vanishing order ZP0.F ; / behaves under blow-up
when  is an irreducible germ of invariant curve. Indeed, if ¹P1º D 1 \D1, we have

(2.5) ZP0.F ; / D ZP1.F1; 1/C �P0./.�P0 .F / � 1/

if F is non-1-dicritical at P0, and

(2.6) ZP0.F ; / D ZP1.F1; 1/C �P0./�P0.F /

otherwise (cf. Proposition 14.26 in [12]).

3. Bounds “up to the last Puiseux exponent”

Let � be a (possibly reduced) germ of irreducible analytic curve, invariant by a germ of
holomorphic foliation F defined in a neighborhood of the origin of C2. We want to obtain
a lower bound for the multiplicity of F in terms of data associated to � , without imposing
any additional condition on F , generalizing the results proved for the irreducible case
in [3]. In this section, we find a lower bound obtained by, roughly speaking, discarding the
contribution to the multiplicity of the curve � provided by the last Puiseux characteristic
exponents of its irreducible branches.

Let us fix the notation for this section. We assume that both F and � are singular at
.0; 0/ 2 C2 (i.e., � has multiplicity at least 2 and F at least 1). If g � 1 is the genus of �
(i.e., the number of Puiseux characteristics) and p1=q1; : : : ; pg=qg are the Puiseux char-
acteristic exponents, we defined in [3] the virtual multiplicity �.�/ as qg�1. Moreover,
we proved that

(3.1) �0.F / � �.�/;

and showed that the inequality is sharp. As a consequence, in order to obtain a sharp lower
bound of �0.F / in terms of � , we need to discard the “contribution of the last Puiseux
exponent”.

In the general case, decompose � into its irreducible components � D 1 [ � � � [ q .
If F is not 1-dicritical, then up to a linear change of coordinates we may assume that
x D 0 is not one of the lines of the tangent cone of F . If, on the contrary, F is 1-dicritical,
we may assume (after an analytic change of coordinates) that x D 0 is not the tangent cone
of any j for 1 � j � q, that x D 0 is F -invariant, and that the point defined by x D 0
in ��11 .0; 0/ is a regular point of F1.

For each of 1; : : : ; q , let n1; : : : ; nq be its corresponding multiplicity. We denote
n D lcm.n1; : : : ; nq/ and �.x; y/ D .xn; y/.

Remark 3.1. From the hypothesis on F and � follows that �0.��F / D �0.F / and
�0.�

�1.�// D �0.�/.

Our choice of � implies that all the irreducible components of ��1.�/ are smooth, and
that there are exactly �0.�/ of them. We are going to desingularize the curve ��1.�/. In
parallel to the notation of the previous section, we let �� D ��1 ı � � � ı �

�
r be the sequence

of blow-ups in the minimal desingularization of ��1.�/, we denote Q��
l
D ��1 ı � � � ı �

�
l

,
E� the exceptional divisor of �� , andD�;l the irreducible component ofE� corresponding
to Q��

l
, that is, D�;l D .��l /

�1.Pl�1/.
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Definition 3.2. An irreducible componentD �E� is terminal ifD is not the father of any
other divisor: assuming D is the exceptional divisor of ��

l
, then no point of D is a center

for the blow-ups ��
lC1

; : : : ; ��
k

. Equivalently,D has �1 self-intersection as a submanifold
of ��1� .C2/. We denote by I� the set of connected components of Inv.E� /.

We say that a component H 2 I� is terminal if it contains a terminal irreducible com-
ponent of E� .

Remark 3.3. Since � has multiplicity at least 2, given any terminal component D of E� ,
at least two irreducible components of ��1.�/ have strict transforms that intersect D.

Definition 3.4. With the same notations as above, we define the terminal virtual multi-
plicity �T .�/ of � as the number of terminal irreducible components of E� . We define
the divisorial virtual multiplicity �D.�/ as the number of irreducible components of E�
meeting the strict transform of ��1.�/.

Remark 3.5. The numbers �T .�/ and �D.�/ can be computed from the Puiseux expan-
sions of 1; : : : ; q . Let the curve j have a Puiseux expansion .tnj ; cj .t//. Any power
series of the form �

t; cj .e
2�il=nj t1=nj /

�
is also a parametrization of the same curve for 0 � l < nj . The expression�

t; cj .e
2�il=nj tn=nj /

�
provides all the parametrizations of the nj curves in ��1.j / by taking 0 � l < nj (recall
that n D lcm.n1; : : : ; nq/). Let Cj be the set consisting of the power series expansions
cj .e

2�il=nj tn=nj /, where 0 � l < nj and C D
Sq
jD1 Cj . The cardinal of C is equal

to �0.�/. Consider the natural map jl WC! J l from C to the set J l of l-jets of formal
power series for l 2 N. Given an l-jet � 2 J l , we say that � is terminal if j�1

l
.�/

contains at least two elements and .jlC1/jj�1
l
.�/ is injective. We say that � is divisorial

if j�1
l
.�/ contains at least two elements and there exists � 0 in jlC1.j�1l .�// such that

].jlC1/
�1
jj�1
l
.�/
.� 0/ D 1. The terminal (respectively, divisorial) virtual multiplicity �T .�/

(respectively, �D.�/) coincides with the number of terminal (respectively, divisorial) jets.
Given 1 � j � q, there exists l 2 N [ ¹0º such that all the fibers of jl WCj ! J l have

�0.
j /=�.j / elements but jlC1WCj ! J lC1 is injective. As a consequence, �T .�/,

�D.�/ and the definition of the virtual multiplicity�.�/ in terms of Puiseux characteristic
exponents coincide for an irreducible curve � . Moreover, we obtain

�D.�/ � �T .�/ � max.�.1/; : : : ; �.q//:

We can interpret �T .�/ and �D.�/ as generalizations of the virtual multiplicity to the
reducible case.

Example 3.6. Consider the union � D 1 [ 2 [ 3 [ 4, where each i corresponds to
the arrows in the dual graph given in Figure 1. For instance, 1 D .t3; t4/, 2 D .t6; t8 C
t10 C t11/, 3 D .t6; t8 C t10 C t11 C t13/, and 4 D .t6; t8 C t10 C t11 � t13/.
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Figure 1. The curve � of Example 3.6 is the union of the branches given by the i in the diagram.
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Figure 2. Dual graph of the desingularization of ��1.�/, for � as in Figure 1. No blow-up center is
a corner.

The map � is �.u; y/D .u6; y/, and the dual graph of the desingularization of ��1.�/
is schematically shown in Figure 2 (all the centers Pj are trace points). There are 6 ter-
minal irreducible components of E� , and 9 components meeting the strict transform of
��1.�/, so that �T .�/ D 6 and �D.�/ D 9.

