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Horizontally quasiconvex envelope
in the Heisenberg group

Antoni Kijowski, Qing Liu and Xiaodan Zhou

Abstract. This paper is concerned with a PDE-based approach to the horizontally
quasiconvex (h-quasiconvex, for short) envelope of a given continuous function in the
Heisenberg group. We provide a characterization for upper semicontinuous, h-quasi-
convex functions in terms of the viscosity subsolution to a first-order nonlocal Hamil-
ton–Jacobi equation. We also construct the corresponding envelope of a continuous
function by iterating the nonlocal operator. One important step in our arguments is to
prove the uniqueness and existence of viscosity solutions to the Dirichlet boundary
problem for the nonlocal Hamilton–Jacobi equation. Applications of our approach to
the h-convex hull of a given set in the Heisenberg group are discussed as well.

1. Introduction

1.1. Background and motivation

Convex analysis is a classical and fundamental topic with numerous applications in vari-
ous fields of mathematics and beyond. In contrast to the extensive literature on convex
analysis in the Euclidean space, less is known about the case of a general geometric setting
such as sub-Riemannian manifolds. This paper is mainly concerned with a PDE method
to deal with a certain weak type of convexity for both sets and functions in the first Heis-
enberg group H.

The Heisenberg group H is R3 endowed with the non-commutative group multiplica-
tion

.xp; yp; zp/ � .xq; yq; zq/ D
�
xp C xq; yp C yq; zp C zq C

1

2
.xpyq � xqyp/

�
;

for all p D .xp; yp; zp/ and q D .xq; yq; zq/ in H. The differential structure of H is
determined by the left-invariant vector fields
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One may easily verify the commutation relation X3 D ŒX1; X2� D X1X2 �X2X1. Let

H0 D ¹h 2 H W h D .x; y; 0/ for x; y 2 Rº:

For any p 2 H, the set
Hp D ¹p � h W h 2 H0º

is called the horizontal plane through p. It is clear that Hp D span¹X1.p/; X2.p/º for
every p 2 H. See [9] for a detailed introduction of the Heisenberg group.

Our primary interest is to understand how to convexify a given bounded set in the
Heisenberg group H, that is, we aim to find the smallest convex set that contains the
given set. Let us first clarify the meaning of convex sets we consider in this work. We
shall actually focus on the notion of weakly h-convex sets, which was first introduced
in [14], and later studied in [1, 6, 28] etc. A set E � H is said to be weakly h-convex if
the horizontal segment connecting any two points in E lies in E; see also Definition 2.1.
Hereafter we call such a set an h-convex set for simplicity of terminology.

There are several other types of set convexity in H defined with different kinds of
convex combination of two points. One seemingly natural notion is based on geodesics
in H. A set E � H is said to be geodetically convex if, for every pair of points p; q 2 E,
the set E contains all geodesics joining p and q. This notion is known to be a very strong
one; the geodetically convex hull of any three points that are not on the same geodesic
in H has to be the whole group [27]. A different notion, called strong h-convexity [14] or
twisted convexity [6], uses the dilation of group quotient to combine two points. It is still
a quite strong notion, much stronger than the Euclidean convexity. In general, a strongly
h-convex hull of a bounded set consisting of more than two points could be unbounded [6].
We refer the reader to [6, 28] for related discussions on these convexity notions.

The notion of (weak) h-convexity is obviously weaker than the Euclidean convexity
as well as the other aforementioned notions because of the restriction on horizontal seg-
ments. Such relaxation gives rise to unexpected properties. An h-convex set can even be
disconnected, as pointed out in [7]. One simple example of h-convex sets is the union of
two points .0; 0; 1/ and .0; 0;�1/ in H. It is h-convex, because no horizontal segments
exist to connect the points. A less trivial example of disconnected h-convex sets is presen-
ted in Example 2.2. Such an unusual character makes it challenging to find the h-convex
hull of a given set in H. In contrast to the Euclidean situation, where one can generate the
convex hull of a set by simply connecting every pair of points in the set with a segment,
building the h-convex hull of a given set in the Heisenberg group requires possibly infinite
iterations to include all necessary horizontal segments; see the proof of Lemma 4.1 in [29]
by Rickly about this method. In general, it is not straightforward to describe and construct
the h-convex hull of a set. This motivates us to search possible analytic methods to solve
this problem.

A closely related problem we also intend to discuss is constructing the horizont-
ally quasiconvex (or simply h-quasiconvex) envelope of a given function in an h-convex
domain��H. An h-quasiconvex function in� is defined to be a function whose sublevel
sets are all h-convex. It is equivalent to saying that

(1.1) u.w/ � max¹u.p/; u.q/º
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holds for any p 2 �, q 2 Hp \� and w 2 Œp; q�. This notion is introduced in [32]. It is
also studied in [7], where such functions are called weakly h-quasiconvex functions. We
again suppress the term “weakly” in this paper to avoid redundancy. Similar to the case of
sets, for any function in �, it is not trivial in general how one can find its h-quasiconvex
envelope in a constructive way.

We remark that a stronger notion of function convexity in H, called horizontal convex-
ity, is introduced by [14] and [23]. Various properties and generalizations of such convex
functions are discussed in [2, 3, 8, 19, 24, 25, 33] etc. The corresponding convex envelope
and its applications to convexity properties of sub-elliptic equations are studied in [22].

1.2. Main results

Inspired by the Euclidean results in [5], in this work we provide a PDE-based approach
to investigate h-convex hulls and h-quasiconvex envelopes. Our study starts from an im-
proved characterization of h-quasiconvex functions. It is known (see Theorem 4.5 in [7])
that any function u 2 C 1.�/ is h-quasiconvex if and only if

(1.2) u.�/ < u.p/) hrHu.p/; .p
�1
� �/hi � 0

for any � 2 Hp \�. Here, rHu denotes the horizontal gradient of u, given by rHu D
.X1u;X2u/. Also, for each � D .x� ; y� ; z� / 2H, �h represents its horizontal coordinates,
that is, �h D .x� ; y� /. For the sake of our applications to construct h-convex hulls, we gen-
eralize this characterization to functions which are not necessarily of C 1 class. Extending
the Euclidean arguments in [5] to H, we show in Theorem 2.6 that an upper semicontinu-
ous (USC) function u is h-quasiconvex if and only if (1.2) holds in the viscosity sense. It
is equivalent to saying that

(1.3) sup
®˝
rH'.p/; .p

�1
� �/h

˛
W � 2 Hp \�; u.�/ < u.p/

¯
� 0

whenever there exist p 2 � and ' 2 C 1.�/ such that u � ' attains a maximum at p.
Further developing the generalized characterization, we adopt an iterative scheme

to find the h-quasiconvex envelope of a continuous function f , denoted by Q.f / (see
Definition 2.9), in a bounded h-convex domain � under a particular Dirichlet boundary
condition. The iteration is implemented by solving a sequence of nonlocal Hamilton–
Jacobi equations, where the Hamiltonian is given by the left-hand side of (1.3), that is,

H.p; u.p/;ru.p// D sup
®˝
rHu.p/; .p

�1
� �/h

˛
W � 2 Hp \�; u.�/ < u.p/

¯
:

We briefly describe our scheme in what follows.
Let f 2 C.�/ be a given function satisfying²

f D K on @�,(1.4)
f � K in �,(1.5)

withK 2R. This set of conditions resembles the coercivity assumption on f whenK > 0

is taken large. It guarantees the existence of an h-quasiconvex function f 2C.�/ such that
f � f in � and f D K on @�; see Proposition 4.1. This in turn implies the existence
of Q.f / taking the same boundary value.
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We set u0 D f in � and take un (n D 1; 2; : : :) to be the unique viscosity solution of

(1.6) un CH.p; un;rHun/ D un�1 in �

satisfying the same set of conditions as in (1.4)–(1.5), that is,²
un D K on @�,(1.7)
un � K in �.(1.8)

It turns out that un is a nonincreasing sequence and that it converges uniformly to Q.f /
as n!1. This is in fact our main theorem.

Theorem 1.1 (Iterative scheme for envelope). Suppose that � is a bounded h-convex
domain in H and that f 2 C.�/ satisfies (1.4)–(1.5) for some K 2 R. Let Q.f / be the
h-quasiconvex envelope of f in �. Let u0 D f in � and let un be the unique solution
of (1.6) satisfying (1.7) and (1.8) for n � 1. Then un!Q.f / uniformly in� as n!1.

Such type of nonlocal schemes are proposed in [5] in the Euclidean case for gen-
eral Dirichlet data. We remark that in the Euclidean space a similar class of nonlocal
equations depending on the level sets of the unknown is also studied for applications in
geometric evolutions and front propagation [10, 11, 20, 30]. Although our PDE looks ana-
logous to theirs, the well-posedness in the sub-Riemannian case is not straightforward
at all. The main difference from the Euclidean case lies in an additional constraint that
requires � 2Hp \�, which depends on the space variable p. This extra constraint brings
us much difficulty in proving the comparison principle for (1.6). It is the coercivity-like
setting (1.7)–(1.8) that enables us to overcome the difficulty and obtain the uniqueness of
solutions. More details can be found in Section 3.2.

The existence of viscosity solutions, on the other hand, can be handled in a standard
way by adapting Perron’s method [13]. Since the existence in the Euclidean case is not
explicitly discussed in [5], we give full details of the arguments for our sub-Riemannian
version in Section 3.3. Once the sequence un is determined iteratively for all nD 1; 2; : : :,
Theorem 1.1 can be proved by applying a stability argument for viscosity solutions.

It is worth mentioning that, instead of adopting the restrictive setting (1.7)–(1.8), one
can solve (1.6) with general boundary data and obtain the scheme convergence as in The-
orem 1.1 if there exists an appropriate h-quasiconvex barrier f from below compatible
with the boundary value; see Theorem 3.15 and Remark 4.4.

Another possible modification of the scheme is to consider the maximal subsolution
of (1.6) rather than its solutions at each step. Although we only get pointwise convergence
of the scheme in this case, it allows us to avoid the uniqueness issue and to construct the
h-quasiconvex envelopes for a general class of upper semicontinuous functions, even in
an unbounded domain �. See Theorem 4.5 for results in this relaxed setting.

We would like to point out that, besides the PDE-based approach described above,
there is a more direct constructive method to build Q.f /, which employs the following
convexification operator:

(1.9) T Œf �.w/D inf
®

max¹f .p/;f .q/º Ww2 Œp; q�; p2�; q 2�\Hp

¯
; for w2�:

It turns out that T Œf � itself may not be h-quasiconvex in �, but iterated application of T
yields a pointwise approximation of the h-quasiconvex envelopeQ.f /; see Theorem 2.12
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for details. A similar idea is used in the proof of Lemma 4.1 in [29] for h-convex functions.
It is also adopted in [22] to construct the h-convex envelope of a given function f .

