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Nijenhuis geometry III: gl-regular Nijenhuis operators

Alexey V. Bolsinov, Andrey Yu. Konyaev and Vladimir S. Matveev

Abstract. We study Nijenhuis operators, that is, .1; 1/-tensors with vanishing Nijen-
huis torsion under the additional assumption that they are gl-regular, i.e., every eigen-
value has geometric multiplicity one. We prove the existence of a coordinate system
in which the operator takes first or second companion form, and give a local descrip-
tion of such operators. We apply this local description to study singular points. In
particular, we obtain normal forms of gl-regular Nijenhuis operators near singular
points in dimension two and discover topological restrictions for the existence of
gl-regular Nijenhuis operators on closed surfaces.

1. Basic definitions and main results

Given a .1; 1/ tensor field L on a manifold Mn, one defines the Nijenhuis torsion of L as

(1.1) NL.�; �/ D L
2Œ�; �� � LŒL�; �� � LŒ�; L��C ŒL�; L��;

where � and � are arbitrary vector fields. If NL identically vanishes, then L is said to be a
Nijenhuis operator.

Nijenhuis geometry studies Nijenhuis operators and their properties, both local and
global (see e.g. the videocourse [24]). A research programme and a general strategy for
studying such operators were suggested in [8]. This paper is devoted to the next item of our
agenda (after [8] and [16], see also [6,7,9,10,12]), and is focused on Nijenhuis operators
satisfying gl-regularity condition.

We start with the following equivalent definitions of gl-regular operatorsLWRn!Rn,
see e.g. the Wikipedia pages [27, 28] (the same notation L will be used for the matrix
corresponding to this operator, with appropriate amendments under coordinate transform-
ations if necessary):

• L is a regular element of the Lie algebra gl.n;R/ in the sense that the adjoint orbit
O.L/ D ¹PLP�1 j P 2 GL.n;R/º � gl.n;R/ has maximal dimension.

• The operators Id; L; : : : ; Ln�1 are linearly independent.
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• For each eigenvalue of L there is exactly one Jordan block in its Jordan normal form
(this includes complex eigenvalues).

• The minimal polynomial of L coincides with the characteristic polynomial

�L.�/ D det.� � Id�L/ D �n � c1�n�1 � � � � � cn:

• L is similar to the first companion form0BBBBBB@
c1 1 0 : : : 0

c2 0 1
: : :

:::
:::

:::
: : :

: : : 0

cn�1 0 : : : 0 1

cn 0 : : : 0 0

1CCCCCCA ;

where ci are the coefficients of the characteristic polynomial �L.�/.
• L is similar to the second companion form0BBBBBB@

0 1 0 : : : 0

0 0 1
: : :

:::
:::

:::
: : :

: : : 0

0 0 : : : 0 1

cn cn�1 : : : c2 c1

1CCCCCCA ;

where ci are the coefficients of the characteristic polynomial �L.�/.
We say that a Nijenhuis operator L defined on a smooth manifold M is gl-regular if it

is gl-regular at every point p 2 M, see Definition 2.9 in [8]. Many results in our paper are
local, and in this case M is an open domain in Rn.

Note that the eigenvalues of gl-regular operators are not necessarily smooth, as the
following example shows. Consider the gl-regular Nijenhuis operator

L D

�
x 1

y 0

�
on R2.x; y/. Its eigenvalues are

�1;2 D
x ˙

p
x2 C 4y

2
�

On the curve x2 C 4y D 0, L is similar to a single Jordan block with eigenvalue x=2. If
x2 C 4y > 0, then L is semisimple with distinct real eigenvalues (thus, R-diagonalisable)
whereas for x2 C 4y < 0 this operator has two complex conjugate eigenvalues. In par-
ticular, this shows that gl-regular operators may admit singular points (cf. Definition 2.8
in [8]) at which the algebraic structure of L changes.

All the objects we are dealing with are supposed to be real analytic. The first result
of the paper is the following theorem, which gives a local characterisation of gl-regular
Nijenhuis operators of any algebraic type.
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Theorem 1.1. Consider a real analytic gl-regular operator L with characteristic polyno-
mial

�L.�/ D det.� � Id�L/ D �n � f1�n�1 � � � � � fn
for n � 2 in a sufficiently small neighbourhood of a point p 2 M. Then the following are
equivalent.

(i) L is Nijenhuis.

(ii) There exists a local coordinate system x D .x1; : : : ; xn/ in which L takes the follow-
ing form:

(1.2) Lcomp1.x/ D

0BBBBBB@
f1 1 0 � � � 0

f2 0 1
: : :

:::
:::

:::
: : :

: : : 0

fn�1 0 � � � 0 1

fn 0 � � � 0 0

1CCCCCCA ;
where fi D fi .x/ are coefficients of the characteristic polynomial in this coordinate
system. These coefficients satisfy the following system of PDEs:

(1.3)

@fi

@xj
D fi

@f1

@xjC1
C
@fiC1

@xjC1
;

@fn

@xj
D fn

@f1

@xjC1
;

for 1 � i; j � n � 1.

(iii) There exists a local coordinate system x D .x1; : : : ; xn/ in which L takes the follow-
ing form:

(1.4) Lcomp2.x/ D

0BBBBBB@
0 1 0 � � � 0

0 0 1
: : :

:::
:::

:::
: : :

: : : 0

0 0 � � � 0 1

fn fn�1 � � � f2 f1

1CCCCCCA ;
where fi D fi .x/ are coefficients of the characteristic polynomial in this coordinate
system. These coefficients satisfy a system of PDEs that can be written in the form

(1.5) d! D 0; d.L�!/ D 0;

where ! D fn dx1 C � � � C f1 dxn.

Following terminology from linear algebra, we will refer to (1.2) and (1.4) as the first
and second companion forms of L.

Remark 1.2. If a Nijenhuis operator L is differentially non-degenerate at a point p 2 M
(see1 [8], Definition 2.10), then there are two distinguished coordinate systems in whichL
takes the first and second companion form. Namely, if we take the coefficients of the cha-

1Recall that this condition means that the differentials df1.p/; : : : ; dfn.p/ are linearly independent.
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racteristic polynomial of L as local coordinates, i.e., set xi D fi , then in these coordin-
ates L takes the form

(1.6) Lcomp1.x/ D

0BBBBBB@
x1 1 0 � � � 0

x2 0 1
: : :

:::
:::

:::
: : :

: : : 0

xn�1 0 � � � 0 1

xn 0 � � � 0 0

1CCCCCCA :

Similarly, if we set x1 D trL; x2 D 1
2

trL2; : : : ; xn D 1
n

trLn then, in these coordinates,
we have

Lcomp2.x/ D

0BBBBBB@
0 1 0 � � � 0

0 0 1
: : :

:::
:::

:::
: : :

: : : 0

0 0 � � � 0 1

fn.x/ fn�1.x/ � � � f2.x/ f1.x/

1CCCCCCA ;
where fi .x/ are the so-called Newton–Girard polynomials that express the coefficients of
the characteristic polynomial in terms of the traces of powers of L appropriately rescaled,
see Appendix B in [9] for details.

The point of Theorem 1.1, however, is that such a nice companion form exists for
any gl-regular Nijenhuis operator so that in the real analytic category the differential non-
degeneracy condition is not actually important.

Remark 1.3. The existence of the first companion form for an operator L is equivalent to
the existence of a vector field � such that �; L�; L2�; : : : ; Ln�1� pairwise commute and
are linearly independent (for Lcomp1, this vector field is � D @xn ). Similarly, the existence
of the second companion form for L is equivalent to the existence of a closed 1-form ˛

such that the forms ˛;L�˛; .L�/2˛; : : : ; .L�/n�1˛ are all closed and linearly independent
(for Lcomp2, we can take ˛ D dx1).

Remark 1.4. The reducibility of an operator to a companion form by a coordinate trans-
formation is a non-trivial condition. Indeed, companion forms (1.2) and (1.4) are para-
metrised by n functions (in n variables). The coordinate change is also parametrized by n
functions. At the same time, an operator field L (not necessarily Nijenhuis) is paramet-
rised by n2 functions. For n > 2 one has n2 > 2n, and thus, almost no operator field L
can be brought to companion form.

As a specific example, consider L such that the coefficients fi of its characteristic
polynomial �L.�/ are all constant. The companion form for L will then be a constant
matrix. Hence, if L is reducible to companion form by a suitable coordinate transform-
ation, then its Nijenhuis torsion NL necessarily vanishes, which is not always the case.
Indeed, take

L D

0@ 0 1 0

�.y2 C 1/ 0 1

0 .y2 C 1/ 0

1A :
This operator is nilpotent, but NL ¤ 0. Thus, L cannot be brought to companion form.
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Remark 1.5. The set of coordinate systems in which a gl-regular Nijenhuis operator L is
in first or second companion form is parametrised by n functions of one variable, which is
the maximal number of possible parameters. In more precise terms, the equations defining
the corresponding coordinate transformations (see (3.3) and (3.6) below) are in involution
for a gl-regular operator L if and only if L is Nijenhuis (see Propositions 3.3 and 3.4).

Theorem 1.1 characterises gl-regular Nijenhuis operators but, in fact, should not be
interpreted as their local description. To get such a description, one needs another import-
ant step. Namely, one needs to solve the PDE system (1.3) in order to find functions fi
from the first column of Lcomp1. The second result of our paper is an algebraic method for
solving this system for arbitrary initial conditions.

Theorem 1.6. For n arbitrary real analytic functions v1.t/; : : : ; vn.t/ defined in a neigh-
bourhood of zero, consider the function

r.�; t/ D �n � v1.t/�
n�1
� v2.t/�

n�2
� � � � � vn�1.t/� � vn.t/

and the matrix relation
r.L;M/ D 0;

where M D x1Ln�1 C x2Ln�2 C � � � C xn�1L C xn Id, and L is a gl-regular n � n
matrix. Then

• from this matrix relation, the coefficients f1; : : : ; fn of the characteristic polynomial
of L can be uniquely expressed in a neighbourhood of xD 0 as real analytic functions
in x1; : : : ; xn (by the implicit function theorem).

• The functions f1.x/; : : : ; fn.x/ so obtained are solutions of (1.3) satisfying the initial
condition

(1.7)

f1.0; : : : ; 0; x
n/ D v1.x

n/;

f2.0; : : : ; 0; x
n/ D v2.x

n/;
:::

fn.0; : : : ; 0; x
n/ D vn.x

n/:

This theorem gives local description for all gl-regular Nijenhuis operators and there-
fore provides a “list” of all possible singularities that can occur for gl-regular operators
(Example 4.7 demonstrates how it works in practice). One should, however, remember
that the first companion form for a Nijenhuis operator L is not unique. In other words,
different companion forms can be equivalent. Speaking in rigorous terms, on the space of
all (Nijenhuis) companion forms Lcomp1 given by (1.2), we can introduce a natural action
of the groupoid that consists of coordinate transformations sending one companion form
into another. Local classification of gl-regular operators in proper sense amounts to the
orbit classification for this action. For n � 3, we hope to address this problem elsewhere.

In the two-dimensional case, which is somehow rather special, the local classification
of gl-regular Nijenhuis operators is obtained in Section 5, see Theorem 5.1. In addition
to three (algebraically) generic types of gl-regular operators, this theorem describes five
types2 of singular points (series Lnc, M , O , P and S ) for gl-regular operators in dimen-

2The other two series Lnil and N from Theorem 5.1 are not singular as the algebraic type of these operators
does not change, at each point the operator is a 2 � 2 Jordan block.
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sion 2. It appears that locally every gl-regular Nijenhuis operator can be reduced to an
explicit polynomial canonical form, which is quite different from the companion form.
Our choice is explained by the following natural reason. The functions f1 and f2 involved
inLcomp1 are solutions of (1.3), and Theorem 1.6 suggests that they can be found explicitly
only in exceptional cases. Despite its elegance and convenience for various theoretical pur-
poses, the companion form Lcomp1 does not provide description in elementary functions.
However, such a description can be achieved by an appropriate change of variables, and
that is what Theorem 5.1 does.

Based on this theorem, we obtain the following global description of Nijenhuis oper-
ators on closed two-dimensional manifolds.