The next result provides lower bounds for �0.F / in terms of � and its desingulariza-
tion. It implies Theorem 1.1.

Proposition 3.7. Let F be a germ of holomorphic foliation defined in a neighborhood
of 0 in C2. Let � be a germ of singular invariant curve. Given H 2 I� , let cH be the
number of irreducible components of ��1.�/ whose strict transform meets H . We have

�0.F / � N C
X
H2I

.max.cH ; 1/ � 1/ � max
�
�T .�/;

�D.�/

2

�
;

where N is the number of dicritical irreducible components of E� .

Notice how the first inequality depends on F , whereas the second is completely inde-
pendent of it, and requires only geometric information on � .
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Proof. Let G0D �
�F , which satisfies �0.G0/D �0.F /, and Gl D .�

�
l
/�.G0/ for 1� l � r .

Notice that w.D/D 1 for any irreducible componentD � E� , as ��
l

is never the blow-up
of a corner point. Hertling’s formula [11] in this case becomes

�0.G0/ D
X

D�;j�E�

X
P2D�;j

�P .Gk ;D�;j /C
X

D�;j 6�Inv.E� /

.2 � vd .D�;j // � 1:

Given H 2 I� , the following two inequalities hold:X
D2H
P2D

�P .Gk ;D/ � cH and
X
D2H
P2D

�P .Gk ;D/ � 1:

The first one is satisfied because every strict transform of an irreducible component of
��1.�/ intersects H at a singular point of Gk . The second one is a consequence of Pro-
position 3.7 in [3] (see also Remark 2.16). We deduce

�0.F / D �0.G0/ �
X

D�;j 6� Inv.E� /

.2 � vd .D�;j // � 1C ]I� C
X
H2I�

.max.cH ; 1/ � 1/:

Let D�;j 6� Inv.E� / be a dicritical irreducible component of E� , and let Hj;1; : : : ; Hj;p
be the elements of I� intersecting D�;j which appear after blowing-up a center in D�;j
(technically, ifD�;l �Hj;r , then l > j ). By definition, vd .D�;j / is at most pC 1, except
for j D 1, where vd .D�;1/ � p. As a consequence, if N is the number of non-invariant
irreducible components of E� , we haveX

D�;j 6� Inv.E� /

.2 � vd .D�;j // � 1C ]I� � N;

so that

(3.2) �0.F / D �0.G0/ � N C
X
H2I�

.max.cH ; 1/ � 1/;

which is the first inequality of the statement.
In order to prove the second inequality, givenH 2 I� , let tH be the number of terminal

components in H . If tH � 1, then cH � 2tH , because every terminal component meets
at least two branches of the strict transform of ��1.�/ (Remark 3.3); hence cH � 1 �
2tH � 1 � tH . This implies that

N C
X
H2I�

.max.cH ; 1/ � 1/ � �T .�/:

We now compare �0.F / and �D.�/=2. Denote by T� the set of terminal elements
of I� . Given H 2 I� , we denote by dH the number of irreducible components of H
meeting the strict transform of ��1.�/. The inequality cH � dH always holds. Moreover,
cH � 1 � dH is satisfied for any H 2 T� by Remark 3.3. We have

2�0.F / � 2N C 2
X
H2I�

.max.cH ; 1/ � 1/ D ?
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which, expanding all the terms and using the relations between cH and dH above, gives

? � N C 2
X
H2T�

dH C
X

H2I�nT�
cH�1

dH C .N �M/C
X

H2I�nT�
cH�1

dH �M;

where M D ]¹H 2 I� n T� W cH � 1º. Any non-terminal H 2 I� has a non-invariant
irreducible component of E� as one of its adjacent successors, i.e., there exists a non-
invariant irreducible component of E� that was the result of a blow-up with center in a
point in H . Therefore M � N holds, and we obtain

2�0.F / � N C 2
X
H2T�

dH C
X

H2I�nT�
cH�1

dH � �D.�/C
X
H2T�

dH � �D.�/;

as desired. Notice that if I� D ;, the result is straightforward.

Remark 3.8. Theorem 1.1 is the analogue in the reducible case of Theorem 3.1 in [3]
(where �T .�/ D �D.�/ D �.�/).

Remark 3.9. The inequality �0.F /��.�/ is sharp if � is a germ of irreducible invariant
curve [3], Remark 3.11. By considering a ramification, we obtain examples of reducible
invariant curves � whose branches are smooth and such that �0.F / D �T .�/.

Remark 3.10. Consider a reducible curve � consisting of n smooth curves 1; : : : ; n

with n � 2. Assume that the exceptional divisor E of the desingularization of � has n � 1
irreducible components D1; : : : ; Dn�1, and that only the last one is terminal. This is for
instance the situation if j D ¹y D xj º for 1 � j � n. Suppose that

• Dj is invariant if and only if j is odd;
• Let P 2 E. Then �P .Fn�1; �n�1/ D 1 if .E; P / is invariant and P 2 �n�1 and
�P .Fn�1; �n�1/ D 0 otherwise.
Such an example of foliation F can be built by using the realization theorem of Lins

Neto [13]. The self-intersection of Dj is �2 if j < n � 1, and �1 if j D n � 1. The foli-
ation is regular and transverse to every even divisor Dj in any point. The odd divisors Dj
with j < n � 1 have a unique (nondegenerate irreducible) singular point. The divisor
Dn�1 (if n � 1 is odd) has two (nondegenerate irreducible) singular points. Such config-
urations are easy to build. Once F is fixed, we choose the unique curve through every
singular point in Inv.E/, and for any non-invariant irreducible component Dj of E, we
choose an invariant curve through a trace point of Dj (or two trace points if j D n � 1).
In this way, we obtain a foliation F that leaves invariant a curve � with the properties
described above. In this case, it is easy to see that �T .�/ D 1, �D.�/ D n � 1 and

�0.F / D N C
X
H2I

.max.cH ; 1/ � 1/ D
ln � 1

2

m
D

l�D.�/
2

m
;

cf. equation (3.2), where dse is the smallest integer greater or equal than s. In particular,
Theorem 1.1 is both interesting (since it provides non-trivial lower bounds for �0.F /) and
sharp.
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4. Isolated invariant curves

In the previous section, we bounded from below the multiplicity of a singular foliation F

in terms of invariants of a singular curve � consisting of leaves of F . These invariants
depend only on the desingularization of �; in order to obtain a lower bound in terms of
the multiplicity of � , we need to require � to be composed of invariant branches that
are isolated somehow: one can get the multiplicity of � arbitrary large choosing branches
which meet a dicritical component of the exceptional divisor transversely. The first defin-
ition in that direction is “not belonging to a dicritical family” (see [7]).