As an application of our constructive methods for h-quasiconvex envelopes, we study
the h-convex hull of a given bounded set in H. A key ingredient is the so-called level
set formulation, which plays an important role in the study of geometric evolutions, see
[12, 17, 18]. We can apply the same idea to our problem, since the nonlocal Hamiltonian
is actually a geometric operator, homogeneous in u. Suppose that E is a bounded open set
in H. Take a bounded h-convex domain � such that E � �. We next choose a defining
function f 2 C.�/ such that

(1.10) E D ¹p 2 � W f .p/ < 0º

and (1.4)–(1.5) hold for some K > 0. It turns out that the h-convex hull of E coincides
with the zero sublevel set of Q.f /, i.e.,

(1.11) co.E/ D ¹p 2 � W Q.f / < 0º:

We remark that co.E/ is independent of the choices of f and�. As long as (1.10) together
with (1.4)–(1.5) holds, the co.E/ obtained in (1.11) will not change. See Theorem 5.2 for
more precise statements.

This PDE approach leads us to a better understanding about h-convex hulls. One
application is about the inclusion principle. By definition, it is easily seen that co.D/ �
co.E/ holds for any sets D;E � H satisfying D � E. In Theorem 5.4, we establish a
quantitative version of the inclusion principle in H. For any bounded open (or closed) sets
D;E � H, we obtain

(1.12) inf
®
QdH .p;q/ W p 2 co.D/;q 2H n co.E/

¯
� inf

®
QdH .p;q/ W p 2D;q 2H nE

¯
;

where QdH denotes the right invariant gauge metric in H; see (1.13) below. This property
amounts to saying that taking h-convex hulls of two sets in H, one contained in the other,
does not reduce the shortest QdH distance between their boundaries. If E contains the right
invariant ı-neighborhood ofD for some ı > 0, then co.E/ also contains the right invariant
ı-neighborhood of co.D/.

While such a result can be obtained comparatively easily in the Euclidean case, the
proof is more involved in the Heisenberg group. Our proof is based on comparing the
h-quasiconvex envelopes of defining functions of both sets combined with arguments
involving sup-convolutions. It is not clear to us whether one can replace QdH by the left
invariant gauge metric dH . This problem is related to the h-convexity preserving prop-
erty for solutions of evolution equations in the Heisenberg group; see some partial results
in [21, 22].

Another natural question is on the continuity (or stability) of co.E/ with respect to
the set E, which we discuss in the last part of this paper. In contrast to the Euclidean
case, in general the Hausdorff distance dH .co.Ej /; co.E// between co.Ej / and co.E/
does not necessarily converge to zero when dH .Ej ; E/ ! 0 in the Heisenberg group,
see Example 5.6. One can show rather easily that such stability result holds under a strict
star-shapedness assumption on the set E; see Proposition 5.9.
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1.3. Notations

We conclude the introduction by listing several notations that are often used in the work.
Throughout this paper, j � jG stands for the Korányi gauge, i.e., for p D .x; y; z/ 2 H,

jpjG D ..x
2
C y2/2 C 16z2/1=4:

The Korányi gauge induces a left invariant metric dH on H, with

dH .p; q/ D jp
�1
� qjG ; for p; q 2 H:

We also use the right invariant metric QdH , defined by

(1.13) QdH .p; q/ D jp � q
�1
jG ; for p; q 2 H:

The associated distances between a point p 2H and a setE �H are respectively denoted
by dH .p;E/ and QdH .p;E/. For two sets D;E � H, we write dH .D;E/ and QdH .D;E/
to denote, respectively, the Hausdorff distances between D and E with respect to the
metrics dH and QdH , i.e., for d D dH or d D QdH ,

d.D;E/ D max
°

sup
p2D

d.p;E/; sup
p2E

d.p;D/
±
:

We denote by Br .p/ the open gauge ball in H centered at p 2 H with radius r > 0,
that is,

Br .p/ D ¹q 2 H W jp�1 � qjG < rº;

while QBr .p/ represents the corresponding right-invariant metric ball.
Let ı� denote the non-isotropic dilation in H with �� 0, that is, ı�.p/D .�x;�y;�2z/

for p D .x; y; z/ 2 H. We write ı�.E/ to denote the dilation of a given set E � H, that
is, ı�.E/ D ¹ı�.p/ W p 2 Eº.

The rest of the paper is organized in the following way. In Section 2, we first give a
review on the definitions and basic properties of h-convex sets and h-quasiconvex func-
tions, and then present the viscosity characterization of upper semicontinuous h-quasi-
convex functions. We also show how to construct the h-quasiconvex envelope by iterated
application of the operator in (1.9). Section 3 is devoted to the well-posedness of the
nonlocal Hamilton–Jacobi equation, including the uniqueness and existence of viscosity
solutions. Our PDE-based iterative scheme is introduced in Section 4. We finally discuss
applications of our results to the h-convex hull of a given open or closed set in Section 5.

2. H-quasiconvex functions

2.1. Definition and basic properties

Let us first go over the definition of h-convex sets. We restrict the original definition pro-
posed in [14] for general Carnot groups to the case of H.

Definition 2.1 (Definition 7.1 in [14]). We say that a set E � H is h-convex if for every
p 2 E and q 2 Hp \E, the horizontal segment Œp; q� joining p and q stays in E.
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As pointed out in Proposition 7.4 of [14], any gauge ball BR.p/ with p 2 H and
R > 0 is h-convex. The notion of h-convex sets is in fact very weak. There are numerous
h-convex sets in H that are obviously not convex in the Euclidean sense.

Example 2.2 (Disconnected h-convex sets). Denote by �.0; �/ the planar open disk cen-
tered at the origin with radius � > 0, i.e.,

(2.1) �.0; �/ WD ¹.x; y/ 2 R2 W x2 C y2 < �2º:

Let us consider a disconnected setED .�.0; r/� ¹0º/[ .�.0;R/� ¹tº/, where r;R; t > 0
are given. Such a set E is h-convex under appropriate conditions on r and R. To see this,
we take the horizontal plane

Zt D ¹.x; y; z/ 2 H W z D tº

and compute the distance between qt D .0;0; t/ and Hp\Zt for each point pD .xp;yp;0/
2 �.0; r/ � ¹0º. It turns out that

dH .qt ;Hp \Zt / D
2tp

x2p C y
2
p

�
2t

r
�

If dH .qt ;Hp \Zt /� R, then none of the horizontal planes of points p 2 �.0; r/� ¹0º in
the lower disk will intersect the upper disk �.0; R/ � ¹tº. This means that E is h-convex
if 2t � rR. It is obvious that in general E is not connected and thus cannot be convex as
a subset of R3. It is also clear that E is no longer h-convex if 2t < rR.

Let us also recall from [7] the definition of h-quasiconvex functions in H.

Definition 2.3 (Definition 4.3 in [7]). Suppose that � � H is h-convex. We say that a
function uW� ! R is h-quasiconvex if (1.1) holds for every p 2 �, q 2 Hp \ � and
w 2 Œp; q�. In other words, u is h-quasiconvex if for every � 2 R the sublevel set ¹w 2� W
u.w/ � �º is h-convex.

Remark 2.4. We remark that it is equivalent to define h-convex functions with strict sub-
level set ¹w 2 � W u.w/ < �º. In fact, first note that

¹w 2 � W u.w/ � �º D
\
">0

¹w 2 � W u.w/ < �C "º;

and that the intersection of h-convex sets is still h-convex. On the other hand, if ¹w 2 � W
u.w/ � �º is h-convex, then (1.1) holds for every p 2 �, q 2 Hp \� and w 2 Œp; q�. If
p; q 2 ¹w 2 � W u.w/ < �º and q 2 Hp \�, it follows that u.w/ < � when w 2 Œp; q�
and thus ¹x 2 � W u.w/ < �º is h-convex.

For our later applications, below we provide a typical h-quasiconvex function associ-
ated to a given h-convex set. The construction is based on the right invariant metric QdH ,
as given in (1.13).

Proposition 2.5 (A metric-based h-quasiconvex function). Suppose that � � H is an
h-convex domain in H and E is an h-convex open subset of �. Then  E 2C.�/ given by

 E .p/ D � QdH .p;H nE/; for p 2 �;

is an h-quasiconvex function in �.
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Proof. It suffices to show that

E� WD ¹p 2 � W  E .p/ < �º

is h-convex for every � 2 R. We only need to consider the case for � < 0, since E� D E
if � D 0 and E� D � if � > 0. Assume by contradiction that there exist p; q 2 E� with
q 2 Hp as well as a point w 2 Œp; q� \ .� nE�/. This means that

QdH .w;H nE/ � ��

and that there exists � 2 H n E such that j� � w�1jG � ��. Taking � D � � w�1 � p and
� D � � w�1 � q, we can easily verify that � 2 H� and � 2 Œ�; ��.

Suppose that � 2 H nE holds. Then, since

QdH .�; p/ D j� � p
�1
jG D j� � w

�1
jG � ��;

we have QdH .p;H nE/ � �� or equivalently  E .p/ � �, which is a contradiction to the
condition p 2 E�. We can similarly derive a contradiction if � 2 H nE holds.

The remaining case when �;�2E is an obvious contradiction to the assumption thatE
is h-convex, since � 2 Œ�; �� and � 2 H nE.

2.2. Viscosity characterization of h-quasiconvexity

The following characterization of h-quasiconvexity is known for smooth functions, see
Theorem 4.5 in [7]. We provide a generalized result in the nonsmooth case by extending
Proposition 2.2 in [5] to the Heisenberg group.

Theorem 2.6 (Viscosity characterization of h-quasiconvexity). Let � � H be open and
h-convex, and let uW�! Œ�1;1/ be upper semicontinuous. Then, u is h-quasiconvex if
and only if whenever there exist p 2� and ' 2 C 1.�/ such that u� ' attains a maximum
at p,

(2.2) hrH'.p/; .p�1 � �/hi � 0 holds for any � 2 Hp \� satisfying u.�/ < u.p/:

Remark 2.7. It is worth mentioning that, as in [7], we can also express the inner product
term hrH'.p/; .p�1 � �/hi in (2.2) by hr'.p/; � � pi. This is possible because of the
condition that � 2 Hp . We shall maintain the expression on the left-hand side to suggest
possible generalization of our results in general Carnot groups, which is not elaborated in
this paper.