Theorem 1.7. Let .M2; L/ be a closed connected gl-regular Nijenhuis 2-manifold. Then
one of the following holds:

(1) M2 is orientable and L D ˛ IdCˇA, where A is a complex structure on M2 and
˛; ˇ 2 R are constants, ˇ ¤ 0.

(2) M2 is homeomorphic to either a torus or a Klein bottle, and L has two distinct real
eigenvalues on M2 at each point.

(3) M2 is homeomorphic to a torus, and L is similar to a Jordan block at each point
of M2.

(4) M2 is homeomorphic to either a torus or a Klein bottle, and one of the eigenvalues
of L is constant.

In the first three cases, the algebraic type of L remains the same at each point of
the surface. In other words, the set of singular points is empty. In the fourth case, the
eigenvalues of L may collide, and we show in Proposition 5.7 that the corresponding
singular point necessarily belongs to the M -series, one of five series from Theorem 5.1.
In particular, the other types of singular points cannot occur on compact surfaces.

Theorem 1.7 provides topological obstructions for existence of (non-trivial) gl-regular
Nijenhuis operators in dimension 2.

Corollary 1.8. Let M2 be either a sphere or a closed Riemann surface of genus � 2.
Then M2 cannot carry any gl-regular Nijenhuis operator L except for L D ˛ IdCˇA,
where A is a complex structure on M2 and ˛; ˇ 2 R, ˇ ¤ 0.

Corollary 1.9. A non-orientable closed 2-manifold different from a Klein bottle cannot
carry any gl-regular Nijenhuis operator.

Another result of our paper is description of various scenarios for Nijenhuis perturb-
ations of a Jordan block. Assume that at a given point p, all the coefficients f1; : : : ; fn
of the characteristic polynomial of a Nijenhuis operator L vanish so that L.p/ is sim-
ilar to a Jordan block with zero eigenvalues. What can we say about the algebraic type
of L at a generic point q from an open neighbourhood U.p/ of p? Formula (1.6) gives
an example when L.q/ typically becomes semisimple, moreover for any prescribed col-
lection of eigenvalues �1; : : : ; �n (with arbitrary multiplicities and including complex
conjugate pairs) there exists exactly one point q that realises this spectrum of L. This
scenario coincides with the versal deformation of a Jordan block in terms of V. Arnold [2].
But can L split into two Jordan blocks? Or, more generally, does there exist a Nijenhuis
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perturbation of a Jordan block J0 D L.p/ such that at a generic point q 2 U.p/ the oper-
ator L.q/ has a prescribed algebraic type?

We use Theorem 1.6 to show that the answer is positive: all scenarios are possible. To
state this result in a rigorous way, recall that in the space of all n � n matrices, which we
interpret as the Lie algebra gl.n;R/, we can introduce a natural partition gl.n;R/Dt˛W˛
into families of adjoint orbits having the same algebraic type (Segre characteristic). Such
families are sometimes called layers. For regular orbits, their algebraic type is defined by
multiplicities k1; : : : ; ks of eigenvalues3, so that we can write

gl.n;R/reg
D

G
P
ksDn

Wk1;:::;ks ; for k1 � � � � � ks; s 2 N; ki 2 N;

whereWk1;:::;ks � gl.n;R/ is the subset of gl-regular operators having s distinct eigenval-
ues with multiplicities k1; : : : ; ks (regularity will automatically imply that each eigenvalue
contributes exactly one Jordan block into the Jordan normal form of the operator). Notice
that the Jordan block J0 belongs to the closure of each regular layer.

Theorem 1.10. For any regular layer Wk1;:::;ks � gl.n;R/, there exists a Nijenhuis oper-
ator L defined in a small neighbourhood of 0 2 Rn such that L.0/ D J0 and L.x/ 2
W k1;:::;ks for all x 2 U.0/, where W k1;:::;ks is the closure of Wk1;:::;ks (in the usual or in
the Zariski topology).

The structure of the paper is as follows. The proof of Theorem 1.1 is given in Section 3.
Section 4 is devoted to Theorems 1.6 and 1.10. In Section 5, we obtain local classification
of all gl-regular Nijenhuis operators in dimension 2 and prove Theorem 1.7. These sections
are mainly independent on each other and contain no cross references.

2. Outlook and motivation

Our motivation for studying gl-regular Nijenhuis operators was based on a very naive
question: “What is the most natural genericity assumption for .1;1/-tensor fields similar to
non-degeneracy of bilinear forms, symmetric or skew-symmetric?”. In a general algebraic
context, the latter condition simply means that a bilinear form belongs to the “largest” orbit
of the natural GL.n/-action, and hence is the most typical. As a matter of fact, such an
orbit, in this case, is open. For operators, there are no open orbits, but we may still consider
GL.n/-orbits of maximal dimension, which is exactly the gl-regularity assumption4. In
this view, gl-regular operators can be thought of as natural analogs of symplectic forms
and (pseudo)-Riemannian metrics.

Another naive way to look at .1; 1/-tensor fields is to think of them as families of
matrices depending on parameters (coordinates on the manifold). Then the next natural
question would obviously be: “Which bifurcations are typical in such families?”. The most
typical bifurcation is a collision of two (or several) eigenvalues resulting in appearance

3Though we deal with real matrices, we make no difference between complex and real roots.
4The non-degeneracy assumption detL ¤ 0 is much less relevant in Nijenhuis geometry as many problems

one has to deal with are invariant with respect to shifts L 7! LC const � Id.
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of a Jordan block. That is exactly a singularity which we may observe in the case of
gl-regular Nijenhuis operators. One could, of course, avoid collision of eigenvalues by
requiring that L has no multiple eigenvalues, but would make the definition too rigid and
exclude many important examples and interesting phenomena. It is worth mentioning that
the complement to the set of matrices with no multiple roots has codimension one, whereas
the complement to the set of gl-regular matrices is much smaller and has codimension 3.

The “converse” question, naturally appearing in applications, can be stated as follows:
“What happens to a Jordan block under a perturbation?”. The answer depends on the
number of parameters involved in perturbation and additional assumptions imposed on it.
We refer to the famous paper [2] by Arnold devoted to this subject, which contains, in
particular, an elegant solution in terms of versal deformations. In the context of Nijen-
huis geometry, it is quite natural to ask: “What are Nijenhuis perturbations of a Jordan
block? Can we describe all of them? Which of them are generic (versal in the sense of
Arnold)?”. This is again a question on gl-regular Nijenhuis operators. It is amazing that the
answer turns out to be very similar to that given by Arnold: there is a very simple generic
Nijenhuis perturbation of a Jordan block (see formula (1.6) and Proposition 4.5), which is
unique and coincides exactly with the one given in [2]. All the others can be derived from
this canonical one by solving a system of integrable PDEs. We give a purely algebraic
algorithm (see Theorem 1.6) to do it for arbitrary initial conditions, i.e., for finding all the
solutions.

Notice that gl-regular operators may have different types but still possess many com-
mon properties. There are many facts well known for diagonalisable operators with simple
spectrum that still hold true for gl-regular operators. If an operator is diagonalisable almost
everywhere and has no multiple eigenvalues, then some (but not all!) of these results can
be transferred to the gl-regular case by continuity. However, even this procedure is often
non-trivial, as one needs to show that “transferring objects”, e.g., conservation laws or
commuting flows, remain smooth and independent (linearly or functionally or otherwise),
i.e., they neither explode nor blow up. Moreover, there are many occasions when a given
Nijenhuis operator is not diagonalisable at all, but gl-regularity still guarantees good prop-
erties.

For this reason, we are trying to use “invariant language” in our proof. This makes
things technically a bit more complicated (for Nijenhuis operators written in diagonal
form some of our proofs would be just one line) but, as a reward, we manage to cover
many different cases by using one universal approach suitable for all Nijenhuis operators
satisfying just one additional condition, namely gl-regularity.

We are confident that our results can and will have many applications. Indeed, Nijen-
huis operators naturally appear in many unrelated topics in differential geometry and
mathematical physics. A possible explanation for this “experimentally observed pheno-
menon” is as follows. For many geometric systems of partial differential equations, their
coefficients are constructed from a certain operator, i.e., a .1; 1/-tensor field LD .Lij .u//.
If such a system is invariant with respect to diffeomorphisms, then the compatibility and
involutivity conditions can be invariantly written in terms of L. The point is that vanishing
of the Nijenhuis torsion of L is, in a certain sense (see e.g. discussion in the introduction
of [8]), the simplest non-trivial condition of this kind.

This “experimental observation” suggests that any progress in Nijenhuis geometry
might and should be applied in different areas where Nijenhuis operators have appeared,
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by combining the questions/methods from those topics with new results on Nijenhuis
operators.

Until very recently, the list of known results in Nijenhuis geometry was very lim-
ited: Haantjes’ theorem [15], the Newlander–Nirenberg theorem [21] and Thompson’s
theorem [25]. These results have been extensively used as a simplifying ansatz in those
situations where Nijenhuis operators appear: customary, one works with those coordin-
ates in which the operator takes the “best” possible form provided by these theorems (e.g.,
in the case of the Haantjes theorem, L reduces to diagonal form with diagonal elements
�i D �i .ui /, and in the case of the Thompson and Newlander–Nirenberg theorems, one
works in a coordinate system where L has constant entries).

The assumptions of the theorems of Haantjes, Newlander–Nirenberg and Thompson
essentially limit their applications. They all require that L is algebraically stable, i.e., has
the same Segre characteristic at every point. Moreover, they have strong conditions on the
Segre characteristic: in the Haantjes and Newlander–Nirenberg theorems, the operator L
is semi-simple (diagonalisable over complex numbers). The Thompson and Newlander–
Nirenberg theorems assume that the eigenvalues of L are constant.

This paper, as well as its predecessors [8,9,16], aim to repair this situation. An import-
ant ingredient of our strategy described in [8] is to develop tools to study and describe
Nijenhuis operators near those points where the Segre characteristic changes (singular
points, in the terminology of [8]) and also on closed manifolds. Any such tool can be
applied wherever Nijenhuis operators naturally appear.

Obviously, there are many different types of singularities for Nijenhuis operators. We
started our research with two opposite cases: the paper [16] (see also [8], §5) studies the
so-called singular points of scalar type, i.e., those where the operator L vanishes (we may
think of them as the most singular points). In the present paper, we come from the other
side and consider singular points at which the operator L remains gl-regular, see Defin-
ition 2.9 in [8] (the least singular points). Our first main result, Theorem 1.1, provides a
common framework for studying such singularities: it allows one to assume without loss
of generality that L locally takes the first or second companion form (see (1.2) and (1.4)).
Similar to the diagonal form from the Haantjes theorem, the companion forms (1.2)
and (1.4) depend on an arbitrary choice of n functions of one variable. In contrast to the
Haantjes theorem, they allow bifurcations of the eigenvalues, and in Section 4 we discuss
the freedom in such bifurcations.

A demonstration that our strategy works is Theorem 5.1, that describes all possible
singularities for gl-regular Nijenhuis operators in dimension 2. As a corollary we have
Theorem 1.7 on topological obstructions for the existence of regular Nijenhuis operators
on closed two-dimensional surfaces.

We expect many applications of our results. For example, with the help of Theorem 1.7
one can easily reprove most results of the paper [19] devoted to geodesically equivalent
metrics on two dimensional semi-Riemannian manifolds. By [11], a pair of such metrics
allows one to construct a Nijenhuis operator. One can easily show, applying the trick from
Section 3.3 in [20], that on a closed surface this operator is always gl-regular provided the
metrics are semi-Riemannian. Case (1) of Theorem 1.7 corresponds to a trivial geodesic
equivalence, and cases (2), (3) and (4), translated to the language of geodesically equi-
valent metrics, imply most results in [19], and in particular allow to prove the natural
generalisation of the projective Obata conjecture for the 2-torus.
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We expect that our results may be effectively used in the theory of (infinite-dimen-
sional) integrable systems of hydrodynamic type. They are partial differential equation
systems of the form

(2.1) uit D
X
j

Aij .u/ u
j
x ;

where u.t; x/ D .u1.t; x/; : : : ; un.t; x// is an unknown vector-function. In this case, the
matrix A D A.u/ can be seen as an operator on an n-dimensional manifold with local
coordinates .u1; : : : ; un/. The integrability of this system amounts to a certain condition
on the operator A (more general than vanishing of the Nijenhuis torsion, see [26]).