Definition 4.1. Let  be an irreducible F -invariant curve. It is called isolated if there is
no birational morphism � W .M; D/ ! .C2; 0/ such that the strict transform of  inter-
sects D transversally at a non-corner regular point of the lifted foliation �?F . We say
that a reduced invariant curve � is isolated if all its irreducible components are isolated.

However, this notion is too restrictive. We shall see that one only needs to rule out
specific dicritical families related to � and, what is more: some non-isolated irreducible
components may be acceptable.

Recall that a normal-crossings divisor at a point P is the union of zero, one or two
non-singular irreducible curves containing P , and in the last case, they are mutually trans-
verse. Let O� be a singular curve invariant for F , and let � WM ! .C2; 0/ be its minimal
desingularization with E D ��1.0/. Given an irreducible component  of O� , let P the
point at which the strict transform of  meets E, and D the irreducible component of E
to which P belongs.

Definition 4.2. We say that a singular curve O� is weakly isolated for F if there is a
normal-crossings divisor � such that O� D � [ � , and � \ � � ¹0º, with

• �P .�
�F ;D / � 1 for any irreducible component  of � .

Any irreducible component � of O� with �P� .�
�F ; D�/ D 0 will be called null, the other

components of O� will be called non-null. Null components are, by definition, included
in � .

Thus, a weakly isolated curve is composed of an “important” part � and a “discard-
able” one, � . Later on, the roles of these two parts will become clear. See Figure 3 for an
example.

Remark 4.3. A singular isolated integral curve is weakly isolated (cf. Remark 2.7).

Weak isolation is a powerful concept since it is invariant by blow-ups.

Proposition 4.4. Let O� be weakly isolated for F and let �1 be the blow-up of the ori-
gin. Let P 2 ��11 .0/ and let O�P be the union of the invariant irreducible components
of ��1.�/ (the total transform) containingP . Then O�P is a weakly isolated curve for ��1F

if O�P is singular.

Proof. Write O� D � [ � , where � is the normal-crossings divisor formed by the null
components of O� , and let O� D �1 ı � 0 be a minimal desingularization of O� . Notice that �
may perfectly be empty. Denote by �P the strict transform of � at P , and let a be the
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number of irreducible components of �P . As � has normal crossings, a � 1, and if aD 1,
then �P is transverse toD1 D ��11 .0; 0/. Let �P be the minimal desingularization of O�P .
By definition, �P (as a sequence of point blow-ups) is contained in the sequence of point
blow-ups corresponding to � 0. We consider two cases, depending on the invariance of D1
by F1.

Case D1 invariant. The desingularization provided by � 0 of O�P and �P coincide
because D1 � O�P . Thus, the null irreducible components of O�P are �P (if a � 1) and
maybe D1 by hypothesis. Therefore, O�P is weakly isolated.

CaseD1 non-invariant. The only blow-ups in � 0 not belonging to �P must be of points
in the successive strict transforms of D1. Thus, if non-empty, this sequence corresponds
to a single smooth irreducible component  0 of O�P tangent toD1, and this curve might be
null for ��1F (as it is already smooth at P ).

Anyway, O�P is indeed weakly isolated for ��1F , as the only possible null components
are  0 and �P , which are transverse.

Example 4.5. Consider a foliation having the curves � � .y D 0/ and � � .y2 � x3D 0/
as separatrices, and such that if � is the desingularization of O� WD � [ � , thenD1 andD2
are non-invariant, � \D2 is non-singular for F2, and D3 is invariant (see Figure 3). The
curve O� is weakly isolated but not isolated. Moreover, the strict transform of O� by �1 is
also weakly isolated.

γ2

γ1

D1

D2

D3

Figure 3. See Example 4.5. If F3 is reduced and 1; 2 are invariant, then � D 1 [ 2 is weakly
isolated but not isolated. Its strict transform ��1 .�/ is weakly isolated but not isolated.

In this section, O� D 1 [ � � � [ q will be a weakly isolated curve for F , and � D
�1 ı � � � ı �k will denote its minimal desingularization, the rest of the notation being as
in Section 2. Recall that O�k meets Ek transversely. We remark again that we only need
to study the desingularization of O� , and not of F . The only hypothesis on F is that O� is
weakly isolated.

We do not follow the ramification approach of Section 3, as the isolation property
for a curve � is not invariant under ramification even if the ramification locus is different
from � . Moreover, our approach to the study of the global Poincaré problem through local
methods requires calculating vanishing orders of foliations along invariant branches 
of an invariant curve � . Later on, we shall use an iterative formula (equation (5.2)) to
calculate these vanishing orders. Since the formula collects data associated to a desingu-
larization of � , it is convenient to avoid ramifications.

Our approach to providing lower bounds for the multiplicity of a foliation F in terms
of the multiplicity of a weakly isolated curve consists in dividingEk into connected unions
of irreducible components: each starting with the exceptional divisor corresponding to the
blow-up of a trace point of a non-invariant component. In order to carry out this division,
we require some nomenclature.
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Definition 4.6. Let 0 � l and l 0 � k � 1 be indices of two centers of � . We say that Pl 0 is
a descendant of Pl (and Pl is an ancestor of Pl 0 ) if �lC1 ı � � � ı �l 0.Pl 0/ D Pl or l D l 0.

For simplicity in later arguments, we consider any point Pl both an ancestor and a
descendant of itself.

In Hertling’s formula (2.3),

�P0.F /C 1 D
X

Dj�Ek

X
P2Dj

w.Dj / �P .Fk ;Dj /C
X

Dj 6� Inv.Ek/

w.Dj /.2 � vd .Dj //;

the problematic terms are the ones in the last summation, which correspond to non-
invariant components of the exceptional divisor. These points can be of two different
kinds: either they arise for the first time from trace points, or they do from corners. The
former are the key ones to divide Ek (and, as a consequence, Hertling’s formula) into
controllable parts. Properly speaking: given l 2 ¹0; : : : ; kº, we shall denote by D.Pl / the
set of irreducible components of El containing Pl . We say that Pl is a separating center
(s.c. for brevity) if either l D 0 (whence D.P0/ D ;/) or if D.Pl / is a singleton and its
unique element is non-invariant for Fl . Using this notion, we can divide the exceptional
divisor Ek into connected sets each starting “immediately after” a separating center, as in
Figure 4, using the following definition:

Definition 4.7. Let 0� l � k � 1 be an index such that Pl is a separating center. We shall
denote by Dl the set of divisors Dl 0C1, with l 0 � l , such that Pl 0 is a descendant of Pl
and Pl is the unique separating center among the P` that are both descendants of Pl and
ancestors of Pl 0 . This gives a partition of ¹0; : : : ; k � 1º (or, equivalently, a subdivision
of Ek into connected unions of irreducible components):

Ek D
[
Pl s.c.

