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New slope inequalities
for families of complete intersections

Miguel Ángel Barja and Lidia Stoppino

Abstract. We prove f -positivity of OX .1/ for arbitrary dimensional fibrations over
curves f WX ! B whose general fibre is a complete intersection. In the special case
where the family is a global complete intersection, we prove numerical sufficient
and necessary conditions for f -positivity of powers of OX .1/ and for the relative
canonical sheaf. From these results we also derive a Chow instability condition for
the fibres of relative complete intersections in the projective bundle of a �-unstable
bundle.

1. Introduction

Let f WX ! B be a surjective morphism with connected fibres from an n-dimensional
smooth projective variety X to a smooth projective curve B , with general fibre F . Let L
be a divisor on X . We say that L is f -positive if the following inequality holds:

(1.1) e.L/ WD Ln � n
Ln�1
jF

h0.F;LjF /
degf�OX .L/ � 0:

The quantity e.L/ is a numerical invariant of the data, originally introduced by Cornalba
and Harris in [9], and its positivity has a profound relation with Chow and Hilbert stability
of the pair .F; LjF /, and it is also related with sheaf stability properties of the vector
bundle f�OX .L/: see [5] for a detailed discussion; some of these connections will also
emerge from the results of the present article.

The case when L is the relative canonical divisor Kf D KX � f �KB of a relatively
minimal fibration is of particular interest: inequality (1.1) is called in this case the canon-
ical slope inequality:

(1.2) Knf � n
Kn�1F

pg.F /
degf�OX .Kf /:

The case n D 2 was the first case studied. Cornalba and Harris [9] (see also [29]) and
Xiao [30] proved with two different methods the canonical slope inequality for relatively
minimal fibred surfaces with fibres of genus greater than or equal to 2. The importance of
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the slope inequality can hardly be underestimated: in particular, it has consequences both
in the classification of surfaces ([28,30]) and in the study of the structure of the ample and
nef cones of the moduli space of stable curves ([1, 16]).

For the case of an arbitrary L in dimension 2, we proved in [5] that f -positivity holds
in case thatL is a nef line bundle such that the restrictionLjF is linearly stable (see Defin-
ition 2.16 in [25]), and that this linear stability on the fibres is the assumption needed in
both the Cornalba–Harris and the Xiao methods, and also in a third method due to Mori-
waki. It is worth remarking though that (differently from Cornalba–Harris and Moriwaki’s
ones) Xiao’s method works also with weaker assumptions than linear stability for LjF ,
producing a (weaker) inequality for the ratio between L2 and degf�OX .L/.

For the case n D 3, many inequalities between K3
f

and deg f�OX .Kf / are proved
in [2] and [27] and more recently in [19]; still, a slope inequality or more generally the
f -positivity of some class of line bundles is in general not known.

For higher values of n, only few results are known. The most important one is in the
original paper of Cornalba and Harris [9]: an inequality is proved in any dimension under
a Hilbert stability condition on the map induced by the line bundle on the fibres (The-
orem 2.1). A slightly improved result (assuming the Chow stability of maps induced on
the general fibres) has been proved by Bost in arbitrary characteristic [7]. Unfortunately,
the Hilbert or Chow stability on the fibres in dimension � 2 is not known. In particular,
for the case of L D Kf and general fibre F of general type, such a condition is known
only asymptotically, i.e., for high enough powers of the canonical sheaf.

Very recently, the first named author has proved a bound in any dimension for irregular
fibrations (see [4] and [3]); similar results have also been proved by Hu and Zhang in [20].
Even more recently Codogni, Tasin and Viviani in [8] applied Xiao’s method to families
of K-semistable and KSB-semistable varieties and their moduli.

In [6], we gave a complete treatment of the particular case where X is a relative
hypersurface in a projective bundle � WPB.E/! B , where E is a vector bundle over B ,
and f WX ! B is the morphism induced by � . In that case, f -positivity of OX .h/ for
any h � 1 is equivalent to the canonical slope inequality, and both are equivalent to a
numerical relation between the class of X in the Néron–Severi space N1.P / and the slope
�.E/ WD deg E=rankE of E . From this we could deduce instability and singularity condi-
tions for the fibres and also for the total space X .

In this paper, we study fibrations whose general fibre is a complete intersection of
arbitrary codimension. The main results of the present paper are three.

Firstly we prove a very general slope inequality for these fibrations, with mild condi-
tions on L and on the general fibre F .

Theorem 1.1 (Theorem 2.4). LetX be an n-dimensional variety with a surjective morph-
ism with connected fibres f WX!B over a smooth curveB . LetL be a line bundle overX
which is relatively ample with respect to f . Suppose that the general fibre F is embedded
in Ph

0.F;LjF /�1 D P r�1 by jLjF j as the complete intersection of r � n hypersurfaces Yi
of degree di , such that for any i D 1; : : : ; r � n,

lct.P r�1; Yi / �
r

di
;

where lct is the log canonical threshold of the pair .P r�1; Yi /. Then L is f -positive.
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Remark 1.2. In particular, the result holds if the general fibre is the (not necessarily
smooth) complete intersection of smooth hypersurfaces.

This is to our knowledge the most general result holding in any dimension. Its proof
is however a simple application of Cornalba–Harris and Bost’s results, combined with:
(1) a result of Lee relating the Chow stability of a projective variety with the log canon-

ical threshold of its Chow form [22];
(2) the simple but remarkable fact that the proper intersection of stable varieties is stable

(Proposition 2.2), that follows from a result of Ferretti [13].
In the second (and longer) part of the paper, we study thoroughly the case of a codi-

mension c complete intersection X in a relative projective bundle P WD PB.E/ over a
curve B , where E is a rank r � 3 vector bundle over B , together with the morphism
f WX ! B induced by � . Here not only we study the f -positivity of OX .1/, but also the
positivity of its powers, and of the relative canonical sheaf !f DOX .Kf /. It turns out that
in many cases there is a numerical inequality governing the f -positivity of these sheaves:
inequality (1.3) below. The main results are the following.

Theorem 1.3 (Theorem 3.9, Theorem 3.15, Proposition 3.26). LetX be a complete inter-
section of c hypersurfaces

Xi � kiH � yi†; with ki � 2 for i D 1; : : : ; c.

Consider the inequality

(1.3) c�.E/ �

cX
iD1

yi

ki
�

The following three statements are equivalent:
(A1) the sheaf OX .h/ is f -positive for any h < min¹kiº;
(A2) there exists h < min¹kiº such that OX .h/ is f -positive;
(A3) inequality (1.3) holds.

Suppose moreover thatX is balanced (i.e., ki D k for any i D 1; : : : ; c/. The following
statements hold:

(B1) if OX .h/ is f -positive for h� 0, then (1.3) holds;
(B2) if (1.3) holds with strict inequality, then OX .h/ is strictly f -positive for h� 0.

Suppose that X is balanced and that r < ck (i.e., the fibres of f are of general type).
Then we have the following:
(C1) if .c � 1/k < r , then !f is f -positive if and only if (1.3) holds;
(C2) if k � 0 and c D 2; 3; 4, then !f is f -positive if and only if (1.3) holds;
(C3) if c is fixed and r � 0, then !f is f -positive if and only if (1.3) holds.

Remark 1.4. This is a wide generalization of Theorem 2.8 of [6], where we proved that
condition (1.3) is equivalent to the f -positivity of !f and of any power of OX .1/ (see
Remark 3.17).
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Remark 1.5. In the case c D r � 2 with X balanced, Enokizono made in [12] an explicit
computation of the invariants K2

f
and deg f�!f , proving an equality of the form K2

f
D

�.r;k/degf�!f . This equality in particular implies our last results (C1) in case c D r � 2,
as we discuss in detail in Remark 3.28.