One of the standard methods to work with systems (2.1) is based on the so-called
Riemann invariants, which are closely related to finding a polynomial p with coeffi-
cients depending on u such that p.A/ is a Nijenhuis operator (the eigenvalues of the
operator p.A/ are precisely the Riemann invariants).

The overwhelming majority of results on integrable systems of hydrodynamic type
assume that the operator A is simple (i.e., has n different eigenvalues). Our results allow
one to avoid this assumption. In particular, they can be applied to study stability of solu-
tions of (2.1) near the points where the eigenvalues collide. The “proof of concept” is, in
fact, the Appendix of the arXiv version [5] of this paper, where we demonstrate how it
works in the simplest case, when the operator A is itself a Nijenhuis operator.

Notice that not diagonalisable but still gl-regular operators naturally appear in differ-
ential geometry and mathematical physics in the context of integrable PDEs of type (2.1),
see e.g. [1, 3, 4, 13, 26]. Moreover, they often resemble the companion form discussed in
Theorem 1.1.

3. Proof of Theorem 1.1

First of all, we observe that an operator Lcomp1 given by (1.2) is Nijenhuis if and only if
relations (1.3) hold. And, similarly, an operator Lcomp2 given by (1.4) is Nijenhuis if and
only if (1.5) holds. The verification of this fact is straightforward and we omit it. In terms
of Theorem 1.1 this means, in particular, that (ii)) (i) and (iii)) (i).

It remains to show that every gl-regular Nijenhuis operator L can be (locally) reduced
to either of the companion formsLcomp1 andLcomp2. Since the proofs forLcomp1 andLcomp2

are rather similar, we will do reduction simultaneously for both of them following the same
scheme.

Consider a gl-regular Nijenhuis operator L in a neghbourhood U.p/ of a point p 2 M,
and choose local coordinates u D .u1; : : : ; un/ in this neighbourhood. Our goal is to
find coordinate transformations bringing L to the first companion form (1.2) and second
companion form (1.4).

For the first companion form, such a coordinate transformation u D u.x/, where x D
.x1; : : : ; xn/ is a new coordinate system, satisfies the following system of PDEs:

(3.1)
�@u
@x

��1
L.u/

�@u
@x

�
D Lcomp1.x/;
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where
�
@u
@x

�
denotes the Jacobi matrix of the transformation u D u.x/:

�@u
@x

�
D

0BBBB@
u1
x1

u1
x2
� � � u1xn

u2
x1

u2
x2
� � � u2xn

:::
:::

: : :
:::

un
x1

un
x2
� � � unxn

1CCCCA :
Here and throughout the paper, when doing matrix computation, we consider u and x as
column-vectors; also, we use uxi or uj

xi
for partial derivatives.

Rewriting (3.1) as

(3.2)
�@u
@x

�
Lcomp1 D L

�@u
@x

�
;

we see that the columns uxi of
�
@u
@x

�
satisfy the equations Luxi D uxi�1 , or equivalently,

(3.3) uxn�k D L
k uxn ; where Lk D L � L � � �L„ ƒ‚ …

k times

; k D 1; : : : ; n � 1:

Lemma 3.1. Systems (3.2) and (3.3) are equivalent. In particular, (3.1) is equivalent
to (3.3) provided the Jacobi matrix .@u=@x/ is invertible.

Proof. By construction, (3.3) simply means that all the columns of the matrices in the
left and right-hand sides of (3.2) coincide except for the first column. In other words,
system (3.2), as compared to (3.3), contains one additional vector relation for the first
columns of the left-hand and the right-hand side of (3.3), namely

(3.4) f1ux1 C f2ux2 C � � � C fnuxn D Lux1

We need to show that this relation follows from (3.3). This is an easy corollary of the
Cayley–Hamilton theorem. Indeed, substituting uxn�k D L

kuxn into (3.4) gives

f1L
n�1uxn C f2L

n�2uxn C � � � C fnuxn D L
nuxn ;

or equivalently,

.Ln � f1L
n�1
� f2L

n�2
� � � � � fn Id/ uxn D �L.L/uxn D 0;

which holds true automatically by the Cayley–Hamilton theorem.

Similarly, to bring L to the second companion form, we need to find an invertible
transformation u D u.x/ such that

(3.5)
�@u
@x

��1
L.u/

�@u
@x

�
D Lcomp2.x/;

where Lcomp2 is given by (1.4). Proceeding in a similar way as above, we get L
�
@u
@x

�
D�

@u
@x

�
Lcomp2. This gives the following relation on the columns of the Jacobi matrix:Luxi D

uxi�1 � fn�iuxn . For i D n, we get Luxn D uxn�1 C f1uxn�1 , which yields

uxn�1 DM1uxn with M1 D L � f1 � Id :
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Next, for i D n � 1, we get Luxn�1 D uxn�2 C f2uxn , yielding

uxn�2 DM2uxn ; with M2 D LM1 � f2 � Id;

and so on. Finally, we come to the following system of PDEs:

(3.6) uxn�k DMk uxn ; where
²
M1 D L � f1 � Id;
Mk D LMk�1 � fk � Id; 2 � k � n;

and where f1; : : : ; fn are the coefficients of the characteristic polynomial of L. Equival-
ently,

(3.7) Mk D L
k
� f1L

k�1
� f2L

k�2
� � � � � fk�1L � fk � Id; k D 1; : : : ; n � 1:

This system is equivalent to (3.5), cf. Lemma 3.1.
Thus, we see that reducing L to both the first and second companion forms amounts

to solving a quasilinear system of PDEs of the form

(3.8) uxn�k D Ak.u/uxn ; 1 � k � n � 1;

where for the first companion form we set Ak D Lk , while for the second companion
form, Ak DMk with Mk given by (3.6) or (3.7).

Notice that (3.8) is overdetermined and, in general, not necessarily consistent. How-
ever, the conditions under which local solutions exist for all initial data (in other words,
the system is in involution) are well known.

Proposition 3.2. The following properties of (3.8) are equivalent.

(A) For any real analytic initial condition

u1.0; : : : ; 0; xn/ D h1.xn/;

u2.0; : : : ; 0; xn/ D h2.xn/;

: : :

un.0; : : : ; 0; xn/ D hn.xn/;

or shortly, u.0; : : : ; 0; xn/ D h.xn/;

where h is a real analytic vector-function of one variable, there exists a unique real
analytic solution u D u.x/ of system (3.8).

(B) The operators Ak pairwise commute (i.e., AkAj D AjAk/, and

(3.9) hAk ; Aj i.�; �/
def
D ŒAk �; Aj �� � Aj ŒAk �; �� � Ak Œ�; Aj �� D 0

for any vector field � and k; j D 1; : : : ; n � 1.

Proof. The existence of solutions of (3.8) for all initial conditions in a more general case
is discussed in [9] (and, in fact, can be derived from the Cartan–Kähler theorem [14]). The
necessary and sufficient condition isDxn�i .Ajuxn/DDxn�j .Aiuxn/ onU.p/, whereDxk
stands for the derivative in virtue of (3.8). For quasilinear systems, this calculation is well
known (see [23], [17]) and leads to (B).
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We now apply this proposition in our special case.

Proposition 3.3. Both systems (3.3) and (3.6) satisfy Property (B), and therefore, Prop-
erty (A) from Proposition 3.2.

Proof. Although the verification of (B) for operators Ak D Lk and Ak D Mk is a nice
exercise in tensor calculus, we prefer to make use of an elegant theory of bidifferential
ideals introduced by F. Magri in [18], and then developed by F. Magri and P. Lorenzoni
in [17], in particular, to construct hierarchies of commuting flows of hydrodynamic type.
They are defined recursively by setting (cf. (3.6))

A0 D Id; Ak D Ak�1L � ak Id; k D 1; 2; : : :

for any chain of functions a1; a2; : : : satisfying the relations

(3.10) dakC1 D L�dak � ak da1:

Under these conditions, the operators Ak generate commuting flows (see Proposition 2
in [17]), i.e., satisfy (B).

Our situation is just a particular case of this construction. Indeed, setting ak D 0, we
obtain the sequence of operators Ak D Lk . Hence Property (B) holds for (3.3). Of course,
this fact is easy to check independently.

In the case of system (3.6), we only need to check that the coefficients fk of the
characteristic polynomial of L satisfy (3.10) (we may formally set fk D 0 for k > n),
but these are exactly relations from Proposition 2.2 in [8]. Hence Property (B) holds
for (3.6). It is worth noticing that (3.6) can also be understood as an "-system in the sense
of M. Pavlov [22] for " D �1.

We have just shown that the PDE systems (3.3) and (3.6) are both in involution and
their (local) solutions u.x/ are parametrised by n functions of one variable (initial con-
ditions h1.xn/; : : : ; hn.xn//. To make sure that such a solution u.x/ defines a desired
coordinate transformation, we need to check that the Jacobi matrix

�
@u
@x

�
is non-degenerate

at least at the initial point. Almost all solutions satisfy this property due to gl-regularity
of L (moreover this condition is necessary).

Indeed, for system (3.3), choose the initial condition u.0; : : : ; 0; xn/ D h.xn/ in such
a way that the vector � D uxn.0/ D hxn.0/ is such that Ln�1�; : : : ; L�; � are linearly
independent. Since L is gl-regular, almost all vectors � satisfy this condition. Due to (3.3),
they form the columns of the Jacobi matrix

�
@u
@x

�
at the initial point x D .0; : : : ; 0; 0/.

Hence, at this point, det
�
@u
@x

�
¤ 0 as required.

The same conclusion for solutions of system (3.6) immediately follows from the fact
that Span.Mn�1�; : : : ; M1�; �/ D Span.Ln�1�; : : : ; L�; �/. This completes the proof of
Theorem 1.1.

We see from this proof that reducibility of L to companion forms (1.2) and (1.4)
follows from the involutivity (Property (B) from Proposition 3.2) of the PDE systems (3.3)
and (3.6), respectively. This property, in turn, follows from the fact that L is Nijenhuis.
It is natural to ask if the latter condition is also necessary for (3.3) and (3.6) to be in
involution. The answer is positive under the additional assumption that L is gl-regular.
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Proposition 3.4. Let n D dim M > 2 and let L be gl-regular.

(1) If hLi ; Lj i D 0 for 1 � i < j � n � 1, i.e., if (3.3) is in involution, then L is a
Nijenhuis operator.

(2) If hMi ;Mj i D 0 for 1 � i < j � n� 1, whereMi is defined as in (3.6), i.e., if (3.6)
is in involution, then L is a Nijenhuis operator.

The proof of this proposition is rather technical, and can be seen in Appendix A.

Remark 3.5. The gl-regularity assumption in Proposition 3.4 is essential. Indeed, con-
sider an operatorL such thatL2D Id orL2D 0. Then the involutivity conditions hLi ;Lj i
D 0 and hMi ;Mj i D 0 obviously hold. However, L does not need to be Nijenhuis.

4. Proof of Theorems 1.6 and 1.10

The goal of this section is to solve the PDE system:

(4.1)

@fi

@xj
D fi

@f1

@xjC1
C
@fiC1

@xjC1
;

@fn

@xj
D fn

@f1

@xjC1
;

1 � i; j � n � 1. According to Theorem 1.1, every collection of functions fi satisfying
this system defines a gl-regular Nijenhuis operator of the form

(4.2) L.x/ D Lcomp1.x/ D

0BBBBBB@
f1 1 0 � � � 0

f2 0 1
: : :

:::
:::

:::
: : :

: : : 0

fn�1 0 � � � 0 1

fn 0 � � � 0 0

1CCCCCCA ;

and vice versa, if this operator is Nijenhuis, then these functions satisfy (4.1).
The proof of Theorem 1.6 presented below is based on an analysis of the evolution

of the eigenvalues of L.x/, and differs from that in the first version [5] of this paper,
available on arXiv. The alternative proof from [5] is perhaps a little more complicated in
terms of the formulas involved, but has a certain advantage of not using “nasty” functions
like eigenvalues which behave badly at singular points.