Dl :

See Figure 4 for an example.

The point P0 is always a separating center by convention, so that D0 always con-
tains D1 at least. Each set Dl is, essentially, a controllable part of Ek in Hertling’s
formula, as the next lemmas show.

From now on, O� will denote a weakly isolated curve for F such that O� D � [ � ,
where � is the union of the null components of O� . Given a separating center Pl , the
curves  l;1; : : : ;  l;nl are the irreducible components of � whose strict transforms  l;j

k

satisfy  l;j
k
\ Dl ¤ ;, and  l;1; : : : ;  l;ml are the irreducible components of � with


l;j

k
\Dl ¤ ;.

If Pl is a separating center, the component Dl satisfies Dl \ D.Pl / ¤ ; and �k ı
� � � ı �lC1.Dl /D Pl , and such properties characterize Dl . In Hertling’s formula (2.3), the
sum corresponding to non-invariant components,

(4.1)
X

Dj 6� Inv.Ek/

w.Dj /.2 � vd .Dj //;

is now best divided according to the following conditions:
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D0
H0

1

H0
2

D11

D16

1 5

4

3

2

6 9

7

8

10
11

12

13

14

15

16
19 18

17

20

Figure 4. Separating centers and the components Dl . Each component of the exceptional divisorEk
is numbered according to its order of apparition. Arrows indicate irreducible components of O� .
Notice how D0 � H

0
1 [ H

0
2 contains two connected components of I and three non-invariant

irreducible components of Ek .

(1) For each separating center l with l > 0, there is a single irreducible component
D.Pl / 2 Dl with D.Pl / \D.Pl / ¤ ;.

(2) By convention, we set D.P0/ D ; and w.D.P0// D 1.
(3) And finally, all the other intersections between a non-invariant component Dj and

another component of E arise, by definition, with components of the form Dr ,
where Pr is an ancestor of Pj�1. There are at most two such components.

Using these three properties, recalling the definition of non-dicritical valence vd .Dj /
(Definition 2.13), for each separating center Pl , we set ı.Pl /D 1 if either l D 0 orD.Pl /
is invariant, and ı.Pl / D 0 otherwise. Define, for any non-invariant Dj (for the sake of
simplicity, and where an empty summation is 0),

va
d
.Dj / D vd .Dj / �

X
P2Dj
P s.c.

ı.P /:

Remark 4.8. The value va
d
.Dj / is the part of the non-dicritical valence of Dj related to

its ancestors, i.e., to components Dr where Pr is an ancestor of Pj�1. It always satisfies
va
d
.Dj / � c � 2, where c is the number of irreducible components of Ej�1 containing

the point Pj�1. For j D 1, one always has c D 0.

With this convention, the sum (4.1) can be regrouped in the following way:

(4.2)

X
Dj 6� Inv.Ek/

w.Dj /.2 � vd .Dj //

D 1C
X
Pl s.c.

�
� ı.Pl /w.D.Pl //

�
C

X
Dj 6� Inv.Ek/

w.Dj /.2 � v
a

d
.Dj //:
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Notice the term 1 in the right-hand side of equation (4.2): it is required in order to remove
the “spurious” �ı.P0/w.D.P0//, as D.P0/ D ;. However, it is exactly what will cancel
theC1 in Hertling’s formula (2.3).

At this point, we proceed to study each component Dl in isolation. The positive con-
tributions in Hertling’s formula (2.3) pertaining to a specific component Dl are easily
bounded in terms of either O� or Pl :

Lemma 4.9. With the notations above, if O� is weakly isolated for F and Pl is a separat-
ing center, then

(4.3)
X
D2Dl
P2D

w.D/ �P .Fk ;D/ �

nlX
jD1

�0.
l;j /:

Also, for any H 2 I with H � Dl ,

(4.4)
X
Dj2H

X
P2Dj

w.Dj / �P .Fk ;Dj / � w.D.Pl //:

Proof. The first inequality holds because �P lj .F
0; D/ � 1 at ¹P lj º D 

l;j

k
\ E by hypo-

thesis, and �0. l;j /Dw.D.P lj //, whereD.P lj / is the unique irreducible component ofE
that contains P lj . The second one follows from Remark 2.16.

We now study each controllable part. Define, for a separating center Pl ,

ElD
X
Dj2Dl

X
P2Dj

w.Dj / �P .Fk ;Dj /� ı.Pl /w.D.Pl //C
X

Dj 6� Inv.Ek/
Dj2Dl

w.Dj /.2� v
a

d
.Dj //

(the part of Hertling’s formula corresponding to Dl ). Notice that we do not care if l D 0
or not in this definition. The following result is the crux of this section.

Lemma 4.10. With the notations above, El � w.D.Pl // and

(4.5) El �
1

2

nlX
jD1

�0.
l;j /C

1

2

mlX
jD1

�0.
l;j /:

Proof. Denote byP lj the intersectionP lj D 
l;j

k
\E (and the same forP lj and  l;j ). Since

.�lC1 ı � � � ı �k/.P
l
j /D Pl and the analogous property for  l;r

k
\E holds, it follows that

the multiplicities of the  l;j and  l;r are integer multiples of w.D.Pl // for all 1 � j � nl
and 1 � r � ml .

The first center P0 is special because it has no ancestor. Thus, the case D1 non-
invariant needs to be studied separately. In this case, the unique divisor in D0 is D1 and
we get

E0 �

n0X
jD1

�0.
0;j /C 1 �

1

2

n0X
jD1

�0.
0;j /C 1 �

1

2

n0X
jD1

�0.
0;j /C

1

2

m0X
jD1

�0.
0;j /

by equation (4.3), and this case is finished.
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If l > 0 orD1 is invariant, then  l;1; : : : ; l;ml intersect Dl inml non-invariant divisors
Dr1 ; : : : ;Drml that satisfy va

d
.Dr`/ � 1 for 1 � ` � ml , since the irreducible components

of � are smooth, by Remark 4.8. Using equation (4.3), we deduce

(4.6)

El �

nlX
jD1

�0.
l;j /C

mlX
`D1

w.D.Pl //.2 � v
a

d
.Dr`// � w.D.Pl //

�

nlX
jD1

�0.
l;j /C

mlX
jD1

�0.
l;j / � w.D.Pl //:

Notice that w.D.Pl // D 1 if ml � 1 since � consists of smooth branches. The inequal-
ity (4.5) holds whenever

(4.7)
nlX
jD1

�0.
l;j /C

mlX
jD1

�0.
l;j / � 2w.D.Pl //:

Since the desingularization of � [ � is minimal, (4.7) holds if no descendantQ of Pl
is a separating center. Assume, then, that Pl does not satisfy property (4.7) and hence Pl
has a descendant which is a separating center. Since (4.7) does not hold and the left-hand
side is a multiple of w.D.Pl //, it follows that it is less than or equal to w.D.Pl //. Thus,
it suffices to show that El � w.D.Pl //.

