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On the Northcott property
for special values of L-functions

Fabien Pazuki and Riccardo Pengo

Abstract. We propose an investigation on the Northcott, Bogomolov and Lehmer
properties for special values ofL-functions. We first introduce an axiomatic approach
to these three properties. We then focus on the Northcott property for special values
of L-functions. In the case of L-functions of pure motives, we prove a Northcott
property for special values located at the left of the critical strip, assuming that the
L-functions in question satisfy some expected properties. Inside the critical strip,
focusing on the Dedekind zeta function of number fields, we prove that such a prop-
erty does not hold for the special value at one, but holds for the special value at zero,
and we give a related quantitative estimate in this case.

1. Introduction

1.1. Diophantine properties of the Weil height

Traditionally, the expression Northcott property is used to talk about the finiteness of the
set of algebraic numbers having simultaneously bounded height and degree, proved by
Northcott (see [103] and Theorem 1.6.8 in [15]). More generally, one can say that a field
F � Q has the Northcott property if the sets of elements of F having bounded height are
finite. Hence, Northcott’s theorem can be reformulated by saying that number fields have
the Northcott property. They are not the only fields sharing this property, as we recall in
Section 4.1.

The Northcott property can be relaxed by asking for which fields F �Q the image of
the height h.F /� R�0 does not admit zero as an accumulation point. If this happens, one
says that F has the Bogomolov property (introduced in [16]), and in recent years there has
been an increasing interest in finding fields having the Bogomolov property. Finally, the
Bogomolov property can also be relaxed by looking at fields F �Q such that the product
of the height and the degree of those algebraic numbers which belong to F does not
accumulate towards zero. It seems reasonable to us to define this as the Lehmer property
in view of the famous conjecture of Lehmer which says that Q (and hence each of its
subfields) satisfies this property. We note that there are many explicit classes of sub-fields
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of Q which are known to have the Bogomolov property but not the Northcott property.
It is more difficult to construct fields which provably have the Lehmer property and do
not have the Bogomolov one: the first example of a field of this kind, to the best of the
authors’ knowledge, has been constructed by Amoroso in Theorem 3.3 of [2]. We refer
the interested reader to the work of the first author, Technau and Widmer (see Theorem 4
in [109]) for other examples of fields with the Lehmer but not the Bogomolov property,
and to Section 4.1 for a more detailed discussion.

1.2. Heights of motives and special values of L-functions

We are interested in the Northcott, Bogomolov and Lehmer properties for more general
notions of heights, related to objects in algebraic geometry. We will define these properties
in Section 2 for any set-theoretic function hW S ! � , where � is a partially ordered set.
In particular, this allows to define such properties for sets of heights, by considering their
set-theoretic product (see Definition 2.2). Moreover, this language allows to put within the
same framework some results in different areas of Diophantine geometry, as we observe
in Sections 3 and 4.

One can view heights as a way of measuring the complexity of arithmetic or geo-
metric objects, such as algebraic numbers, algebraic number fields, abelian varieties or
Galois representations. More generally speaking, one considers mixed motives, which can
be thought of as pieces cut out from the cohomology of algebraic varieties defined over
a number field F . A recent pioneering work by Kato [80] puts forward several tentative
definitions of heights of mixed motives, whose Northcott properties would have moment-
ous consequences, as we recall in Example 4.6. One way to derive a Northcott property
for a height is to compare it to another height, where the statement would be easier to
prove. This is a successful strategy for the Faltings height of an abelian variety, which can
for instance be explicitly compared to its theta height, as shown in [106]. Therefore, it
seems natural to try to relate Kato’s heights with other kinds of heights for which proving
a Northcott property may be easier.

One of the aims of the present paper is to propose the idea that special values of
L-functions may serve as such a height. More precisely, if one fixes a prime number `2N,
one can associate to every mixed motive X defined over a number field F an `-adic real-
isation R`.X/, which is a representation of the absolute Galois group GF WD Gal.F =F /.
Assembling together all the actions of the Frobenius elements belonging to GF , one gets
a formal Euler product L.R`.X/; s/, as explained for instance in [42]. Then, one expects
that this Euler product actually defines a meromorphic function L.R`.X/; s/WC Ü C, to
which one can associate the special values

L�.X; n/ WD lim
s!n

L.X; s/�

.s � n/ordsDn.L.X;s/� /

taken at each integer n 2 Z. Such special values have historically been related to many
different kinds of heights. For instance,

(1) the conjectures of Boyd [20] relate certain special values of L-functions to the
Mahler measure of integral polynomials (see Section 4.2);

(2) the formula of Gross and Zagier [68] relates special values ofL-functions of modular
forms to heights of Heegner points (see Section 4.3);
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(3) the conjecture of Colmez [31] relates logarithmic derivatives of Artin L-functions to
Faltings’s heights (see Section 4.4);

(4) special values of Dedekind �-functions appear to be related to the volume of hyper-
bolic manifolds, which can be regarded as a height (see Example 4.5);

(5) the conjectures of Bloch and Kato can be stated as a relation between special values
ofL-functions and height pairings of algebraic cycles (see [13], as well as Fontaine’s
survey [52]).

Thus it seems natural to us to investigate which properties that are typical of heights
hold also for special values ofL-functions. The main results of the present paper go in this
direction, as we explain in the next subsection. Moreover, as we note in Example 4.6, some
ingredients appearing in the definition of Kato’s height of motives prompt us to believe
that there might be connections between this height and special values of L-functions.
This will be the subject of future research.

1.3. Main results

Let us now summarise the main results of this paper, which concern the Northcott property
for special values of L-functions.

First of all, we prove a general result aboutL-functions associated to pure motives, and
their special values at the left of the critical strip. More precisely, for every number field F ,
we let MF denote the category of pure motives for absolute Hodge cycles, introduced by
Deligne in [37], and for every w 2 Z, we denote by M.w/.F / the set of isomorphism
classes of pure objects X 2MF of weight w, whose L-functions satisfy some expected
properties, outlined in Definition 5.5. In particular, we suppose that these L-functions
have the expected region of absolute convergence, and can be meromorphically continued
to functions which satisfy the expected functional equation, so that each integer n 2 Z
will lie on the left of the critical strip if and only if 2n < w. With this setting in mind, we
show that the special values at the left of the critical strip of the L-functions associated to
pure motives of fixed weight and dimension satisfy the Northcott property, as summarised
in the following theorem.

Theorem 1.1 (Northcott property at the left of the critical strip). Let F be a number field.
Fix an integer w 2 Z, and let M.w/.F / be the set introduced in Definition 5.5. Then, for
every B D .B1; B2/ 2 R2�0 and every n 2 Z such that 2n < w, the set

(1.1) M
.w/
B .F; n/ WD ¹X 2M.w/.F / W jL�.X; n/j � B1; dim.X/ � B2º

is finite. In other words, the pair of functions ¹jL�.�; n/j; dimWM.w/.F /! R�0º has the
Northcott property.

The proof of Theorem 1.1 is divided in two parts. First of all, we show in Pro-
position 5.3 that certain axiomatic properties of L-functions, which are introduced in
Definition 5.1 and bear some similarity to those used to define the celebrated Selberg class
(as we recall in Remark 5.2), are sufficient to guarantee that bounding one of the special
values of these L-functions which lie at the left of the critical strip yields a bound for the
conductor of the L-function in question. Then, we conclude the proof of Theorem 1.1 in
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Section 5.2, by using a result of Deligne [40] on the Northcott property of conductors of
Galois representations (see Example 4.3 for further details).

We remark that the set M.w/.F / should coincide with the set of isomorphism classes
of all motives X 2 MF which are pure of weight w, as we explain in Remark 5.8, but
proving this seems out of reach for the mathematics of today. Nevertheless, we show in
Corollary 5.12 that Theorem 1.1 implies an unconditional result for those abelian varieties
which are known to be potentially modular, such as elliptic curves and abelian surfaces
defined over totally real fields.

Another case in which the expected properties of L-functions are known is provided
by the Dedekind �-functions �F .s/ associated to number fields F . In particular, these can
be seen as the L-functions associated to the Weil restrictions, from F to Q, of the trivial
motive 1F 2MF . Therefore, it is natural to study the Northcott properties for the special
values of Dedekind �-functions at the integers. We summarise the results that we achieve
in the following theorem, which shows in particular that the special values of Dedekind
�-functions at an integer n 2 Z satisfy the Northcott property if and only if n � 0.

Theorem 1.2. Let S.Q/ be the set of isomorphism classes of number fields. For every
real number B 2 R�0 and every n 2 Z, we set

SB.Q; n/ WD ¹ŒF � 2 S.Q/ W j�
�
F .n/j � Bº:

Then,

• for every n 2 Z�1, there exists Bn 2R�0 such that for each B � Bn, the set SB.Q; n/
is infinite;

• for every n 2 Z�0 and B 2 R>0, the set SB.Q; n/ is finite.

Moreover, there exists an absolute, effectively computable constant c0 2R>0 such that
the following upper bound:

(1.2) jSB.Q; n/j � exp
� c0

1 � n
log.B/.log log.B//3

�
holds true for every n 2 Z��1 and every B 2 R>1. Finally, there exist two other absolute,
effectively computable constants c1; c2 2 R>0 such that the following upper bound:

(1.3) jSB.Q; 0/j � exp
�
c1B

c2 log log.B/.log log.B//3
�

holds true for every B 2 R>1.

We divide the proof of Theorem 1.2 in various steps. First of all, we devote Proposi-
tion 5.13 to the study of the sets SB.Q; n/ for integers n 2 Z n ¹0; 1º. In particular, despite
the fact that we have a natural inclusion S.Q/ � M.0/.Q/, given by sending F to the
motive 1F=Q obtained as the Weil restriction of the trivial motive 1F 2 MF , we can-
not apply directly Theorem 1.1 to prove that the sets SB.Q; n/ are finite when n � �1.
Indeed, the dimension of 1F=Q equals the degree dF WD ŒF WQ�, which is a priori not
bounded when we bound the special values of Dedekind �-functions. In order to over-
come this issue, we need to adapt the proof of Theorem 1.1 to this setting, using the fact
that the discriminant j�F j of a number field F grows exponentially with its degree, as we
recall in Example 4.4. Moreover, the explicit upper bound displayed in (1.2) is obtained
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by finding an explicit upper bound for the discriminant of the number fields belonging
to SB.Q; n/, which is used in combination with an explicit version of Hermite’s theorem,
proved by Couveignes in [34] (see also Example 4.4).

To conclude the proof of Theorem 1.2, we devote Section 6.1 to the study of spe-
cial values of Dedekind �-functions at the boundary of the critical strip. In particular,
Proposition 6.1 shows that the Northcott property holds for n D 0 and does not hold for
n D 1, whereas Proposition 6.2 is devoted to the proof of the explicit upper bound (1.3).
We prove this bound by applying Stark’s effective version of the Brauer–Siegel theorem
for CM fields [131] together with Zimmert’s explicit lower bounds for the regulator of a
number field [144], combined with previous work of the first author of this paper [107].

Let us conclude this subsection by noting that Theorems 1.1 and 1.2 show how the
validity of the Northcott property for the special values of L-functions depends crucially
on the point at which these special values are taken. Such a dependence is also emphasised
in recent work of Généreux, Lalín and Li [59], and of Généreux and Lalín [58], which
generalises Theorem 1.2 by looking at the special values at any complex number s 2 C of
the Dedekind �-functions associated to global fields in any characteristic (see Remark 6.3
for more details).