Consider the eigenvalues of the Nijenhuis operator (4.2). At singular points where
some of them collide, the eigenvalues are not necessarily smooth in local coordinates (see
an example just before Theorem 1.1). However, at those points x D .x1; : : : ; xn/ where
their multiplicities are locally constant, they are smooth (perhaps complex-valued) func-
tions of x. In the case of gl-regular operators, such points are exactly those which were
called algebraically generic in Definition 2.7 of [8]. They form an open dense subset. It
appears that in companion coordinates .x1; : : : ; xn/, the eigenvalues of Nijenhuis operat-
ors satisfy a rather simple system of PDEs.
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Lemma 4.1. Assume that x0 D .x10 ; : : : ; x
n
0 / is algebraically generic. Then (4.1) implies

that every eigenvalue � of L, in a neighbourhood of this point, satisfies the following
system of PDEs:

(4.3)
@�

@xn�k
D �k

@�

@xn
; k D 1; : : : ; n � 1:

Conversely, if we have n functions �1; : : : ; �n each of which satisfies (4.3), then the coef-
ficients fi of the polynomial

nY
iD1

.� � �i / D �
n
�

nX
iD1

fi �
n�i

satisfy (4.1).

Remark 4.2. Equation (4.3) makes sense both for real and complex eigenvalues. In the
latter case, �.x/ D u.x/C iv.x/ should be understood as complex-valued smooth func-
tion in n real variables x1; : : : ; xn.

Proof. Let Lcomp1.F / be as in (4.2). Notice that our (quasilinear) PDE system (4.1) can
be written in the following matrix form:

(4.4) Fxi D Lcomp1.F / FxiC1 ; F D .f1; : : : ; fn/
T:

Let ƒ D .�1; : : : ; �n/T be the roots of the polynomial �n � f1�n�1 � � � � � fn so that we
have standard polynomial expressions for fi in terms ofƒ. Then (4.4) can be rewritten as

(4.5)
�@F
@ƒ

�
ƒxi D Lcomp1.F /

�@F
@ƒ

�
ƒxiC1 ;

where
�
@F
@ƒ

�
denotes the Jacobi matrix. We now use the following algebraic identity:

(4.6)
�@F
@ƒ

�0@�1 : : :
�n

1A D Lcomp1.F /
�@F
@ƒ

�
:

If �i ’s are pairwise distinct, then
�
@F
@ƒ

�
is invertible and (4.5) is equivalent to

(4.7) ƒxi D

0@�1 : : :
�n

1AƒxiC1 ;
which coincides with (4.3), as required.

However, if some of �i ’s coincide, this method does not work directly. In this case,
we consider (4.5) as a system of linear equations on ƒxi and notice that (4.7) is a partic-
ular solution of this system in view of (4.6). Of course, there are many other solutions.
However, we are only interested in those that satisfy the property @�s=@xi D @�t=@x

i

whenever �s D �t . It is an easy exercise in linear algebra to show that such a solution is
unique.
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The next lemma describes both the real and complex solutions of (4.3).

Lemma 4.3. .1/ Let �.t/ be an arbitrary real analytic function. Then the solution �.x/
of (4.3) with initial condition �.0; 0; : : : ; 0; xn/ D �.xn/ can be found by resolving the
following algebraic relation:

(4.8) � D � .x1�n�1 C x2�n�2 C � � � C xn�1�C xn/:

Every local real analytic solution of (4.3) can be obtained in this way. (Here we can
replace “real analytic” by “smooth”.)

.2/ Let �.z/ be an arbitrary complex analytic function. Then the complex-valued solu-
tion �.x/ D u.x/C iv.x/ of (4.3) with the initial condition

�.0; 0; : : : ; 0; xn/ D u.0; 0; : : : ; 0; xn/C iv.0; 0; : : : ; 0; xn/ D �.xn/

can be found by resolving the following (complex) algebraic relation:

(4.9) � D � .x1�n�1 C x2�n�2 C � � � C xn�1�C xn/:

Every local complex analytic solution �.x/ D u.x/C iv.x/ of (4.3) can be obtained in
this way.

Proof. We first check that the implicit solution �.x/ of relation (4.8) satisfies the PDE
system (4.3) (for the complex relation (4.9), which is “formally” the same as (4.8), the
proof is similar). Indeed, differentiating (4.8) with respect to xi , we get

�xi D �
0
� .c �xi C �

n�i /; where c D
n�1X
˛D1

x˛ .n � ˛/ �n�˛�1:

Hence,

(4.10) �xi .1 � �
0 c/ D �0 �n�i ;

and similarly (replacing i with i C 1),

(4.11) �xiC1 .1 � �
0 c/ D �0 �n�i�1:

Now multiplying (4.11) by � and subtracting from (4.10) we get that .�xi � � �xiC1/
.1��0 c/D 0. It remains to notice that c D 0 on the initial line x1 D x2 D � � � D xn�1 D 0
and (4.3) follows.

The fulfilment of the initial condition is straightforward. The uniqueness of the solu-
tion with given initial condition follows from the Cauchy–Kovalevskaya theorem. More-
over, in the complex case, for any real analytic initial condition u.0; 0; : : : ; 0; xn/ C
iv.0; 0; : : : ; 0; xn/ D u0.x

n/C iv0.x
n/, there exists a unique complex analytic function

�.z/, z D x C iy such that on the real line we have �.x/ D u0.x/C iv0.x/.

To prove Theorem 1.6, we need to show that the solution f .x/ D .f1.x/; : : : ; fn.x//
of (4.1) with prescribed initial conditions (1.7) can be obtained by resolving the relation

(4.12) Ln � v1.M/Ln�1 � v2.M/Ln�2 � � � � � vn�1.M/L � vn.M/ D 0;
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where M D
Pn
iD1 x

iLn�i , with respect to the coefficients of the characteristic polyno-
mial of L. We first notice that this relation is invariant in algebraic sense so that we may
consider the matrices L and M in any basis we like. We will assume that L is written in
companion form (4.2), with f1; : : : ; fn being the entries of the first column ofLDLcomp1.

The matrix
P
vi .M/Ln�i commutes with L and its entries are analytic functions in x

and f . This matrix can be uniquely presented as linear combinationX
vi .M/Ln�i D g1L

n�1
C � � � C gn�1LC gn Id;

where gi D gi .x; f / are nothing else but the entries of the last column of
P
vi .M/Ln�i

(this easily follows from the fact thatL is a companion matrix). Thus, relation (4.12) reads
Ln D

Pn
iD1 giL

n�i . Comparing with Ln D
Pn
iD1 fiL

n�i (Cayley–Hamilton theorem)
and using gl-regularity of L, we come to the system of n algebraic relations

fi D gi .x; f /:

To make sure that these relations can be resolved with respect to f and find fi D fi .x/ as
a real analytic function of x (for small x), it is sufficient to check that @gi

@f˛
.0; : : : ; 0; xn; f /

D 0, which is obviously true as gi .0; : : : ; 0; xn; f / coincides with vi .xn/ and therefore
does not depend on f˛ . This proves the first statement of Theorem 1.6, and also shows that
the initial conditions are indeed fulfilled: if x1 D � � � D xn�1 D 0, then fi .0; : : : ; 0; xn/D
gi .0; : : : ; 0; x

n; f / D vi .x
n/, as required.

It remains to show that the coefficients f1; : : : ; fn of the characteristic polynomial
of L satisfying (4.12) solve the PDE system (4.1). This easily follows from Lemmas 4.1
and 4.3. Indeed, these lemmas provide implicit formulas for the eigenvalues of Lcomp1,
and we only need to show that these formulas are equivalent to (4.12).

Lemma 4.4. An algebraically generic operator L satisfies (4.12) if and only if the eigen-
values �1; : : : ; �n of L satisfy

(4.13) �i D �i .x
1�n�1i C x2�n�2i C � � � C xn�1�i C x

n/; i D 1; : : : ; n;

where the functions �i .t/ are the roots of the equation

(4.14) �n � v1.t/�
n�1
� v2.t/�

n�2
� � � � � vn�1.t/� � vn.t/ D 0:

Proof. Assume that a gl-regular operator L.x/ satisfies relation (4.12). Then on the initial
line x.t/ D .0; : : : ; 0; t/ we have

Ln � v1.t/L
n�1
� � � � � vn�1.t/L � vn.t/ Id D 0:

Consider the polynomial equation (4.14) with coefficients depending on t 2U.0/�R.
The multiplicities of its roots (perhaps complex) depend on t , but since the functions vi .t/
are real analytic, these multiplicities are constant everywhere except for a discrete subset
Sing� U.0/. If necessary, we can choose a smaller neighbourhood V.0/� U.0/ such that
all points in V.0/, except perhaps for 0, are non-singular. This implies that in the punc-
tured neighbourhood V.0/ n ¹0º, the roots of (4.14) are defined by real analytic functions.
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More precisely, on V.0/ n ¹0º there exist s analytic functions (perhaps complex-valued)
�1.t/; : : : ; �s.t/ such that

�n � v1.t/�
n�1
� v2.t/�

n�2
� � � � � vn�1.t/� � vn.t/ D

sY
iD1

.� � �i .t//
ki ;

where �i .t/¤ �j .t/ for t 2 V.0/ n ¹0º. Notice that �i .t/ are exactly the eigenvalues ofL
on the initial line x.t/ D .0; : : : ; 0; t/. (In general, there is no natural relation between
the �i ’s for t > 0 and t < 0, and we treat these two disconnected intervals independently.)
The matrix relation (4.12) can therefore be rewritten in the form

Qs
iD1.L��i .M//ki D 0

for any point .x1; : : : ; xn/ sufficiently close to .0; : : : ; 0; t/. This, in turn, implies that each
eigenvalue �˛ D �˛.x/ of L.x/ satisfies the relation

sY
iD1

�
�˛ � �i .x

1�n�1˛ C � � � C xn�1�˛ C x
n/
�ki
D 0:

Taking into account the fact that the eigenvalues of L.x/ depend on x continuously and
for x D .0; : : : ; 0; t/ they are �i .t/ with multiplicities ki , we conclude that at every point
x D .x1; : : : ; xn/ sufficiently close to .0; : : : ; 0; t/, the operator L.x/ has s eigenvalues
�i .x/ with multiplicities ki and, moreover, these eigenvalues satisfy (4.13), as required.

The proof of the converse statement (which is not important for our purposes) is sim-
ilar.

We are now ready to complete the proof of Theorem 1.6. Let L satisfy (4.12). Then,
by Lemma 4.4, its eigenvalues satisfy (4.13) and therefore (by Lemma 4.3) are solutions
of the PDE system (4.3). By Lemma 4.1, the coefficients f1; : : : ; fn of the characteristic
polynomial of L.x/ satisfy (4.1) as required. Strictly speaking, this proof works in a small
neighbourhood of the set ¹.0; : : : ; 0; t/; t 2 V.0/ n ¹0ºº. However, the final conclusion
still holds in a neighbourhood of the origin .0; : : : ; 0; 0/ due to the analyticity of f . This
completes the proof of Theorem 1.6.

Our next goal is to discuss Nijenhuis perturbations of a Jordan block J0, that is, Nijen-
huis operators of the formL.x/D J0C higher order terms. Recall that a generic Nijenhuis
perturbation of J0 is described by the following result.

Proposition 4.5 ([8], see also Remark 1.2). Let L be a Nijenhuis operator such that at
a point p, the operator L.p/ is similar to the (nilpotent) Jordan block J0. Assume that
the differentials of the coefficients of the characteristic polynomial of L are linearly inde-
pendent at p. Then in a neighbourhood of p, there exist local coordinates x1; : : : ; xn with
p ' .0; : : : ; 0/ in which L.x/ is given by (1.6).