The hypothesis on Pl implies that there exists a non-invariant divisor D` in Dl . This
gives

(4.8) El �
X
Dj2Dl

X
P2Dj

w.Dj / �P .Fk ;Dj /C .2 � v
a

d
.D`/ � ı.Pl // w.D.Pl //:

Since Dl contains at least va
d
.D`/ elements of I, then

El � .2 � ı.Pl // w.D
l / � w.Dl /

by equation (4.4), and the result follows.

The main result of this section is now straightforward. It is Theorem 1.2, that we
restate here for the sake of the reader.

Theorem 4.11. Let O� be a weakly isolated curve for F , where F is a germ of holomor-
phic foliation F defined in a neighborhood of the origin in C2. Then �0.F / � �0. O�/=2.

Proof. We have

�0.F / D
X
Dj

X
P2Dj

w.Dj / �P .Fk ;Dj / �
X
P s.c.

ı.Pl /w.D.Pl //

C

X
Dj 6� Inv.Ek/

w.Dj /.2 � v
a

d
.Dj //;



The Poincaré problem for reducible curves 267

by Hertling’s formula (2.3) and equation (4.2). Since the union of the Dl is the set of
irreducible components of the exceptional divisor Ek of � , and Dl \ Dj is at most a
point for l ¤ j and hence does not contain an irreducible component of Ek , we get

�0.F / D
X
Pl s.c

El :

We deduce

�0.F / D
X
Pl s.c

El �
1

2

X
Pl s.c

� nlX
jD1

�0.
l;j /C

mlX
jD1

�0.
l;j /

�
D
�0. O�/

2
;

where the inequality is a consequence of Lemma 4.10.

We want to stress again that the structure of F along Ek is totally irrelevant except
for the property that O� is weakly isolated, which only affects the intersection points of O�k
andEk along the resolution of singularities of O� . The argument works whatever the family
of separating centers Pl is and whatever non-invariant irreducible components of Ek are
for Fk , as long as the weakly isolation holds.

The previous result provides a lower bound for the multiplicity of the foliation in
terms of the multiplicity of an invariant curve, but we do not require that all irreducible
components are isolated. This will be very useful in desingularization settings in which
invariant divisors cannot be assumed to be isolated for the foliations F1; : : : ;Fk .

Remark 4.12. Let us remark that in [7], they proved that M�0.F / � �0.�/ for some
M > 0 in the isolated case. We have shown that M � 2.

5. Global Poincaré problem

In the previous sections, we studied the Poincaré problem in the local setting. We want
to apply Theorem 4.11 to obtain linear lower bounds for the multiplicity of a foliation in
terms of the multiplicity of an invariant curve.

We consider an algebraic curve � in CP.2/ that is invariant by a foliation F . Car-
nicer’s solution [4] of the Poincaré problem for the case where the curve � does not
contain dicritical singularities of F relies on showing the following local property: let F

be a germ of non-dicritical foliation that preserves the curve � . Consider a reduced equa-
tion f 2 O2 of � and the foliation H given by the first integral f . Then we always have

ZP .F ; / � ZP .H ; /

for any P 2 � and any branch  of � defined in a neighborhood of P . In order to obtain
lower bounds for �0.F /, we need to bound ZP .F ; /=ZP .H ; / from below.

Let us see one of the difficulties. Consider an irreducible curve � . Suppose now that
�0.�/=�.�/�M for someM 2N. In such a case, the quotient �0.F /=�0.H / is bounded
from below by a positive constant; indeed, we have

�0.F /

�0.H /C 1
D
�0.F /

�0.�/
D
�0.F /

�.�/

�.�/

�0.�/
�

1

M
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by equation (3.1). Notice that �0.H /D �0.�/� 1 since H is a generalized curve [2]. This
motivates us to study whether in such a caseZP .F ;�/=ZP .H ;�/ could be bounded from
below by a positive constant. Next we show that this is not the case.

Example 5.1. Consider the curve � given by the equation y2D xp , where p� 3 is an odd
number. The map �.t/D .t2; tp/ is a Puiseux parametrization of � . The multiplicities of �
are �0.�/ D 2 and �.�/ D 1. Consider the foliation F that has the first integral y2=xp .
It is the foliation defined by the vector field X D 2x@=@x C py@=@y. Since

d�.t/
�
t
@

@t

�
D 2t2

@

@x
C p tp

@

@y
D X.�.t//;

we obtain ��X D t@=@t andZ0.F ;�/D 1. The vector field Y WD 2y @=@xCpxp�1 @=@y
is tangent to foliation as d.y2 � xp/ D 0. Since

d�.t/
�
tp�1

@

@t

�
D 2tp

@

@x
C p t2p�2

@

@y
D Y.�.t//;

we get Z0.H ; �/ D p � 1. Hence, even in the case where �0.�/=�.�/ D 2, the quotient
Z0.F ; �/=Z0.H ; �/ is not bounded from below by a positive constant.

As a consequence of Theorem 1.3, the situation is different for weakly isolated invari-
ant curves. Assume for now that Theorem 1.3 holds, and that the simpler Lemma 5.11
does too, to prove Theorem 1.4.

Proof of Theorem 1.4 assuming Theorem 1.3 and Lemma 5.11. We can consider that the
line L1 at 1 is generic. In particular, L1 is not F -invariant, L1 \ Sing.F / D ;,
and � intersects L1 transversally. We denote by .x; y/ the coordinates in the affine chart
CP.2/ nL1. Let F be a polynomial vector field, with cod.Sing.F //� 2, defining the foli-
ation F in the affine chart CP.2/ nL1. We consider an irreducible equation f 2 CŒx; y�
of the curve � in CP.2/ n L1. Let H be the foliation given by the hamiltonian vector
field H WD @f=@y � @=@x � @f=@x � @=@y.

Consider the normalization � W O� ! � . We lift F and H to the smooth compact
Riemann surface O� . We denote by c the number of irreducible components of �; it coin-
cides with the number of connected components of O� . We define

ZP .F / D Z�.P/.F ; �. O�;P // and ZP .H / D Z�.P/.H ; �. O�;P //

for P 2 O� , where �. O�;P / is the germ of �. O�/ at P . We claim that ZQ.F / � ZQ.H /=2

for any Q 2 O� . This is a consequence of ZQ.H / D 0 if �.Q/ is a regular point of � . In
the singular case, we apply Theorem 1.3.