To conclude our paper, we devote Section 6.2 to L-functions associated to abelian
varieties, and in particular to the study of their special values at the centre of the critical
strip. More precisely, we show that even for elliptic curves over Q it is not clear whether
or not this special value would satisfy a Northcott property, even if we assume some of
the deepest conjectures concerning this number, such as the Birch and Swinnerton-Dyer
conjecture.

2. Properties of heights

In complete generality, we may say that a height (or height function) on a set S is a
function hW S ! � with values in a partially ordered set � . The aim of this section is to
describe various properties of height functions in this generality.

2.1. Northcott property

The first and more restrictive property of heights we will introduce is named after North-
cott’s theorem [103], which shows the finiteness of sets of points whose height and degree
is bounded (see Section 4.1).

Definition 2.1. Let hW S ! � be a height function, and let S be a collection of subsets
of S . Then the height h has

(i) the fibre-wise S-Northcott property if and only if the fibres of h lie in S;
(ii) the S-Northcott property if and only if ¹s 2 S j h.s/ � 
º 2 S for every 
 2 � .

When S is the collection of finite subsets of S , it will usually be omitted from the notation.

The previous definition readily generalises to sets of height functions, using the fol-
lowing notion of product height.
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Definition 2.2. If h D ¹hi W S ! �iºi2I is a set of height functions, we define their
product zh as the function

zhWS !
Y
i2I

�i ;

s 7! .hi .s//i2I ;

where the set
Q
i2I �i is endowed with the product order.

Definition 2.3. If h D ¹hi WS ! �iºi2I is a set of height functions, we say that h has one
of the properties described in Definition 2.1 if and only if the product height zh has these
properties.

Before moving on, let us observe that

h has S-Northcott C S is lower-closed ) h has fibre-wise S-Northcott,

where S is called lower-closed if for all Y � X � S then X 2 S) Y 2 S. Moreover,
if S is the collection of finite subsets of S , then

h has fibre-wise Northcott C h.S/ is upper-finite ) h has Northcott,

where we say that X � � is upper-finite if X�
 WD ¹x 2 X j x � 
º is finite for all 
 2 � .

2.2. Bogomolov property

Let us now shift to the definition of the Bogomolov property. This uses the concepts of
essential infimum and successive infima, that we now review.

Definition 2.4. Let � be a partially ordered set, let X � � , and let X be a collection of
subsets of X . Write X�
 WD ¹x 2 X j x � 
º for every 
 2 � . Then X has an X-essential
infimum (respectively, X-essential minimum) if the set

„.X;X/ WD ¹
 2 � j X�
 62 Xº � �

has an infimum (respectively, a minimum). In this case, we denote the set of infima (re-
spectively, minima) of„.X;X/ by �ess.X;X/ � � . Here � WD � t ¹C1º is the partially
ordered set obtained by adjoining to � a global maximum C1. In particular, we have
that �ess.X;X/ D ¹C1º if and only if „.X;X/ D ;, i.e., if and only if X�
 2 X for
every 
 2 � .

Definition 2.5. Let � be a partially ordered set and let k 2 N. Then a subset X � � has
at least k successive sets of infima (respectively, at least k successive sets of minima) if
(i) X is bounded from below;
(ii) whenever k � 1, X has at least k � 1 successive sets of infima (respectively, sets

of minima) and the set X n Xk�1 has an infimum (respectively, minimum). In this
case, we denote by �k.X/� � the set of infima (respectively, minima) ofX nXk�1.
Moreover, the set Xk�1 is defined by induction as X0 WD ; and

Xk�1 WD Xk�2 [ Uk�1
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for any k � 2, whereUk�1�� denotes the union of connected components of the set
X [ ¹�k�1.X/º that contain an element of �k�1.X/. These connected components
are taken with respect to the subspace topology induced on X [ ¹�k�1.X/º by the
order topology on � .

It is easy to see that for every j 2Z�1 and every xj 2�j .X/ and xjC1 2�jC1.X/, the
inequality xj � xjC1 holds. Moreover, if �jC1.X/ D �j .X/ for some j 2 Z�1, then X
has at least k successive infima for every k 2 N and �k.X/ D �j .X/ for every k � j .
This leads to the following definition.

Definition 2.6. Let � be a partially ordered set. Then any subset X � � has exactly k
successive sets of infima (respectively, exactly k successive sets of minima) for some k 2N
if it has at least k successive sets of infima (respectively, sets of minima) and at least one
of the following holds:

(i) the set X does not have at least k C 1 successive sets of infima (respectively, sets of
minima);

(ii) �kC1.X/ D �k.X/.

The previous definitions, albeit quite abstract, allow us to recover the usual notions of
successive minima, appearing in geometry of numbers and in Arakelov geometry, as we
explain in Section 3. For now, we will instead use the notion of successive minima to give
the definition of the Bogomolov property.

Definition 2.7. Let h WS ! � be a height function. We say that h has Bogomolov number
B.h/ 2 N if the set h.S/ � � has exactly B.h/ successive sets of infima, denoted by
�j .h/ for every j 2 ¹1; : : : ;B.h/º.

Definition 2.8. Let hWS ! � be a height function. Then h has
(i) the very weak Bogomolov property if and only if B.h/ � 0, i.e., if and only if the

set h.S/ � � is bounded from below;
(ii) the weak Bogomolov property if and only if B.h/ � 1 and �1.h/ � h.S/, i.e., if

and only if h.S/ has at least one minimum;
(iii) the Bogomolov property if and only if either jh.S/j D 1 or B.h/ � 2, and moreover

�1.h/ � h.S/, i.e., if and only if the minima of h.S/ are isolated.
Moreover, for any collection S of subsets of S , the height h
(iv) the S-essential Bogomolov property if the set h.S/ � � has an h.S/-essential

infimum.

Remark 2.9. We could give another natural definition of the Bogomolov property, in-
spired by the theorems of Ullmo [135] and Zhang [141] on the Bogomolov conjecture.
More precisely, given a height hW S ! � , the order topology on � induces a topology
on S , which is the coarsest topology making h continuous. Then, we can say that S has
the topological Bogomolov property if this topology coincides with the discrete topology.

The previous definition readily generalises to sets of height functions.

Definition 2.10. If h D ¹hi WS ! �iºi2I is a set of height functions, we write B.h/ and
�ess.h;S/ for the Bogomolov number and the essential infimum of the product height zh
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introduced in Definition 2.2. Moreover, we say that h has one of the various Bogomolov
properties introduced in Definition 2.8 if and only if zh does.

Clearly, one has the following chains of implications:

h has Bogomolov ) h has weak Bogomolov ) h has very weak Bogomolov

h has Northcott ) h has Bogomolov:

2.3. Lehmer property

As we will see in various examples, sometimes one needs to modify the height under con-
sideration in order to obtain a Bogomolov property. The correct modification for the height
of algebraic numbers should consist in multiplying it by the degree, as firstly observed
by Lehmer [88]. Therefore, it seems natural to introduce a similar property for general
heights.

Definition 2.11. Let hD ¹hi WS ! �iºi2I be a set of heights, and let ˛ W
Q
i2I �i ! � be

any map of sets, where � is a partially ordered set. Then the Lehmer number L.h; ˛/ 2N
is defined to be the Bogomolov number of the height

S
zh
�!

Y
i2I

�i
˛
�! �;

and the successive infima of ˛.zh.S// are denoted by �j .h; ˛/ for j 2 ¹1; : : : ;L.h; ˛/º.
Moreover, the pair .h; ˛/ has
(i) the very weak Lehmer property if and only if ˛ ı zh has the very weak Bogomolov

property;
(ii) the weak Lehmer property if and only if ˛ ı zh has the weak Bogomolov property;
(iii) the Lehmer property if and only if ˛ ı zh has the Bogomolov property.

Remark 2.12. Note that Lehmer’s question, which inspired our definition of the Lehmer
property, concerns very specifically the Weil height of algebraic numbers (see Section 4.1).
Nevertheless, it seems natural to introduce a specific terminology to name those heights
which satisfy the Bogomolov property only after a suitable modification. Note in particular
that this framework encompasses also the analogues of Lehmer’s problem which have
been considered for the Néron–Tate height of points on an abelian variety, as we recall
Section 4.3.

It is easy to observe that we have the following implications:

h0 has very weak Bogomolov C ˛ ı zh � h0 ) .h; ˛/ has very weak Lehmer

h0 has weak Bogomolov C ˛ ı zh � h0 ) .h; ˛/ has weak Lehmer

h0 has Bogomolov C ˛ ı zh � h0 ) .h; ˛/ has Lehmer,

where h0WS ! � is any height and ˛ ı zh � h0 means that ˛.zh.s// � h0.s/ for every s 2 S .
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3. Examples of successive infima

We devote this short section to the study of examples of successive infima and minima. In
particular, we will see that our Definitions 2.5 and 2.6 recover the notions of successive
infima and minima present in Arakelov geometry, due to Minkowski (for lattices) and
Zhang (for heights associated to hermitian line bundles).

Example 3.1. Let � D R. In this case, the order topology coincides with the Euclidean
topology. Then every set which has at least zero successive infima (i.e., is bounded from
below) has also at least n successive infima for every n 2N. Moreover, ifX �R is a finite
union of open intervals X D

Sk
iD1.ai ; bi / with a1 < b1 < a2 < b2 < : : : , then it is easy

to see that X has exactly k successive infima, with �i .X/ D ai for every i 2 ¹1; : : : ; kº.
Finally, ifX �R is countable, thenX has exactly k 2 Z�1 successive minima if and only
if there exists a Cauchy sequence ¹xnºn2N �X such that j¹x 2X j x � xn; 8n2Nºj D k.

Example 3.2 (Minkowski). Letƒ�Rn be a lattice, and let gWRn!R�0 be any distance
function (as defined by Cassels in [28], Chapter IV), i.e., any continuous function such that
g.tx/ D jt jg.x/ for all t 2 R. Moreover, for every � 2 ƒ, we consider the vector space
Vg;� WD h¹x 2 ƒ j g.x/ � g.�/ºiR. Then, the image of the map

ƒ! R�0 �N

� 7! .g.�/; dimR.Vg;�//

has exactly n successive infima, which are given by the pairs .�j .ƒ; g/; j / for some
sequence

0 < �1.ƒ; g/ � �2.ƒ; g/ � � � � � �n.ƒ; g/ < C1;

with �j .ƒ;g/ 2R>0 for every j 2 ¹1; : : : ; nº. The numbers ¹�j .ƒ;g/º are usually called
successive minima of the function g on the lattice ƒ (see for instance [28], Chapter VIII).
However, these numbers are really infima and not minima in general.

Example 3.3 (Zhang). Let X ! Spec.Z/ be an arithmetic variety of dimension d , as
defined in [141], and let Cl.X/ be the set of closed sub-schemes of the generic fibre X WD
XQ. Fix L to be a relatively semi-ample hermitian line bundle on X with ample generic
fibre, and let hLWX.Q/! R be the associated height. Then, the image of the map

Cl.X/! R �N

Y 7! .inf¹hL.x/ j x2X.Q/ n Y.Q/º ; dim.Y //

has exactly d C 1 successive infima, which are given by pairs .�j .X;L/; j / for some
sequence

�0.X;L/ � �1.X;L/ � � � � � �d .X;L/ � C1;

with �j .X;L/ 2R for every j 2 ¹0; : : : ; d � 1º and �d .X;L/ 2Rt ¹C1º. It is easy to
see that�d .X;L/DC1 if and only ifX is irreducible. Indeed, this happens if and only if
for every Y 2 Cl.X/ such that dim.Y /D d , we have that ¹hL.x/Wx 2X.Q/ n Y.Q/º D ;,
which happens if and only if X.Q/ D Y.Q/.