Remark 1.6. Theorem 1.1 is an extremely general result of f -positivity, its assumption
being on the general fibres. However, notice that in the case of a global complete intersec-
tion in P , it does not even imply items (A1) and (A2) of Theorem 1.3. Indeed, first of all
we do not ask any condition on the singularities of the fibres in Theorem 1.3; moreover,
in (A1) and (A2) we obtain a sufficient and necessary condition for f -positivity. This,
combined with Theorem 1.1, can be used to obtain the following strong theorem in the
case of relative complete intersections

Theorem 1.7 (Theorem 3.18). Let X be a complete intersection of c hypersurfaces

Xi � kiH � yi†; with ki � 2 for i D 1; : : : ; c.

Suppose that for the general fibre † Š P r�1 we have that

(1.4) lct.†;Xi �†/ �
r

ki
for any i D 1; : : : ; c:

Then the following statements hold:
(1) the sheaf OX .h/ is f -positive for any h < mini¹kiº;
(2) inequality (1.3) holds.

In the third and last part of the paper, following the spirit of our work on hypersur-
faces [6], we use the results obtained to study the cones in the Néron–Severi space of
cycles Nc.P /. Indeed, equation (1.3) tells us something about the position of the class
of X inside Nc.P /; we define a cone B in the 2-dimensional space Nc.P / as follows
(Definition 4.3):

B WD RCŒH c�1†�˚RCŒH c
� c�.E/H c�1†�;

where �.E/ D deg E=rankE is the slope of the vector bundle E .
By reformulating in a suitable way a result of Fulger [14] (using the so-called virtual

slopes of the vector bundle E), we see that this cone B is always intermediate between the
pseudoeffective and the nef cones in Nc.P /. Then we can reformulate the results obtained,
for instance by saying that the class of X lies in the interior of B if and only if OX .1/ is
f -positive (Proposition 4.4).

Eventually, using the same reasoning as in [6], we combine the result of Cornalba–
Harris and Bost with Theorem 1.3, and obtain an instability condition for the fibres of
relative complete intersections.

Theorem 1.8 (Corollary 4.5). Let X � P be a relative complete intersection in the pro-
jective bundle P D PB.E/ satisfying Assumptions 3.1. If

Pc
iD1 yi=ki > c� (equivalently,

if ŒX� 62 B/, then:
(i) the fibres of f are Chow unstable with the restriction of OP r�1.h/ for any h <

min¹kiº.
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(ii) Assume moreover that X is balanced. Then the fibres of f are Chow unstable with
the restriction of OP r�1.h/ for h� 0.

(iii) Assume moreover thatX is balanced, r < kc, and (1), (2) or (3) in Proposition 3.26
holds. Then the fibres of f are unstable with respect to their dualizing sheaf.

This leads to an example of unstable complete intersections of general type with only
one point as singularity (Proposition 4.7). Note that such varieties need to be singular
(Remark 4.8), so these examples have the smaller possible singularity (set-theoretically).

2. f -positivity of families of complete intersections

We work over the complex field C. In this section, we derive some results on the f -positi-
vity and the Chow stability of fibres of a fibration whose general fibres are complete inter-
sections. For the definition of Chow stability of a projective variety, see [13] and the ref-
erences therein. From now on, anytime we say (semi)stable we mean Chow (semi)stable.
The main result relating this conditions is due to Bost, see Theorem 3.3 in [7], and to
Cornalba–Harris [9, 29] (see [5] for references to similar results).

Theorem 2.1 (Bost, Cornalba–Harris). Let X be an n-dimensional variety with a surject-
ive morphism f WX ! B over a smooth curve B . Let L be a divisor over X such that

(i) for a general fibre F , LjF is very ample;
(ii) L is relatively nef with respect to f .

If the general fibre of f is Chow semistable with respect to the immersion induced byLjF ,
then L is f -positive.

We now ask ourselves: what can we say about the stability of fibres which are complete
intersections? We now state a very natural stability result, which derives from a formula
of R. G. Ferretti (Theorem 1.5 in [13]). This application of Ferretti’s result was suggested
to the second author by Yongnam Lee.

Let Y and Z be two irreducible subvarieties of Pn D P .V _/ whose intersection is
proper. Let Y �Z be the intersection cycle of Y and Z.

Proposition 2.2. If Y and Z are semistable, then Y � Z is semistable. If, moreover, at
least one among Y and Z is stable, then the intersection Y �Z is stable.

Proof. We use the Hilbert–Mumford criterion for stability. Let us consider a 1-parameter
subgroup of GL.V / and let F be the associated weighted filtration of V , with weights ri .
Then, for any subvariety X � Pn, there is a well defined integer eF .X/, which in the
notation of [13] is called degree of contact. The Hilbert–Mumford criterion says that an
irreducible subvariety T � P .V _/ is semistable (respectively, stable) if and only if for
any weighted filtration F of V , the following inequality holds:

(2.1)
eF .T /

.dimT C 1/.degT /
�

1

nC 1

nX
iD0

ri .respectively, </:
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Choosing Y andZ properly intersecting in P .V _/, Ferretti proves in Theorem 1.5 of [13]
the following “Bézout type” formula for the degree of contact of the cycle intersec-
tion Y �Z:

(2.2) eF .Y �Z/ D deg.Y / eF .Z/C deg.Z/ eF .Y / � deg.Y / deg.Z/
nX
iD0

ri :

Let us now suppose that Y and Z are semistable. From the Hilbert–Mumford criterion,
we have that

eF .Y /

.dimY C 1/.degY /
�

1

nC 1

nX
iD0

ri and
eF .Z/

.dimZ C 1/.degZ/
�

1

nC 1

nX
iD0

ri :

Call y and z the dimensions of Y and Z, respectively. By the properness assumption, we
have that

dim.Y �Z/ D y C z � n:

We thus have the following chain of inequalities:

eF .Y �Z/

.dim.Y �Z/C 1/.deg.Y �Z//

D
eF .Y /

.y C z � nC 1/ deg.Y /
C

eF .Z/

.y C z � nC 1/ deg.Z/
�

Pn
iD0 ri

y C z � nC 1

�
.z C 1/C .y C 1/

.y C z � nC 1/.nC 1/

nX
iD0

ri �

Pn
iD0 ri

y C z � nC 1

D
1

nC 1

nX
iD0

ri ;

as wanted. The first equality is Ferretti’s formula (2.2), while the inequality derives from
the condition of semistability of Y and Z. The result with strict stability follows by sub-
stituting strict inequality for (at least) one of the varieties.

Let us now recall the definition of log canonical threshold (see [21] for reference).
Let .Y;�/ be a pair, with Y a normal Q-Gorenstein variety and � a Q-Cartier, Q-divisor
on Y . Given any birational morphism 'WT ! Y with T normal, we have

KT C '
�1
� � � '

�.KY C�/C
X

a.Ei ; Y;�/Ei ;

where '�1� � is the strict transform of � and the Ei ’s are the exceptional irreducible
divisors associated to '. Then we define the discrepancy discrep.Y;�/ of the pair .Y;�/ to
be the infimum of the a.E;Y;�/, taken for any birational morphism ' and any exceptional
irreducible divisor. The pair .Y;�/ is said to be log canonical (l.c.) if discrep.Y;�/��1.
The log canonical threshold of .Y;�/ is

lct.Y;�/ WD sup¹t > 0 j .Y; t�/ is log canonicalº 2 Q \ .0; 1�:
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The log canonical threshold is a measure of the singularities of the pair .Y; �/: for
instance, if Y is smooth and � is reduced and normal crossing, then lct.Y;�/ D 1.