We apply Poincaré–Hopf’s theorem to the restrictions of F and H to � . If we denote
by ZF and PF the number of zeros and poles (with multiplicity) of Fj� , we obtain

ZF � PF D ZH � PH D �. O�/;

where � stands for the Euler characteristic. We have ZF � ZH=2 by the previous dis-
cussion. Moreover, it is well known that PH D m.m � 3/ and PF D m.d � 1/, where
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m D deg.�/ and d D deg.F / (see Proposition 25.22 in [12]). We have

m.d � 1/ D PH CZF �ZH � PH �
ZH

2
D
PH

2
�
�. O�/

2
�
m.m � 3/

2
� c;

and then

(5.1) d �
m � 3

2
�
c

m
C 1 D

m

2
�
c

m
�
1

2
�

Assume c < m. We deduce

m � 2d C
2c

m
C 1 < 2d C 3:

It follows that m � 2d C 2.
Consider the remaining case c D m. Thus, all irreducible components of � have

degree 1, i.e., they are lines. We have ZF � ZH by Lemma 5.11, and hence

m.d � 1/ D PH CZF �ZH � PH D m.m � 3/ H) m � d C 2:

Therefore we get m � d C 2 � 2d C 2.
Finally, assume that � is irreducible. Since d D 0 implies m D 1, we can assume

d � 1. Therefore m � 2d C 1 holds if m � 3. So, it suffices to consider m � 4. Since

m � 2d C
2c

m
C 1 D 2d C

2

m
C 1 < 2d C 2;

it follows that m � 2d C 1.

Remark 5.2. Consider a foliation F of CP.2/ of degree 0, and letP be its unique singular
point. Notice that the unique invariant curves � that satisfy our hypothesis are either a line
throughP or two lines throughP . In the former case, we have deg.�/D1D2 deg.F /C1,
whereas in the latter case we obtain deg.�/ D 2 D 2 deg.F /C 2.

5.1. Comparison of vanishing orders

We show Theorem 1.3 in the remaining of the paper. Let us assume that F is a germ of
foliation defined in a neighborhood of .0; 0/ in C2 without lack of generality. We desingu-
larize � along an irreducible component  of � . Consider the notations in Definition 2.9.
In this case, �1; �2; : : : ; �k is a sequence of blow-ups of infinitely near points of  .

Definition 5.3. We say that � is a desingularization of � along  if k intersects the
divisor transversally at the non-corner point Pk of Ek , and the germs of k and �k at Pk
coincide. We assume that � is minimal with such a property.

Remark 5.4. The previous property is not equivalent to a desingularization of  . For
instance, if  is smooth and � is not, we need to blow-up the origin since �0 ¤ 0.

By applying iteratively equations (2.5) and (2.6), we obtain

(5.2) Z0.F ; / D �

0 �0 C � � � C �


j�1�j�1 CZPj .Fj ; j /

for any 0 � j � k, where �j D �Pj .j / and �j D �Pj .Fj / if Fj is 1-dicritical at Pj and
�j D �Pj .Fj / � 1 otherwise.
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Since H is non-dicritical, we get, for any 0 � j � k,

Z0.H ; / D �

0 .�P0.H0/ � 1/C � � � C �


j�1.�Pj�1.Hj�1/ � 1/CZPj .Hj ; j /:

Remark 5.5. The germ of Hj at any point is a generalized curve; therefore we get

�Pj .Hj / D �Pj . Q�
�1
j .�// � 1 D �Pj .�j /Cmj � 1;

where mj is the number of irreducible components of Ej containing Pj (see [2]). Notice
that mj D 0 if j D 0. We obtain

Z0.H ; / D

j�1X
lD0

�


l
.�Pl . Q�

�1
l .�// � 2/CZPj .Hj ; j /

for any 0 � j � k, where Q��10 .�/ D � by convention. Notice that �Pl . Q�
�1
l
.�// � 2 �

�Pl .�l / for 0 � l � k.

Remark 5.6. Given 0 � j < k, we have �j � �Pj .Fj /� 1. As we are going to use equa-
tion (5.2) to obtain lower bounds of Z0.F ; /, we want to consider points Pj that have
a non-negative contribution �j to equation (5.2). Indeed, we will consider points Pj with
�Pj .Fj / � 1. This motivates the next definition.

Definition 5.7. Let I D ¹0; 1; : : : ; k � 1º be the set of indices of blow-up centers, and
consider those where �l has multiplicity 1:

I1 D ¹l 2 I W �Pl .�l / D 1º:

Define � as the maximum element of I with �� D �P�.�/ > 1 (if I1D;, then � is irrelevant
and can be defined as�1). We set�1 D I1 if �� 0 andD�C1 is non-invariant, and�1 D ;
otherwise. We define �Dmin.I1 [ ¹kº/� 1 (that is, the last index such that �P�.��/ > 1).

Remark 5.8. The set I1 is the “final stage” in the resolution of singularities of both 
and �: for j 2 I1, the germs .�j ; Pj / and .j ; Pj / in Q��1j .C2/ coincide, Pj is of multi-
plicity 1 (for both of them, obviously), and it is also the corner Dj \D�C1. The set �1 is
non-empty if and only if D�C1 is non-invariant. In this case, for j 2 �1 D I1, Pj always
belongs to at least one non-invariant component of Ej .

Also, I1 ¤ ; implies that  is a singular curve (otherwise, as soon as �Pj .�j /D 1, we
should have j D k, so that I1 D ;).

Remark 5.9. We have that �Pj .Fj / � 1 if j 2 I n�1. This is clear if j 2 I n I1, since
�Pj .�j / � 2. Moreover, it also holds if j 2 I1 n�1, since there are two invariant curves
in Q��1j .C2/, namely �j and D�C1, containing Pj . This is what makes �1 so important: it
contains the “worst” centers in terms of lower bounds for �Pj .Fj /; this will become clear
as we proceed.

Before continuing, notice that the inequality we wish to prove can be written, by
Remark 5.5, as

(5.3)
�

0 �0 C � � � C �


� �� CZP�C1.F�C1; �C1/Pk�1

jD0 �

j .�Pj . Q�

�1
j .�// � 2/CZPk .Hk ; k/

�
1

2
�
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We are going to partition both numerator and denominator of the left-hand side and verify
that, for each of the sets of the partition, the corresponding sums are both positive and
satisfy the inequality, and that will finish the argument.

First of all, let us consider the last terms of the case I1 D ;.