Proof of Theorem 2.6. Let us prove the necessity of (2.2) by contradiction. Suppose, that
u is upper semicontinuous h-quasiconvex function, ' 2 C 1.�/ is such that u � ' attains
a maximum at p 2 �, and there exists � 2 Hp \� with u.�/ < u.p/ such that

hrH'.p/; .p
�1
� �/hi > 0:

Then, for � > 0 small enough and w D p � ı�.��1 � p/ there holds u.w/ < u.p/. Indeed,
the directional derivative of ' at p in the direction p�1 � � is positive, and hence '.w/ <
'.p/ for �> 0 small enough. Since u� ' attains a maximum at p we obtain u.p/ > u.w/.
We conclude with � 2 Hw , p 2 Œw; �� and u.p/ > max¹u.w/; u.�/º, which contradicts
the h-quasiconvexity of u.



Horizontally quasiconvex envelope in the Heisenberg group 65

Now we are left with proving sufficiency of (2.2). Suppose that u is not h-quasiconvex.
Then, without loss of generality there exists a point � D .x� ; y� ; 0/ 2 H0 such that

max
Œ0;��

u > max¹u.0/; u.�/º:

Denote byZ the set of maximizers of u on the segment Œ0; ��. By the upper semicontinuity
of u, there exists R 2 .0; j�j=4/ small enough such that

min¹dH .0;Z/; dH .�; Z/º > R

(i.e., Z is in the relative interior of Œ0; ��), and

u.q/ < max
Œ0;��

u for any q 2 BR.0/ [ BR.�/.

Let
C WD ¹q 2 � W dH .q; Œ0; ��/ < R; 0 < hq; �i < j�j

2
º

be a cylindrical neighborhood of the segment Œ0; ��. We define 'n by

'n.p/ D
1

n
hp; �i C n..xp y� � yp x�/

2
C z2p/; p 2 �:

As n!1, u� 'n! u pointwise in Œ0; �� and u� 'n!�1 elsewhere in C . Then there
exists a sequence pn D .xpn ; ypn ; zpn/ 2 C such that

max
C

.u � 'n/ D u.pn/ � 'n.pn/;

which converges to a point inZ via a subsequence. Let us index the subsequence still by n
for notational simplicity. Suppose that the subsequence pn ! .tx� ; ty� ; 0/ as n!1 for
some t 2 .R=j�j; 1�R=j�j/. Let us consider wn D .xpn=t; ypn=t; zpn/ 2Hpn . Observing
that

dH .�; wn/ D j�
�1
� wnjG ! 0;

we get u.wn/ < u.pn/ for n large enough.
Let us compute rH'n.pn/ as follows:

rH'n.pn/

D

�x�
n
C 2ny�.xpny� � ypnx�/ � nypnzpn ;

y�

n
� 2nx�.xpny� � ypnx�/C nxpnzpn

�
:

Since
.p�1n � wn/h D

�1
t
� 1

�
.xpn ; ypn/;

we have

hrH'n.pn/; .p
�1
n � wn/hi D

�1
t
� 1

� �
hpn; �i

n
C 2n.xpn y� � ypn x�/

2
�
> 0;

which contradicts (2.2).



A. Kijowski, Q. Liu and X. Zhou 66

Theorem 2.6 amounts to saying that u 2 USC.�/ is h-quasiconvex if (1.3) holds in
the viscosity sense, that is,

sup
®˝
rH'.p/; .p

�1
� �/h

˛
W � 2 Hp \�; u.�/ < u.p/

¯
� 0

whenever there exist p 2 � and ' 2 C 1.�/ such that u � ' attains a maximum at p. As
a standard remark in the viscosity solution theory, the maximum here can be replaced by
a local maximum or a strict maximum.

In spite of the nonlocal nature, we can obtain the following property by using the
geometricity of the operator.

Lemma 2.8 (Invariance with respect to composition). Let � � H be h-convex and let
uW�!R be bounded and upper semicontinuous. Assume that gWR!R is a nondecreas-
ing continuous function. If u is h-quasiconvex in �, then so is g ı u.

Proof. It is clear that g ı u is still upper semicontinuous. Assume first that g 2 C 1.R/ is
strictly increasing. It is clear that g ı u is still upper semicontinuous. Suppose that there
exists p 2 � and ' 2 C 1.�/ such that g ı u � ' attains a maximum at p0. Then using
the inverse function g�1 of g, we see that u � g�1 ı ' also attains a maximum at p0.
Applying the characterization of h-quasiconvexity in Theorem 2.6, we get

sup
® ˝
rH .g

�1
ı '/.p0/; .p

�1
0 � �/h

˛
W � 2 Hp0 \�; u.�/ < u.p0/

¯
� 0;

which implies

(2.3) sup
® ˝
rH'.p0/; .p

�1
0 � �/h

˛
W � 2 Hp0 \�; .g ı u/.�/ < .g ı u/.p0/

¯
� 0:

This shows that g ı u is h-quasiconvex.
For the general case when g 2 C.R/ is nondecreasing, we can take a sequence gk 2

C 1.R/ increasing such that gk ! g locally uniformly in R as k !1. In this case, sup-
pose that there exists p 2 � and ' 2 C 1.�/ such that g ı u� ' attains a strict maximum
at p0. Then there exist pk 2 � such that pk ! p0 as k !1 and gk ı u � ' attains a
local maximum at pk .

Adopting the argument above, we obtain the h-quasiconvexity of gk ı u, that is,

sup
® ˝
rH'.pk/; .p

�1
k � �/h

˛
W � 2 Hpk \�; .gk ı u/.�/ < .gk ı u/.pk/

¯
� 0:

By the uniform convergence of gk ı u to g ı u in� and the continuity of Hp with respect
to p, we can pass to the limit as k !1 and obtain the relation (2.3) again.

2.3. H-quasiconvex envelope

In what follows, we introduce the h-quasiconvex envelope of a given function.

Definition 2.9 (Definition of h-quasiconvex envelope). Let � be an h-convex domain
in H and let f W� ! R be a given function. We say that Q.f / is the h-quasiconvex
envelope of f if it is the greatest h-quasiconvex function majorized by f , that is,

Q.f /.p/ WD sup ¹g.p/ W g � f and g is h-quasiconvex in �º; for p 2 �,

where we adopt the convention that sup; D �1.
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By definition, Q.f / is monotone in f ; namely, Q.f / � Q.g/ in � holds provided
that f � g in �. Moreover, Q.f / is stable with respect to f in the following sense.

Proposition 2.10 (Stability of h-quasiconvex envelope). Suppose that � is an h-convex
domain in H, and let f; gW�! R be given functions. Assume that both Q.f / and Q.g/
exist in �. Then there holds

(2.4) sup
�

jQ.f / �Q.g/j � sup
�

jf � gj:

Proof. Let M WD sup� jf � gj. Since f �M � g in �, by the monotonicity of Q, we
get

(2.5) Q.f �M/ � Q.g/ in �.

Noticing that Q.f / �M is h-quasiconvex and Q.f / � f in �, by Definition (2.9), we
deduce that

Q.f / �M � Q.f �M/ in �;

which, by (2.5), yields
Q.f / �M � Q.g/ in �:

Exchanging the roles of f and g, we conclude the proof of (2.4).

Let us now discuss how to find the h-convex envelope of a given function. A straight-
forward method is to employ a convexification operator. For an h-convex domain � � H
and f W�! R, let T Œf � be given by (1.9). It is clear that inf� f � T Œf � � f in�. Also,
it is easily seen that T Œf � D f in � if and only if f is h-quasiconvex.

This operator is inspired by its Euclidean analogue, which is given by

Teucl.w/ D inf ¹max¹f .p/; f .q/º W w 2 Œp; q�; p 2 �; q 2 �º ; w 2 R3:

In the Euclidean case, where the quasiconvex envelope, written as Qeucl.f /, satisfies

Qeucl.f / D TeuclŒf �

in a bounded convex domain �. In contrast, the following example shows that in the
Heisenberg group, in general T Œf � is not necessarily an h-quasiconvex function.

Example 2.11. Let f WH! R be defined as f .p/D j1� z2j for p D .x; y; z/ 2H. One
can compute directly to get, for p D .x; y; z/,

T Œf �.p/ D

8̂<̂
:
z2 � 1; jzj � 1;

0; jzj < 1 and .x; y/ ¤ .0; 0/;
1 � z2; jzj < 1 and .x; y/ D .0; 0/;

which fails to be quasiconvex. In fact, letting p D .x; y; t/, q D .�x;�y; t/ with jt j < 1,
we see that q 2 Hp and at w D .0; 0; t/ 2 Œp; q�, we have

T Œf �.w/ D 1 � t2 > 0 D max¹T Œf �.p/; T Œf �.q/º:
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However, if we apply the operator one more time, then we have, for p D .x; y; z/ 2 H,

T 2Œf �.p/ D

´
z2 � 1; jzj � 1;

0; jzj < 1:

It is not difficult to see that Q.f / D T 2Œf � in H. Indeed, Noticing that T 2Œf � is h-
quasiconvex, by definition we have T 2Œf � � Q.f / in H. On the other hand, the reverse
inequalityQ.f /� T 2Œf � can be obtained by applying the operator T twice to the inequal-
ity Q.f / � f .

It turns out that in general one can obtain the quasiconvex envelope by iterating the
operator T . Such type of iteration is also used in [22] to construct the h-convex envelope
of a given continuous function in the Heisenberg group.

Theorem 2.12 (Iterative scheme with direct convexification). Let � be an h-convex do-
main in H. Suppose that f is bounded from below. Let T be the operator given by (1.9).
Then T nŒf �! Q.f / pointwise in � as n!1.

Proof. Notice that by the monotonicity of T nŒf � in n and the boundedness of f from
below, the pointwise limit of T nŒf � exists. Let us denote it by F , i.e.,

F WD lim
n!1

T nŒf �:

Let us fix " > 0, p 2 �, q 2 � \Hp and w 2 Œp; q�. For n sufficiently large, there holds

F.p/ � T nŒf �.p/ � " and F.q/ � T nŒf �.q/ � ":

Moreover, we have

max¹T nŒf �.p/; T nŒf �.q/º � T nC1Œf �.w/ � F.w/;

and therefore
max¹F.p/; F.q/º � F.w/ � ":

Letting "! 0, we deduce that F is h-quasiconvex and thus F � Q.f / in �.
On the other hand, for any w 2 �, and p 2 � and q 2 � \Hp such that w 2 Œp; q�,

there holds

max¹f .p/; f .q/º � max¹Q.f /.p/;Q.f /.q/º � Q.f /.w/:

It follows that T Œf � �Q.f / in�. We can iterate this argument to obtain T nŒf � �Q.f /
in� for every n. Hence, sending n!1, we conclude that F �Q.f / holds in�, which
completes the proof.