In [22], Lee proved the following beautiful condition for a variety to be Chow semi-
stable in terms of the log canonical threshold of its Chow form.

Theorem 2.3 (Lee). Let Y be an s-dimensional variety together with a non-degenerate
degree d immersion in Pn. Let Z.Y / � G be the corresponding Chow variety in the
Grassmanian G WD Gr.n � s � 1;Pn/. Suppose that the following inequality holds:

(2.3) lct.G;Z.Y // �
nC 1

d
.respectively, >/:

Then Y � Pn is Chow semistable (respectively, Chow stable).

We are now ready to state the main theorem of this section.

Theorem 2.4. Let X be an n-dimensional variety with a surjective morphism f WX ! B

over a smooth curve B . Let L be a line bundle over X which is relatively nef with respect
to f . Suppose that for the general fibre F the line bundle LjF is very ample, and call
r WD h0.F;LjF /. Suppose moreover that one of the following conditions holds:
(1) F is embedded in P r�1 by jLjF j as the complete intersection of r � n hypersur-

faces Yi of degree di such that, for any i D 1; : : : ; r � n,

lct.P r�1; Yi / �
r

di
;

(2) F is embedded in P r�1 by jLjF j as a degree d variety such that, with notations as
in Theorem 2.3,

lct.G;Z.Y // �
nC 1

d
�

Then L is f -positive.

Proof. If assumption (1) holds, then by Lee’s result above, the embeddings Yi ,! P r�1

are Chow semistable for any i D 1; : : : ; r � n, hence by Proposition 2.2 the complete
intersection of the Yi ’s is Chow semistable. We thus can apply Theorem 2.1 and conclude
the proof. For the case of assumption (2), Theorem 2.3 directly proves Chow semistability
of the intersection, and the rest follows as above.

3. Relative complete intersections

3.1. Set-up and preliminaries

In the rest of the paper, we make the following assumptions. Let E be a vector bundle of
rank r � 3 and degree d D deg.det E/ on a smooth projective curve B of genus b.

Let P WD PB.E/ be the relative projective bundle of duals, following Grothiendieck’s
notation. Let � WPB.E/! B be the natural projection. Call † a general fibre of � (which
is a P r�1).

Let OP .1/ be the tautological sheaf on P , and let H be an associated divisor, so that
OP .1/ Š OP .H/. Let c be an integer between 1 and r � 2. Let X1; : : : ; Xc � P be
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relative hypersurfaces of degree ki � 2. As Pic.P / D ZŒOP .1/�˚ �
�Pic.B/, each Xi is

an effective divisor in a linear system of the form jkiH � ��Mi j, where Mi is a divisor
on B , say of degree yi 2 Z.

Let X be the scheme theoretic intersection of the Xi ’s, and let f WX ! B be the
induced fibration.

Assumption 3.1. We assume that the intersection X is irreducible and proper, i.e., of
dimension r � c.

Definition 3.2. We shall call X balanced in case that the ki ’s are all equal, ki D k for
any i 2 ¹1; : : : ; cº.

Now we would like to use a celebrated result of Miyaoka–Nakayama [26] about the
positive cones of divisors of PB.E/.

Before stating the result, let us recall the notion of the Harder–Narasimhan sequence
of a vector bundle E (see [17]). It is the unique filtration of subbundles

0 D E0 � E1 � � � � � El D E

satisfying the following assumptions:
• for any i D 0; : : : ; l , the sheaf Ei=Ei�1 is �-semistable;
• if we set �i WD �.Ei=Ei�1/, we have that �i > �i�1.

Note that �1 >�.E/ > �l , unless E is �-semistable, in which case 1D l and �1 D �.E/.
Note moreover that, setting r0 WD 0, we can express the degree of E as a combinations of
the �i ’s and ri ’s:

(3.1) deg.E/ D
lX
iD1

�i .ri � ri�1/:

Theorem 3.3 (Miyaoka–Nakayama). Given k 2 Z>0, and M a divisor on B ,

(1) the divisor kH � ��M is pseudoeffective (i.e., it is a limit of effective divisors)
if and only if .degM/=k � �1.E/, where �1.E/ is the first slope of the Harder–
Narasimhan sequence of E .

(2) The divisor kH � ��M is nef if and only if .degM/=k � �`.E/, where �`.E/ is
the last slope of the Harder–Narasimhan sequence of E .

Remark 3.4. Recall that a vector bundle E is called nef if the corresponding tautological
sheaf OP.E/.1/ is nef. From Theorem 3.3, we see that E is nef if and only if the smallest
slope �l is greater or equal to 0. In this case, setting �lC1 WD 0, we can reformulate
equation (3.1) as follows:

deg.E/ D
lX
iD1

ri .�i � �iC1/:

Remark 3.5. Theorem 3.3 tells us that under our Assumptions 3.1, for any i D 1; : : : ; c,
being Xi 2 jkiH � ��Mi j effective, it necessarily holds the inequality yi=ki � �1.
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Notation 3.6. For a multi-index I D ¹i1; i2; : : : ; ilº � ¹1; 2; : : : ; cº of length jI j D l , we
shall indicate by kI and yI the corresponding sums

kI D

lX
kD1

kik and yI D

lX
kD1

yik :

For I D ;, we set kI D yI D 0.
Moreover, we call J D ¹1; : : : ; cº the full set of indices, so that kJ D

Pc
iD1 ki and

yJ D
Pc
iD1 yi .

Let HX be the class of OX .1/, let F D † \ X be the class of a general fibre of f ,
and let HF be the class of OF .1/. Consider the sheaf OX .1/ D j

�OP .1/ on X , where j
is the natural inclusion j WX ,! P . We want to study the f -positivity of OX .1/ and of its
powers.

We start by writing down the basic inequality that embodies the f -positivity of OX .h/:

(3.2) .hHX /
r�c h0.F; hHjF / � .r � c/.hHjF /

r�c�1 degf�OX .h/ � 0:

We will use the following well-known result, whose proof we give for the reader’s con-
venience.

Proposition 3.7. Let gWY ! X be a morphism between varieties. Let

(3.3) 0 �! F1 �! F2 �! � � � �! Fk �! 0

be an exact sequence of OY -modules, with k � 3.
If Rig�Fj D 0 for any i > 0 and j with i C j � k � 1, then there is an exact

pushforward sequence:

0 �! g�F1 �! g�F2 �! � � � �! g�Fk �! 0:

Proof. For i D 1; : : : ; k � 1, let ˛i WFi �! FiC1 be the maps in the exact sequence, and
for i D 1; : : : ; k � 2 consider the short exact sequences

0 �! im˛i �! FiC1 �! im˛iC1 �! 0;

where im˛1 D F1 and im˛k�1 D Fk .
Observe that it is enough to prove that R1g� im˛i D 0 for i D 1; : : : ; k � 2, which is

a consequence of the following Claim.

Claim. For any i D 1; : : : ;k � 2 and for any j D 1; : : : ;k � 1� i , we haveRjg� im˛i D 0.