Lemma 5.10. ZPk .Hk ; k/ D 1, and if Dk is invariant, ZPk .Fk ; k/ � 1.

Proof. The pair .Hk ; k/ is analytically conjugated in a neighborhood of Pk to the pair
.d.xpyq/ D 0; y D 0/, where p; q � 1. We obtain ZPk .Hk ; k/ D 1. If Dk is invariant,
then ZPk .Fk ; k/ � 1 since Pk is a singular point.

The following result was used in the proof of Theorem 1.4 to improve an inequality.

Lemma 5.11. Let � be a weakly isolated curve composed of pairwise transverse smooth
branches. Then Z0.F ; / � Z0.H ; / � 1 for any irreducible component  of � .

Proof. We have

Z0.H ; / D .�0.H / � 1/CZP1.H1; 1/ D .�0.�/ � 2/C 1 D �0.�/ � 1:

Assume D1 is invariant. We have ZP1.F1; 1/ � 1 and

Z0.F ; / D �0 CZP1.F1; 1/ � �0.F / D
X
P2D1

ZP .F ;D1/ � 1 � �0.�/ � 1;

since ZP 0 .F ;D1/ � 1 for any irreducible component  0 of � .
Assume D1 is non-invariant. We have

Z0.F ; / � �0 D �0.F / D 1C
X
P2D1

tangP .F ;D1/ � 1C .�0.�/ � 2/

by the weak isolation hypothesis. In any case, Z0.F ; / � �0.�/ � 1 D Z0.H ; /.

Definition 5.12. Let 0 � j � k. From now on, Fj will denote the union of the (at most
two, obviously) irreducible components ofEj containing Pj , and F 0j its subset of invariant
irreducible components. We denote bymj be the number of irreducible components of Fj .

Remark 5.13. We are going to apply Theorem 4.11 at Pj for j 2 I n�1 to obtain lower
bounds for �j . This approach works since weak isolation is invariant by blow-ups by
Proposition 4.4.

The next lemma measures the contribution of each term to the required inequality
whenever j 62 �1.

Lemma 5.14. Let j 2 I n�1. Let

�j D �j �
1

2
.�Pj .Hj / � 1/:

Then �j � �1. Moreover, the following non-exclusive statements hold:
• If Fj D F 0j , then �j � 0 (this contains the case j D 0/.

• If Fj is 1-dicritical at Pj , then �j � 0.

• If Fj D F 0j and Fj is 1-dicritical at Pj , then �j � 1.
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Proof. We have �j .Hj / � 1 D �Pj .�j /Cmj � 2 by Remark 5.5. Since

�j � �Pj .Fj / � 1 �
1

2
�Pj .�j / � 1

by Theorem 4.11, Remarks 5.9 and 5.13 and �Pj .�j / � �Pj .Hj /� 1, we obtain �j � �1.
Now we prove each of the statements.

• If Fj D F 0j , then

�j �
1

2
.�Pj .�j /Cmj / � 1 �

1

2
.�j .Hj / � 1/

by Theorem 4.11 and Remarks 5.9 and 5.13, from which �j � 0 follows (the case
j D 0 is covered because � is singular at .0; 0/, which implies that �j .Hj / � 1).

• If Fj is 1-dicritical at Pj , then we have �j D �Pj .Fj / �
1
2
�Pj .�j / by Theorem 4.11

and Remark 5.13, and �j � 0 follows from �Pj .�j / � �Pj .Hj / � 1.
• Finally, if Fj D F 0j and Fj is 1-dicritical at Pj , then we obtain

�j D �Pj .Fj / �
1

2
.�Pj .�j /Cmj / D

1

2
.�Pj .Hj / � 1/C 1

by Theorem 4.11 and Remark 5.13, and hence �j � 1.
The proof is complete.

Definition 5.15. Given a subset S of I n�1, we define

‚S D
X
m2S

�m�m �
1

2

X
m2S

�m .�Pm.Hm/ � 1/:

We now divide the sequence .Pj /j2In�1 into “satisfactory” subsequences. Assume
I n�1D

S`
iD1Si , with Si \Sj D; if i ¤ j . We will estimate‚Si for each i 2 ¹1; : : : ; `º,

and these estimates will essentially imply Theorem 1.3. The following definitions provide
the required partition.

Definition 5.16. Let 0 � j � k. We say that Pj is a precursor point if j 2 I n�1 and at
least one of the following non-exclusive properties holds:

• DjC1 is non-invariant and �jC1 < �

j ;

• DjC1 is non-invariant and it is the unique non-invariant divisor containing PjC1
in EjC1;

• every irreducible component of Ej containing Pj is invariant.
We say that Pj is a leader point if it is a precursor point such that Fj D F 0j .

A precursor point Pj either only belongs to invariant divisors, or (non-exclusively)
marks the start of a chain Pj ; : : : ; Pr of blow-ups such thatDjC1 is non-invariant, and for
l 2 ¹j C 1; : : : ; rº, the curve l intersects DjC1 or more precisely, its strict transform by
�jC2 ı : : : ı �l if l > j C 1 (an important well-known consequence is that the multiplicity
of l at Pl is constant for l 2 ¹j C 1; : : : ; r � 1º).
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Definition 5.17. We define a partition P 0 of the set I n �1 as follows: a set ¹j; : : : ; rº
belongs to P 0 if Pj is a leader, PjC1; : : : ; Pr are non-leaders, and either PrC1 is a leader
or r C 1 62 I n �1. Replacing “leader” with “precursor”, we obtain another partition P

that is finer than P 0.

Notice that if � > �1 (cf. Definition 5.7) and �1 ¤ ;, then P� is always a precursor.
Finally, roughly speaking, the sets in P are usually singletons, unless there are specific
chains of dicritical divisors.

As pointed out above, the sets of the partition P are all well-behaved with respect
to (5.3).

Lemma 5.18. Let S D ¹j; : : : ; rº be a set of the partition P . Set ı D 1 if Fj D F 0j , and
ı D 0 otherwise. Then we have

• ‚S � .ı � 1/�

j in any case;

• ‚S � �

rC1 C .ı � 1/�


j if DjC1 is non-invariant and FrC1 ¤ F 0rC1 ;

• ‚S � 0 if DjC1 is invariant.

Proof. We consider the two alternatives: DjC1 non-invariant or invariant. As usual, we
identify DjC1 with its strict transforms for the sake of simplicity. So for instance, when
we say Ps 62 DjC1 for some s > j C 1, we mean that Ps is not in the strict transform
of DjC1 by �jC2 ı � � � ı �s .