Moreover, for every j2¹0; : : : ; d � 1º, we have that �j .X;L/ D ed�j .L/, where
e1.L/ � � � � � ed .L/ is the sequence defined in Section 5 of [141].
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4. Heights and their relations to special values of L-functions

The aim of this section is to provide a roundup of examples of heights satisfying the prop-
erties introduced in Section 2, and to relate these examples to special values ofL-functions.
Note that a complete understanding of these examples is not necessary to understand the
main results of the present paper. In fact, our aim here is to show the variety of situations
in which one finds heights having the properties introduced above.

4.1. Logarithmic Weil height

Let us start with the absolute logarithmic Weil height hWQ ! R (see Definition 1.5.4
in [15]), which was the main inspiration to give the general definitions that appear in
Section 2.

It is immediate to see that h does not have the fibre-wise Northcott property (with
respect to the collection of finite subsets of Q), for example because h.�/ D 0 for any
root of unity � 2 Q. Hence h does not have the Northcott property. It is also immediate
to see that the same holds for the degree degWQ! Z�1, where deg.˛/ WD ŒQ.˛/WQ� for
every ˛ 2Q. However, Northcott’s theorem (see Theorem 1.6.8 in [15]) shows that the set
h D ¹h; degº has the Northcott property. Moreover, it is immediate to see that h has the
weak Bogomolov property, because 0 2 R is a minimum for h.Q/, attained exactly at the
roots of unity (see Theorem 1.5.9 in [15]). However, it is easy to see that this minimum
is not isolated, because for example limn!C1 h.

n
p
2/ D 0. Hence B.h/ D 1, and h does

not have the Bogomolov property. Finally, asking whether the set h D ¹h; degº has the
Lehmer property with respect to the function

(4.1)
� W R � Z�1 ! R

.x; d/ 7! xd

is equivalent to Lehmer’s celebrated problem (see Section 1.6.15 of [15]).
We remark that Smyth’s theorem (Theorem 4.4.15 in [15]) says that .h; �/ has the

Lehmer property when restricted to the set S � Q of algebraic numbers which are not
Galois-conjugate to their inverse. Moreover, Dobrowolski’s theorem (see Theorem 4.4.1
in [15]) says that, if we let

˛ W R � Z�1 ! R

.x; d/ 7! xd
� log.3d/

log log.3d/

�3
;

then the pair .h; ˛/ has Lehmer’s property.
Let us mention some of the recent work concerning the Northcott, Bogomolov and

Lehmer properties relative to the logarithmic Weil height. First of all, it is known that h has
the Northcott or Bogomolov property, when restricted to suitable sub-fields of Q having
infinite degree over Q. We refer the interested reader to [16, 29, 30, 46, 51, 139] for the
study of fields having the Northcott property, and to [3, 4, 16, 53, 54, 56, 64, 72, 115, 119]
for the study of fields having the Bogomolov one. Moreover, it has also been shown that
many fields F � Q do not have the Bogomolov property. This happens for F D Qtr.i/
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(as proved by May, Example 1 in [95], and later rediscovered by Amoroso and Nuccio [5]
and by Amoroso, David and Zannier, Section 5 of [3]), where Qtr denotes the compositum
of all the totally real number fields inside Q. More generally, each field F �Q containing
an infinite sequence of roots of a number ˛ 2 F which is not a root of unity will not
satisfy the Bogomolov property. It has been proved by Amoroso (see Theorem 3.3 in [2])
that certain fields F � Q of this second kind have the Lehmer property, i.e., that the pair
of functions h D ¹h; degº, when restricted to F , has the Lehmer property with respect
to the function � defined in (4.1). This construction has been generalised by Plessis (see
Théorème 1.8 in [116]), and is related to a very general conjecture formulated by Rémond
in [122], which has been the subject of some recent works, such as [65] and [117]. Finally,
recent work of the first author together with Technau and Widmer (see Theorem 4 in [109])
proves that for every real number 0 < " < 
 � 1, there exists a sub-field F �Q such that
the function h
 WQ! R, defined by h
 .x/ WD .deg.x//
 h.x/, has the Northcott property
when restricted to F , and for every 
 0 < 
 , the function h
 0 does not have the Bogomolov
property, even when restricted to F .

Let us conclude by observing that the work of Akhtari and Vaaler [1], combined with
the class number formula (6.2), show that for every number field F with unit rank

rF WD dimQ.O
�
F ˝Z Q/;

there exist units ¹
1; : : : ; 
rF º � O�F , which form a basis of O�F ˝Z Q, such that the
following inequality:

(4.2)
hF d

rF
F .2rF /Š

2wF .rF Š/4

rFY
iD1

h.
i / � j�
�
F .0/j �

hF d
rF
F

wF

rFY
iD1

h.
i /

holds true. This shows that the special value ��F .0/ of the Dedekind �-function associated
to a number field F is commensurable to a product of Weil heights. The terms appearing
in (4.2) are given by the degree dF WD ŒF WQ� of the number field F , and by the class
number hF WD jPic.OF /j and the number of roots of unity wF WD j.O�F /torsj of the ring
of integers OF .

4.2. Mahler measure

Now, let us study the higher-dimensional generalisation of the function

� ı zh W Q! R;

˛ 7! h.˛/ deg.˛/;

appearing in Section 4.1.
To do so, let

G1m;C WD lim
 �
n2N

Gn
m;C

denote the inverse limit of the complex algebraic tori Gn
m;C with respect to the projections

on the last coordinate. Then the global sections of the structure sheaf OG1m;C
are given by



F. Pazuki and R. Pengo 12

the ring of Laurent polynomials in any number of variables. Moreover, the logarithmic
Mahler measure is defined as

m W �.G1m;C;OG1m;C
/! R;

P 7!

Z
T1

logjP j d�T1 ;

where
T1 WD lim

 �
n2N

Tn

denotes the inverse limit of the real analytic tori Tn WD .S1/n with respect to the pro-
jections on the last coordinates, and �T1 denotes the unique Haar probability measure
on T1.

The height m has the weak Bogomolov property if one restricts it to the ring

�.G1m;Z;OG1m;Z
/ D ZŒx˙11 ; x˙12 ; : : : �

of Laurent polynomials with integral coefficients, because for every P 2ZŒx˙11 ; x˙12 ; : : : �

one has that m.P / � 0 and m.P / D 0 if and only if P is a product of cyclotomic poly-
nomials evaluated at monomials, as proved in [87] (see also [19, 129]). In particular,
m.P / D m. zP / for every P 2 ZŒx˙11 ; : : : �, where zP 2 ZŒx1; : : : � denotes the polyno-
mial obtained by clearing out the denominators of P . Finally, if we let

ı W �.G1m;C;OG1m;C
/! Z�1;

P 7!

C1X
iD1

i degxi . zP /;

then the pair .m; ı/ has the Northcott property, when restricted to �.G1m;Z; OG1m;Z
/.

Indeed, this follows from [93], which gives the inequality

exp.m.P // D exp.m. zP // � 2�
PC1
iD1 degxi .

zP/
X

j

jajj;

where ¹ajºj � Z are the coefficients of zP D
P

j aj x
aj written in multi-index notation.

Conjectural relations between the Mahler measure and special values of L-functions
come from the work of Boyd [20] (see also [25] for a survey). For instance, one expects
that for every k 2 Z n ¹0;˙4º, there should exist a rational number ˛k 2 Q� such that

(4.3) L0.Ek ; 0/ D ˛k m
�
x C

1

x
C y C

1

y
C k

�
;

where Ek is the elliptic curve with Weierstrass model y2 C kxy D x3 � 2x2 C x. More-
over, it is reasonable to expect that ˛k 2 Z for all but finitely many k, as suggested by
the computational evidence gathered in [20]. If this is true, then the relation (4.3) and
the Northcott property of the Mahler measure would entail a Northcott property for the
function Z n ¹0;˙4º!R defined by k 7! jL0.Ek ; 0/j. Note that such a Northcott property
holds unconditionally, and follows from Corollary 5.12.
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4.3. Canonical height

We have seen that the Mahler measure of a polynomial P can be seen as a way of meas-
uring the complexity of the zero locus of P .

There are also more “canonical” ways to measure the complexity of sub-varieties of a
given arithmetic varietyX . For instance, given an endomorphism �WX ! X and a divisor
D2 Div.X/ such that ��.D/ � ˛D for some ˛ 2 R>1, one can construct a “canonical”
height yh can

X;�;D WX.F /! R, as explained in Section B.4 of [75]. In particular, one has a

canonical height yhA;D associated to an abelian variety A, polarised by the choice of a
divisor D 2 Div.A/.

More general notions of canonical heights, which can be applied also to higher dimen-
sional sub-varieties, have been defined by Zhang [141, 142], Philippon [112–114] and
Faltings [49] (see also [130], Chapter III, Section 6). In some cases, these heights turn
out to be related to the Mahler measure of some model of the sub-variety in question, as
explained for instance in [94] and [71].

Let us mention that several Diophantine properties of canonical heights have been
studied in the literature. For instance, if A is an abelian variety defined over a num-
ber field F , and if D 2 Div.A/ is ample, then it is known that the pair of functions
¹yhA;D; degW A.F / ! Rº has the Northcott property, as a consequence of Northcott’s
original work [104]. Moreover, as we mentioned already in Section 2.2, the work of
Ullmo [135] and Zhang [143] shows that for every sub-variety X � A, the restriction
of yhA;D to X�.F / has the Bogomolov property, where X� denotes the complement of
the union of those positive-dimensional sub-varieties of X which are translates of abelian
sub-varieties of A by torsion points. Finally, one can formulate an analogue of Lehmer’s
problem for these heights, as explained in [35], and prove analogues of Dobrowolski’s
bound in this setting, see for instance [27, 121]. In the analogous case of Drinfeld mod-
ules, there is also [17, 43].

To conclude this subsection, let us recall that canonical heights are related to special
values ofL-functions by a far reaching program initiated by the seminal work of Gross and
Zagier (see [66,68], as well as the modern reviews [32,140]). This was later continued by
the groundbreaking works of Kudla and collaborators (see [67,84]). We refer the interested
reader to the survey article [85], as well as to the monograph [86]. Finally, we mention the
recent work of Li and Zhang [90, 91], which settles the local Kudla–Rapoport conjecture
in the unitary and orthogonal case.

4.4. Faltings height

A particularly interesting example of height of geometric objects has been introduced by
Faltings [48], and has served as a key tool in his proof of the Mordell conjecture.

More precisely, let A.Q/ be the set of isomorphism classes of abelian varieties defined
over Q, and let hWA.Q/! R be the stable Faltings height (see Section 3 in [48], and
p. 27 of [39], which use two different normalisations). Then the set ¹h; dimº has the very
weak Bogomolov property, since one has the lower bound h.A/ � � log.

p
2�/ dim.A/,

which is shown by Gaudron and Rémond in Corollary 8.4 of [57] following ideas of Bost.
Moreover, [39], p. 29, shows that h has the weak Bogomolov property if we restrict to
the set A1.Q/ of Q-isomorphism classes of elliptic curves defined over Q. Finally, [92]
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and [26] show that hWA1.Q/! R has the Bogomolov property tout court. It seems reas-
onable to ask whether the set ¹h; dimº has the Bogomolov property.