Proof of Claim. We proceed by induction on i . For i D 1, we have im˛1 D F1, and so
the statement holds by hypothesis. Assume now that the claim holds for i < k � 2 and
consider the short exact sequence

0 �! im˛i �! FiC1 �! im˛iC1 �! 0:

By induction hypothesis, we have that Rjg� im˛i D 0 for j D 1; : : : ; k � 1 � i , and
by the hypothesis in the proposition, we have Rjg�FiC1 D 0 for j D 1; : : : ; k � 2 � i .
So considering the derived long exact sequence, we obtain Rjg� im˛iC1 D 0 for j D
1; : : : ; k � 2 � i D k � 1 � .i C 1/.
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Let us now compute the invariants associated to the f -positivity of OX .h/, following
Notation 3.6.

Proposition 3.8. With the above assumptions, let h be any integer � 1. The following
formulas hold:
(1) .HX /r�c D

��Qc
iD1 ki

�
d �

Pc
iD1

�Q
j 6Di kj

�
yi
�
;

(2) .HF /r�c�1 D
Qc
iD1 ki ;

(3) rankf�OX .h/ D h0.F;OF .h// D
Pc
iD0

�P
jI jDi .�1/

i
�
h�kICr�1

r�1

��
;

(4) degf�OX .h/ D
Pc
iD0

�P
jI jDi .�1/

i
�
h�kICr�1

r�1

�
.h�kI /dCyI r

r

�
.

Note that here we use the standard convention that considers equal to zero a binomial
of the form

�
n
m

�
when n < m.

Proof. The first two formulas are easily computed by standard intersection theory. Indeed,

H r�c
X D H r�cX D H.k1H � y1†/ � � � .kcH � yc†/

D

cY
iD1

kiH
r
�

cX
iD1

�Y
j 6Di

kj

�
yiH

r�1†;

and

H r�c�1
F D H r�c�1F D H r�c�1X†

D H r�c�1.k1H � y1†/ � � � .kcH � yc†/† D

cY
iD1

kiH
r�1†;

and now we just need to recall that H r D deg E D d and H r�1† D 1.
For the last two formulas, let us consider the Koszul sequence that provides the resol-

ution of OX .h/ (cf. for instance pp. 144–145 in Chapter III of [11]):

0 �! OP .�X1 � � � � �Xc C hH/ �! � � � �!
M
jI jDl

OP .�XI C hH/ �! � � �

� � � �!

Mc

iD1
OP .�Xi C hH/ �! OP .h/ �! OX .h/ �! 0;

where we use the notation XI to indicate the divisor
P
j2I Xj . For 1 � i � r � 2, we

have the vanishing of the higher direct image sheaves Ri��O.�XI C hH/ D 0, so we
are in the conditions of applying Proposition 3.7, and obtain by pushforward via � the
long exact sequence

0 �! ��OP .�X1 � � � � �Xc C hH/ �! � � � �!
M
jI jDl

��OP .�XI C hH/ �! � � �

� � � �!

Mc

iD1
��OP .�Xi C hH/ �! ��OP .h/ �! f�OX .h/ �! 0:

It is then straightforward to compute rankf�OX .h/ obtaining (3).
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In order to prove the last formula, observe that for any integer a � 0 and for any M
divisor on B of degree y, the projection formula (Exercise 5.1(d) in Chapter II of [18])
says that

��OP .aH � �
�M/ Š ��OP .a/˝OB.�M/ Š SymaE ˝OB.�M/;

and that

deg��OP .aH � �
�M/ D deg SymaE ˝OB.�M/ D

�
aC r � 1

r � 1

�
ad � yr

r
�

Notice moreover that for a < 0 we have ��OP .a/ D 0, and so the formula above still
holds. An easy computation now leads to formula (4) for degf�OX .h/.

3.2. f -positivity of OX .h/ for small enough h

We first prove a result about the case of small h.

Theorem 3.9. Let f WX ! B be a morphism as in Assumption 3.1. The following state-
ments are equivalent:

(1)
Pc
iD1 yi=ki � c�.E/;

(2) the line bundle OX .h/ is f -positive for any h < mini¹kiº;
(3) there exists an h < mini¹kiº such that OX .h/ is f -positive.

Proof. Combining the formulas of Proposition 3.8, we see that the f -positivity of OX .h/

is equivalent to the following inequality:

h
� cY
iD1

kid �

cX
iD1

�Y
j 6Di

kj

�
yi

� cX
iD0

� X
jI jDi

.�1/i
�
h � kI C r � 1

r � 1

��
� .r � c/

cY
iD1

ki

� cX
iD0

� X
jI jDi

.�1/i
�
h � kI C r � 1

r � 1

�
.h � kI /d C yI r

r

��
:

Grouping terms, this inequality becomes

(3.4)

h

r

h
c

cY
iD1

kid �

cX
iD1

�Y
j 6Di

kj

�
yir

i cX
iD0

� X
jI jDi

.�1/i
�
h � kI C r � 1

r � 1

��
C .r � c/

cY
iD1

ki

� cX
iD0

� X
jI jDi

.�1/i
�
h � kI C r � 1

r � 1

�
kId � yI r

r

��
� 0:

Now observe that for h < mini¹kiº (hence in particular for h D 1), the second term in
inequality (3.4) vanishes when i > 0 because all binomials are zero, and trivially vanishes
when i D 0. Hence, in this case the inequality just becomes

(3.5)
h

r

�
hC r � 1

r � 1

��
c

cY
iD1

kid �

cX
iD1

�Y
j 6Di

kj

�
yir

�
� 0:
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From these observations, we see that the condition for f -positivity for h < mini¹kiº is
precisely

(3.6) c

cY
iD1

kid �

cX
iD1

�Y
j 6Di

kj

�
yir � 0 ”

cX
iD1

yi

ki
� c

d

r
D c�;

thus proving the equivalence between (1) and (2). Observe now that if condition (3) holds,
then inequality (3.5) holds, so it holds (3.6), so (1) and (2) both hold. Note that the same
statement holds for strict f -positivity with strict inequality in (3.4).

Remark 3.10. This result in particular implies that strict f -positivity for relative com-
plete intersections is stable under intersection. More precisely, consider two relative com-
plete intersections X and X 0 (of codimension c and c0 respectively, and with associ-
ated string of integers ki ; yi and k0i ; y

0
i respectively, and call f and f 0 the morphisms

induced by �) in P . Suppose that X and X 0 intersect properly, call X 00 WD X �X 0 and call
f 00WX 00! B the induced fibration. Suppose that the tautological bundles OX .1/ (respect-
ively, OX 0.1/) are strictly f -positive (respectively, f 0-positive); then by the above theorem
we have

cX
iD1

yi

ki
C

cX
iD1

y0i
k0i
< c�.E/C c0�.E/ D .c C c0/�.E/;

so OX 00.1/ is strictly f 00-positive. This property should be compared with the analogue
result holding for Chow stability (Proposition 2.2).

3.3. f -positivity of OX .h/ for big enough h

Remark 3.11. Let us consider the following number associated to our data:

˛ WD c

cY
iD1

kid �

cX
iD1

�Y
j 6Di

kj

�
yir:

In the pervious section, we have seen that f -positivity of low powers of OX .h/ is related
to the positivity of ˛.

Note moreover that if yi=ki � �.E/ (respectively, <) for any i D 1; : : : ; c, then ˛ � 0
(respectively, >).

Let us start by recalling the asymptotic formula of Hirzebruch–Riemann–Roch, see
Chapters 15 and 18 of [15].

Proposition 3.12 (Hirzebruch–Riemann–Roch). Let L be an ample line bundle over a
smooth n-dimensional variety Z. We have for h� 0,

(3.7) h0.Z;OZ.hL// D
hn

nŠ
Ln �

hn�1

2.n � 1/Š
Ln�1KZ CO.hn�2/:

The same formula holds true if Z is a (not necessarily smooth) local complete intersection
in a projective space.
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Theorem 3.13. Let f WX ! B be a morphism as in Assumption 3.1. The following state-
ments hold:

(1) Assume that yi=ki � �.E/ for any i D 1; : : : ; c, and that for some j 2 ¹1; : : : ; cº
strict inequality holds; then the line bundle OX .h/ is strictly f -positive for h� 0.