It is easily seen that, under the assumptions of Proposition 4.5, for a generic point
q 2 U.p/, the operator L.q/ is semisimple with distinct eigenvalues. Moreover, for any
collection of real and complex conjugate numbers S D ¹�1; : : : ; �k ; �1; N�1; : : : ; �s; N�sº
.k C 2s D n/ sufficiently close to zero and not necessarily distinct, there exists a unique
point q 2 U.p/ such that S is the spectrum of L.q/. This follows immediately from the
fact that the local coordinates x1; : : : ; xn in U.p/ are the coefficients of the characteristic
polynomial ofL, which can be reconstructed from S by Vieta’s formulas. In particular, we
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see that in U.p/ we can find operators of all possible algebraic types that are potentially
allowed for gl-regular operators (this means that for repeated eigenvalues there will be
only one Jordan block).

It is natural to ask about other scenarios for Nijenhuis perturbations, for instance, with
a prescribed algebraic structure of L at a generic point q. Let us show that all scenarios
(in the sense of Theorem 1.10) are possible. Notice that the proof of Lemma 4.4 implies
the following.

Corollary 4.6. LetLcomp1.x/ be a Nijenhuis operator written in the first companion form.
Let x D .0; : : : ; 0; t0/ be a point on the initial line such that the multiplicities of the eigen-
values of Lcomp1.0; : : : ; 0; t/ are constant for t sufficiently close to t0. Then the multipli-
cities of the eigenvalues of Lcomp1.x

1; : : : ; xn�1; xn/ are constant for .x1; : : : ; xn�1; xn/
sufficiently closed to .0; : : : ; 0; t/. In other words, the point .0; : : : ; 0; t0/ is algebraically
generic.

Now to prove Theorem 1.10, it is enough to choose the initial conditions fi .0; : : : ; 0; t/
D vi .t/ in such a way that vi .0/ D 0 and the polynomial

�L.0;:::;0;t/.�/ D �
n
� v1.t/�

n�1
� � � � � vn�1.t/� � vn.t/

for all t ¤ 0 has s distinct roots with multiplicities k1; : : : ; ks . In terms of Theorem 1.10,
this means thatL.0; : : : ; 0; t/2Wk1;:::;ks . Corollary 4.6 implies that the same holds true for
all points xD .x1; : : : ; xn/ sufficiently closed to .0; : : : ; 0; t/, t ¤ 0, i.e.,L.x/ 2 Wk1;:::;ks .
Since this inclusion takes place on an open non-empty subset, then due to the analyticity
of L.x/ we conclude that L.x/ 2 W k1;:::;ks for all x, which completes the proof of The-
orem 1.10.

Let us finally discuss an example showing how Theorem 1.6 works in practice to
construct explicit examples of Nijenhuis operators with non-trivial singularities.

Example 4.7. For n D 3, in the settings of Theorem 1.6, define the initial conditions in
such a way that on the initial line x.t/ D .0; 0; t/ the characteristic polynomial of L takes
the form

�L.x.t//.�/ D .� � t /
2 .� � 2t/ D �3 � 4t �2 C 5t2� � 2t3;

or, equivalently,

f1.0; 0; t/ D 4t D v1.t/; f2.0; 0; t/ D �5t
2
D v2.t/; f3.0; 0; t/ D 2t

3
D v3.t/:

The algorithm described in Theorem 1.6 allows us to reconstruct the functions f1, f2
and f3. To that end, we need to use the matrix relation

L3 � .4M/L2 C .5M 2/L � 2M 3
D 0; with M D x1L2 C x2LC x3 Id;

to express the coefficients of the characteristic polynomial of L in terms of x1; x2 and x3.
Notice that this relation can be rewritten as .L�M/2.L� 2M/D 0. This factorisation

immediately allows us to find the eigenvalues of L by taking the roots of the polynomial

.� � x1�2 � x2� � x3/2 .� � 2x1�2 � 2x2� � 2x3/ D 0:
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Recall that we are interested in those of them which, on the initial line, coincide with the
above prescribed roots, that is,

�1.0; 0; x
3/ D �2.0; 0; x

3/ D x3 and �3.0; 0; x
3/ D 2x3:

Thus, we just need to choose the suitable root (one of the two) of the corresponding quad-
ratic equation. Namely,

� � x1�2 � x2� � x3 D 0 ) � D
2x3

.1 � x2/C
p
.1 � x2/2 � 4x1x3

;(4.15)

� � 2x1�2 � 2x2� � 2x3 D 0 ) � D
4x3

.1 � 2x2/C
p
.1 � 2x2/2�16x1x3

�(4.16)

The root of the first equation is an eigenvalue ofL of multiplicity 2, whereas the root of
the second equation is an eigenvalue of multiplicity one. As a result we have found explicit
expressions for the eigenvalues of the Nijenhuis operator L in coordinates x1; x2; x3, and
therefore

Lcomp1 D

0@f1.x/ 1 0

f2.x/ 0 1

f3.x/ 0 0

1A ; with

´
f1 D �1 C �2 C �3;

f2 D ��1�2 � �2�3 � �3�1;

f3 D �1�2�3;

where �1D �2D � from (4.15) and �3D � from (4.16). This is an example of a Nijenhuis
perturbation of the nilpotent 3 � 3 Jordan block J0 under which J0 splits into two Jordan
blocks of size 2 and 1 with non-constant eigenvalues.

5. Local classification of gl-regular Nijenhuis operators in dimension
two and global applications

The goal of this section is to describe local normal forms for gl-regular Nijenhuis operators
at singular points in dimension 2. However, for the sake of completeness we first recall
the list of (algebraically) generic types of such operators along with their local canonical
forms:

• Two distinct real eigenvalues: L D
�
f .x/ 0
0 g.y/

�
, where f .x/ and g.y/ are smooth

functions such that f .x/ ¤ g.y/ for all .x; y/. In the real analytic case, f .x/ is
either constant or can be reduced, by an appropriate local change of coordinates, to
f .x/ D f0 ˙ x

2m or f .x/ D f0 C x2m�1, m 2 N, and similarly for g.y/.

• Two complex conjugate eigenvalues: L D
�
f .x;y/ �g.x;y/
g.x;y/ f .x;y/

�
, where h D f C i g is a

holomorphic function of the complex variable z D x C iy, g.x; y/ ¤ 0 for all .x; y/.
This function h.z/ is either constant or can be reduced, by an appropriate local change
of coordinates, to h.z/ D h0 C zm, m 2 N.

• Jordan block: L D
�
f .y/ 1
0 f .y/

�
, where f .y/ is a smooth function. As above, in the

real analytic case, f .y/ is either constant or can be reduced, by an appropriate local
change of coordinates, to f .y/ D f0 ˙ y2m or f .y/ D f0 C y2m�1, m 2 N.



Nijenhuis geometry III: gl-regular Nijenhuis operators 175

This classification is easy and well known (see e.g. [8]). A non-trivial problem is to
describe the local behaviour of L near a singular point p at which the algebraic type of L
changes. In dimension 2, under the gl-regularity assumption, there is only one possibility
for L.p/, namely, this operator (after an appropriate change of coordinates) is a Jordan
block:

L.p/ D � IdCJ0; where J0 D
�
0 1

0 0

�
; � D const 2 R:

Since L � � Id is still a Nijenhuis operator, we will assume without loss of generality
thatL.p/D J0, and our problem reduces to the classification of Nijenhuis perturbations of
the nilpotent Jordan block J0. Below we will describe all possible normal forms for such
perturbations, i.e., for Nijenhuis operators L such that L.p/ D J0. To our great surprise,
they are all polynomial. Before stating our classification result, we notice that there are two
essentially different cases depending on the coefficients of the characteristic polynomial

�L.�/ D det.� � Id�L/ D �2 � v� � u; v D trL; u D � detL:

In the real analytic case, there are two possibilities: either dv ^ du � 0, or dv ^ du ¤ 0
on an open everywhere dense subset. In the latter case, the operator L can be completely
reconstructed from v and u and the following fundamental relation for Nijenhuis operators
(see Corollary 2.2 in [8]):

(5.1) L D

�
vx vy
ux uy

��1 �
v 1

u 0

��
vx vy
ux uy

�
; v D trL; u D � detL:

At those points where the Jacobi matrix is not invertible, we define L by continuity. In
other words, in the above formula we should automatically observe “cancellation of the
denominator” vxuy � vyux involved in the formula of the inverse matrix. For this reason,
in Theorem 5.1 below, when appropriate, instead of the matrix of L we will give formulas
for v.x; y/ and u.x; y/, as they are much simpler and more intuitive. The reader may
easily “reconstruct” L from (5.1) and, in particular, see the above mentioned cancellation.

If dv ^ du � 0, then (5.1) makes no sense, but we may still use another, even more
general relation (see Proposition 2.2 in [8]):
(5.2)�
vx vy
ux uy

��
l11 l12
l21 l22

�
D

�
v 1

u 0

��
vx vy
ux uy

�
; v D trL; uD�detL; LD

�
l11 l12
l21 l22

�
:

We will assume thatL is defined in a neighbourhood of the origin pD .0;0/2R2.x;y/
and coordinate transformations always leave the origin fixed. The theorem below provides
the complete list of normal forms for L which are divided into several series.

Theorem 5.1. Let L be a Nijenhuis operator such that L.p/ D
�
0 1
0 0

�
. Then in suitable

local coordinates .x; y/, this operator takes one of the following forms:
(1) Series L;M and N (for k � 1; " D ˙1/:

Lnil D

�
0 1

0 0

�
; Lnd D

�
x 1

y 0

�
; M2k�1 D

�
0 1

0 y2k�1

�
;

M "
2k D

�
0 1

0 "y2k

�
; N2k�1 D

�
y2k�1 1

0 y2k�1

�
; N "

2k D

�
"y2k 1

0 "y2k

�
:
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(2) SeriesOd;"
k;c , k � 1, d � 2kC 1, "D˙1, cD .c0; : : : ; ck�1/ 2Rk and we set "D 1,

if d D 2mC 1 is odd.

The operator L is defined by (5.1) with v D trL and u D � detL given by

v D ˛xy2k�1 C yk.ck�1y
k�1
C � � � C c1y C c0/ and u D "yd ;

where ˛ D kc20.1 � k=d/ ¤ 0.

(3) Series P k;"s;c , k � 1, s � 2k, " D ˙1, c D .c0; : : : ; ck�1/ 2 Rk .

The operator L is defined by (5.1) with v D trL and u D � detL given by

v D ˛xys C ys�kC1.ck�1y
k�1
C � � � C c1y C c0/C 2" y

k and u D �y2k ;

where ˛ D 2" kc0 ¤ 0.

(4) Series S2k;"c and S2kC1c , k � 1, c D .c0; : : : ; ck�1/ 2 Rk .

The operator L is defined by (5.1) with v D trL and u D � detL given respectively
by

v D ˛xy2k�1 C yk .ck�1y
k�1
C � � � C c1y C c0/ and u D "y2k ;

where ˛ D k
2
.c20 C 4"/ ¤ 0, and

v D ˛xy2k C ykC1 .ck�1y
k�1
C � � � C c1y C c0/ and u D y2kC1;

where ˛ D 2k C 1.

Proof. The idea of the proof is natural: sinceL is basically defined by its trace and determ-
inant, we will be looking for local coordinates x; y in which v D trL and u D � detL
have their “simplest” possible form. Our proof involves several coordinate transformations
.x; y/ 7! .xnew; ynew/. In order to avoid complicated notations, each time after we do such
a transformation, we return to the initial notation .x; y/, the previous coordinate system is
then understood as .xold; yold/.

We start with two technical lemmas.

Lemma 5.2. Under the assumptions of Theorem 5.1, there exist local coordinates .x; y/
such that for u D � detL one of the following holds:

.i/ u � 0; .ii/ u D ˙y2k ; .iii/ u D y2k�1; k 2 N:

Proof. In companion coordinates (see (1.3)), the function u D � detL satisfies the equa-
tion

(5.3) ux D g.x; y/u;

where g.x; y/ D @y trL. Hence uDf .y/ exp.
R x
0
g.t; y/dt/ for some real analytic func-

tion f .y/. Iff .y/�0, we have Case (i). Otherwise, writing f in the formf .y/D"ymh.y/
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with " D ˙ 1, h.0/ > 0, m 2 N, we get for m D 2k and m D 2k � 1 respectively,

u D ˙

�
y

2k

s
h.y/ exp

� Z x

0

g.t; y/ dt
� �2k

; or

u D

�
y

2k�1

s
˙h.y/ exp

� Z x

0

g.t; y/ dt
� �2k�1

:

Letting ynew be the expression in brackets gives uD˙y2knew or uD y2k�1new , as required.