Now, let us recall that Faltings’s celebrated theorem (Theorem 1 in [48]), combined
with Zarhin’s “trick” (Remark 16.12 in [98]), shows that the set ¹h; dim; degdefº has the
Northcott property. The “degree of definition” function is defined by

degdef W A.Q/! N

A 7! min¹ŒF WQ� j A is defined over F º;

where we say that an abelian variety A defined over a field L is defined over a sub-
field K � L if there exists an abelian variety A0 defined over the field K and such that
A Š A0 �Spec.K/ Spec.L/. Then degdef is well defined, because every abelian variety
defined over Q can be defined over a number field (see Théorème 8.8.2 in [69]). It has also
been recently proved by Mocz that (if one assumes Artin’s and Colmez’s conjectures) the
function h satisfies Northcott’s property, if we restrict to the subset of isomorphism classes
of abelian varieties with complex multiplication (see Theorem 1.4 in [99]).

For abelian varieties with complex multiplication, the stable Faltings height

h W A.Q/! R

is expected to be related to L-functions by Colmez’s conjecture (Conjecture 0.4 in [31]),
which predicts the relation

(4.4) � h.A/
‹
D

X
�

m.E;ˆ/.�/
�L0.�; 0/
L.�; 0/

C log.f�/
�
;

where .E;ˆ/ is the CM-type of A and the sum runs over all the Artin characters

� W GQ ! C

such that �.c/ D �1, where c 2 GQ WD Gal.Q=Q/ denotes complex conjugation. This
implies in particular that L.�; 0/ 2 C�. Moreover, f� 2 N denotes the Artin conductor
of �, and the family of rational numbers ¹m.E;ˆ/.�/º� � Q is defined by the equality

1

ŒGQWStab.ˆ/�

X
�2GQ=Stab.ˆ/

jˆ \ � ıˆj D
X
�

m.E;ˆ/.�/ �.�/;

which holds for every � 2 Gal.Q=Q/. In particular, m.E;ˆ/.�/ D 0 for all but finitely
many Artin characters.

4.5. Conductors and discriminants

We have seen in the previous subsection that Colmez’s conjectural formula (4.4) involves
the Artin conductor f� 2 N associated to an Artin character �WGQ ! C. By definition,
f� WD N.f�/ coincides with the norm of the conductor associated to any complex repres-
entation � WGQ! GLn.C/ such that � D tr ı�, where tr WGLn.C/! C denotes the trace
map. The aim of this subsection is to show that the association � 7! f�, and more general
types of conductors, behave almost like a height.
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Example 4.1 (Analytic conductor). Let F be a number field, fix n 2N, and let An.F / be
the set of cuspidal automorphic representations of GLn.AF / (see [77], Section 1). Then
Brumley has shown in Corollary 9 of [24] that the analytic conductor C WAn.F /! R�1,
which is defined in equation (31) of [77], satisfies the Northcott property. In particular, the
n D 1 case shows that the set of Hecke characters  WA�F ! C� with bounded analytic
conductor is finite.

Example 4.2 (Conductors of complex representations). Let F be a number field, and let
WC.F / be the set of isomorphism classes of pairs .V; �/ where V is a finite dimensional
complex vector space and � WWF ! GL.V / is a continuous representation of the Weil
group WF (see [133], Section 1) which is semi-simple, i.e., a direct sum of irreducible
representations. Then, there is a function fWWC.F /! Div.OF / sending each .V; �/ to its
global Artin conductor ideal f� � OF (see [101], Chapter VII, Section 11). Moreover, the
Archimedean local Langlands correspondence, explained for example in [81], allows one
to associate to each .V; �/ 2WC.F / an Archimedean conductor C1..V; �// 2 R, defined
in exactly the same way as the Archimedean part of the analytic conductor of a cuspidal
automorphic form. Then Theorem 3.3 in [6] can be combined with our previous discussion
to show that the function C WWC.F /! R defined as C..V; �// WD NF=Q.f�/C1..V; �//

satisfies the Northcott property. Let us observe that:
(i) one can consider all the number fields at once as follows: if WC denotes the set of iso-

morphism classes of triples .F;V;�/, whereF is a number field and .V;�/2WC.F /,
then Property (a2) in [123] shows that the composite map C ı IndWWC ! WC.Q/
! R satisfies the Northcott property, where IndWWC ! WC.Q/ sends .F; V; �/ to
the induced representation on WQ � WF ;

(ii) the conductor f� is related to L-functions by means of the functional equation (as
explained by Tate in Theorem 3.5.3 of [133]).

The following example is the analogue of the previous one for representations valued
in vector spaces defined over Q`. It will play a crucial role in our proof of Theorem 1.1.

Example 4.3 (Conductors of `-adic representations). Let F be a number field, and letM 0
F

denote its set of finite places. For every w 2 N and every prime number ` 2 N, we let
G
.w/

`
.F / be the set of isomorphism classes of pairs .V; �/ where V is a finite dimensional

vector space over Q` and � WGF WD Gal.F =F /! GL.V / is a continuous representation
satisfying the following properties:

• � is semi-simple, i.e., a direct sum of irreducible representations;
• the set S� �M 0

F of non-Archimedean places at which � is ramified is finite;
• � is pure of weight w. In other words, for every v 2M 0

F n S� the characteristic poly-
nomial of �.Frobv/ has integer coefficients, and each of its roots has absolute value
j�vj

w=2, where �v denotes the residue field of the local field Kv , and Frobv � GF
denotes the set of geometric Frobenius elements.

Now, we define two functions dim;MWG .w/
`
.F /! N by setting

dim.V; �/ WD dim.V / and M.V; �/ WD max.¹char.�v/W v 2 S�º/:

Then, Corollaire 1 in [40] shows that the set ¹dim;Mº has the Northcott property.
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In particular, if we let f� � OF denote the conductor ideal of a Galois representation
.V; �/ 2 G

.w/

`
.F / (see for instance Ulmer’s work [136]), and we set

C0.V; �/ WD jNF=Q.f�/j 2 N;

then we see that M.V; �/ � C0.V; �/ for every .V; �/ 2 G
.w/

`
.F /. Therefore, the pair of

functions
¹dim;C0 WG

.w/

`
.F /! Nº

has the Northcott property.
Let us conclude by making the following observations:

(a) The semi-simplifications of the `-adic étale cohomology groups H i
ét.XF IQ`.j //

associated to a smooth and proper variety X defined over F give rise to elements
of G

.i�2j /

`
.F /. For these Galois representations, the set S� is contained in the set

of primes of F which either lie above ` or are primes of bad reduction for X . This
follows from the smooth and proper base change theorem for étale cohomology,
combined with Deligne’s proof of the Weil conjectures (as explained by Jannsen
in [78], Appendix C).

(b) We can consider all the number fields at once, as we did in Example 4.2, by defining
G
.w/

`
as the set of isomorphism classes of triples .F; V; �/ where F is a num-

ber field and .V; �/ 2 G
.w/

`
.F /. Then Property (a2) in [123] implies that the set

¹dim ı Ind;C0 ı Indº has the Northcott property. Here IndWG .w/
`
!G

.w/

`
.Q/ is again

the map sending .F;V; �/ to the representation induced on Gal.Q=Q/� Gal.F =F /.
(c) The conductor f� is supposed to be related to the L-function L.�; s/ by means of the

conjectural functional equation, as we recall in Section 5.2.

To conclude this subsection, we focus our attention on discriminants of number fields,
which are classically known to satisfy a Northcott property, thanks to the work of Hermite
and Minkowski. Moreover, given a number field F , its discriminant �F can be seen as
the conductor of the Galois representation of GQ WD Gal.Q=Q/ induced by the trivial
representation of GF WD Gal.F =F /.

Example 4.4 (Discriminants of number fields). Let S denote the set of isomorphism
classes of number fields. Then, it is well known that the function

S ! R;

ŒF � 7! j�F j;

has the Northcott property, thanks to Hermite’s theorem (see Theorem 2.16 in Chapter III
of [101]). Moreover, Malle’s conjecture on the distribution of number fields with bounded
discriminant and given Galois group, which has been slightly corrected in [134], implies
that for every d 2 Z�1 there should exist a constant ıd 2 R>0 such that the following
asymptotic:

(4.5) j¹ŒF � 2 S W j�F j � X; ŒF WQ� D dºj
‹
� ıd �X
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holds true when X !C1. This clearly implies that the following asymptotic:

(4.6) j¹ŒF � 2 S W j�F j � X; ŒF WQ� � dºj
‹
�

� dX
jD1

ıj

�
�X

should also hold true when X !C1. Since we know that bounding j�F j yields explicit
bounds for the degree dF of a number field (see for instance [118]), the validity of (4.6)
should yield also an estimate for the quantity j¹ŒF � 2 S W j�F j � Xºj, as X !C1. How-
ever, there are no explicit conjectures for what the precise asymptotic should be (see [44]
for a discussion), which is related to the fact that it is difficult to give explicit expres-
sions for the constants ıd appearing in (4.5). In particular, we refer the interested reader to
Bhargava’s work [12] for a conjecture concerning the constants that should appear when
counting number fields with maximal Galois group. We note moreover that the asymptotic
portrayed in (4.5) is only known when d � 5, thanks to the work of Davenport–Heilbronn
and Bhargava (see [11] for a survey).

Nevertheless, Schmidt [124], Ellenberg–Venkatesh [47], and Couveignes [34] have
obtained some explicit upper bounds for the cardinality of the set appearing on the left
hand side of (4.6). In particular, Theorem 2 in [34] asserts that there exists a positive
constant Q 2 R�0 such that for every d � Q the following upper bound:

(4.7) j¹ŒF � 2 S W j�F j � X; ŒF WQ� D dº � d
Qd log3.d/XQ log3.d/

holds true. One can then adapt the proof of Theorem A.1 in [9] to show that there exists a
positive constant C 2 R>0 such that the following upper bound:

(4.8) j¹ŒF � 2 S W j�F j � Xºj � exp.C log.X/ log log.X/3/

holds true for every X � 1. Note, finally, that the recent work of Lemke Oliver and
Thorne [89] refines (4.7) by proving that there exists a constant Q0 2 R>0 such that for
every d 2Z�6 there exists a constant dd 2R>0 with the property that the following upper
bound:

j¹ŒF � 2 S W j�F j � X; ŒF WQ� D dº � ddX
Q0 log2.d/

holds true. Such an upper bound could yield to a refinement of (4.8), where one replaces
.log log.X//3 with .log log.X//2, if one manages to prove that dd � d

Q0d log2.d/ for
every d � 6.

4.6. Heights coming from geometry

We conclude this roundup of examples by talking about two more geometric examples of
height: the volume of hyperbolic manifolds and the heights of mixed motives defined by
Kato.

Example 4.5 (Volumes of hyperbolic manifolds). Let H be the set of isomorphism classes
of hyperbolic manifolds of finite volume. Then it is conjectured that the volume

vol W H ! R�0
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has the Bogomolov property, and that the minimum is attained at an arithmetic hyperbolic
manifold M Š hn=� , where � is an arithmetic subgroup of the isometry group of the
hyperbolic space hn (as explained by Belolipetsky and Emery in [10]). Then, if we restrict
to the set H ar of isomorphism classes of arithmetic hyperbolic manifolds, it is conjectured
that the set h D ¹vol; dim; degº has the Northcott property, where the degree is defined by
deg.M/ WD ŒQ.tr.�1.M/.2///WQ�. Here we denote by �1.M/.2/ the sub-group generated
by the squares, and by trW �1.M/ ! C the trace map induced from the embedding of
�1.M/ into the isomorphism group of hn. This Northcott property has been proved for
three dimensional arithmetic hyperbolic manifolds by Jeon [79].