(2) Assume that yi=ki > �.E/ for any i D 1; : : : ; c ; then for h � 0 the line bundle
OX .h/ is not f -positive.

Proof. Let us start from the equation of f -positivity (3.2):

(3.8) hr�cH r�c
X rankf�OX .h/ � .r � c/hr�c�1H r�c�1

F degf�OX .h/ � 0:

By using Hirzebruch–Riemann–Roch, and the computations in Proposition 3.8, we have
that the left side term is for h� 0 a polynomial in h of the following form:

hr�cH r�c
X rankf�OX .h/ � .r � c/hr�c�1H r�c�1

F degf�OX .h/

D hr�c�1
�
hH r�c

X h0.F;OF .h// � .r � c/H
r�c�1
F degf�OX .h/

�
D hr�c�1

�
hr�cH r�c

X

H r�c�1
F

.r�c�1/Š
� .r�c/hr�c�1H r�c�1

F

H r�c
X

.r�c/Š

�
CO.h2r�2c�2/

D h2r�2c�1
�H r�c

X H r�c�1
F

.r � c � 1/Š
� .r � c/

H r�c
X H r�c�1

F

.r � c/Š

�
CO.h2r�2c�2/:

We see that the degree is at most 2r � 2c � 2. We will compute the coefficient of h2r�2c�2.
Using the third and fourth formulas of Proposition 3.8, grouping terms as in the proof

of Theorem 3.9 above, we see that for any h 2 N, we have

degf�OX .h/ D
dh

r
rankf�OX .h/ �

h cX
iD0

� X
jI jDi

.�1/i
�
h � kI C r � 1

r � 1

�
kId � yI r

r

�i
:

We want to see the right-hand term as a polynomial in h and compute its leading term.

Lemma 3.14. We have

ˇ.h/ WD
h cX
iD0

� X
jI jDi

.�1/i
�
h � kI C r � 1

r � 1

�
kId � yI r

r

�i
D �

˛

r

hr�c

.r � c/Š
C

hr�c�1

2.r � c � 1/Š

�˛
r
.kJ � r/C

cY
iD1

ki

cX
iD1

kid � yir

r

�
CO.hr�c�2/:

Proof. Let us compute the coefficient of .k1d � y1r/=r in ˇ.h/: it is immediate to see
that this is

cX
iD1

� X
12I;jI jDi

.�1/i
�
h � kI C r � 1

r � 1

��

D �

c�1X
jD0

� X
162J;jJ jDj

.�1/j
�
h � k1 � kJ C r � 1

r � 1

��
;
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and this, by the very same computation as in Proposition 3.8, is precisely

� rankf1�OY1.h � k1/;

where Y1 is the .c � 1/-codimensional intersection of all the Xi ’s except for X1, and
f1WY1 ! B is the induced fibration. Let us call H1 the tautological divisor on Y1 and F1
the class of a general fibre of f1. Now, by the Hirzebruch–Riemann–Roch formula (3.7),
this rank has the following asymptotic expansion for h� 0:

rankf1�OY1.h � k1/ D h
0.F1; .h � k1/HF1/

D .h � k1/
r�c .HjF1/

r�c

.r � c/Š
� .h � k1/

r�c�1 .HF1/
r�c�1KF1

2.r � c � 1/Š
CO.hr�c�2/

D hr�c
.
Q
i 6D1 ki /

.r � c/Š
� hr�c�1

�k1.r � c/H r�c
F1

.r � c/Š
C
H r�c�1
F1

KF1

2.r � c � 1/Š

�
CO.hr�c�2/

D hr�c
.
Q
i 6D1 ki /

.r � c/Š
� hr�c�1

�2kJ CQi 6D1 ki .
P
i 6D1 ki � r/

2.r � c � 1/Š

�
CO.hr�c�2/;

where we used that
• H r�c

F1
D
Q
j 6D1 kj ;

• H r�c�1
F1

KF1 D
Q
j 6D1 kj .

P
j 6D1 kj � r/;

becauseKF1 � .
P
j 6D1 kj � r/HF . So, for h� 0we obtain from the above computations

a term of the form

�

�Y
i 6D1

ki

� k1d � y1r
r

D �
.
Qc
iD1 ki /d � .

Q
j 6D1 kj /y1r

r
�

Now, recalling that

ˇ.h/ D

cX
iD1

h
�

�kid � yir
r

�
rankf1�OYi .h � ki /

i
;

we obtain, summing up for any i D 1; : : : ; c, as a degree r � c term for ˇ.h/,

�
hr�c

.r � c/Š

˛

r
�

Let us compute now the term in degree r � c � 1. We have

hr�c�1

2.r � c � 1/Š

h cX
iD1

kid � yir

r

�
2

cY
jD1

kj C

cY
jD1;j 6Di

kj

� cX
jD1;j 6Di

kj � r
��i

D
hr�c�1

2.r � c � 1/Š

h cX
iD1

kid � yir

r

cY
jD1;j 6Di

kj

�
2ki C

cX
jD1;j 6Di

kj � r
�i

D
hr�c�1

2.r � c � 1/Š

h
.kJ � r/

˛

r
C

� cY
jD1

kj

� cX
iD1

kid � yir

r

i
;

as wanted.
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Let us now resume the proof of Theorem 3.13. Consider again the f -positivity of OX .h/:

hr�cH r�c
X rankf�OX .h/ � .r � c/hr�c�1H r�c�1

F degf�OX .h/ � 0:

Dividing by hr�c�1 and using the computations of Proposition 3.8, this is equivalent to

(3.9) h
�
H r�c
X �

d.r � c/

r
HF

r�c�1
�

rankf�OX .h/C .r � c/
� cY
iD1

ki

�
ˇ.h/ � 0:

Now observe that, by Proposition 3.8 again,

H r�c
X � d

r � c

r
HF

r�c�1

D
r
�Qc

iD1 ki
�
d � r

�Pc
iD1

�Q
j 6Di kj

�
yi
�
� .r � c/d

�Qc
iD1 ki

�
r

D
˛

r
�

Let us recall now the formula (3.7) of Hirzebruch–Riemann–Roch for rankf�OX .h/D
h0.F;OF .h// for h� 0:

rankf�OX .h/ D h0.F;OF .h//

D
hr�c�1

.r � c � 1/Š
H r�c�1
F �

hr�c�2

2.r � c � 2/Š
H r�c�1
F KF CO.hr�c�3/

D
hr�c�1

.r�c�1/Š

� cY
iD1

ki

�
�

hr�c�2

2.r�c�2/Š

� cY
iD1

ki

�
.kJ � r/CO.hr�c�3/;

because KF � .kJ � r/HF . Using the above expression and Lemma 3.14, we have that
the term in degree r � c in (3.9) is

hr�c

.r � c � 1/Š

� cY
iD1

ki

� ˛
r
C .r � c/

hr�c

.r � c/Š

� cY
iD1

ki

� .�˛/
r
D 0;

according to the observation made at the beginning of the proof.
Now, we compute the degree r � c � 1 term:

(3.10)

hr�c�1

2.r � c � 1/Š

� cY
iD1

ki

� ˛
r
.kJ � r/ .�.r � c � 1/C .r � c//

C

� cY
iD1

ki

�
.r � c/

cY
jD1

kj

cX
iD1

kid � yir

r

D
hr�c�1

2.r � c � 1/Š

� cY
iD1

ki

� �
.kJ � r/

˛

r
C .r � c/




r

�
;

where we set


 D

cY
jD1

kj

cX
iD1

kid � yir

r
�
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So we see that, if we assume that kJ � r > 0 (i.e., F of general type), this coefficient
is a strictly positive combination of ˛ and 
 . It is now immediate to check (see also
Remark 3.11) that in the assumption of (1) both ˛ and 
 are strictly positive. However,
we now will see that the assumption kJ � r > 0 is not needed. Let us rearrange the terms
in (3.10) as follows:�

.kJ � r/
˛

r
C .r � c/




r

�
D

� cY
jD1

kj

��
.kJ � r/

cX
iD1

kid � yir

kir
C .r � c/

cX
iD1

kid � yir

r

�
D

� cY
jD1

kj

� cX
iD1

kid � yir

kir
.kJ � r C .ki .r � c//

D

� cY
jD1

kj

� cX
iD1

kid � yir

kir
.kJ � c C .ki � 1/.r � c// :

So it is clear that if the assumptions of (1) hold, then the coefficient of hr�c�1 is strictly
positive, and so O.h/ is f -positive for h� 0.

If on the contrary all the terms kid � yir are strictly smaller than 0, for i D 1; : : : ; c,
then so is the coefficient of hr�c�1 in (3.10), and proposition (2) is thus proved.

We now see that in the balanced case, we can trace back the asymptotic f -positivity
of OC .h/ to the positivity of ˛.

Theorem 3.15. Let f WX ! B be a morphism as in Assumption 3.1. Assume moreover
that f is balanced. The following implications hold.

• If yJ =k D
Pc
iD1 yi=k < c�.E/, then the line bundle OX .h/ is strictly f -positive for

h� 0.

• Conversely, if OX .h/ is f -positive for h� 0, then yJ =k D
Pc
iD1 yi=k � c�.E/.

Proof. The proof of this result is straightforward by computing the coefficient of hr�c�1

in (3.10) in the balanced case: we obtain

kc
cX
iD1

kd � yir

kr
.ck � r C k.r � c// D .k � 1/˛:

So both implications are clear.

Remark 3.16. Clearly in case of equality ˛D 0, in order to check f -positivity, one should
investigate the non-negativity of the coefficient in degree (2r � 2c � 3) in the polyno-
mial (3.2).

Remark 3.17. In case c D 1, both terms in inequality (3.4) are multiple of the number
.dk1 � ry1/, and one can see – as we do in [6] – that the multiplying term is positive, so
that in Theorem 3.13 the condition of OX .h/ being f -positive for h � 0 is equivalent
to OX .h/ being f -positive for any fixed value h � 1.
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Let us now put together the results of Section 2 with the ones in this section and obtain
the following.

Theorem 3.18. Let f WX ! B be a morphism as in Assumptions 3.1. Suppose that the
relative hypersurfacesXi ’s are such that for the general fibre†Š P r�1 of � WP .E/!B ,
we have that

lct.†;Xi �†/ �
r

ki
�

Then

(1) the sheaf OX .h/ is f -positive for any h < mini¹kiº;

(2)
Pc
iD1 yi=ki � c�.E/.

Proof. The assumption on the log canonical threshold of the pair .†; Xi �†/ implies by
Theorem 2.4, that OX .1/ is f -positive. We can apply Theorem 3.9 to deduce that (1)
and (2) hold.

3.4. The slope inequality

We shall now address the problem of the slope inequality (1.2), i.e., of the f -positivity of
the relative canonical sheaf !f . Let us first establish some preparatory results.

Firstly, we calculate the numerical class of Kf in our setting. Recall [24] that the
relative canonical bundle of � WP ! B is

K� D �rH C �
� det.E/ � �rH C d†:

Hence, by the adjunction theorem, we have that

Kf D
�
K� C

X
Xi

�
jX
�

�X
ki � r

�
HX �

�X
yi � d

�
F(3.11)

D .kJ � r/HX � .yJ � d/F;

following Notation 3.6 setting J D ¹1; : : : ; cº, the whole set of indexes.
Now we recall that f -positivity is stable under sum of pullbacks of divisors on the

base curve, see Remark 1 in Section 2 of [5]. It is worth recalling here the proof.

Lemma 3.19. A divisor D on X is f -positive if and only if the divisor D C f �M is
f -positive for any divisor M on B .

Proof. The f -positivity of D is

h0.F;DjF /D
n
� n.DjF /

n�1 degf�OX .D/ � 0:

The f -positivity of D C f �M is

(3.12)
h0.F; .DCf �M/jF /.D C f

�M/n

� n..DCf �M/jF /
n�1 degf�OX .DCf �M/ � 0:
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Let us analyze this last inequality. We have:
• .D C f �M/jF Š DjF ;
• .D C f �M/n D Dn C nDn�1

jF
.degM/;

• degf�OX .D C f �M/ D degf�OX .D/C .degM/ rankf�OX .D/
D degf�OX .D/C .degM/h0.F;DjF /:

Hence, we have that (3.12) is indeed

0 � h0.F;DjF /.D
n
C nDn�1

jF .degM// � n.DjF /
n�1

�
�
degf�OX .D/C .degM/h0.F;DjF /

�
D h0.F;DjF /D

n
� n.DjF /

n�1 degf�OX .D/;

so, precisely the f -positivity of D.

Corollary 3.20. The slope inequality (1.2) for a morphism f WX ! B that satisfies As-
sumptions 3.1 is equivalent to the f -positivity of OX .kJ � r/. If the morphism is balanced,
then the slope inequality is equivalent to the f -positivity of OX .ck � r/.

Theorem 3.21. With the notations above, suppose thatX is balanced, and that k > 1 and
that r < ck.

Then the following are equivalent:

(1) Kr�c
f
� 0;

(2) �.E/ �
P
yiP
ki
D

P
yi
ck
D

yJ
ck
�

Moreover, if condition (1) (or (2)) holds, the slope inequality is equivalent to the fol-
lowing inequality:

(3.13) .ck � r/h0.F;KF / � k.r � c/h
0.F1; KF1/;

where f1WY1! B is the morphism induced by � on the intersection Y1 of all Xi ’s except
for X1, and F1 is a general fibre of f1.

Proof. As in the proof of Theorem 3.13, let us fix the notation

˛ WD c

cY
iD1

kid �

cX
iD1

�Y
j 6Di

kj

�
yir D cdk

c
� ryJk

c�1:

Firstly we prove that Kr�c
f

is a strict positive multiple of ˛. This of course tells us that
(1)” (2). From (3.11), we get

(3.14) Kr�cf D .kJ � r/
r�c�1

�
.kJ � r/H

r�c
X � .r � c/.yJ � d/H

r�c�1
F

�
:

Now using the formulas of Lemma 3.8 and dividing by .kJ � r/r�c�1 (which is by
assumption strictly greater than 0), we get

Kr�c
f

.kJ � r/r�c�1
D d

cY
iD1

ki .kJ � c/ � .kJ � r/
� cX
iD1

Y
j 6Di

kj

�
yi � .r � c/yJ

cY
iD1

ki :
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Now, using the assumption that X is balanced, we have

cY
iD1

ki D k
c ;

Y
j 6Di

kj D k
c�1 and kJ D ck;

and we obtain

Kr�c
f

.ck � r/r�c�1
D dkc.ck � c/ � .ck � r/.kc�1yJ / � .r � c/k

cyJ

D kc�1.k � 1/.cdk � ryJ / D .k � 1/˛:

Let us now turn our attention on the f -positivity of !f . As noted in Corollary 3.20,
we have that this is equivalent to the f -positivity of OX .ck � r/.