As shown in Example 2.11, T nŒf � D Q.f / may hold for a finite n. We do not know
in general how many iterations one needs to run to obtain Q.f /. It would be interesting
to find a condition to guarantee the finiteness of n.
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3. Nonlocal Hamilton–Jacobi equation

Inspired by [5], we would like to focus our attention on a PDE-based approach to build the
h-quasiconvex envelope of a given function f in a bounded domain � � H. We develop
the idea in Theorem 2.6, which provides a characterization of h-quasiconvexity in terms
of viscosity subsolutions of a nonlocal PDE. For our convenience of notations below, for
any function uW�! R and any p 2 �, we denote

Sp.u/ D ¹� 2 Hp \� W u.�/ < u.p/º:

We study the following nonlocal Hamilton–Jacobi equation:

(3.1) u.p/CH.p; u.p/;rHu.p// D f .p/ in �;

to which the subsolutions are defined with

H.p; u.p/;rHu.p// D sup
®˝
rHu.p/; .p

�1
� �/h

˛
W � 2 Sp.u/

¯
;

while the supersolutions are defined with

H.p; u.p/;rHu.p// D sup
®˝
rHu.p/; .p

�1
� �/h

˛
W � 2 OSp.u/

¯
:

Here we set
OSp.u/ WD ¹� 2 Hp \� W u.�/ � u.p/º:

The major difficulty lies at the degeneracy and nonlocal nature of the first order oper-
ator. We mainly study uniqueness and existence of solutions to this equation in a slightly
restrictive setting, assuming that the solutions u satisfy²

u D K on @�,(3.2)
u � K in �(3.3)

for some K 2 R. It turns out that we can obtain a unique solution if f satisfies the same
conditions.

These conditions can be viewed as a bounded-domain variant of coercivity assumption
on u. If u 2 C.H/ is coercive in H, that is, if

lim
R!1

inf
jpjG�R

u.p/!1;

then we can take K 2 R large and � D ¹p W u.p/ < Kº such that both (3.2) and (3.3)
hold.

3.1. Definition and basic properties of solutions

Let us first present the definition of subsolutions of (3.1).

Definition 3.1 (Subsolutions). Let f 2USC.�/ be locally bounded in�. A locally bound-
ed upper semicontinuous function uW�! R is called a subsolution of (3.1) if whenever
there exist p 2 � and ' 2 C 1.�/ such that u � ' attains a maximum at p,

(3.4) u.p/C sup
®˝
rH'.p/; .p

�1
� �/h

˛
W � 2 Sp.u/

¯
� f .p/:
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Note that the supremum in (3.4) does make sense. We consider naturally

sup
®˝
rH'.p/; .p

�1
� �/h

˛
W � 2 Sp.u/

¯
D 0

if rH'.p/D 0. It is also easily seen that Sp.u/¤ ; provided that rH'.p/¤ 0 and u� '
attains a local maximum at p.

We next give a definition of supersolutions.

Definition 3.2 (Supersolutions). Let f 2 LSC.�/ be locally bounded in �. A locally
bounded lower semicontinuous function uW�! R is called a weak supersolution of (3.1)
if whenever there exist p 2 � and ' 2 C 1.�/ such that u � ' attains a minimum at p,

(3.5) u.p/C sup
® ˝
rH'.p/; .p

�1
� �/h

˛
W � 2 OSp.u/

¯
� f .p/:

For any point p 2�, we also say that u2USC.�/ (respectively, LSC.�/) satisfies the
subsolution (respectively, supersolution) property at p if (3.4) (respectively, (3.5)) holds
for any '2C 1.�/ such that u � ' attains a maximum (respectively, minimum) at p.

As a standard remark in the theory of viscosity solutions, we may replace the max-
imum in the definitions above by local maximum or strict maximum.

Lemma 3.3 (Upper bound). Suppose that� is a domain in H. Let f 2USC.�/ be locally
bounded in �. If u 2 USC.�/ is a subsolution of (3.1), then u � f in �.

Proof. Let us first show u � f at all points where u can be tested. Assume that there
exists ' 2 C 1.�/ such that u � ' attains a maximum at some p0 2 �. If rH'.p0/ D 0,
then we immediately obtain the desired inequality u.p0/ � f .p0/ by Definition 3.1.

If rH'.p0/ ¤ 0 and thus Sp0.u/ ¤ ;, we can take a sequence �j 2 Sp0.u/ such that
�j ! p0 as j !1. This yields

sup
®˝
rH'.p0/; .p

�1
0 � �/h

˛
W � 2 Sp0.u/

¯
� lim sup

j!1

˝
rH'.p0/; .p

�1
0 � �j /h

˛
D 0;

As a result, we get u.p0/ � f .p0/ by Definition 3.1 again.
It remains to show that u � f holds also at those points where u cannot be tested. Fix

p0 2 � arbitrarily. Since u is locally bounded, for " > 0 small, we can find p" 2 � in a
neighborhood of p0 such that

p 7! u.p/ �
1

"
jp�10 � pj

4
G

attains a local maximum in � at p". In particular, we have

(3.6) u.p0/ � u.p"/ �
1

"
jp�10 � p"j

4
G :

By the local boundedness of u, we have p" ! p0 as " ! 0. Noticing that u is tested
from above by a smooth function at p", we may apply our result shown in the first part
to deduce u.p"/ � f .p"/: It follows from (3.6) that u.p0/ � f .p"/. Sending "! 0 and
applying the upper semicontinuity of f , we end up with u.p0/ � f .p0/.

Let us present more properties for (3.1).
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Lemma 3.4 (Basic properties). Suppose that � is a domain in H. For each locally bound-
ed f 2 USC.�/, let AŒf � denote the set of all subsolutions of (3.1). Then the following
properties hold.

(i) (Monotonicity) For any locally bounded f1; f2 2 USC.�/ satisfying f1 � f2 in �,
AŒf1� � AŒf2� holds.

(ii) (Constant addition invariance) For any c 2 R and u 2 AŒf �, u C c 2 AŒf C c�

holds.

(iii) (Left translation invariance) For any � 2 H, u� 2 AŒf�� holds, where u� and f�
are given by

u�.p/ D u.� � p/ and f�.p/ D f .� � p/; for p 2 ��:

Analogous properties to the above also hold for supersolutions of (3.1).

We omit the details of the proof, since it is quite straightforward from the structure of
the Hamiltonian.

3.2. Comparison principle

We next establish a comparison principle for (3.1) under the conditions (3.2) and (3.3).
General Dirichlet boundary problems will also be briefly discussed later.

Theorem 3.5 (Comparison principle with constant boundary data). Let � be a bounded
domain in H and let f 2 C.�/. Let u 2 USC.�/ and v 2 LSC.�/ be respectively a
subsolution and a supersolution of (3.1). Assume in addition that

(3.7) u � v D K on @�

and u � K in � for some K 2 R. Then u � v in �.

Proof. Assume by contradiction that max�.u� v/ D � for some � > 0. For " > 0 small,
we consider

ˆ".p; q/ D u.p/ � v.q/ �
jp � q�1j4G

"

for p;q 2�. It is clear thatˆ" attains a positive maximum in���. Let .p"; q"/ 2���
be a maximizer. We thus obtain

(3.8) ˆ".p"; q"/ � �;

which implies that

(3.9) u.p"/ � v.q"/ � �

and

(3.10)
jp" � q

�1
" j

4
G

"
� u.p"/ � v.q"/ � �

for all " > 0. Due to the boundedness of u and v, it follows from the inequality (3.10) that
jp" � q

�1
" jG ! 0, which in turn implies that dH .p"; q"/ D jp�1" � q"jG ! 0 as "! 0.
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By taking a subsequence, still indexed by ", we have p"; q" ! p0 as "! 0 for some
point p0 2 �. Thanks to (3.8) and the assumption that u � v on @�, we deduce that
p0 2 � and p"; q" 2 � for all " > 0 small.

We now apply the definition of subsolutions and supersolutions. Note that u � '1
attains a maximum at p" and v � '2 attains a minimum at q", where we take

'1.p/ D v.q"/C
jp � q�1" j

4
G

"
and '2.q/ D u.p"/ �

jp" � q
�1j4G

"

for p; q 2 H. Writing

p" D .xp" ; yp" ; zp"/ and q" D .xq" ; yq" ; zq"/;

we see, by direct calculations, that

rH'1.p"/ D rH'2.q"/

D
1

"

�
4A".xp" � xq"/ � 16B".yp" C yq"/; 4A".yp" � yq"/C 16B".xp" C xq"/

�
;(3.11)

where

A" D .xp" � xq"/
2
C .yp" � yq"/

2 and B" D zp" � zq" �
1

2
xp"yq" C

1

2
yp"xq" :

We next discuss two different cases.
Case 1. Suppose that there exists a subsequence, again indexed by " for simplicity of

notation, such that

sup
®˝
rH'2.q"/; .q

�1
" � �/h

˛
W � 2 OSq".v/

¯
D 0:

Then applying the definition of supersolutions to v, we get

(3.12) v.q"/ � f .q"/:

On the other hand, by Lemma 3.3, we obtain

(3.13) u.p"/ � f .p"/:

Combining (3.12) and (3.13), we have

u.p"/ � v.q"/ � f .p"/ � f .q"/

for " > 0 small. Letting "! 0, we use the continuity of f to get

lim sup
"!0

.u.p"/ � v.q"// � 0;

which is a contradiction to (3.9).
Case 1. Suppose that

sup
®˝
rH'2.q"/; .q

�1
" � �/h

˛
W � 2 OSq".v/

¯
> 0

for all " > 0 small. We then can find a sequence �";n 2 OSq".v/ such that

(3.14) hrH'2.q"/; .wn/hi � sup
®˝
rH'2.q"/; .q

�1
" � �/h

˛
W � 2 OSq".v/

¯
�
1

n

as n!1, where wn D q�1" � �";n 2 H0. In particular, we have v.�";n/ � v.q"/.
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In view of (3.3) and (3.9), we get v.q"/ � K � � . On the other hand, since v D K due
to (3.7), we see that as n!1 and "! 0, �";n cannot converge to a boundary point. In
other words, there exists r > 0 such that Br .�";n/ � �. We may assume that " is small
enough so that r > jp" � q�1" jG .