The relations of hyperbolic volumes with special values of L-functions comes for
example from the formula

��F .�1/ �Q� vol
�h

r2.F /
3

�

�
;

which holds for any number field F . Here � is a finite-index and torsion-free subgroup
of the group O.1/ � O of units having norm one in some order O � B in a totally def-
inite quaternion algebra B ¤ Mat2�2.K/ defined over K (as explained by Vignéras in
Example IV.1.5 of [137]).

Example 4.6 (Heights of motives). Let F be a number field, and let MMF denote the
category of mixed motives defined by Jannsen (see [78], Section 4). Then Kato constructs
in [80] a series of height functions which measure the complexity of an objectX 2MMF ,
using the v-adic Hodge theory corresponding to any place v of F . One of the richest
examples of such a height is given by the function

(4.9)
h�;} WMMF ! R;

X 7! h}.X/C
X
w2Z

h�.grW
w .X//;

which is the logarithmic version of the height H�;} defined in Section 1.7.1 of [80]. Here

grW
w .X/ WD

Ww.X/

Ww�1.X/

denotes the graded piece of X with respect to the ascending weight filtration W , and the
various heights h�.grW

w .X// appearing in (4.9) are a generalisation of Faltings’s height
(see Section 4.4) to pure motives. On the other hand, the height h}.X/ measures the
distance between X and the semi-simplification

X ss
WD

M
w2Z

grW
w .X/;

and thus can be seen as a measure of the mixed nature of X .
It is extremely interesting to study the Northcott property for the height h�;}, in view

of the many consequences that this would have, which are investigated in [80], Section 2.
In particular, Proposition 2.1.17 in [80] shows that the Northcott property for h�;} implies
the finite generation of motivic cohomology, which would be a motivic analogue of the
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Mordell–Weil theorem. Special instances of the Northcott property for the height h�;}
have been recently proved to hold by Koshikawa (see [82,83]) and Nguyen (see [102]). In
particular, Koshikawa shows that h�;} has the Northcott property when restricted to the
set of pure motives X which are isogenous to a fixed pure motive X0. We note that in this
case h�;}.X/ D h�.X/ because h}.X/ D 0 for pure motives X . Koshikawa’s result is
reminiscent of the similar Northcott property for the Faltings height (see [48], Section 4),
which allowed Faltings himself to prove the Tate conjecture for abelian varieties.

5. Special values outside the critical strip

The aim of this section is to study Northcott properties for the special values of the
L-functions attached to pure motives. In order to do so, we will first introduce an axio-
matic class of L-functions, closely related to the Selberg class (see Definition 5.1 and
Remark 5.2), whose elements satisfy a precise functional equation and have a well defined
associated conductor. Then, we will show in Proposition 5.3 that bounding the special val-
ues of these L-functions on the left of the critical strip yields a bound for the conductor.
This suggests that there should be only finitely many such L-functions (see Remark 5.4),
using a suitable Northcott property for the conductor. Such a Northcott property is known
to hold for L-functions coming from pure motives of bounded dimension, thanks to the
work of Deligne [39] (see also Example 4.3), and will allow us to prove Theorem 1.1 in
Section 5.2. Therefore, this yields unconditional results for all the pure motives whose
L-functions are known to satisfy the conjectural properties outlined in Definition 5.1, and
in particular for motives associated to potentially modular abelian varieties (see Corol-
laries 5.11 and 5.12). We will finally adapt the aforementioned proof of Theorem 1.1 to
show that the special values of Dedekind �-functions at the left of the critical strip satisfy
a Northcott property. This is explained in Proposition 5.13, where we also remark that the
special values of Dedekind �-functions taken at the right of the critical strip do not satisfy
the Northcott property.

5.1. Bounding the conductor

The aim of this section is to show how bounding a special value at the left of the critical
strip entails a bound for the conductor of a functional equation. This observation depends
only on a few axiomatic properties of L-functions, which we recall in the following defin-
ition.

Definition 5.1. Let F be a number field, and let w 2 Z be a fixed integer, called the
weight. We define a class L.w/.F / of meromorphic functions L.s/WC Ü C such that
• there exists a sequence of polynomials ¹Pp.t/ºp � QŒt �, where p runs over the non-

trivial prime ideals of OF , such that for every s 2C with<.s/ >w=2C 1, the function
L.s/ admits the following absolutely convergent Euler product:

L.s/ D
Y

p

1

Pp.jOF =pj�s/
�
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• For every non-trivial prime ideal p � OF , let d be the degree of Pp.t/ and denote by
¹˛1;p; : : : ; ˛d;pº the roots of Pp. Then, we assume that j j̨;pj � jOF =pjw=2 for every
j 2 ¹1; : : : ; dº.

• There exist an integer N � 1, a sign � 2 ¹˙1º, a pair of integers d1; d2 � 0 and two
tuples of positive integers ¹�j º

d1
jD1 and ¹�kº

d2
kD1

with 1 � �j ; �k � w=2, such that, if
we let

L1.s/ WD

d1Y
jD1

�R.s � �j / �

d2Y
kD1

�C.s � �k/

and
yL.s/ WD L.s/ � L1.s/;

then we have the following functional equation:

(5.1) yL.s/ D � �N .wC1/=2�s
� yL.w C 1 � s/

for every s 2 C. Here, we recall that the functions �R.s/ and �C.s/ are defined as

�R.s/ WD �
�s=2�.s=2/ and �C.s/ WD 2.2�/

�s�.s/

for every s 2 C.
Moreover, ifL.s/2L.w/.F /, the numbersNL WDN and dL WD d1C 2d2 are uniquely

determined. We call NL the conductor of L.s/, and dL its degree.

Remark 5.2. The axioms outlined in Definition 5.1 are quite similar to the ones which
define the Selberg class (surveyed by Perelli in [110]), and also to the ones outlined in
more recent work of Farmer, Pitale, Ryan and Schmidt [50]. The main difference between
our axioms and theirs is that we use the arithmetic normalisation for the functional equa-
tion, which depends on a fixed weight w 2 Z. This weight is also featured in the second
axiom, which can be seen as a version of Ramanujan’s conjecture for the L-function in
question.

Now, we are ready to see how any bound for L-values at the left of the critical strip
yields a bound for the conductor, thanks to the axioms outlined in Definition 5.1.

Proposition 5.3. Let F be a number field. Fix two integersw;n 2Z such that 2n <w. Fix
moreover two real numbersB1;B2 2R�0. Then, there exists a real numberB3 2R�0 such
that for every L 2 L.w/.F / such that dL � B1 and L�.n/ � B2, we have that NL � B3.

Proof. Combining the assumption L�.n/ � B2 with the functional equation (5.1), we see
that the following bound:

N
.wC1/=2�n
L �

1

jL�.w C 1 � n/j
�

ˇ̌̌ L�1.n/

L�1.w C 1 � n/

ˇ̌̌
� B2

holds true. Now, note that

L�.w C 1 � n/ D L.w C 1 � n/ D
Y

p

Pp.NF=Q.p/n�w�1/�1;
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thanks to the assumption that 2n < w. Hence, we see that

(5.2) jL�.w C 1 � n/j�1 D
Y

p

deg.Pp/Y
jD1

j j̨;p � jOF =pj
n�w�1

j � B4

for some constant B4 which depends on n; w and B1 (or, to be more precise, on n; w
and dL).

Moreover, if m 2 Z, we have that

��R.m/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

.�4�/�k.�k/Š
.�2k/Š

; if m D 2k C 1 � �1;
.��/�k

.�k/Š
; if m D 2k � 0;

.k�1/Š

�k
; if m D 2k � 2;

.2k/Š

.4�/k kŠ
; if m D 2k C 1 � 1;

which implies that there exists a positive constant B5, depending only on w and n, such
that ˇ̌̌ ��R.n � �j /

��R.w C 1 � n � �j /

ˇ̌̌
� B5

for every j 2 ¹1; : : : ; d1º. Analogously, we have that

��C.m/ D

8<: 2
.�2�/�m

.�m/Š
; if m � 0

2 .m�1/Š
.2�/m

; if m � 1

which implies that there exists a positive constant B6, depending only on w and n, such
that: ˇ̌̌ ��C.n � �k/

��C.w C 1 � n � �k/

ˇ̌̌
� B6

for every k 2 ¹1; : : : ; d2º. Hence, we see that:

(5.3)
ˇ̌̌ L�1.n/

L�1.w C 1 � n/

ˇ̌̌
� B7

where B7 is a positive constant which depends only on w, n and dL. Hence, we can
combine (5.2) and (5.3) to see that:

N
.wC1/=2�n
L � B8;

where B8 depends only on B1, B2, w and n. Therefore, we can take B3 WD B
2

wC1�2n

8 .

Remark 5.4. We would like to use Proposition 5.3 to prove that for every w; n 2 Z such
that 2n < w, and every pair of real numbers B1; B2 2 R�0, the set

(5.4) ¹L 2 L.w/.F /W dL � B1; jL
�.n/j � B2º
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is finite. More precisely, Proposition 5.3 implies that the finiteness of the following set:

(5.5) ¹L 2 L.w/.F /W dL � B1; NL � B2º

is equivalent to the finiteness of (5.4). Such a finiteness result is surely to be expected.
Indeed:

• the vector space of functions which satisfy a functional equation similar to (5.1) is
known to be finite dimensional when dL D 1, thanks to the work of Bochner (see [14]
and [33], Theorem 3.2). We refer the interested reader to the recent work of Dixit [45],
and to Perelli’s survey [111], for further extensions of Bochner’s result.

• In the aforementioned vector space, there should be only finitely many elements which
satisfy an Euler product. This property is analogous to the fact that in the vector space
of cusp forms there are only finitely many Hecke eigenforms.

In the current paper, we will not address further the finiteness of the set (5.5). Instead,
we will restrict our attention to L-functions of “motivic” origin, for which one knows
that the conductor NL satisfies a Northcott property, thanks to the work of Deligne (see
Example 4.3).

5.2. L-functions of pure motives

Let F be a number field. We denote by MF the category of pure motives for absolute
Hodge cycles, which has been introduced by Deligne in [37] (see also [41], Section 6).

Given a prime ` 2 N, we have an `-adic realisation functor,

(5.6) R` WMF ! RepQ`
.GF /;

which associates to every pure motive an `-adic representation of the absolute Galois
group GF WD Gal.F =F /. Therefore, for every prime ideal p � OF , every prime ` 2 N
and every motive X 2MF , one can define a polynomial

Pp.R`.X/; t/ WD det.1 � Frobp t j Dp.R`.X/// 2 Q`Œt �;

where Frobp � GF =Ip denotes the conjugacy class of geometric Frobenius elements
at p, which is well defined only up to the action of the inertia subgroup Ip. To this
end, when ` − jOF =pj, one lets these Frobenius elements act on the invariant sub-spaces
Dp.R`.X// WD R`.X/

Ip � R`.X/. If on the other hand ` divides jOF =pj, the defini-
tion of Dp.X/ is more complicated, and requires p-adic Hodge theory, as explained in
Section 3 of [52]. One conjectures that the polynomial Pp.R`.X/; t/ has always rational
coefficients. If this is true, then we can form the following formal Euler product:

(5.7) L.R`.X/; s/ WD
Y

p

1

Pp.R`.X/; jOF =pj�s/
;

where we can plug in a complex variable s 2 C.
Now, each motive X 2 MF has a weight grading X D

L
w2Z Xw , as explained in

Theorem 6.7 of [41]. Given w 2 Z, one says thatX is pure of weight w ifX D Xw . Then,
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if X 2MF is pure of weight w, one conjectures that for every prime ` 2 N, the formal
Euler-product L.R`.X/; s/ defined in (5.7) gives rise to an element of L.w/.F /, with
prescribed functional equation (see Remark 5.8 for details). This motivates the following
definition.