This lemma brings detL to its simplest canonical form. After this we may keep the
y-coordinate fixed and simplify v D trL by changing the x-coordinate only.

The next statement applies to any gl-regular operator in dimension 2.

Lemma 5.3. There exists a coordinate change of the form .xold; y/ 7! .x; y/ such that
the l12 -component of L in new coordinates equals identically 1.

Proof. Setting xold D b.x; y/ and applying the standard transformation rule for compon-
ents of an operator, we observe that the required condition is

l12 .b; y/C by l
1
1 .b; y/ � by l

2
2 .b; y/ � b

2
y l
2
1 .b; y/

bx
D 1;

where l ij are the components of L in the old coordinate system. Writing this relation in
the form bx D F.by ; b; y/, we can locally solve it by the Cauchy–Kovalevskaya theorem.
Since L is gl-regular, we can choose initial conditions b.0; y/ D f .y/ in such a way that
bx.0; 0/ ¤ 0, so that the coordinate transformation is invertible.

Now let us discuss all the cases one by one. First assume that u� 0 and v� 0. ThenL
is a nilpotent Jordan block and its companion form coincides with Lnil.

Next suppose u � 0, while v is not. In companion coordinates (see (1.3)), v satisfies
the Hopf equation vvy � vx D 0. This relation can be rewritten as

(5.4) vx D g.x; y/v; with g D vx ;

which is similar to the above equation (5.3) for u. Just in the same way as in Lemma 5.2,
we find a coordinate system in which v D y2k�1 or v D "y2k for k � 1; " D ˙1. By
Lemma 5.3, we may also assume that l12 D 1. Now L D .l ij / can be reconstructed from
relation (5.2). This yields series M2k�1 and M "

2k
for different v respectively.

Now let u 6� 0, but dv ^ du � 0. Combining Lemmas 5.2 and 5.3, we may assume
that u D y2m�1 or u D ˙y2m for m � 1, and l12 D 1. Since dv ^ du � 0, we also know
that vx � 0. Relation (5.2) implies that l21 D 0 and we come to the operator of the form

L D

�
f .y/ 1

0 g.y/

�
; with v D f C g and u D �fg:

It is straightforward to check that the Nijenhuis condition in this case reads f 0y.f � g/D 0.
In our case, f cannot be constant as in this case, since L is nilpotent at the origin, we
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would necessarily have f � 0, which contradicts our assumption that u D �fg 6� 0.
Therefore, we conclude that f � g D 0, meaning that L is a Jordan block at each point.
This yields series N2k�1 and N "

2k
.

If dv ^ du ¤ 0 at the point p, then L is differentially non-degenerate and its normal
form is Lnd (see Theorem 4.4 in [8]). Notice that in terms of Lemma 5.2, the non-
degeneracy condition corresponds exactly to the case u D y, and below we exclude this
case.

Finally, we consider the most interesting case when dv ^ du 6� 0 (but dv ^ du D 0
at p). As previously, we assume that u D y2mC1 or u D "y2m for m � 1; " D ˙1 and
l12 D 1. Computing l12 from the matrix relation (5.1) yields the following equation on v:

(5.5) vx D vvy �
1

d
y.vy/

2
C uy ;

where d D 2mC 1 or 2m. This equation implies the following.

Lemma 5.4. The function v.x; y/ can be written as v D v0.y/ C y
s.˛x C F /, where

˛ ¤ 0, s � 1 and F.x; y/ is a real analytic function with no constant or linear part.

Proof. Let v.x; y/ D v0.y/C v1.y/x C v2.y/x2 C � � � be a solution of (5.5). Differen-
tiating (5.5) with respect to x, we get

vxx D vx vy C vvxy �
2

d
yvy vxy :

Note that v D v0.y/ satisfies this equation for initial conditions v.0; y/ D v0.y/ and
vx.0; y/ D v1.y/ � 0. By the Cauchy–Kovalevskaya theorem, this solution is unique.
Hence, if v1 � 0, then dv ^ du � 0, which is wrong. Thus, in our case v1.y/ D ysr1.y/,
where r1.0/ D ˛ ¤ 0.

Assume that s D 0. This means that dv and dy are linearly independent. We can intro-
duce xnew D v D trL, leaving y the same. In these new coordinates, relation (5.1) gives

L D

�
1 0

0 u�1y

��
xnew 1

u.y/ 0

��
1 0

0 uy

�
D

�
xnew uy
uu�1y 0

�
:

It is easy to see that L at the origin p is similar to the nilpotent Jordan block only for
u D y. But in this case we get L D Lnd, falling into the previous case.

Thus, we have s � 1. Equating the coefficients of xi in both sides of (5.5) yields

(5.6)

.i C 1/ viC1.y/ D v0.y/v
0
i .y/C v

0
0.y/vi .y/ �

2

d
yv00.y/v

0
i .y/

C

i�1X
jD1

�
vj .y/v

0
i�j .y/ �

1

d
yv0j .y/v

0
i�j .y/

�
:

If v1; : : : ; vi are divisible by ys , then v01; : : : ; v
0
i are divisible by ys�1. As v.0; 0/ D 0,

then v0 is divisible by y. By formula (5.6) the coefficient viC1 is divisible by ys . Thus,
by induction all the coefficients v1; v2; : : : are divisible by ys , and one writes v D v0 C
ys.xr1.y/C � � � / D v0 C y

s.˛x C F /, where F is analytic and has no constant or linear
parts. The lemma is proved.
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Using Lemma 5.4, we introduce new coordinates xnew D x C 1
˛
F C Qv0, ynew D y,

where Qv0 contains all the terms of v0 of order � s C 1. In this new coordinate system (for
which we continue using old notation x and y), we have

(5.7) v D ps.y/C ˛xy
s; u D y2mC1 or u D "y2m;

where ˛ ¤ 0, m; s � 1, and ps is polynomial of degree at most s.
This coordinate system is optimal in the sense that v D trL and u D � detL cannot

be simplified further. The last step is to distinguish those pairs of functions v.x; y/ and
u.x; y/ from the family (5.7) that indeed generate analytic perturbations of the nilpotent
Jordan block J via relation (5.1). The point is that (5.1) will generate a Nijenhuis oper-
ator L for any v and u, but we need only those of them for which the entries of L so
obtained are smooth and, moreover, L.p/ is similar to J0.

A straightforward reconstruction of L, from (5.1) with v and u given by (5.7), shows
that all the components of L are non-singular and vanish at the origin except for l12 :

L D

0B@v � yvy
d

vvy�
1
d
yv2yCu

0

vx

yvx
d

yvy
d

1CA ;
where d D 2mC 1 or d D 2m (power of y in the formula for u).

The “troublesome” component, in more detail, reads

l12 D s˛x
2ys�1

�
1 �

s

d

�
C x

� 1
y
ps C

�
1 �

2

d

�
p0s

�
C
psp

0
s �

1
d
y.p0s/

2 C u0

˛ys
�

Notice that ps.0/ D 0, and therefore 1
y
ps is analytic. Hence, we only need to analyse the

fraction

(5.8)
psp

0
s �

1
d
y.p0s/

2 C u0

˛ys
�

This fraction must define an analytic function having value 1 at the origin (in order for
L.p/ to be the standard nilpotent Jordan block). Thus, we need to solve a purely algebraic
problem: find all polynomials ps , for which the numerator of (5.8) is divisible by ˛ys so
that this fraction is, in fact, a polynomial with free term equal to 1. We rewrite (5.8) as

(5.9) psp
0
s �

1

d
y.p0s/

2
D �u0 C ˛ys C ˛1y

sC1
C � � � C ˛s�1y

2s�1;

where ˛ ¤ 0 and ˛i are, in general, arbitrary.
Let ps starts with a term of order k � 1, that is,

ps D y
k .c0 C c1y C � � � C cs�ky

s�k/:

Then the smallest degree term in the left-hand side of (5.9) is kc20.1� k=d/y
2k�1. On the

other hand, the term of the smallest degree in the right-hand side is either u0 D ˙dyd�1

or ˛ys (or both of them).
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First, assume s < d � 1. Then we get 2k � 1 D s and furthermore p2k�1 D c0yk C
� � � C ck�1y

2k�1, where c1; : : : ; ck�1 are arbitrary and c0 ¤ 0. We also have ˛ D kc20.1�
k=d/ obtaining, as a result, the series Od;"

k;c .
Next, assume d � 1 < s. Then we get d � 1 D 2k � 1 and, thus, u D "y2k . Equating

the coefficients of y2k�1 on both sides of (5.9) we get k
2
c20 D �2k" and, thus, u D �y2k

and c0 D ˙2. We write

ps D ˙2y
k
C c1y

kC1
C � � � C cs�ky

s

and substitute it into (5.9). Equating the coefficients of y2k ; : : : ; ys�1 in the left-hand side
of (5.9) to zero we get, step by step, that c1 D c2 D � � � D cs�2k D 0. Hence, re-denoting
cs�2kCj 7! cj�1 for j D 1; : : : ; k, we have

ps D y
s�kC1 .ck�1y

k�1
C � � � C c1y C c0/˙ 2y

k ;

and equating the coefficients of ys in both sides of (5.9), we obtain ˛ D˙2kc0 ¤ 0. This
yields series P k;"s;c .

Finally, consider d � 1 D s. We have two possibilities. First, assume that d D 2m,
i.e., u D "y2m. We get that 2k � 1 D 2m � 1, k D m and

v D ˛xy2m�1 C c0y
m
C � � � C cm�1y

2m�1;

with ˛ D m
2
.c20 C 4"/ ¤ 0. Now assume that d D 2mC 1, i.e., u D y2mC1. This yields

v D ˛xy2m C c0y
mC1
C � � � C cm�1y

2m and ˛ D 2mC 1:

This yields S2m;"c and S2mC1c respectively (in the statement of the theorem we replace m
by k).

Remark 5.5. For the series O , P and S , the canonical coordinate system is essentially
unique (in some cases one can simultaneously change the sign of x and y). Indeed, these
coordinates are those in which u D � detL and v D trL are given by (5.7). The integer
parameters m and s involved in (5.7) are uniquely defined for given u and v. Hence, y
can be reconstructed from u (sometimes up to sign), and x is determined, up to a constant
factor, by the condition that v.0; y/ is a polynomial of degree � s. Finally, the rescaling
of x is chosen in such a way that at the origin we have L.0; 0/ D J0.

This implies that Nijenhuis operators from different series (or from the same series but
with different parameters) are not equivalent to each other. The only exception is related
to the above mentioned “canonical” transformation .x; y/ 7! .�x;�y/, that changes the
parameter c 2 Rk , but this change is easy to control.

We now apply the local classification of gl-regular Nijenhuis operators to study the
existence (and examples) of such operators on closed two-dimensional surfaces.

Let .M2; L/ be a gl-regular Nijenhuis manifold of dimension 2 (recall that we always
assume them to be real analytic). Consider the set Sing of singular points of L where the
algebraic type of L changes. In our case, this means that the eigenvalues of L collide, i.e.,

Sing D ¹p 2 M2 j v2 C 4u D 0º; where v D trL; u D � detL;

unless v2 C 4u � 0 on M2 meaning that L is similar to a Jordan block at each point.
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From Theorem 5.1 we immediately obtain a local description of Sing in canonical
coordinates x; y (below Singloc denotes the intersection of Sing with a small neighbour-
hood of a singular point):

• for Lnil, N2k�1 and N "
2k

, the singular set is empty;
• for Lnd the singular set is Singloc D ¹x

2 C 4y D 0º;
• for all the other series M , O , P and S , Singloc D ¹y D 0º.

Thus, locally Sing is a smooth curve. Since Sing � M2 is closed, we may think of it as
a submanifold consisting, perhaps, of several connected components:

Sing D [i Si :

If M is compact, then the number of components is finite and each of them is an embed-
ded circle. Next, we can easily observe that all points from Si relate to the same series
(different components may, of course, relate to different series). However, the parameters
of the series may change. This happens for the series O , P and S . Indeed, moving along
Singloc D ¹y D 0º leads to the shift xnew D x � x0, resulting in the following modification
for v D trL (whereas detL remains unchanged):

v D ˛xys C ck�1y
s
C � � � D ˛.xnew C x0/y

s
C ck�1y

s
C � � �

D ˛xnewy
s
C .ck�1 C ˛x0/y

s
C � � �

In other words, all parameters remain fixed except for ck�1, which undergoes the shift
ck�1 7! ck�1 C ˛x0. Notice that if we move along Si in a certain direction, then ck�1 is
either strictly increasing or strictly decreasing. This leads us to the following conclusion.