Besides, it also follows from (3.14) that

(3.15) hrH'2.q"/; .wn/hi > 0

for any n � 1 large. Taking

�.s/ D jp" � .swn/ � �
�1
";nj

4
G D jp" � .s � 1/wn � q

�1
" j

4
G ; for s 2 R;

with swn denoting the usual constant multiple of wn by the factor s, i.e.,

swn D .sxwn ; sywn ; 0/ for wn D .xwn ; ywn ; 0/;

we get, by direct calculations,

�0.s/ D 4A";s.xp" � xq" C .s � 1/xwn/xwn C 4A";s.yp" � yq" C .s � 1/ywn/ywn

� 16B";s.yp" C yq"/xwn C 16B";s.xp" C xq"/ywn ;

where we let

A";s D .xp" � xq" C .s � 1/xwn/
2
C .yp" � yq" C .s � 1/ywn/

2;

B";s D zp" � zq" �
1

2
xp"yq" C

1

2
yp" xq" �

1

2
.s � 1/xwnyq" C

1

2
.s � 1/ywn xq" :

It is then clear that

�0.1/ D .4A".xp"�yq"/�16B".yp"Cyq"//xwnC.4A".yp"�yq"/C16B".xp"Cxq"//ywn

D " hrH'2.q"/; wni :

Owing to (3.15), we are led to �0.1/ > 0, which implies

�.s/ D jp" � .swn/ � �
�1
";nj

4
G < jp" � q

�1
" j

4
G

for any s < 1 sufficiently close to 1. This amounts to saying that we can take sn 2 .0; 1/
such that sn ! 1 as n!1 and

(3.16) j�";n � �
�1
";nj

4
G < jp" � q

�1
" j

4
G

for �";n D p" � .snwn/. This yields �";n 2 Br .�";n/ and thus �";n 2 �. It is also clear that
�";n 2 Hp" and

(3.17)
ˇ̌
.p�1" � �";n/h � .q

�1
" � �";n/h

ˇ̌
! 0 as n!1:

In view of the maximality of ˆ" at .p"; q"/, we have

u.�";n/ � v.�";n/ �
1

"
j�";n � �

�1
";nj

4
G � u.p"/ � v.q"/ �

1

"
jp" � q

�1
" j

4
G
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which by (3.16) yields

u.�";n/ � u.p"/ < v.�";n/ � v.q"/ � 0:

We have shown that �";n 2 Sp".u/. Recalling the definition of subsolutions, we deduce
that

u.p"/C
˝
rH'1.p"/; .p

�1
" � �";n/h

˛
� f .p"/:

On the other hand, we can also apply the definition of supersolutions, together with (3.14),
to get

(3.18) v.q"/C
˝
rH'2.q"/; .q

�1
" � �";n/h

˛
� f .q"/ �

1

n

for n � 1 large. Combining these two inequalities, we use (3.11) to obtain

u.p"/ � v.q"/ � f .p"/ � f .q"/ �
˝
rH'1.p"/; .p

�1
" � �";n/h � .q

�1
" � �";n/h

˛
C
1

n
�

Sending n!1 and applying (3.17), we get

u.p"/ � v.q"/ � f .p"/ � f .q"/;

which is a contradiction to (3.9) and the continuity of f .

It is possible to give a slightly different comparison theorem for more general Dirichlet
boundary problems under the h-convexity assumption on �. To this end, we prove the
following lemma using the intrinsic cone property of h-convexity given in Theorem 1.4
of [1]; see also [26] for regularity results related to this property.

Lemma 3.6. Let � � H be an open set. If � is h-convex, then for every p 2 @� and
q 2 Hp \�, the horizontal segment .p; q� joining p and q stays in �.

Proof. Assume by contradiction that there exist p 2 @�, q 2 Hp \� such that the half-
open horizontal segment .p; q� does not stay in�. Letw be the closest point to q on Œq;p/
that is not in �, i.e., w D p � �0.p�1 � q/, where

�0 D sup¹� � 0 W p � �.p�1 � q/ … �º:

Then w 2 @�, q 2 Hw and w � �.w�1 � q/ 2 � for all � 2 .�0; 1/. Such w is a so-called
non-characteristic point defined in [1]. In view of Theorem 1.4 in [1], the h-convexity of�
implies the existence of an intrinsic cone in the exterior of� with vertex w and axis along
the horizontal segment .p;w�, which further enables us to find a point z 2 .p;w/ and r > 0
such that Br .z/ �H n�. Noticing that there exists a sequence pj 2 � such that pj ! p

as j !1, we can take qj D pj � p�1 � q and zj D pj � p�1 � z so that qj ; zj 2 Hpj and
qj ! q, zj ! z as j !1. We choose j > 0 large such that qj 2 � and zj 2 Br .z/.
This contradicts the h-convexity of�, since pj ; qj 2 �, but the point zj on the horizontal
segment Œpj ; qj � is not in �.

Theorem 3.7 (Comparison principle under domain convexity). Let � be a bounded
h-convex domain in H and let f 2 C.�/. Let u 2 USC.�/ and v 2 LSC.�/ be respect-
ively a subsolution and a supersolution of (3.1). If u � v on @�, then u � v in �.



Horizontally quasiconvex envelope in the Heisenberg group 75

Proof. The proof is almost the same as that of Theorem 3.5 except for some necessary
modifications to handle this general boundary condition. The only difference lies at the
argument by contradiction in Case 2 on the occasion when �";n 2 OSq" converges to a
boundary point �0 2 @� as n!1 and "! 0. (This gives a contradiction to the condi-
tions (3.3) and (3.7) in the setting of Theorem 3.5.)

Let us derive a contradiction only in this case. Thanks to the condition u� v on @�, we
have u.�0/� v.�0/, which by (3.9) and the upper semicontinuity of u yields the existence
of r > 0 such that

(3.19) Br .�0/ \� � ¹z 2 � W u.z/ < u.p"/º

for any " > 0 small.
Since p"; q" ! p0 2 �, by Lemma 3.6 we can utilize the h-convexity of � to deduce

that
�� D .1 � �/p0 C ��0 2 �

for all 0 � � < 1. We may also choose � close to 1, depending only on r , such that
�� 2 Br .�0/ \�. Letting

��";n D .1 � �/q" C ��";n D q" � .�wn/;

we have ��";n 2 Br .�0/ \� when n is sufficiently large and " is sufficiently small. Let us
now take ��";n D p" � .�wn/. It is easily seen that

j��";n � .�
�
";n/
�1
jG ! 0 as n!1 and "! 0;

and thus ��";n 2Br .�0/ for n large and " small. By (3.19), we have ��";n 2 Sp".u/. It follows
from the definition of subsolutions that

(3.20) u.p"/C hrH'1.p"/; �.wn/hi � f .p"/:

Combining this with (3.18) and using (3.9) and (3.11), we obtain

� � u.p"/ � v.q"/ �
1

n
C .1 � �/ hrH'1.p"/; .wn/hi :

Applying (3.20) and (3.9) again, we are led to

� �
1

n
C
1 � �

�
.f .p"/ � u.p"// �

1

n
C
1 � �

�
.f .p"/ � v.p"// :

Sending n!1 and "! 0, we get

� �
1 � �

�
.f .p0/ � v.p0// :

Passing to the limit as �! 1 immediately yields a contradiction.

3.3. Existence of solutions

We also adapt Perron’s method to show the existence of solutions of (3.1) with f satis-
fying (1.4) and (1.5). In the sequel, for a locally bounded function uW�! R, we denote
by u� and u� its upper and lower semicontinuous envelopes, respectively.
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Theorem 3.8 (Existence of solutions). Let � � H be a bounded domain. Assume that
f 2 C.�/ satisfies (1.4) and (1.5) for someK 2 R. Assume that there exists a subsolution
u 2 C.�/ of (3.1) satisfying u D K on @�. For any p 2 �, let

(3.21) U.p/ D sup¹u.p/ W u 2 USC.�/ is a subsolution of (3.1)º:

Then U � is continuous in � and is the unique solution of (3.1) satisfying U � � f � K
in � and U � D f D K on @�.

Remark 3.9. In the theorem above, if the domain � is further assumed to be h-convex,
then the existence of u is guaranteed; see Proposition 4.1 below for an explicit construction
of u satisfying the required conditions.

Remark 3.10. In view of Lemma 3.3, we see that any subsolution u satisfies u � f in�.
Therefore u � u � f in � holds and U in (3.21) is well-defined.

Let us first show that U is a subsolution. To this purpose, we prove the following
result, where we do not need the coercivity-like conditions (3.2) and (3.3).

Proposition 3.11 (Maximum subsolution). Suppose that � is a domain in H and let f 2
USC.�/. Let A be a family of subsolutions of (3.1). Let v be given by

v.p/ D sup¹u.p/ W u 2 Aº; for p 2 �:

Then v� is a subsolution of (3.1).

Proof. Suppose that there exist ' 2 C 1.�/ and p0 2 � such that v� � ' attains a strict
maximum at p0. Then we can find a sequence uj 2A and pj 2� such that uj � ' attains
a maximum at pj , and, as j !1,

(3.22) pj ! p0 and uj .pj /! v�.p0/:

Let us first consider the case when rH'.p0/¤ 0. It follows immediately that Sp0.v
�/

¤ ;. For any ı > 0 small, there exists qı 2 Sp0.v
�/ such that

(3.23) sup
®˝
rH'.p0/; .p

�1
0 � �/h

˛
W � 2 Sp0.v�/

¯
�
˝
rH'.p0/; .p

�1
0 � qı/h

˛
C ı:

Let us take �j 2 Hpj \� such that �j ! qı as j !1. Since v�.qı/ < v�.p0/ and

lim sup
j!1

uj .�j / � lim sup
j!1

v�.�j / � v
�.qı/;

we get uj .�j / < v�.p0/ and thus �j 2 Spj .uj / for j � 1 sufficiently large.
Applying Definition 3.1, we have

uj .pj /C sup
®˝
rH'.pj /; .p

�1
j � �/h

˛
W � 2 Spj .uj /

¯
� f .pj /;

which implies
uj .pj /C

˝
rH'.pj /; .p

�1
j � �j /h

˛
� f .pj /:

Letting j !1, by (3.22) and the upper semicontinuity of f , we are led to

v�.p0/C
˝
rH'.p0/; .p

�1
0 � qı/h

˛
� f .p0/:
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It follows from (3.23) that

v�.p0/C sup
®˝
rH'.p0/; .p

�1
0 � �/h

˛
W � 2 Sp0.v

�/
¯
� f .p0/C ı:

Due to the arbitrariness of ı > 0, we obtain

v�.p0/C sup
®˝
rH'.p0/; .p

�1
0 � �/h

˛
W � 2 Sp0.v

�/
¯
� f .p0/:

Let us discuss the case when rH'.x0/ D 0. Since uj � ' attains a maximum at pj ,
by Lemma 3.3, we get uj .pj / � f .pj /. Sending j !1, we have v�.p0/ � f .p0/, as
desired. Our proof is now complete.