Case DjC1 non-invariant. Consider the sequence PjC1; : : : ; Ps of infinitely near
points of  that belong toDjC1. We claim that r � s. Assume r � sC 1, aiming at contra-
diction. This implies that Ps and PsC1 are not precursors, by definition of the partition P .
We distinguish two cases:

• IfDs is invariant or s D j C 1, thenDjC1 is the unique non-invariant divisor contain-
ing Ps (in the latter case, it is a consequence of �j D �


jC1 and the definition of pre-

cursor point). Now, ifDsC1 is non-invariant then Ps is a precursor since PsC1 62 DjC1
(contradiction). Otherwise, if DsC1 is invariant, then PsC1 is a precursor, providing
also a contradiction.

• If, on the contrary, Ds is non-invariant and s > j C 1, then, since Ps�1 is not a pre-
cursor point, we obtain �s�1D �


s , and as a consequence,PsC1 does not belong neither

to DjC1 nor to Ds . We obtain a contradiction since Ps is a precursor if DsC1 is non-
invariant and PsC1 is a precursor otherwise.
The equality �j D

Ps
lDjC1 �



l
is a direct consequence of the fact that PjC1; : : : ; Ps

belong toDjC1 and PsC1 does not. By Lemma 5.14, we obtain‚S � ı �

j �

Pr
lDjC1 �



l
,

and hence

‚S � ı �

j �

rX
lDjC1

�


l
� ı �


j �

sX
lDjC1

�


l
D .ı � 1/�


j ;

using that r � s and Lemma 5.14. There are two subcases to consider.
If r < s or DlC1 is non-invariant for some j C 1 � l � r , then the inequality ‚S �

�

rC1 C .ı � 1/�


j follows by Lemma 5.14.

On the other hand, if r D s and DlC1 is invariant for all j C 1 � l � r , we obtain
FrC1 D F

0
rC1, which concludes this case.
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CaseDjC1 invariant. This impliesFj DF 0j by Definition 5.16, and either jC1 62I n�1
or PjC1 is a precursor, and hence S D ¹j º in both cases. The result is a consequence of
Lemma 5.14.

Lemma 5.19. Let S D ¹j; : : : ; rº be a set of the partition P 0 which is the union of con-
secutive sets S1; : : : ; Sm of P . Then the following inequalities hold:

(5.4) ‚S D

mX
lD1

‚Sl � 0 and
pX
lD1

‚Sl � �

1CmaxSp

if 1 � p < m or if p D m and F1Cr ¤ F 01Cr (the latter condition can only happen if
r D max.I n�1//. In particular, we obtain ‚S � �


1Cr if F1Cr ¤ F 01Cr .

Proof. There are two cases, depending on wether DjC1 is invariant or not.
If DjC1 is invariant, then, by definition of leader point m D 1, S1 D ¹j º and, by

Lemma 5.18, ‚S1 � 0. The second part holds because the condition is empty (there is no
1 � p < m and F1Cr D F 01Cr ).

Assume thatDjC1 is non-invariant. Denote ıD 1 ifF1Cr ¤F 01Cr and ıD 0 otherwise.
IfmD 1, then‚S1 � ı�


1Cr straightforwardly by Lemma 5.18. Suppose, then, thatm> 1.

Then Lemma 5.18 implies the inequalities

‚S1 � �

1CmaxS1

;

‚Sl � ��

minSl

C �

1CmaxSl

for any 1 < l < m, and

‚Sm � ��

minSm

C ı �

1CmaxSm

:

A telescopic argument concludes the proof of the claim.

At this point, we have all the machinery required to prove Theorem 1.3.

5.2. Proof of Theorem 1.3

By definition, we have � � �, as  is a branch of � . We are going to compare

Z0.F ; / D

�X
lD0

�


l
�l CZP�C1.F�C1; �C1/

with

Z0.H ; / D

k�1X
jD0

�

j .�Pj .Hj / � 1/CZPk .Hk ; k/

to get the inequality (see (2.5) and (2.6)). Recall the partition P 0 of Definition 5.17. We
will use the estimates in Lemma 5.19 for the sets of P 0. As a consequence, we obtain

(5.5) ‚In�1 � 0 and ‚In�1 � 1 if F1Cmax.In�1/ ¤ F
0
1Cmax.In�1/:

At this point, there are two cases to consider.
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5.2.1. Case 1: �1 D ;. We have ‚I D ‚In�1 . It suffices to show that

‚I CZPk .Fk ; k/ �
1

2
ZPk .Hk ; k/ � 0:

Suppose that Fk ¤ F 0
k

, i.e., Dk is non-invariant. Since ‚I � 1, by equation (5.5), and
ZPk .Hk ; k/ D 1 and ZPk .Fk ; k/ � 0 hold, the inequality follows. Assume now that
Fk D F 0

k
. Then, the inequality is a consequence of ZPk .Fk ; k/ � ZPk .Hk ; k/ D 1

(Lemma 5.10) and ‚I � 0.

5.2.2. Case 2: �1 ¤ ;. We have �1 D I1 and D�C1 is non-invariant (Definition 5.7).
The point P� is a precursor by definition. Since the strict transform of D�C1 contains Pj
for any � < j < k, it follows that no point P` with ` > � and ` 2 I n�1 is a precursor. In
particular, S WD ¹�; : : : ; �º belongs to P .

Consider the set S 0 of P 0 containing S . By Lemma 5.19, we know that ‚S 0nS � �

�

and hence ‚In.�1[S/ � �

� if S ¤ S 0. Moreover, we obtain ‚In.�1[S/ � 0 if S D S 0,

again by Lemma 5.19. Notice that �� D �P�.F�/ sinceD�C1 is non-invariant. The previous
discussion implies

‚In.�1[S/ C �

� �� � �


�

by Lemma 5.14. Therefore, we only need to show

�

� C

P�

lD�C1
�l CZP�C1.F�C1; �C1/Pk�1

lD�C1.�Pl .Hl / � 1/CZPk .Hk ; k/
�
1

2
�

By Lemma 5.14, the following inequality holds:

�� C

�X
lD�C1

�l �
1

2

� �X
lD�C1

.�Pl .Hl / � 1/
�
C �� � .� � �/;

so that as ZP�C1.F�C1; �C1/ � 0, it suffices to show

(5.6)
�

� � .� � �/P

l2I1
.�Pl .Hl / � 1/CZPk .Hk ; k/

�
1

2
�

The denominator is at most 1C ]I1 by Lemma 5.10 and Remark 5.5. On one hand, we
have �� � .� � �/C ]I1, and obviously ]I1 � 1 in this case, because I1 D �1 ¤ ;. This
gives 2 ]I1 � ]I1 C 1, and equation (5.6) follows.

This completes the proof of Theorem 1.3.
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