Proposition 5.6. Singular points from the series O , P and S may not occur on closed
gl-regular Nijenhuis 2-manifolds.

According to Corollary 6.1 in [8], the same conclusion holds for differentially non-
degenerate singular points (series Lnd) and therefore we obtain the following.

Proposition 5.7. Let .M2; L/ be a closed gl-regular Nijenhuis 2-manifold. Then

• either Sing is empty (i.e., all points of M2 are of the same algebraic type),
• or each p2Sing belongs to the seriesM and then automatically one of the eigenvalues

of L is constant on M2.

We are now ready to prove our final result.

Proof of Theorem 1.7. Consider the two options from Proposition 5.7. First assume that
Sing D ;. Then L belongs to one of three generic types listed in the beginning of this
section:

(i) either L has two distinct real eigenvalues at each point of M2;
(ii) or L has two complex conjugate eigenvalues at each point of M2;
(iii) or L is similar to a Jordan block at each point of M2.

In Case (i), at each point p 2 M2, we have an eigenbasis e1; e2 2 TpM2, where e1
corresponds to the maximal eigenvalue at a given point. If we fix some Riemannian metric
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on M2, we may assume that the ei are normalised so that jei j D 1. Since such ei are defined
up to˙, we have 4 different bases at each point. A priori, it is not clear whether or not we
can choose a smooth “moving frame” field on the whole manifold, but this can obviously
be done on a finite sheeted covering zM2 of M (number of sheets is at most four). This
implies that zM2 is parallelisable and hence is a torus. Therefore, M2 is either a torus or a
Klein bottle, and we obtain Case (2) of Theorem 1.7.

In Case (ii), according to Theorem 6.1 in [8], the complex eigenvalues � and N� of the
Nijenhuis operator L are constant, and we obtain Case (1) from Theorem 1.7.

In Case (iii), at each point p 2 M2 we have a non-zero eigenvector e 2 TpM2, and the
same argument as above shows that, on M2 or on its two sheeted covering, one can define
a smooth vector field with no singular points. Hence M2 is either a torus or a Klein bottle.
However, in this case we have one additional property that the automorphism group of a
Jordan block consists of orientation preserving transformations, which allows us to define
orientation on M2. Hence, the Klein bottle is forbidden, and we are led to Case (3) of
Theorem 1.7.

Thus, the condition Sing D ; necessarily implies one of the first three cases of The-
orem 1.7.

Finally, we consider the second option from Proposition 5.7. This option implies that
one of the eigenvalues of L is constant, allowing us to consider a non-zero eigenvector
related to this eigenvalue at each point and, in the same way as above, to construct a
smooth vector field with no zeros either on M2 or on its two-sheeted covering. This implies
that M2 is either a torus or a Klein bottle, and we obtain Case (4) of Theorem 1.7. Thus,
the list of possibilities presented in Theorem 1.7 is complete.

We conclude this section with examples of Nijenhuis operators listed in Theorem 1.7.

Example 5.8. Let T2 be a torus with standard angle coordinates �1 and �2 defined mod-
ulo 2� . For an operator L with two distinct eigenvalues at each point .�1; �2/, we can
distinguish three essentially different possibilities.

• Two constant eigenvalues �1 and �2. Let � and � be two vector fields on T2 that are
linearly independent at each point (NB: there are many non-equivalent examples of
such vector fields). Then we define L by setting

(5.10) L.�/ D �1 � and L.�/ D �2�:

• One constant eigenvalue (without loss of generality, �1 D 0), the other �2 is not. In
coordinates .�1; �2/, we define L as

(5.11) L D

�
0 g.�1; �2/

0 f .�2/

�
;

with f .�2/ > 0 or f .�2/ < 0. Here � D
�
1;�g.�1;�2/

f .�2/

�
is an eigenvector field related

to the non-constant eigenvalue �2 D f .�2/.
• Two non-constant eigenvalues �1 and �2. An obvious example is

(5.12) L D

�
f .�1/ 0

0 g.�2/

�
; f .�1/ < c < g.�2/:
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This example can be modified by taking a finite-sheeted covering over this “standard”
torus. On the covering torus, the above global diagonalisation of L is not always
possible.

Example 5.9. Each of the above examples (5.10), (5.11) and (5.12) can be naturally
“transferred” to the Klein bottle K2, that can be thought of as the quotient of T2 with
respect to the involution � W T2 ! T2 given by .�1; �2/

�
7! .��1; �2 C �/. We only need

to make sure that L is invariant with respect to � . Namely, in the above three cases from
Example 5.8, we assume in addition that

• � is � -invariant, whereas � changes the direction under the action of � , i.e., d�.�/D �
and d�.�/ D ��,

• f .�2/ is �-periodic, g.�1; �2/ is even with respect to �1,
• g.�2/ is �-periodic and f .�1/ is even.

If these conditions are fulfilled, then the operators L given by (5.10), (5.11) and (5.12)
naturally descend to the quotient K2 D T2=� .

The next is an example of a Nijenhuis operator on T2 of Jordan block type (see Case (3)
in Theorem 1.7).

Example 5.10. Assume that L is a gl-regular operator L on T2 with a single eigenvalue �
of multiplicity 2. The cases with constant and non-constant � are essentially different.
If � is constant, then without loss of generality we may assume that � D 0, i.e., that L is
nilpotent.

• Consider two vector fields � and � on T2 which are linearly independent at each point,
and define L as follows:

L.�/ D 0; L.�/ D �:

Then L is a gl-regular nilpotent Nijenhuis operator on T2 (notice that any nilpotent
operator in dimension 2 is automatically Nijenhuis).

• The case with a non-constant eigenvalue on T2 can be modelled as follows:�
f .�2/ g.�1; �2/

0 f .�2/

�
; g.�1; �2/ > 0;

where �1; �2 denote usual angle coordinates on the torus as above.

Finally, we notice that the examples corresponding to Case (4) of Theorem 1.7 on the
torus T2 and the Klein bottle K2 D T2=� can be defined by the same formula as (5.11).
The only difference is that now f .�2/ vanish for some �2 (but then g.�1; �2/ does not!).
The operator L will become nilpotent at such points, which will be automatically singular
from series M . Notice that the topological structure of the eigenvector field � related to
the eigenvalue f .�2/ may now be rather non-trivial in contrast to the case when f ¤ 0.

We conjecture that the above list of examples essentially exhausts all possible real-
analytic Nijenhuis operators on closed two-dimensional surfaces. In the smooth case,
however, there are essentially different possibilities.
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A. Proof of Proposition 3.4

Let n D dim M > 2 and L be a gl-regular operator. Recall that for two commuting oper-
ators A and B (i.e., such that AB D BA), we may define a vector-valued quadratic form
hA;Bi by setting

hA;Bi.�; �/
def
D ŒA�; B�� � BŒA�; �� � AŒ�; B�� D 0:

Our goal is to prove the following:
(1) If hLi ; Lj i D 0 for 1 � i < j � n � 1, then L is a Nijenhuis operator.
(2) If hMi ;Mj i D 0 for 1 � i < j � n� 1, where Mi is defined as in (3.6), then L is a

Nijenhuis operator.

Proof. (1) It is easily seen that for any three commuting operators L, A and B , the fol-
lowing (algebraic) identity holds:

(A.1) NL.A�; B�/ D
�
hLA;LBi � LhLA;Bi � LhA;LBi C L2hA;Bi

�
.�; �/

Hence, for A D Li , B D Lj , 0 � i; j < n � 1, we have

NL.L
i�;Lj �/D

�
hLiC1;LjC1i �LhLiC1;Lj i �LhLi ;LjC1iCL2hLi ;Lj i

�
.�; �/D 0

for any �. Replacing � with � D � C L� and setting j D n � 2 in this formula, we get

0 D NL.L
i .� C L�/; Ln�2.� C L�// D NL.L

i�; Ln�2�/CNL.L
i .L�/; Ln�2.L�//

CNL.L
iC1�; Ln�2�/CNL.L

i�; Ln�1�/ D 0C 0C 0CNL.L
i�; Ln�1�/:

Thus, NL vanishes for any pair of vectors from the set �; L�; : : : ; Ln�1�. As L is gl-
regular, one can choose � in a way that �; L�; : : : ; Ln�1� form a basis in the tangent
space. Hence, NL D 0, as stated.

(2) In what follows, we assume that M0 D Id and Mn D 0, which perfectly agrees
with the above definition of Mi ’s (due to the Cayley–Hamilton theorem). We start with:

Lemma A.1. If hMi ;Mj i D 0 for 1 � i < j � n� 1, then the following identities hold:

dfjC1.Mi�/ � dfiC1.Mj �/ D 0; i; j D 0; : : : ; n � 1;

where the fi are coefficients of the characteristic polynomial of L, and � is an arbitrary
tangent vector.

Proof. In formula (3.9), the expression hA; Bi is treated as a (vector-valued) quadratic
form on the tangent bundle (one assumes that A and B commute). We can also naturally
interpret it as a symmetric bilinear form by setting

hA;Bi.�; �/ D
1

2

�
ŒA�; B�� � AŒ�; B�� � BŒA�; ��C ŒA�; B�� � AŒ�; B�� � BŒA�; ��

�
:

Obviously hA;Bi.�; �/ � 0 implies hA;Bi.�; �/ � 0.



Nijenhuis geometry III: gl-regular Nijenhuis operators 185

First we observe the following (purely algebraic) identity:

hMiL;Mj i.�; �/C hMi ;MjLi.�; �/

DMi hL;Mj i.�; �/ �Mj hL;Mi i.�; �/ � 2hMj ;Mi i.L�; �/:

In our case we have L DM1 C f1Id and, in addition, hMi ;Mj i � 0, which gives

hMiL;Mj i C hMi ;MjLi DMi hL;Mj i �Mj hL;Mi i

DMi hM1Cf1Id;Mj i�Mj hM1Cf1Id;Mi iDMi hf1Id;Mj i�Mj hf1Id;Mi i:(A.2)

Using (A.2) and the definition of theMi ’s, we now compute the right-hand side of the
identity 0 D hMiC1;Mj i C hMi ;MjC1i:

0 D hMiC1;Mj i C hMi ;MjC1i D hLMi � fiC1Id;Mj i C hMi ; LMj � fjC1Idi
D hLMi ;Mj i C hMi ; LMj i � hfiC1 Id;Mj i � hMi ; fjC1 Idi
DMi hf1 Id;Mj i �Mj hf1 Id;Mi i � hfiC1 Id;Mj i C hfjC1 Id;Mi i:(A.3)

Notice that

(A.4) hf Id; Ai.�; �/ D Œf �; A�� � f Œ�; A�� � AŒf �; �� D df .A�/� � df .�/A�

for an arbitrary function f and operator A. Applying this relation to (A.3) gives

(A.5)

0 DMi hf1 Id;Mj i.�; �/ �Mj hf1 Id;Mi i.�; �/

� hfiC1 Id;Mj i.�; �/C hfjC1 Id;Mi i.�; �/

D .df1.Mj �/ � dfjC1.�//Mi� � .df1.Mi�/ � dfiC1.�//Mj �
C .dfjC1.Mi�/ � dfiC1.Mj �//�:

Recall that L is gl-regular. Hence �; L�; : : : ; Ln�1� are linearly independent for almost
all tangent vectors �. By formula (3.6) for Mi , this is still true for �; M1�; : : : ; Mn�1�.
Therefore �, Mi� and Mj � are linearly independent in (A.5), and the coefficients of this
linear combination vanish. Thus, dfjC1.Mi�/� dfiC1.Mj �/D 0 for almost all vectors �,
and by continuity, for all vectors. The lemma is proved.