Definition 5.5. Given a number field F and an integer w 2 Z, we denote by M.w/.F /

the set of isomorphism classes of motives X 2MF such that:
• X is pure of weight w;
• there exists a prime ` 2 N such that:

– for every prime ideal p � OF , we have that Pp.R`.X/; t/ 2 QŒt �;
– the Euler product L.R`.X/; s/ defined in (5.7) can be meromorphically continued

to a function L.R`.X/; s/ 2 L.w/.F / whose degree and conductor are given by

(5.8)
dL.R`.X/;s/ D dim.R`.X//;

NL.R`.X/;s/ D j�F j
dim.R`.X// � jNF=Q.fR`.X//j;

where�F is the discriminant of the number field F (see Example 4.4), and fR`.X/
is the conductor of the Galois representation R`.X/ (see Example 4.3).

Remark 5.6. One also hopes that the polynomials Pp.R`.X/; t/ are independent of `.
Thus, one often writes Pp.X; t/ and L.X; s/ instead of Pp.R`.X/; t/ and L.R`.X/; s/.
However, we will not need this in our paper, as the results we prove hold for every
prime ` 2 N.

Remark 5.7. In fact, one can also give an intrinsic definition of the L-function L.X; s/ of
a motiveX 2MF , which does not depend on the choice of an auxiliary prime `, by taking
the action of Frobp onDp.Rp.X//, where p 2 N is the rational prime underlying p. This
is the point of view adopted by Deninger in [42].

We are now ready to prove Theorem 1.1, which shows that special values of L-func-
tions of pure motives of a fixed dimension have the Northcott property, if they are taken
to the left of the critical strip.

Proof of Theorem 1.1. Since the L-functions associated to the `-adic realisation of any
element of M.w/.F / belong to L.w/.F / by assumption, Proposition 5.3 shows that
there exists a constant B3, depending only on B1, B2, w and n, such that for every
X2M

.w/
B .F; n/ we have that NL.R`.X/;s/ � B3. Moreover, we have the equality

NL.R`.X/;s/ D j�F j
dim.R`.X// � C0.R`.X//

by definition of M.w/.F /, where C0.R`.X// WD jNF=Q.fR`.X//j. Therefore, we can use
the fact that the pair

¹dim;C0WG
.w/

`
.F /! Rº

has the Northcott property (as was explained in Example 4.3) to conclude that the set
R`.SB1;B2/ is finite. This allows us to conclude, because the realisation functor (5.6) is
fully faithful (as proved by Jannsen in Theorem 4.4 of [78]).
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Remark 5.8. We recall that the set M.w/.F / is supposed to coincide with the set of iso-
morphism classes of motivesX 2MF which are pure of weightw. In particular, for every
rational prime ` 2 N, the L-function L.R`.X/; s/ associated to a pure motive X 2MF

of weight w is conjectured to belong to the set L.w/.F / defined in Definition 5.1.
Indeed, as we mentioned above, L-functions of motivic origin are usually defined

by the Euler product (5.7), which is then conjectured to converge for <.s/ > w=2. The
functional equation (5.1) has also historically been conjectured to be true (as explained
in the works of Fontaine, [52], Section 12.4, and of Deninger, [42], Section 3), with an
explicit formula for all the invariants appearing in (5.1), as explained for instance by Serre
in [127], Section 4. In particular, the equalities portrayed in (5.8) should always be true.

To conclude, let us observe that the bound j j̨;pj � NF=Q.p/w=2, which appears in the
definition of L.w/.F /, is explicitly mentioned in the footnote 32 of [52], and is a con-
sequence of Deligne’s weight monodromy conjecture. More precisely, let V be a smooth
and projective variety defined over a number field F , and letX DHw.V / 2MF for some
w 2N. If p� OF is a prime ideal at which V has good reduction, and ` 2N is any prime
such that ` − jOF =pj, then one can combine the smooth and proper base change theorem
in étale cohomology, together with the Weil conjectures (proven by Deligne), to show that
the roots of Pp.R`.X/; t/ have absolute value equal to jOF =pjw=2. On the other hand,
one conjectures that if p is a prime of bad reduction for V then the absolute values of the
roots of Pp.R`.X/; t/ are of the form jOF =pji=2, for some i 2 ¹0; : : : ; wº.

More generally, one conjectures that if K is a discretely valued field of residual char-
acteristic p, and ` 2 N n ¹pº is a prime number, then for every variety V defined over K,
the weights appearing in the `-adic cohomology groupsHw

ét .VK IQ`/ should lie in the set
¹0; : : : ; 2wº, and in the smaller set ¹0; : : : ; wº if V is proper (as noted already by Serre
and Tate in Problem 2 in the Appendix of [128]). Similar properties are known to hold
for the `-adic cohomology of varieties defined over finite fields (as proved by Deligne
in Théorème 3.3.1 of [38]), and for the singular cohomology of complex algebraic vari-
eties (as shown by Deligne in Théorème 8.2.4 of [36]). Moreover, the aforementioned
conjecture follows from Deligne’s weight monodromy conjecture, outlined in Illusie’s
survey [76], Section 3.8. This conjecture is known to hold when V is an abelian vari-
ety, thanks to the work of Grothendieck [70]. This implies the validity of the weight
monodromy conjecture for the weight w D 1, and any variety V . Moreover, Rapoport and
Zink [120] verified this conjecture whenwD 2, and the more recent work of Scholze [126]
has shown that the aforementioned conjecture holds true if V can be realised as a set-
theoretic complete intersection inside a toric variety.

Remark 5.9. It is not easy to dispose of the purity assumption appearing in Theorem 1.1.
More precisely, let F be a number field, and let MMF denote the category of mixed
motives defined by Jannsen in [78], which contains Deligne’s category MF as a full sub-
category (as explained in Theorem 4.4 of [78]). Now, each object X 2MMF admits a
weight filtration W with finitely many graded pieces. Hence, for every X 2MMF , there
existwmin.X/;wmax.X/2Z such that grW

w .X/D 0 if eitherw <wmin.X/ orw >wmax.X/.
Moreover, to every X 2 MMF one can associate an L-function L.X; s/, a completed
L-function yL.X; s/, and a dual X_ 2MMF , such that yL.X; s/ and yL.X_; 1� s/ should
be related by a functional equation, as explained in [42].
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Now, for every w 2 Z, we denote by MM.w/.F / the set of isomorphism classes of
those X 2 MMF such that wmin.X/ > w, and with the property that yL.X; s/ is a well
defined meromorphic function which satisfies the expected functional equation. Moreover,
for every B D .B1; B2; B3/ 2 R3�0 and every w; n 2 Z with 2n < w, we define the set

MM
.w/
B .F;n/ WD ¹X 2MM.w/.F / W dim.X/� B1; jL�.X;n/j � B2; wmax.X/� B3º;

which is analogous to the set M
.w/
B .F; n/ appearing in (1.1).

Then, adapting the proofs of Proposition 5.3 and Theorem 1.1, one can see that the set
¹X ssWX 2MM

.w/
B .F;n/º is finite, whereX ss WD

L
j2Z grW

j .X/ is the semi-simplification
of X with respect to the weight filtration.

However, this is not enough to conclude that the set MM
.w/
B .F;n/ is finite. In fact, we

expect this set to be always infinite, at least as soon as B3 � w � 1. Indeed, as Deninger
already remarks in [42], the L-function L.X; s/ defined in [42] is not substantially differ-
ent from the L-function L.X ss; s/. This is readily seen for the case of Kummer motives
(described by Scholl in Section 2 of [125]), which should provide the simplest class of
mixed motives for which the special values at the left of the critical strip of the corres-
ponding L-functions do not have the Northcott property. We aim at coming back to this in
future work.

Remark 5.10. Let F be a number field, and let hWMMF ! R denote Kato’s height
of mixed motives, which we introduced in Example 4.6. Then, Kato shows in Propos-
ition 2.1.17 of [80] that a Northcott property for this height would have momentous
consequences, such as the finite generation of the “motivic cohomology” groups given
by extensions in Jannsen’s category MMF . More precisely, to prove such a finite gen-
eration one would need to show that h satisfies a Northcott property when restricted to
motives X 2 MMF with fixed semi-simplification. As we outlined in the introduction,
it seems promising to do so by relating Kato’s height to special values of L-functions.
Nevertheless, the previous Remark 5.9 suggests that Deninger’s notion of an L-function
of mixed motives may not be well suited for this purpose, since it does not differentiate
enough between a mixed motive and its semi-simplification. On the other hand, the special
values of the multivariate L-function associated to a mixed motive X by the pioneering
work of Brown [23] may be more closely related to Kato’s height. This will be the subject
of future investigations.

We conclude this section by applying Theorem 1.1 to L-functions of elliptic curves
and abelian varieties.

Corollary 5.11. Let F be a number field and let g 2 Z�1. We denote by Ag.F / the set
of isomorphism classes of g-dimensional abelian varieties A defined over F . Moreover,
we denote by A0g.F / � Ag.F / the subset of those abelian varieties A whose associated
L-function L.A; s/ belongs to L.1/.F /. Then, for every n 2 N and B 2 R�0, the set

(5.9) ¹A 2 A0g.F / W jL
�.A;�n/j � Bº

is finite.
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Proof. Thanks to Theorem 6.25 in [41] we have an embedding A0g.F / ,! M.1/.F /,
which sends A to H 1.A/. Moreover, dim.H 1.A// D 2 dim.A/, which yields an embed-
ding of the set (5.9) into the set M

.1/
B;2g.F /. Therefore, the set (5.9) is finite, thanks to

Theorem 1.1.

Now, it has been classically conjectured that A0g.F / D Ag.F /. This is known when
gD 1 and F DQ, thanks to the celebrated modularity theorem, proved by Breuil, Conrad,
Diamond and Taylor in [22], extending ideas of Taylor and Wiles. More generally, we
know that A0g.F / D Ag.F / when g D 1 and F is a totally real number field, thanks
to the potential modularity result proven in Winterberger’s appendix to [100]. Finally,
the recent potential modularity results of Boxer, Calegari, Gee and Pilloni [18] show that
A0g.F /DAg.F /when gD 2 andF is totally real, or gD 1 andF is a quadratic extension
of a totally real number field. Therefore, we get the following completely unconditional
corollary of Theorem 1.1.

Corollary 5.12. Fix a natural number n 2N and a real numberB 2R�0. Then, for every
totally real number field F and every extension K � F such that ŒKWF � � 2, the sets

¹E 2 A1.K/ W jL
�.E;�n/j � Bº and ¹A 2 A2.F / W jL

�.A;�n/j � Bº

are finite.