Remark 3.12. Proposition 3.11 can be used in more general circumstances than the set-
ting in Theorem 3.8. Note that f is only assumed to be upper semicontinuous in � in
contrast to the continuity assumption in Theorem 3.8.

Remark 3.13. The proof of Proposition 3.11, which is just an adaptation of Perron’s
argument, is certainly not restricted to (3.1). It can be extended with ease to a more general
class of nonlocal Hamilton–Jacobi equation including

sup
®˝
rHu.p/; .p

�1
� �/h

˛
W � 2 OSp.u/

¯
D 0:

In this case, in view of Theorem 2.6, our result simply means that the upper semicon-
tinuous envelope of the pointwise supremum of a class of upper semicontinuous h-quasi-
convex functions is also h-quasiconvex.

The following result shows that the maximal subsolution is a solution.

Proposition 3.14 (Locally greater subsolutions). Let � � H be a bounded domain and
let f 2 LSC.�/. Let u be a subsolution of (3.1). Assume that u� � f on @�. If u� fails to
satisfy the supersolution property at p0 2 �, then there exist r > 0 and a subsolution Ur
of (3.1) such that

(3.24) sup
Br .p0/

.Ur � u/ > 0

and

(3.25) Ur D u in � n Br .p0/.

Proof. Since u� fails to satisfy the supersolution property at p0, there exists ' 2 C 1.�/
such that u� � ' attains a minimum at p0 but

(3.26) u�.p0/C sup
®˝
rH'.p0/; .p

�1
0 � �/h

˛
W � 2 OSp0.u�/

¯
< f .p0/:

Since the supremum is nonnegative, it is then clear that

(3.27) u�.p0/ < f .p0/:

By adding ajp � p�10 j
4
G C b to ' with a < 0 and b 2 R, we may additionally assume

that there exists r > 0 small satisfying

.u� � '/.p/ > .u� � '/.p0/ D 0

for all p 2 Br .p0/ n ¹p0º. We also take ı > 0 accordingly small such that

'.p/C ı � u.p/ for p 2 Br .p0/ n Br=2.p0/.
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Letting

Ur .p/ D

´
max¹'.p/C ı; u.p/º; if p 2 Br .p0/,
u.p/; if p … Br .p0/,

we see that (3.24) and (3.25) hold. In what follows we show that Ur is a subsolution
of (3.1) for such r > 0 and ı > 0 small.

Suppose that  2 C 1.�/ is a test function such that Ur �  attains a maximum at
some q0 2 �. We divide our argument into two cases.

Case 1. Suppose that Ur .q0/ D u.q0/. It follows that u�  attains a maximum at q0.
Since u is a subsolution, we have

(3.28) u.q0/C sup
®˝
rH .q0/; .q

�1
0 � �/h

˛
W � 2 Sq0.u/

¯
� f .q0/:

Noticing that Ur � u in �, we have Sq0.Ur / � Sq0.u/, which by (3.28) yields

Ur .q0/C sup
®˝
rH .q0/; .q

�1
0 � �/h

˛
W � 2 Sq0.Ur /

¯
� f .q0/;

as desired.
Case 2. Suppose that Ur .q0/ D '.q0/C ı. In this case, we have q0 2 Br .p0/. Also,

it is easily seen that ' C ı �  attains a maximum at q0, which yields

rH .q0/ D rH'.q0/:

It thus suffices to show that there exists r; ı > 0 small such that

Ur .q/C sup
®˝
rH'.q/; .q

�1
� �/h

˛
W � 2 Sq.Ur /

¯
� f .q/

for all q 2 Br .p0/ satisfying Ur .q/ D '.q/C ı.
Arguing by contradiction, we take rn; ın > 0 and qn 2 Brn.p0/ such that rn; ın ! 0

as n!1,
Urn.qn/ D '.qn/C ın;

and

(3.29) '.qn/C 2ın C sup
®˝
rH'.qn/; .q

�1
n � �/h

˛
W � 2 Sqn.Ur /

¯
> f .qn/:

Note that if there exists a subsequence of qn at which rH'.qn/D 0, then sending n!1
in (3.29) yields '.p0/ � f .p0/, which is clearly a contradiction to (3.27).

We thus only need to consider the case when rH'.qn/ ¤ 0 for all n � 1. By (3.29),
this implies the existence of �n 2 Sqn.Urn/ such that

(3.30) '.qn/C 2ın C
˝
rH'.qn/; .q

�1
n � �n/h

˛
> f .qn/:

In particular, we have �n 2 Hqn \� and

(3.31) u.�n/ � Urn.�n/ < '.qn/C ın:

Due to the boundedness of �, we may find a subsequence, still indexed by n, such that
�n ! �0 for some �0 2 �. Since the horizontal plane Hp is continuous in p, we have
�0 2 Hp0 . Moreover, passing to the limit in (3.31), we obtain

u�.�0/ � '.p0/ D u�.p0/;
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which by (3.27) implies u�.�0/ < f .p0/. In view of the assumption that u� � f on @�,
we immediately have �0 2 �. In other words, we have shown that

(3.32) �0 2 OSp0.u�/:

Finally, taking lim infn!1 in (3.30), we are led to

u�.p0/C
˝
rH'.p0/; .p

�1
0 � �0/h

˛
� f .p0/;

which, together with (3.32), yields a contradiction to (3.26).

Let us complete the proof of Theorem 3.8.

Proof of Theorem 3.8. Let U be given by (3.21). By Proposition 3.11, U � is a subsolution
of (3.1). Also, by Lemma 3.3 and the continuity of f in �, we obtain

(3.33) U � � f � K in �.

By the assumptions on u, we also have U � u in � and

(3.34) .U �/� � U� � u D K on @�.

Applying Proposition 3.14, we see that .U �/� is a supersolution of (3.1), for otherwise we
can construct a subsolution locally larger than U �, which contradicts the definition of U .
Noticing that (3.33) and (3.34) are combined to imply that

U � D .U �/� D K on @�,

by the comparison principle, Theorem 3.5, we get U � � .U �/� in �. It follows that U �

is continuous in � and is the unique solution of (3.1) satisfying U � D f D K on @�.

Following the proof above, one can obtain an existence result for general Dirichlet
boundary problems under the h-convexity of �.

Theorem 3.15 (Existence for general Dirichlet problems). Let � � H be a bounded
h-convex domain and let f 2 C.�/. Assume that there exist a subsolution u 2 C.�/
of (3.1) such that u D f on @�. Let U be given by (3.21). Then U � is continuous in �
and is the unique solution of (3.1) satisfying U � D f on @�.

We omit the detailed proof but remark that Theorem 3.7 enables us to handle general
boundary data following similar arguments above.

4. H-quasiconvex envelope via PDE-based iteration

In Section 1, an iteration was introduced to find the h-quasiconvex envelope Q.f / of a
given function f in a bounded h-convex domain��H with f satisfying (1.4) and (1.5).
In this section, we first prove our main result, Theorem 1.1. We shall later study a more
general case when � is possibly unbounded without boundary data prescribed on @�.

We begin with an easy construction of an h-quasiconvex f as a lower bound of the
whole scheme.
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Proposition 4.1 (Existence of h-quasiconvex barriers). Let��H be a bounded h-convex
domain. Assume that f 2 C.�/ satisfies (1.4) and (1.5) for someK 2R. Then there exists
f 2 C.�/ h-quasiconvex in � such that f � f in � and f D K on @�.

Proof. By Proposition 2.5, we see that

 WD � QdH .�;H n�/

is an h-quasiconvex function in H. Since f is continuous and � is bounded, there exists
a modulus of continuity !f , strictly increasing, such that

f .p/ � �!f . QdH .p;H n�//CK for all p 2 �.

Taking

(4.1) g.s/ D �!f .�s/CK; for s � 0;

we immediately get

f .p/ � g.� QdH .p;H nE// � g. .p// for all p 2 �.

Let f D g ı  . We easily see that f � f in � and f D K on @�. Noticing that g is
continuous and nondecreasing, we deduce by Lemma 2.8 that f is h-quasiconvex in�.

Note that the existence of the h-quasiconvex envelope Q.f / is guaranteed by the
existence of f . Moreover, due to the conditions above, we have Q.f / D f D K on @�.

Let u0D f . By Theorem 3.8, for nD 1;2; : : :we can find a unique solution un of (1.6)
satisfying (1.7) and (1.8). By Lemma 3.3, one can also see that

(4.2) f � � � � � un � un�1 � � � � � u0 D f in � for n D 1; 2; : : :

We proceed to prove Theorem 1.1. To this end, we mention a fundamental fact on
monotone sequences of functions.

Remark 4.2. Since un is non-increasing in n, the pointwise limit limn!1 un is equal to
lim sup�n!1 un, defined by

limsup�
n!1

un.p/ D lim
k!1

sup¹un.q/ W q 2 B1=k.p/; n � kº; p 2 �:

In fact, for any fixed p 2 �, " > 0 and any n � 1, by the upper semicontinuity of un, we
can take k � 1 sufficiently large to get

un.p/ � sup¹un.q/ W q 2 B1=k.p/º � ":

By the monotonicity of un in n, we have

un.p/ � sup¹un.q/ W q 2 B1=k.p/; n � kº � ";

which yields
un.p/ � limsup�

n!1
un.p/ � ":
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Letting n!1 and "! 0, we are led to

lim
n!1

un.p/ � limsup�
n!1

un.p/:

Since the reverse inequality clearly holds, we thus obtain the equality.

Proposition 4.3 (Stability of h-quasiconvexity). Suppose that � is a bounded h-convex
domain in H. Let u0 D f 2USC.�/ and let un 2USC.�/ be a subsolution of (1.6). Then

u D limsup�
n!1

un

is h-quasiconvex in �.

Proof. Our argument below in based on the characterization given in Theorem 2.6. Sup-
pose that there exist p0 2� and ' 2 C 1.�/ such that u� ' attains a strict maximum in�
at p0. Then by Remark 4.2, there exists pn 2� such that un � ' attains a local maximum
at pn and pn ! p0, un.pn/! u.p0/ as n!1.