Similar to the first case, our goal is to show that NL.Mi�; Mj �/ D 0 for all i; j D
0; : : : ; n � 1. Since M0�;M1�; : : : ; Mn�1� form a basis for a generic vector �, this will
imply NL D 0.

As above, we use (A.1) with A DMi and B DMj :

NL.Mi�;Mj �/(A.6)

D
�
hLMi ; LMj i � LhLMi ;Mj i � LhMi ; LMj i C L

2
hMi ;Mj i

�
.�; �/:

SubstitutingLMi DMiC1C fiC1Id and using the relations hMi ;Mj iD 0 (i;j D 0; : : : ;n)
and the identity hfiC1Id; fjC1Idi D 0, we can rewrite the vector-valued quadratic form in
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the right-hand side of (A.6) as follows:

hLMi ; LMj i � LhLMi ;Mj i � LhMi ; LMj i C L
2
hMi ;Mj i

D hMiC1CfiC1Id;MjC1CfjC1Idi�LhMiC1CfiC1Id;Mj i�LhMi ;MjC1CfjC1Idi
D hfiC1Id;MjC1i C hMiC1; fjC1Idi � LhfiC1Id;Mj i � LhMi ; fjC1Idi
D hfiC1Id; LMj�fjC1IdiChLMi�fiC1Id; fjC1Idi�LhfiC1Id;Mj i�LhMi ; fjC1Idi
D hfiC1Id; LMj i C hLMi ; fjC1Idi � LhfiC1Id;Mj i � LhMi ; fjC1Idi:

Hence, using (A.4), we get

NL.Mi�;Mj �/

D
�
hfiC1Id; LMj i C hLMi ; fjC1Idi � LhfiC1Id;Mj i � LhMi ; fjC1Idi

�
.�; �/

D dfiC1.LMj �/ � � dfiC1.�/ LMj � � dfjC1.LMi�/ � � dfjC1.�/ LMi�

� L.dfiC1.Mj �/ � � dfiC1.�/Mj �/C L.dfjC1.Mi�/ � � dfjC1.�/Mi�/

D .dfiC1.Mj .L�// � dfjC1.Mi .L�/// � � .dfiC1.Mj �/ � dfjC1.Mi�// L�:

It remains to notice that the coefficients in front of � and L� vanish by Lemma A.1, which
completes the proof.

Acknowledgements. We thank Jenya Ferapontov and Artie Prendergast-Smith for their
valuable comments and explanations. The most essential steps resulted in this paper would
not have been done without outstanding research environment offered to us by the Institute
of Advanced Studies, Loughborough University and Centro Internazionale per la Ricerca
Matematica, Trento. We are also grateful to Jena Universität, in particular, Ostpartner-
schaft programm for supporting our research on Nijenhuis geometry for several years.
The comments from the two referees of our paper have been very useful and we thank
them for their work and help.

Funding. The research of V. M. was supported by DFG, grant number MA 2565/7.

References

[1] Antonowicz, M. and Fordy, A. P.: Coupled KdV equations with multi-Hamiltonian structures.
Phys. D 28 (1987), no. 3, 345–357.

[2] Arnol’d, V. I.: On matrices depending on parameters. Russian Math. Surveys 26 (1971), no. 2,
29–43.

[3] Bialy, M.: On periodic solutions for a reduction of Benney chain. NoDEA Nonlinear Differen-
tial Equations Appl. 16 (2009), no. 6, 731–743.

[4] Bialy, M. and Mironov, A. E.: Integrable geodesic flows on 2-torus: Formal solutions and vari-
ational principle. J. Geom. Phys. 87 (2015), 39–47.

[5] Bolsinov, A. V., Konyaev, A. Y. and Matveev, V. S.: Nijenhuis geometry III: gl-regular Nijen-
huis operators. Preprint 2020, arXiv:2007.09506.

https://doi.org/10.1016/0167-2789(87)90023-6
https://doi.org/10.1070/rm1971v026n02abeh003827
https://doi.org/10.1007/s00030-009-0032-y
https://doi.org/10.1016/j.geomphys.2014.08.006
https://doi.org/10.1016/j.geomphys.2014.08.006
https://arxiv.org/abs/2007.09506


Nijenhuis geometry III: gl-regular Nijenhuis operators 187

[6] Bolsinov, A. V., Konyaev, A. Y. and Matveev, V. S.: Applications of Nijenhuis geometry:
Nondegenerate singular points of Poisson–Nijenhuis structures. Eur. J. Math. 8 (2021), no. 4,
1355–1376.

[7] Bolsinov, A. V., Konyaev, A. Y. and Matveev, V. S.: Applications of Nijenhuis geometry II:
maximal pencils of multihamiltonian structures of hydrodynamic type. Nonlinearity 34 (2021),
no. 8, 5136–5162.

[8] Bolsinov, A. V., Konyaev, A. Y. and Matveev, V. S.: Nijenhuis geometry. Adv. Math. 394
(2022), article no. 108001, 52 pp.

[9] Bolsinov, A. V., Konyaev, A. Y. and Matveev, V. S.: Applications of Nijenhuis geometry III:
Frobenius pencils and compatible non-homogeneous Poisson structures. J. Geom. Anal. 33
(2023), article no. 193, 52 pp.

[10] Bolsinov, A. V., Konyaev, A. Y. and Matveev, V. S.: Applications of Nijenhuis geometry IV:
multicomponent KdV and Camassa–Holm equations. Dyn. Partial Differ. Equ. 20 (2023),
no. 1, 73–98.

[11] Bolsinov, A. V. and Matveev, V. S.: Geometrical interpretation of Benenti systems. J. Geom.
Phys. 44 (2003), no. 4, 489–506.

[12] Bolsinov, A. V., Matveev, V. S., Miranda, E. and Tabachnikov, S.: Open problems, questions,
and challenges in finite-dimensional integrable systems. Philos. Trans. Roy. Soc. A 376 (2018),
no. 2131, article no. 20170430, 40 pp.

[13] Gibbons, J. and Tsarev, S. P.: Reductions of the Benney equations. Phys. Lett. A 211 (1996)
no. 1, 19–24.

[14] Goldschmidt, H.: Integrability criteria for systems of nonlinear partial differential equations.
J. Differential Geometry 1 (1967), no. 3–4, 269–307.

[15] Haantjes, J.: On Xm-forming sets of eigenvectors. Indag. Math. 17 (1955), 158–162.

[16] Konyaev, A. Y.: Nijenhuis geometry II: left-symmetric algebras and linearization problem. Dif-
ferential Geom. Appl. 74 (2021), article no. 101706, 32 pp.

[17] Lorenzoni, P. and Magri, F.: A cohomological construction of integrable hierarchies of hydro-
dynamic type. Int. Math. Res. Not. (2005), no. 34, 2087–2100.

[18] Magri, F.: Lenard chains for classical integrable systems. Theoret. and Math. Phys. 137 (2003),
no. 3, 1716–1722.

[19] Matveev, V. S.: Pseudo-Riemannian metrics on closed surfaces whose geodesic flows admit
non-trivial integrals quadratic in momenta, and proof of the projective Obata conjecture for
two-dimensional pseudo-Riemannian metrics. J. Math. Soc. Japan 64 (2012), no. 1, 107–152.

[20] Matveev, V. S.: Projectively invariant objects and the index of the group of affine transform-
ations in the group of projective transformations. Bull. Iranian Math. Soc. 44 (2018), no. 2,
341–375.

[21] Newlander, A. and Nirenberg, L.: Complex analytic coordinates in almost complex manifolds.
Ann. of Math. (2) 65 (1957), no. 3, 391–404.

[22] Pavlov, M. V.: Integrable hydrodynamic chains. J. Math. Phys. 44 (2003), no. 9, 4134–4156.

[23] Pavlov, M. V., Sharipov, R. A. and Svinolupov, S. I.: Invariant integrability criterion for equa-
tions of hydrodynamic type. Funct. Anal. Appl. 30 (1996), 15–22.

[24] Sydney Mathematical Research Institute-SMRI: Online lectures and talks given at the
MATRIX-SMRI Symposium: Nijenhuis geometry and integrable systems, February 2022.
httpsW//www.youtube.com/playlist?list=PLtmvIY4GrVv_Gtw9cwz-1h7jwyfrOgX6i, visited
on February 2, 2024.

https://doi.org/10.1007/s40879-020-00429-6
https://doi.org/10.1007/s40879-020-00429-6
https://doi.org/10.1088/1361-6544/abed39
https://doi.org/10.1088/1361-6544/abed39
https://doi.org/10.1016/j.aim.2021.108001
https://doi.org/10.1007/s12220-023-01237-6
https://doi.org/10.1007/s12220-023-01237-6
https://doi.org/10.4310/dpde.2023.v20.n1.a4
https://doi.org/10.4310/dpde.2023.v20.n1.a4
https://doi.org/10.1016/S0393-0440(02)00054-2
https://doi.org/10.1098/rsta.2017.0430
https://doi.org/10.1098/rsta.2017.0430
https://doi.org/10.1016/0375-9601(95)00954-X
https://doi.org/10.4310/jdg/1214428094
https://doi.org/10.1016/s1385-7258(55)50021-7
https://doi.org/10.1016/j.difgeo.2020.101706
https://doi.org/10.1155/IMRN.2005.2087
https://doi.org/10.1155/IMRN.2005.2087
https://doi.org/10.1023/B:TAMP.0000007919.80743.1e
https://doi.org/10.2969/jmsj/06410107
https://doi.org/10.2969/jmsj/06410107
https://doi.org/10.2969/jmsj/06410107
https://doi.org/10.1007/s41980-018-0024-y
https://doi.org/10.1007/s41980-018-0024-y
https://doi.org/10.2307/1970051
https://doi.org/10.1063/1.1597946
https://doi.org/10.1007/BF02509552
https://doi.org/10.1007/BF02509552
https://www.youtube.com/playlist?list=PLtmvIY4GrVv_Gtw9cwz-1h7jwyfrOgX6i


A. V. Bolsinov, A. Y. Konyaev and V. S. Matveev 188

[25] Thompson, G.: The integrability of a field of endomorphisms. Math. Bohem. 127 (2002), no. 4,
605–611.

[26] Tsarev, S. P.: The geometry of Hamiltonian systems of hydrodynamic type. The generalized
hodograph method. Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), no. 5, 1048–1068; translation
in Math. USSR-Izv. 37 (1991), no. 2, 397–419.

[27] Wikipedia contributors: Regular element of a Lie algebra, version 25 June 2021.

[28] Wikipedia contributors: Companion matrix, version 17 November 2022.

Received June 5, 2022; revised December 12, 2022. Published online March 3, 2023.

Alexey V. Bolsinov
School of Mathematics, Loughborough University
LE11 3TU Loughborough, UK;
A.Bolsinov@lboro.ac.uk

Andrey Yu. Konyaev
Faculty of Mechanics and Mathematics, Moscow State University, and Moscow Center for
Fundamental and Applied Mathematics, 119992 Moscow, Russia;
maodzund@yandex.ru

Vladimir S. Matveev
Institut für Mathematik, Friedrich Schiller Universität Jena
07737 Jena, Germany;
vladimir.matveev@uni-jena.de

https://doi.org/10.21136/mb.2002.133948
https://doi.org/10.1070/IM1991v037n02ABEH002069
https://doi.org/10.1070/IM1991v037n02ABEH002069
https://en.wikipedia.org/wiki/Regular_element_of_a_Lie_algebra
https://en.wikipedia.org/wiki/Companion_matrix
mailto:A. Bolsinov@lboro.ac.uk
mailto:maodzund@yandex.ru
mailto:vladimir.matveev@uni-jena.de

	1. Basic definitions and main results
	2. Outlook and motivation
	3. Proof of Theorem 1.1
	4. Proof of Theorems 1.6 and 1.10
	5. Local classification of gl-regular Nijenhuis operators in dimension two and global applications
	A. Proof of Proposition 3.4
	References