Let us first establish a formula for the f -positivity of OX .h/ for any h � 1 in the
balanced case.

Lemma 3.22. Let h be any integer greater or equal to 1. Under the assumptions of Theo-
rem 3.21, the f -positivity of OX .h/ is equivalent to

(3.15)

˛

r

�
h

cX
iD0

.�1/i
�
h � ik C r � 1

r � 1

��
c

i

�
C k.r � c/

cX
iD1

.�1/i
�
h � ik C r � 1

r � 1

��
c � 1

i � 1

��
� 0:

Proof of Lemma 3.22. Let us start from equation (3.4); the f -positivity of OX .h/ is equi-
valent to the non-negativity of

(3.16)

˛
h

r

� cX
iD0

.�1/i
X
jI jDi

�
h � ik C r � 1

r � 1

��
C .r � c/kc

� cX
iD0

.�1/i
X
jI jDi

�
h � ik C r � 1

r � 1

�
ikd � yI r

r

�
:

Let us now observe that the second summand of (3.16) can be taken starting from i D 1,
because for i D 0 we have that .ikd � yI r/=r D 0. Observe moreover that the first term
can be simplified via the following identity:X

jI jDi

�
h � ik C r � 1

r � 1

�
D

�
c

i

��
h � ik C r � 1

r � 1

�
:

We now would like to rearrange the second term in equation (3.16) in a similar manner to
what we have done in Lemma 3.14. The key observation is that

cX
iD1

.�1/i
X
jI jDi

�
h � ik C r � 1

r � 1

�
yI D

� cX
iD1

.�1/i
�
h � ik C r � 1

r � 1

��
c � 1

i � 1

��
yJ ;
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where it is worth recalling that yJ D
Pc
iD1 yi . Using these identities, we have that the

second term in (3.16) becomes

cX
iD1

.�1/i
X
jI jDi

�
h � ik C r � 1

r � 1

�
ikd � yI r

r

D

cX
iD1

.�1/i

r

�
h � ik C r � 1

r � 1

���
c

i

�
ikd �

�
c � 1

i � 1

�
yJ r

�
D

cX
iD1

.�1/i
�
h � ik C r � 1

r � 1

��
c � 1

i � 1

�
ckd � yJ r

r

D
˛

rkc�1

cX
iD1

.�1/i
�
h � ik C r � 1

r � 1

��
c � 1

i � 1

�
;

and the proof is thus concluded.

Let us now complete the proof of Theorem 3.21. Set h D ck � r . The expression
multiplying ˛=r in equation (3.15) is

.ck � r/

cX
iD0

.�1/i
�
ck � r � ik C r � 1

r � 1

��
c

i

�
C k.r � c/

cX
iD1

.�1/i
�
ck � r � ik C r � 1

r � 1

��
c � 1

i � 1

�
:

Now observe that

cX
iD1

.�1/i
�
ck � r � ik C r � 1

r � 1

��
c � 1

i � 1

�
D �

c�1X
jD0

.�1/j
�
.c � 1/k � r � jk C r � 1

r � 1

��
c � 1

j

�
:

Now, let us call Y1 be the intersection in P of X2; : : : ; Xc , and let f1W Y1 ! B be the
morphism induced. We see from the very computation made in Proposition 3.8 that the
above expression is �rank.f1/�OY1..c � 1/k � r/. So, the slope inequality is equivalent
to the non-negativity of

˛

r

�
.ck � r/ rankf�OX .ck � r/ � k.r � c/ rank.f1/�OY1..c � 1/k � r/

�
D
˛

r

�
.ck � r/h0.F;KF / � k.r � c/h

0.F1; KF1/
�
:

Remark 3.23. Note that condition r < ck in Theorem 3.21 implies that the canonical
sheaf on the fibres of f is very ample, i.e., that Kf is relatively very ample, so the fibres
are of general type.
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Remark 3.24. In the case c D 1, we have that F1 D P r�1, and so inequality (3.13) is
trivially satisfied, so Theorem 1.2 (1) in [6] is implied by this result.

Remark 3.25. In the non-balanced case, one could still obtain an inequality, but more
involved.

In general, it does not seem clear to understand the positivity of expression (3.13).
However, we can prove the slope inequality in some cases, as follows.

Proposition 3.26. Under the assumptions of Theorem 3.21, suppose that one of the fol-
lowing conditions holds:
(1) .c � 1/k < r (this is equivalent to asking that F1 is not of general type).
(2) c D 2; 3; 4 and k � 0.

(3) c is fixed and r � 0.

Then the slope inequality is equivalent to �.E/ � yJ =.ck/.

Proof. In case (1), h0.F1; KF1/ is trivially zero, so by (3.13) the slope inequality is equi-
valent to the non-negativity of ˛, as wanted.

As for case (2), let us compute (3.13) as a polynomial in k, and see its leading coeffi-
cient:

.ck � r/

cX
iD0

.�1/i
�
ck � r � ik C r � 1

r � 1

��
c

i

�
C k.r � c/

cX
iD1

.�1/i
�
ck � r � ik C r � 1

r � 1

��
c � 1

i � 1

�
D .ck � r/

�
ck � r C r � 1

r � 1

�
C

cX
iD1

.�1/i
�
ck � r � ik C r � 1

r � 1

��
.ck � r/

�
c

i

�
C k.r � c/

�
c � 1

i � 1

��
D

kr

.r � 1/Š

�
cr C

cX
iD1

.�1/i .c � i/r�1
�c2
i
C r

��c � 1
i � 1

��
CO.kr�1/:

Now, if we compute the coefficient for small c, we can see that it is non-negative:
• For c D 2, we have 2r � .r C 4/, which is always strictly greater than 0 as soon as
r � 2 (indeed, in our case r need to be greater than 4).

• For c D 3, we obtain 3r � 2r�1.r C 9/C 2.r C 9=4/, which is strictly greater than 0
for r � 5.

• For c D 4, we obtain 4r � 3r�1.r C 16/ C 2r�13.r C 4/ � 3.r C 16=9/, which is
greater than 0 for r � 6
As for the third case, we just need to observe that the leading coefficient as a polyno-

mial in kr in the above expression is positive if c is fixed and r � 0.

Remark 3.27. Note that the result (2) for k � 0 cannot be derived from the f -positivity
of OX .h/ for h� 0, because changing k does change also X .
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Remark 3.28. In Lemma 1.1 of [12], Enokizono proved that, in the balanced case with
c D r � 2 (so X is a surface), the following equalities hold:

K2f D ..k � 1/r � 2k/.k � 1/˛I

degf�!f D
1

24
..3r � 5/k � 3r C 1//.k � 1/˛:

So, we see that the non-negativity of both these invariants correspond to the non-negativity
of ˛, coherently with our results. It is easy to see that these equalities imply the slope
inequality in case ˛ � 0. In particular, by Enokizono’s result, there is always an equality,
regardless of the sign of ˛:

K2f D
24..r � 2/k � r/

.3r � 5/k � 3r C 1
degf�!f :

4. The cones of cycles of PB.E/ and an instability condition

4.1. The cone of “f -positive complete intersections” in N c.P /

In this section, we interpret some of the results obtained in terms of cones in the real
Néron–Severi space of codimension c cycles of X . We see that inequality (1.3) defines
a meaningful cone, which is intermediate with respect to the nef and the pseudoeffective
ones. For stating this, we rewrite in a more compact form a result of Fulger [14], that
describes completely this last two cones.