We may assume that rH'.p0/ ¤ 0, for otherwise it is clear that˝
rH'.p0/; .p

�1
0 � �/h

˛
D 0

holds for all � 2 Sp0.u/. We thus have Sp0.u/ ¤ ;. For any " > 0, let �0 2 Sp0.u/ satisfy

(4.3)
˝
rH'.p0/; .p

�1
0 � �0/h

˛
� sup

®˝
rH'.p0/; .p

�1
0 � �/h

˛
W � 2 Sp0.u/

¯
� ":

Since u.�0/ < u.p0/, we have un.�0/ < un.pn/ when n is sufficiently large. Then there is
a point �n 2Hpn satisfying un.�n/ < un.pn/ for n large and p�1n � �nD p

�1
0 � �0. Applying

the definition of subsolutions of (1.6), we get

un.pn/C
˝
rH'.pn/; .p

�1
n � �n/h

˛
� un�1.pn/;

which is equivalent to

un.pn/C
˝
rH'.pn/; .p

�1
0 � �0/h

˛
� un�1.pn/:

Passing to the limit as n!1, we have

u.p0/C
˝
rH'.p0/; .p

�1
0 � �0/h

˛
� u.p0/:

It follows from (4.3) that

sup
®˝
rH'.p0/; .p

�1
0 � �/h

˛
W � 2 Sp0.u/

¯
� ":

Letting "! 0, we get

sup
®˝
rH'.p0/; .p

�1
0 � �/h

˛
W � 2 Sp0.u/

¯
� 0:

The proof for h-quasiconvexity of u is now complete.

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. In view of Proposition 4.1, there exists f 2 C.�/ h-quasiconvex
such that f � f in� and f D f D K on @�. Since un 2 C.�/ is a monotone sequence
and un � f in �, it converges to u 2 USC.�/ pointwise as n!1. We thus get u D
Q.f /D f DK on @�. By Proposition 4.3, we see that u is h-quasiconvex in�. It follows
immediately that u � Q.f / in �.
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Note that Q.f / is a subsolution of (1.6) for every n satisfying Q.f / D f on @�.
Then by the comparison principle, we have Q.f / � un in �. We thus have Q.f / � u
in � and therefore un ! Q.f / pointwise in � as n!1.

The uniform convergence of un requires extra work. Let us extend the definitions of un
(n D 0; 1; 2; : : :) by a constant K to the whole space H, that is,

uKn .p/ D

´
un.p/ if p 2 �,
K if p 2 H n�.

Let us verify that uKn is a solution of

(4.4) uKn .p/CH.p; u
K
n .p/;rHu

K
n .p// D u

K
n�1.p/ in H:

In fact, it is obvious that uKn is a supersolution. Below we show that it is a subsolution.
Suppose that there is a test function ' 2 C 1.H/ such that uKn � ' attains a maximum at
p0 2 H. We easily see that

(4.5) uKn .p0/C sup
®˝
rH'.p0/; .p

�1
0 � �/h

˛
W � 2 Sp0.u

K
n /
¯
� uKn�1.p0/

holds if p0 2 H n� or p0 2 �. In the case that p0 2 @�, extending f to get

f K.p/ D

´
f .p/ if p 2 �,
K if p 2 H n�.

we observe that f K is h-quasiconvex in H and f K � ' also attains a maximum at p0; the
latter is due to the facts that f K � uKn in H and f K D uKn D K on @�. It follows from
Theorem 2.6 that

sup
®˝
rH'.p0/; .p

�1
0 � �/h

˛
W � 2 Sp0

�
f K

�¯
� 0;

which implies that

sup
®˝
rH'.p0/; .p

�1
0 � �/h

˛
W � 2 Sp0.u

K
n /
¯
� 0:

It is then clear that (4.5) holds again, since p0 2 @� and thus uKn .p0/ D u
K
n�1.p0/ D K.

Hence, uKn is a subsolution of (4.4).
We next translate the extended solutions. For any fixed h 2 H, we have that

(4.6) uKn�1;h.p/ � !f .jhjG/ � u
K
n�1.p/ in H

holds for n D 1, where !f is the modulus of continuity of f in �. Using Lemma 3.4, we
can also deduce that uK

n;h
.p/ D uKn .h � p/ � !f .jhjG/ is a subsolution of

uKn;h.p/CH.p; u
K
n;h.p/;rHu

K
n;h.p// D u

K
n�1;h.p/ � !f .jhjG/ in H,

and therefore by (4.6) is a subsolution of

uKn;h.p/CH.p; u
K
n;h.p/;rHu

K
n;h.p// D u

K
n�1.p/ in H
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in the case that n D 1. Take a bounded h-convex domain �0 such that

¹p 2 H W jp�1 � qjG � jhj; q 2 �º � �
0:

Applying the comparison principle, Theorem 3.5, in �0, we are led to

uK1;h.p/ � !f .jhjG/ � u
K
1 .p/ in �0,

which implies (4.6) with n D 2.
We can repeat the argument to show that (4.6) holds for all n � 1. Exchanging the

roles of uKn and uK
n;h

, we deduce that

juKn;h � u
K
n j � !f .jhjG/ in H;

which yields
jun.h � p/ � un.p/j � !f .jhjG/

for all for all p 2 .h�1 � �/ \ � and n � 1. Due to the arbitrariness of h, we get the
equi-continuity of un in � with modulus !f . It follows that Q.f / D infn�1 un is also
continuous in� with the same modulus. The uniform convergence of un toQ.f / in� as
n!1 is an immediate consequence of Dini’s theorem.

Remark 4.4. It is possible to use the same scheme to approximate the h-quasiconvex
envelope Q.f / of a function f 2 C.�/ that takes general boundary values. In this case,
the uniqueness and existence of un are guaranteed by Theorem 3.7 and Theorem 3.15.
The pointwise convergence of un to Q.f / can be shown in the same way as in the proof
of Theorem 1.1. It is also possible to obtain uniform convergence if f can be extended to
an h-quasiconvex function in a neighborhood of �.

We conclude this section by providing a relaxed version of Theorem 1.1 with no
assumptions on boundedness or convexity of �. Based on Proposition 3.11, for any f 2
USC.�/ that is bounded below, one can still obtain a sequence un that converges point-
wise to Q.f / in � without even using the boundary value of f . In this general case, we
can take un to be the maximum subsolution of (1.6).

More precisely, let u0 D f and, for n D 1; 2; : : :, let un be the maximum subsolution
of (1.6), that is,

(4.7) un D v
�
n in �;

where, for any p 2 �,

(4.8) vn.p/ D sup¹u.p/ W u 2 USC.�/ is a subsolution of (3.1) with f D un�1º:

By Proposition 3.11, un is indeed a subsolution of (3.1) with f D un�1.

Theorem 4.5 (Iterative scheme for envelope without boundary data). Let� be an h-convex
domain in H and let f 2 USC.�/. Assume that there exists an h-quasiconvex function
f 2USC.�/ such that f � f in�. Let un 2USC.�/ be iteratively defined by (4.7)–(4.8).
Then un!Q.f / pointwise in� as n!1, whereQ.f / 2USC.�/ is the h-quasiconvex
envelope of f .
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Proof. By Lemma 3.3, we still have (4.2). It then follows from Remark 4.2 and Proposi-
tion 4.3 that limn!1 un 2 USC.�/ and

lim
n!1

un � Q.f / in �.

We can also get the reversed inequality by showing thatQ.f /�un in� for all n� 1. Note
that here we cannot prove it by the comparison principle, Theorem 3.5, due to the possible
unboundedness of � and loss of the boundary data. Instead, we use the maximality of un
among all subsolutions of (1.6).

5. H-convex hull

In this section, we study the h-convex hull of a given set in H. Using the definition of
h-convex sets introduced in Definition 2.1, we can define the h-convex hull of a set in the
following natural way.

Definition 5.1 (H-convex hull). For a set E � H, we denote by co.E/ the h-convex hull
of E defined to be the smallest h-convex set in H containing E, i.e.,

co.E/ D
T
¹D � H W D is h-convex and satisfies E � Dº:

Below we attempt to understand several basic properties of h-convex hulls.

5.1. Level set formulation

We first establish connection between h-quasiconvex envelopes and h-convex hulls. Our
general process of convexifying an open or closed set is an adaptation of the so-called
level set method, which can be summarized as follows.
(1) For a given open (respectively, closed) set E � H, we take a function f 2 C.H/

such that

(5.1) E D ¹p 2 H W f .p/ < 0º .respectively, E D ¹p 2 H W f .p/ � 0º/:

(2) We construct the h-quasiconvex envelope Q.f /.
(3) The h-convex hull turns out to be the 0-sublevel set of Q.f /, that is,

co.E/ D ¹p 2 H W Q.f /.p/ < 0º .resp., co.E/ D ¹p 2 H W Q.f /.p/ � 0º/:

Let us prove the result stated in the step (3) above under more precise assumptions.
We first examine the case when E is a bounded open or closed set in H. Then we can take
�DBR.0/� co.E/withR>0 large and use Theorem 1.1 to construct the h-quasiconvex
envelope Q.f / 2 C.�/ for a defining function f 2 C.�/ of the set E.

Theorem 5.2 (Level set method for h-convex hull). LetE�H be a bounded open (respec-
tively, closed) set. Let R > 0 large such that co.E/ � BR.0/. Assume that f 2 C.H/
satisfies (5.1). Assume also that there exists K > 0 such that

(5.2)

´
f � K in BR.0/,
f � K in H n BR.0/.
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Let Q.f / be the h-quasiconvex envelope of f . Then, Q.f / 2 C.H/ and Q.f / satisfies

(5.3) Q.f / � K in H n BR.0/

and

(5.4) co.E/D¹p 2� WQ.f /.p/<0º .respectively, co.E/D¹p 2� WQ.f /.p/�0º/:

Proof. Let us only give a proof in the case when E is a bounded open set. One can use
the same argument to prove the result for a bounded closed set E. In our current setting,
we take � D BR.0/ and choose

f .p/ D min¹L.jpjG �R/; 0º CK; for p 2 H;

with L > 0 large so that all of the assumptions in Theorem 1.1 are satisfied for any n > 0.
We thus have Q.f / 2 C.�/ and (5.3).

Note that co.E/� ¹p 2H WQ.f /.p/ < 0º holds, since the right-hand side is h-quasi-
convex and contains E. In order to show (5.4), it thus suffices to prove the reverse implic-
ation. To this end, we recall from Proposition 2.5 that

 co.E/ WD �
QdH .�;H n co.E//

is an h-quasiconvex function in H. We adopt the same proof of Proposition 4.1 to construct
an h-quasiconvex function f WD g ı  co.E/ in � satisfying f .p/ � f .p/ for all p 2 �,
where g is determined by the modulus of continuity !f of f , given by (4.1). It follows
that

Q.f / � Q.g ı  co.E// D g ı  co.E/:

Since g is actually strictly increasing, we are led to

¹p 2 H W Q.f /.p/ < 0º � ¹p 2 H W g. co.E/.p// < 0º

D ¹p 2 H W  co.E/.p/ < 0º D co.E/:

The proof is now complete.