5.3. Number fields

The aim of this section is to extend the results of Theorem 1.1 to the simplest set of
motives of fixed weight but unbounded dimension, which is given by the Weil restrictions
1F=Q WD NF=Q.1F / 2M.0/.Q/ of the trivial motives 1F WD H 0.Spec.F //2M.0/.F /,
where F varies in the class of number fields. For these motives, the dimension is given
by dF WD dim.1F=Q/ D ŒF WQ� and L.1F=Q; s/ D �F .s/, where �F denotes Dedekind’s
�-function. Therefore, if we let F vary, we see that the dimension of our motives is no
longer bounded. Nevertheless, we can use the exponential growth of the discriminant j�F j
with respect to the degree dF in order to show the following effective result, which is part
of Theorem 1.2.

Proposition 5.13. Let S.Q/ denote the set of isomorphism classes of number fields.
Moreover, for every n 2 Z, we define the family of sets

(5.10) SB.Q; n/ WD ¹ŒF � 2 S.Q/ W j�
�
F .n/j � Bº

depending on B 2 R�0. Then, we have that

• for every n 2 Z�2 and every B 2 R such that B � �.n/2, where �.s/D �Q.s/ denotes
Riemann’s zeta function, the set SB.Q; n/ is infinite;

• for every n 2 Z��1 and B 2 R�0, the set SB.Q; n/ is finite.

Moreover, there exists an absolute, effectively computable constant c0 2R>0 such that for
every B 2 R>1 the following bound:

(5.11) jSB.Q; n/j � exp
� c0

1 � n
log .B/ .log log .B//3

�
holds true.
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Proof. First of all, we recall that for every s 2 C such that <.s/ > 1, the function �F .s/
admits various expansions as a Dirichlet series and an Euler product. More precisely, we
have that

(5.12) �F .s/ WD
X

0¤I�OF

1

NF=Q.I /s
D

C1X
nD1

an.F /

ns
D

Y
p�OF

1

1 � NF=Q.p/�s

where an.F / denotes the number of ideals I � OF such that NF=Q.I / WD jOF =I j. In
particular, we see from (5.12) that

(5.13) 1 � �F .s/ D
Y

p�OF

1

1 � NF=Q.p/�s
�

Y
p

� 1

1 � p�s

�ap.F /
� �.s/dF

for every s 2 R>1. Therefore, we see that for every n 2 Z�2, the set SB.Q; n/ is infinite
as soon as B � �.n/2.

Now, let us prove the second part of the statement. We will proceed by mimicking the
proof of Proposition 5.3. First of all, let r1.F / denote the number of embeddings F ,! R,
and r2.F / denote the number of complex conjugate pairs of embeddings F ,! C whose
image is not contained in R. Then, the completed �-function

y�F .s/ WD yL.1F=Q; s/ D �R.s/
r1.F / �C.s/

r2.F / �F .s/

satisfies the following functional equation:

(5.14) y�F .s/ D j�F j
1=2�s y�F .1 � s/

for every s 2 C (see Corollary 5.10 in Chapter VII of [101]).
Therefore, we see that for every ŒF � 2 SB.Q; n/, the upper bound

(5.15) j�F j
1=2�n

�

ˇ̌̌ ��R.n/

��R.1 � n/

ˇ̌̌r1.F /
�

ˇ̌̌ ��C.n/

��C.1 � n/

ˇ̌̌r2.F /
�

B

�F .1 � n/

holds true. We would like to use such an upper bound to conclude that j�F j is bounded,
and thus that SB.Q; n/ is finite, thanks to Hermite’s theorem. This will also yield explicit
upper bounds for the cardinality of SB.Q; n/, thanks to Couveignes’s result which we
recalled in Example 4.4.

To show that j�F j is indeed bounded, for every ŒF � 2 SB.Q; n/, we apply first of
all (5.13) to (5.15), which yields the following upper bound:

j�F j
1=2�n

�

ˇ̌̌ ��R.n/

��R.1 � n/

ˇ̌̌r1.F /
�

ˇ̌̌ ��C.n/

��C.1 � n/

ˇ̌̌r2.F /
� B

for every ŒF � 2 SB.Q; n/. Now, let


R.n/ WD
ˇ̌̌ ��R.n/

��R.1 � n/

ˇ̌̌
;



F. Pazuki and R. Pengo 28

and observe that


R.n/ D

8<: .2�/2m

.2m/Š
; if n D �2m;

� .2�/
2m

.2m/Š
; if n D �2m � 1;

for every n 2 Z��1. Analogously, we have that


C.n/ WD
ˇ̌̌ ��C.n/

��C.1 � n/

ˇ̌̌
D .2�/ �

� .2�/�n
.�n/Š

�2
for every n 2 Z��1. Therefore, one sees easily that


R.n/ � ˛1 WD 
R.�7/ D � �
.2�/6

6Š

for every n 2 Z��1. Analogously, we have that


C.n/ � ˛2 WD 
C.�6/ D 2 � � �
� .2�/6

6Š

�2
for every n 2 Z��1. Therefore, the following upper bound:

(5.16) j�F j
1=2�n

� 
R.n/
r1.F / � 
C.n/

r2.F / � B � ˛
r1.F /
1 � ˛

r2.F /
2 � B

holds true for every ŒF � 2 SB.Q; n/.
Now, recall that there exists an effectively computable constant d0 2 N such that

(5.17) j�F j � .60:8/
r1.F / .497:2/r2.F /

for every number field F such that dF � d0. Indeed, this is one of the most optimised
unconditional versions of Stark’s lower bounds for discriminants, which is due to Poitou
(see equation (K) in [118]). Therefore, if we set

TB.Q; n/ WD ¹ŒF � 2 SB.Q; n/ W dF � d0º;

then we know that TB.Q; n/ is finite, thanks to Theorem 1.1. In fact, we see directly
from (5.16) that the following upper bound:

(5.18) j�F j � .˛
d0
1 � B/

2=.1�2n/

holds true for every ŒF � 2 TB.Q; n/. This implies that TB.Q; n/ is finite, thanks to the
Hermite theorem. To conclude, define

gn WD max
� log.
R.n//

log.60:8/
;

log.
C.n//

log.497:2/
; 0
�

and observe that

(5.19) 1 � 2.nC gn/ � .1 � 2.g�1 � 1//.�n/ D .1:223 : : : / � .�n/
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for every n 2 Z��1. Hence, for every ŒF � 2 SB.Q; n/ n TB.Q; n/ we have that

(5.20) j�F j � B
2

1�2.nCgn/ � B1:64=.�n/;

as follows by combining the bounds (5.16), (5.17) and (5.19). Thus, we see from (5.18)
and (5.20) that there exists an absolute constant a1 2 R>0 such that the following upper
bound:

j�F j � a1 � B
1:64=.�n/

holds true for every ŒF � 2 SB.Q; n/. To conclude, we can simply apply (4.7) to see
that (5.11) holds true.

Remark 5.14. In principle, the proof of Proposition 5.13 could be adapted to show that
for every number field F and every w; n 2 Z such that 2n < w, the function

M.w/.F /! R;

ŒX� 7! jL�.X; n/j;

has the Northcott property on its own, without having to bound the dimension dim.X/.
In order to do so, we would need to show the existence of two constants Cw 2 R>1 and
Dw 2 R>0, depending at most on w and on the number field F , such that

NF=Q.fX / � C dim.X/
w

for every X 2 M.w/.F / with dim.X/ � Dw . Such a lower bound, which would be an
analogue of (5.17) for more general motives, is known to hold (conditionally) for Artin L-
functions, thanks to work of Odlyzko [105], and would be expected for abelian varieties.
Moreover, a similar lower bound, which is valid for every motiveX 2M.w/.F /, has been
proved by Mestre in [97], Section III. However, let us note that Mestre’s lower bound
does not guarantee that Cw > 1 when w is big. More precisely, this can be achieved only
when one can show that the absolute value of the sum of the roots of the polynomials
Pp.R`.X/; t/ is much smaller than the trivial bound. This can be achieved for instance
when F D Q and X D H 1.A/ for some abelian variety A whose associated L-functions
satisfies all the properties conjectured in Definition 5.1. In this case, Mestre obtains that
jfAj > 10

dim.A/ in the Proposition in page 229 of [97].

6. Special values inside the critical strip

The aim of this section is to study the Northcott properties satisfied by the special values
of L-functions taken inside the critical strip. We will concentrate on two particular cases:
• Dedekind �-functions �F .s/ associated to number fields F . In this case, we will show

that the special value ��F .0/ satisfies a Northcott property, whereas ��F .1/ does not. In
other words, the different behaviour of the values at the left and the right of the critical
strip expressed in Proposition 5.13 holds true also at the boundary of the critical strip.
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• L-functions L.A; s/ associated to abelian varieties A. In this case, we have only one
special value L�.A; 1/ at the centre of the critical strip, which is the subject of the
notorious conjecture of Birch and Swinnerton-Dyer. Even assuming this conjecture,
we will see that it is surprisingly difficult to prove or even predict whether or not the
special value L�.A; 1/ satisfies a Northcott property.

6.1. Number fields

In this section, we look at the special values ��F .0/ and ��F .1/ associated to a number
field F . First of all, we show in Proposition 6.1 that the special value at s D 0 has the
Northcott property, whereas the special value at s D 1 does not. Moreover, Proposition 6.2
gives a quantitative result, with the proof of the explicit upper bound for the cardinality
of the finite sets appearing in Proposition 6.1. Together with Proposition 5.13, and its
effective version given by (5.11), these results complete the proof of Theorem 1.2.

Proposition 6.1. For every B 2 R>0, the set SB.Q; 0/ defined in (5.10) is finite. On the
other hand, there exists B1 2 R>0 such that for every B � B1, the set SB.Q; 1/ is infinite.

Proof. Fix a number field F . First of all, let us recall that the analytic class number for-
mula (see Corollary 5.11 in Chapter VII of [101]) gives

(6.1) ��F .1/ D
2r1.F / � .2�/r2.F /

wF
�
hF �RFp
j�F j

;

where hF , RF and wF are, respectively, the class number, the regulator and the number
of roots of unity of F . Combining this with the functional equation (5.14), we have the
following expression:

(6.2) ��F .0/ D �
hF

wF
RF

for the special value of �F .s/ at s D 0. In particular, (6.2) shows that any upper bound
for j��F .0/j entails an upper bound for the product hF RF and the degree dF WD ŒF WQ�.
Indeed, it is known that RF grows exponentially in dF (as proved by Zimmert in Satz 3
of [144]), whereas wF � 4d2F , as follows from the easy lower bound 2'.n/ �

p
n for

Euler’s totient function '. This shows that wF grows at most logarithmically in RF , and
thus that hFRF and dF are bounded whenever j��F .0/j is bounded. Finally, we can simply
apply the Brauer–Siegel theorem (see Theorem 2 in [21]) to show that the discriminant�F
is bounded from above whenever j��F .0/j is. Hence, Hermite’s theorem shows that the set
SB.Q; 0/ is finite.

Now, let us prove that the function ŒF � 7! j��F .1/j does not have the Northcott property,
following a suggestion by Asbjørn Christian Nordentoft. Let D � Z<0 denote the set of
discriminants of imaginary quadratic fields. Then, there exist c1; c2 2 R>0 such that

1

X

X
D2D
jDj�X

hQ.
p
D/
D c1
p
X
�
1CO

�
e�c2
p

log.X/ ��
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when X !C1, as explained in Theorem 5.1 of [8]. Moreover, (6.1) implies that

��
Q.
p
D/
.1/ D � �

hQ.
p
D/q

j�Q.
p
D/
j

for every D 2 D such that D < �4. Thus, we see from (6.1) that there exist an infinite
subset D 0�D and a real numberB1 2R�0 such that j��

Q.
p
D/
.1/j �B1 for everyD 2D 0.

Therefore, the sets SB.Q; 1/ are infinite as soon as B � B1, as we wanted to show.