Recall first that given any vector bundle E over a curveB , the real Néron–Severi space
of codimension c cycles of P D PB.E/,

N c.P / WD
¹real span of classes of c-dimensional subvarieties of Pº

numerical equivalence
;

is 2-dimensional, generated by the classesH c andH c�1†, whereH D ŒOP .1/� and † is
the class of a fibre of � .

Let us consider the Harder–Narasimhan filtration of E ,

0 D E0 � E1 � � � � � E` D E;

and call
�i WD �.Ei=Ei�1/ and � WD �.E/:

Recall that ri WD rank Ei , and that rankE D r D r`. Recall in particular that

(4.1) �` < �`�1 < � � � < �1:

It is useful to introduce the following notation.

Definition 4.1. With the above notations, we define the virtual slopes z�1 � z�2 � � � � � z�r
of E as follows. Let rj be the rank of Ej , and let i 2 ¹1; : : : ; r � 1º. If rj � i < rjC1, then
we define z�i D �j . We define coherently z�r D �`.
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Observe that

d D deg E D r� D

rX
iD1

z�i :

With this notation, we can restate Fulger’s result as follows.

Theorem 4.2 (Fulger [14]). With the notations defined above, we have

Pseff c.P / D hH c�1† ; H c
� .z�1 C � � � C z�c/H

c�1†iI(4.2)

Nef c.P / D hH c�1† ; H c
� .z�r�cC1 C � � � C z�r /H

c�1†i:(4.3)

Proof. The first formula is just the content of Theorem 1.1 in [14], with the notation
suitably adapted. Observe that in [14] the indexes of slopes are reversed with respect to
our definition. With this in mind, and following the construction given by Figure 2 in [14]
and the notation therein, one immediately obtains that �.i/ D �.z�1 C � � � C z�c/.

For the second formula, one just needs to use the fact that Nef c.P / is the subset of
Pseff c.P / defined by positivity product with

Pseffc.P / D Pseff r�c.P / D hH r�c�1;H r�c
� .z�1 C � � � C z�r�c/†i;

and so it is the two dimensional cone determined by H c�1† and H c � aH c�1† such
that

0 D .H c
�aH c�1†/.H r�c

�.z�1C � � � C z�r�c/†/ D H
r
�.aC z�1C � � � C z�r�c/

D d � .aC z�1 C � � � C z�r�c/ D z�r�cC1 C � � � C z�r � a:

We can now reformulate the results of Section 3 using the language of cones.

Definition 4.3. Let B be the cone in Nef c.P / generated by the classes ŒH c�1†� and
ŒH c � c�H c�1†�.

Note that for any c 2 ¹1; : : : ; r � 1º, we have that
•
Pc
iD1 z�i > c�;

•
Pc
iD1 z�r�iC1 < c�.

This means that the cone B is indeed contained in the pseudoeffective cone and contains
the nef cone:

Nef c.P / � B � Pseff c.P /:

Note that by Theorem 3.3, the inclusions are strict unless E is semistable (in which case
the cones all coincide). Theorems 3.9, 3.13 and 3.21 tell us the following.

Proposition 4.4. In the above notations, let X � P be a codimension c cycle which is a
complete intersection of c relative hypersurfaces X1; : : : ; Xc in P of degree at least 2.

(1) The numerical class of X is contained in B if and only if there exists h < min¹kiº
such that OX .h/ is f -positive.

(2) The numerical class of X is contained in B if and only if OX .h/ is f -positive for
any h < min¹kiº.
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(3) If X is balanced and the numerical class of X lies in the interior of B, then OX .h/

is strictly f -positive for h� 0.

(4) If X is balanced and OX .h/ is f -positive for h� 0, then the numerical class of X
is contained in B.

(5) If X is balanced, r < kc and (1) or (2) in Proposition 3.26 hold, then the numer-
ical class of X is contained in B if and only if the slope inequality holds.

4.2. An instability condition for of the fibres

We can use the results of Section 3 vice versa as in [6], and prove the following instability
condition for the fibres of a global relative complete intersection. As usual, let E be a rank
r � 3 vector bundle over a curve B , and let � WP D PB.E/! B be the projective bundle.

Corollary 4.5. Let X � P be a relative complete intersection in the projective bundle
P D PB.E/ satisfying Assumptions 3.1. If

Pc
iD1 yi=ki > c� (equivalently, if ŒX� 62 B/,

then

(i) the fibres of f are Chow unstable with the restriction of OP r�1.h/ for any h <
min¹kiº.

(ii) Assume moreover that X is balanced. Then the fibres of f are Chow unstable with
the restriction of OP r�1.h/ for h� 0.

(iii) Assume moreover that X is balanced, r < kc and (1), (2) or (3) in Proposition 3.26
holds. Then the fibres of f are unstable with respect to their dualizing sheaf.

Proof. Immediate from Theorem 1.3 and Theorem 2.1.

Remark 4.6. In [6], in the codimension one case, we proved a more general instability
condition, and this led us to a singularity condition (a bound on the log canonical threshold
of the fibres of f via Lee’s result). In the general codimension case, of course from Lee’s
result we could obtain a singularity condition on the Chow form of the fibres; but as for
the fibres themselves, it is not so easy to get geometric information from an instability
condition.

As an application of these last results, together with the detailed study of the hypersur-
face case made in [6], we use Corollary 4.5 to construct families of complete intersections
whose general fibre is of general type, asymptotically unstable and has only one (very)
singular point, as follows.

Proposition 4.7. Let a � 1 and r � 3 be integers. Consider the rank r � 3 vector bundle
over P1

E WD OP1.a/
˚r�1

˚OP1.a � 1/:

Let 0< c < r � 1 be an integer. Then there exists anm2N big enough, such that callingX
the complete intersection of c general members of the linear system

Xi 2 jm..r C 1/a � 1/H �m.r C 1/†j

on PB.E/ and f WX ! B the induced morphism, we have that
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(1) the general fibre F of f is a complete intersection of general type with only one
singular point;

(2) the pair .F; hHjF / is Chow unstable for any h 2 N>0.

Proof. The Harder–Narasimhan sequence of E is simply

E0
� � // E1

� � // E2

0
� � // OP1.a/

˚r�1 �
� // E;

and

�1 D a > �.E/ D
.r � 1/aC a � 1

r
D a �

1

r
> �2 D a � 1:

We have that
mŒ..r C 1/a � 1/�

m.r C 1/
D
.r C 1/a � 1

r C 1
D a �

1

r C 1
;

so, as this ratio is between �1 and �2,

�1 D a > a �
1

r C 1
> a � 1 D �2;

we are in the conditions of applying Theorem 1.7 in [6], that states that for m� 0, the
general member of jm..r C 1/a � 1/H �m.r C 1/†j has P .E=E1/ as base locus, so if
we consider c general members of this linear system, they will intersect in a variety X
smooth outside the section P .E=E1/. Now we just need to observe that

a �
1

r C 1
> �.E/;

so by Corollary 4.5 we obtain the statement.

Remark 4.8. Note that an asymptotically Chow unstable complete intersection of general
type need to be singular. Indeed, letX be such a variety. By [23], Chow-stability for h� 0

is equivalent to Hilbert-stability for h � 0. By Corollary 4 in [10], this is implied by
the existence of a Kähler–Einstein metric on X (because the automorphism group of X
is finite). Hence, if a smooth complete intersection is not Chow-stable for h� 0, then
it cannot carry a Kähler-Einstein metric. When KX is ample this cannot happen by the
Aubin–Yau theorem.
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