It is an interesting problem to find explicit upper bounds for the cardinality of the sets
SB.Q; 0/ introduced in (5.10), whose finiteness is proved in Proposition 6.1. We note that
the proof that we gave cannot lead to such explicit upper bounds, due to the non-effectivity
of the general version of the theorem of Brauer and Siegel. Nevertheless, if one restricts to
CM fields, the Brauer–Siegel theorem can be made effective, as shown by Stark in [131].
Combining this with some effective lower bounds for the regulator RF , one obtains the
following result.

Proposition 6.2. There exist two absolute, effectively computable constants c1; c2 2 R>0
such that the following upper bound:

(6.3) jSB.Q; 0/j � exp
�
c1B

c2 log log.B/.log log.B//3
�

holds true for every B 2 R>1, where jSB.Q; 0/j denotes the cardinality of the finite set
SB.Q; 0/ defined in (5.10).

Proof. First of all, let us derive an explicit upper bound for the regulator RF and the
degree dF WD ŒF WQ� of every number field ŒF � 2 SB.Q; 0/. To do so, we use the chain of
inequalities

(6.4) RF
(a)
� hFRF

(b)
� wFB

(c)
� 4d2FB

(d)
� 4B

� log.RF =c3/
log c4

�2
;

where c3 WD.11:5/�39 and c4 WD1:15 are two absolute constants, hF WD jPic.OF /j denotes
the class number of OF , andwF WD j.O�F /torsj denotes the number of roots of unity of OF .
Here the inequality (a) follows from the fact that hF 2Z�1; the inequality (b) follows from
the class number formula (6.2), because ŒF � 2 SB.Q; 0/; the inequality (c) comes from
the simple bound wF � 4d2F ; and finally, the inequality (d) comes from the bound

(6.5) c3c
dF
4 � RF

which holds for every number field F (as shown by Zimmert in [144], Satz 3). Thus, (6.4)
implies that

(6.6)
RF

.logRF /2
� c5B

for some absolute, effectively computable constant c5 > 0. Since there exists an absolute,
effectively computable constant c6 > 0 such that x � c6 log.x/3 for every x 2 R>0, we
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see that (6.6) implies that logRF � c6
c5
B . Therefore, using this inequality in (6.6), we get

that

RF � c7B.logB/2;(6.7)

for some absolute, effectively computable constant c7 2R>0. Moreover, (6.5) implies that

dF � c8 logB(6.8)

for some absolute, effectively computable constant c8 2 R>0.
Now, we want to use (6.7) and (6.8) to find an explicit upper bound for the discrim-

inant j�F j of every number field ŒF � 2 SB.Q; 0/. In order to do so, we need to consider
separately the case of CM fields, i.e., of those totally imaginary number fields which are
quadratic extensions of a totally real number field. More precisely, let SCM be the set of
isomorphism classes of CM fields. Then, a combination of Theorem C in [55] and Pro-
position 3.7 in [107] shows that for every number field ŒF � 2 SB.Q; 0/ n SCM, one has the
explicit upper bound

(6.9) j�F j � d
dF
F exp

�
max

�
1;
d
2dF
F RF

c9

��
;

where c9 2 R>0 is some absolute, effectively computable constant.
Moreover, for every CM field ŒF �2SB.Q;0/\SCM, one obtains, for every "2.0;1=2�,

the upper bound

(6.10) j�F j �
�
hF dF Š

c11."/dF

��dF
2

�dF =2
exp

�
max

�
1;
d
dF
F RF

2dF c10

���1=2�1=dF � dF
dF �3�"dF

by using (6.9) for the maximal, totally real sub-field of F , and combining this estimate
with Theorem 2 in [131] and Proposition 3.7 in [107]. Here, c11W .0; 1=2�! R is some
effectively computable function, appearing in [131]. Finally, combining (6.9) and (6.10)
(where we may fix " D 1=4, for example) with the bounds (6.7) and (6.8), we obtain the
bound

(6.11) j�F j � c12 exp .Bc13 log logB/

for every ŒF � 2 SB , and some effectively computable constants c12; c13 2 R>0.
Now, to conclude, we obtain (6.3) by summing (4.7) over 1 � d � c9 log.B/ and

replacing X by c12 exp.Bc13 log log.B//, which can be done thanks to (6.8) and (6.11).

Remark 6.3. The results summarized in Theorem 1.2, and proved in Propositions 5.13,
6.1 and 6.2, have been generalized in two recent works by Généreux, Lalín and Li [59],
and by Généreux and Lalín [58]. In particular, the former deals with the sets

SB.Fq.T /; s/ WD ¹ŒF � 2 S.Fq.T // W j�
�
F .s/j � Bº;

where q 2N is a power of a prime number, and S.Fq.T // denotes the set of isomorphism
classes of finite extensions of the global function field Fq.T /. Moreover, if q � 1.4/ and
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s 2 C is any complex number with <.s/ > 1=2, then Theorem 1.3 in [59] shows that
SB.Fq.T /; s/ is infinite, for B sufficiently large. On the other hand, the same theorem
shows that for every prime power q 2 N, every B 2 R�0 and every s 2 C with real
part <.s/ < 1=2 � log.2/=log.q/, the set SB.Fq.T /; s/ is finite, and its cardinality can
be explicitly bounded (see Theorem 3.6 in [59]). On the other hand, [58] deals with the
sets SB.Q; s/ defined in (5.10), where one replaces the integer n 2 Z by any complex
number s 2 C. In particular, they show that the presence of poles of the �-function at
negative integers implies that there are regions on the left of the critical strip where the
Northcott property does not hold (see [58], Section 4.3). Moreover, Theorem 3.2 in [58]
and Theorem 6.6 in [58] prove that the Northcott property does not hold for <.s/ � 1=2,
which includes in particular the right half of the critical strip. These phenomena had also
been noticed by the authors during private communications with Jerson Caro.

6.2. Abelian varieties

In this section, we investigate the possible Northcott property of the special value at the
integer s D 1 of theL-functionsL.A; s/ WDL.H 1.A/; s/ associated to abelian varieties A
defined over a number field F . The main outcome of the discussion is that even assuming
the Birch and Swinnerton-Dyer conjecture, it is not possible, so far, to prove a Northcott
property in this case. According to the heuristics of Watkins about elliptic curvesE over Q
(see [138]), one is in fact led to the conclusion that the Northcott property for L�.E; 1/
could be unlikely to hold in general.

We note that it is not clear whether we can expect a similar Northcott property as in the
case of the special values ��F .0/ which we considered in the previous section. First of all,
if we want to follow the strategy that we used in the previous section, we should relate the
special value L�.A; 1/ to some regulator determinant. This relation was given by the class
number formula (6.2) in the case of the special value ��F .0/ studied in the previous section,
and was thus unconditional. On the other hand, the celebrated conjecture by Birch and
Swinnerton-Dyer (see equation (1.5) in page 418, and equation (B) in page 419 of [132])
predicts that L�.A; 1/ is related to a regulator determinant RA=F by the equality

(6.12) L�.A; 1/
‹
D cF

� Q
v2M 0

F
cv.A/

jA.F /torsj jA_.F /torsj

�
jX.A=F /jRA=F

��1A
;

where cv.A/ stands for the Tamagawa number at the place v, we denote A_ for the dual
abelian variety, X.A=F / is the Tate–Shafarevitch group, �A is the archimedean period,
and cF is a quantity depending on the discriminant and the degree of the number field F .

Now, the first step in the proof of Theorem 1.2 consisted in observing that the quantity
wF D j.O

�
F /torsj appearing in the class number formula (6.2) is clearly bounded from

above by a polynomial in the degree ŒF WQ� of the number field F . An analogous statement
for abelian varieties is the content of the following conjecture.

Conjecture 6.4 (Torsion conjecture). For every d 2N�1 and every g 2N�1, there exists
a natural number c.g;d/ 2N such that for all number fields F of degree d D ŒF WQ�, and
for all g-dimensional abelian varieties A defined over F , we have jA.F /torsj � c.g; d/.
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We recall that, in the case of elliptic curves, Conjecture 6.4 is proved to be true, thanks
to work of Merel (see [96]). In higher dimension, the conjecture is still open, but the prime
number theorem shows easily that

jA.F /torsj jA
_.F /torsj � .logjNF=Q.fA/j/4 dim.A/;

as explained in Lemma 3.6 of [73].
Now for a fixed field of definition F , observing that the Tamagawa numbers cv.A/ are

positive integers, we see that any upper bound for the quantity jL�.A; 1/j entails an upper
bound for the quantity

(6.13)
jX.A=F /jRA=F

��1A

if one assumes the validity of the formula (6.12), and of Conjecture 6.4. Since our goal is
to study the Northcott property for the quantity jL�.A; 1/j, it would be useful to compare
the quantity (6.13) to other quantities for which a Northcott property is already known to
hold. The best candidates for this are the stable Faltings height hst.A/ and the norm of the
conductor ideal fA of the abelian variety A.

This is exactly the same strategy which we employed in the proof of Theorem 1.2,
where the quantity hFRF was compared to the quantity j�F j, which satisfies the North-
cott property thanks to Hermite’s theorem. However, there is one fundamental difference
between the proof of Theorem 1.2 and the current discussion: both the numerator and
the denominator of the ratio (6.13) are comparable to something satisfying a Northcott
property, at least conjecturally. In that respect, that case of jL�.A; 1/j is closer to the case
of j��F .1/j described at the end of the previous section.

Let us be more precise. First of all, if one denotes by H.A/ the exponential of the
stable Faltings height of A, one has that

H.A/� ��1A � H.A/.log.H.A///dim.A/=2;

as shown in Lemma 3.7 of [73]. Recent works of Hindry [73], Hindry–Pacheco [74] and
Griffon [60–63] on the analogue of the Brauer–Siegel estimate for abelian varieties show
that the numerator of (6.13) is also expected to be comparable (in some cases) to H.A/.
Hence it is necessary to gain further evidence in order to be able to decide if a North-
cott property for the special value L�.A; 1/ associated to abelian varieties holds in some
cases. In particular, both the numerator and denominator of the ratio (6.13) appear to
be comparable (in some cases) to H.A/. This makes it extremely difficult to prove, or
even expect, a Northcott property for the special value L�.E; 1/. In fact, the heuristics
proposed by Watkins in [138] provide some evidence to expect that L�.E; 1/ does not
satisfy a Northcott property. Indeed, Watkins’s work predicts the existence of infinitely
many elliptic curves E defined over Q for which jX.E=F /jRE=F is bounded (see in
particular Section 4.5 of [138]).

In the case of elliptic curves, one knows from [7] that the following inequality holds:

(6.14)
RE=F

jE.F /torsj jE_.F /torsj
� h.rE=F�4/=3 .log.3h//.2rE=FC2/=3;
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where rE=F WD rk.E.F // and h WD max¹1; h.j.E//º. Here h.j.E// is the absolute log-
arithmic Weil height of the j -invariant j.E/ 2 F (see Section 4.1), which is comparable
with the stable Faltings height of E (see for instance Lemma 3.2 in [108]). The inequal-
ity (6.14) shows that a part of the right-hand side of (6.12) can indeed be related to some
height, even if this relation is too weak to conclude (even assuming the validity of the
Birch and Swinnerton-Dyer conjecture) that the special value L�.E; 1/ satisfies a North-
cott property.
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