As an immediate consequence of the result above, if E �H is a bounded open set, its
h-convex hull co.E/ is also bounded and open as well. Likewise, co.E/ is bounded and
closed provided that E � H is bounded and closed.

The h-convex hull co.E/ essentially does not depend on the choices of � and f 2
C.H/ as long as � is large enough to contain co.E/ and the 0-sublevel set of f agrees
with E.

Following a similar argument as in the proof of Theorem 5.2, one can construct the h-
convex hull of a general, possibly unbounded open setE �H. In this case, we study co.E/
in � D H without imposing technical assumptions like (5.2). We can use Theorem 4.5 to
get Q.f / 2 USC.H/.

Theorem 5.3. Let E � H be an open set. Assume that f 2 C.H/ satisfies

E D ¹p 2 H W f .p/ < 0º:

Let Q.f / be the h-quasiconvex envelope of f . Then Q.f / 2 USC.H/ and

co.E/ D ¹p 2 H W Q.f /.p/ < 0º:

The proof is omitted, since it resembles that of Theorem 5.2.
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5.2. Quantitative inclusion principle

The definition of h-convex hulls, Definition 5.1, immediately yields the inclusion prin-
ciple: co.D/ � co.E/ if D � E. Using the formulation via h-quasiconvex envelopes, we
can quantify this result for bounded open or closed sets.

Theorem 5.4 (Quantitative inclusion principle). Let D and E be two bounded open (or
closed) sets in H. If D � E, then co.D/ � co.E/ and (1.12) holds.

In order to prove this result, let us introduce the following sup-convolution for a
bounded continuous function u with ı > 0:

(5.5) uı.p/ D sup
QdH .p;q/<ı

u.q/; for p 2 H:

Due to the continuity of u, we also have

uı.p/ D max
QdH .p;q/�ı

u.q/; for p 2 H:

It turns out that this sup-convolution also preserves h-quasiconvexity.

Lemma 5.5 (H-quasiconvexity preserving by sup-convolution). Assume that u is a bound-
ed continuous function in H. Let uı 2 C.H/ be given by (5.5). Then uı is h-quasiconvex
in H if u is h-quasiconvex in H.

Proof. Note that uı is bounded and continuous in H, since u is bounded and continuous.
We approximate uı by

(5.6) uıˇ .p/ D sup
q2H

°
u.q/ �

QdH .p; q/
ˇ

ıˇ

±
with ˇ > 0 large. It is easily seen that uı

ˇ
is also bounded and continuous in H. For any

p0 2 H, we can find qı;ˇ 2 H such that

(5.7) uıˇ .p0/ D u.qı;ˇ / �
QdH .p0; qı;ˇ /

ˇ

ıˇ
;

which yields
QdH .p0; qı;ˇ /

ˇ

ıˇ
� u.qı;ˇ / � u

ı
ˇ .p0/:

Due to the boundedness of u, sending ˇ !1, we obtain

lim sup
ˇ!1

QdH .p0; qı;ˇ / � ı:

We thus can take a subsequence of qı;ˇ converging to a point qı 2 H, which satisfies
QdH .p0; qı/ � ı. It follows that

(5.8) lim sup
ˇ!1

uıˇ .p0/ � u.qı/ � max
QdH .p0;q/�ı

u.q/ D uı.p0/:
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On the other hand, noticing that

uıˇ .p0/ � sup
°
u.q/ �

QdH .p0; q/
ˇ

ıˇ
W QdH .p0; q/ < ı

±
;

we deduce that

(5.9) sup
ˇ�1

uıˇ .p0/ � sup¹u.q/ W QdH .p; q/ < ıº D uı.p0/:

Combining (5.8) and (5.9) as well as the arbitrariness of p0, we are led to

(5.10) uı.p/ D sup
ˇ�1

uıˇ .p/ for all p 2 H.

Suppose that there exist ' 2 C 1.H/ and p0 2 H such that uı
ˇ
� ' attains a local

maximum at p0. Then

(5.11) .p; q/ 7! u.q/ � '.p/ �
QdH .p; q/

ˇ

ıˇ

attains a maximum at .p0; qı;ˇ /, where qı;ˇ 2 H is the point satisfying (5.7). The max-
imality of (5.11) implies that u �  attains a maximum at qı;ˇ , where  2 C 1.H/ is
given by

 .q/ D '.p0/C
QdH .p0; q/

ˇ

ıˇ
�

Since u is h-quasiconvex, we have

(5.12) sup
®˝
rH .qı;ˇ /; .q

�1
ı;ˇ � �/h

˛
W � 2 Sqı;ˇ .u/

¯
� 0:

Note that for any � 2 Sp0.u
ı
ˇ
/, we can choose � D qı;ˇ � p

�1
0 � � so that � 2 Sqı;ˇ .u/.

Indeed, we can easily verify that � 2 Hqı;ˇ and by (5.6) and (5.7) we obtain

u.�/ �
QdH .�; �/

ˇ

ıˇ
� uıˇ .�/ < u

ı
ˇ .p0/ D u.qı;ˇ / �

QdH .p0; qı;ˇ /
ˇ

ıˇ
;

which reduces to u.�/ < uı
ˇ
.p0/ due to the fact that

QdH .�; �/ D QdH .p0; qı;ˇ /:

Hence, we have � 2 Sqı;ˇ .u/.
Since p�10 � � D q�1

ı;ˇ
� � and rH'.p0/ D rH .qı;ˇ / (similar to the calculations

for (3.11)), (5.12) can be rewritten as

sup
®˝
rH'.p0/; .p0

�1
� �/h

˛
W � 2 Sp0.u

ı
ˇ /
¯
� 0:

By Theorem 2.6, we see that uı
ˇ

is h-quasiconvex in H. Thanks to (5.10), we conclude the
proof of the h-quasiconvexity of uı by applying the result in Remark 3.13.
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Proof of Theorem 5.4. Since E � co.E/, we get D � co.E/. Due to the h-convexity of
co.E/, by Definition 5.1 we obtain co.D/� co.E/. We next prove (1.12), assuming thatE
and D are open. The case for closed sets can be similarly treated. Take � D BR.0/ and
f 2 C.H/ as in Theorem 5.2. In this case, Q.f / 2 C.H/ and (5.4) hold. Since Q.f / is
constant outside BR.0/, we can also obtain the boundedness of Q.f /.

Adopting Lemma 5.5, we see that the sup-convolution Q.f /ı of Q.f / is h-quasi-
convex in H for any ı > 0. It follows that

co.E/ı WD ¹p 2 H W Q.f /ı.p/ < 0º D ¹p 2 H W QBp.ı/ � co.E/º

is h-convex, where we recall that QBp.ı/ denotes the right-invariant metric ball centered
at p with radius ı. By taking ı D infp2HnE

QdH .p;D/, we have

D � ¹p 2 H W QBp.ı/ � Eº � co.E/ı ;

which yields co.D/ � co.E/ı by the h-convexity of co.E/ı . This gives (1.12) immedi-
ately.

5.3. Continuity under star-shapedness

To conclude this work, we briefly mention the continuity of co.E/ with respect to E. Let
us recall that for any two sets D;E � H, the distance dH .D;E/ is defined as

dH .D;E/ D max
°

sup
p2D

dH .p;E/; sup
p2E

dH .p;D/
±
:

We are interested in the following question: for a bounded open or closed set E � H and
a sequence of sets Ej � H, is it true that

(5.13) dH .co.E/; co.Ej //! 0 if dH .E;Ej /! 0

holds?
In contrast to the Euclidean case, where the answer is affirmative, the situation in the

Heisenberg group is less straightforward. In general, we cannot expect (5.13) to hold, as
indicated by the following example.

Example 5.6. We slightly change the set E in Example 2.2 by taking

E D .�.0; r/ � .�ı; 0// [ .�.0; r/ � .t; t C ı//

with r; t; ı > 0. In other words, E is set to be the union of two circular cylinders of height
ı > 0. We may use the same argument as in Example 2.2 to show that E is h-convex if
r2 � 2t but not h-convex if r2 > 2t .

Consider the critical case when r2 D 2t . Since E is h-convex in this case, we have
co.E/ D E. On the other hand, it is not difficult to see that any "-neighborhood of E
(with respect to dH or other equivalent metrics), denoted by N".E/, is not h-convex. Its
h-convex hull co.N".E// at least contains horizontal segments joining the upper and lower
cylinders. Hence, we can get c > 0 such that

dH .co.E/; co.N".E// > c

for all " > 0. This shows that (5.13) fails to hold in general.
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We have seen that the h-convex hull co.E/ is not stable with respect to perturbations
of the set E. It is however worth emphasizing that the h-quasiconvex envelope is stable,
as shown in Proposition 2.10. The main reason for such a discrepancy is that the quasi-
convexification process may fatten the level sets of functions, that is, a level set of Q.f /
may contain interior points while the level set of f at the same level initially does not.
See for example [4, 18, 31] on the fattening phenomenon for the level-set formulation of
geometric evolution equations in different contexts.

We need additional assumptions to guarantee (5.13). One sufficient condition is the
following type of star-shapedness of the set E.

Definition 5.7 (Strict star-shapedness). A connected set E � H is strictly star-shaped
with respect to the group identity 0 2 H if for any 0 � � < 1 we have ı�.E/ � E and

(5.14) inf
x2ı�.E/

dH .x;H nE/ > 0:

We say E is strictly star-shaped if there exists a point p0 2H such that the left translation
p�10 �E of E is strictly star-shaped with respect to 0.

This is a stronger version than the star-shapedness property studied in [15, 16], where
all conditions except (5.14) are required. Note that h-convex set can be disconnected and
does not imply strict or weak star-shapedness, as observed in Example 2.2. Below, we
present three examples of connected sets to compare these notions. We refer the interested
reader to [15] for more examples of star-shaped sets.

Example 5.8. Let us take

E1 D
S
�2Œ0;1� ı�..1; 1; 1// [ ı�..�1;�1; 1//;

E2 D .�.0; 1/ � ¹0º/ [ .�.0; 1/ � ¹tº/ [ .¹.0; 0/º � .0; 1//;

E3 D ¹.x; 0; 0/ W x 2 .�1; 1/º;

where �.0; 1/ denotes the unit disk centered at the origin as defined in (2.1).
All of these sets are bounded and connected. The set E1 is strictly star-shaped with

respect to the group identity but not h-convex; it is easily seen that for any ıs.E1/ � E1
for all 0� s < 1 but the horizontal segment between .1; 1; 1/ and .�1;�1; 1/ does not stay
in E1. In view of Example 2.2, we see that E2 is h-convex. But it is not star-shaped, since
for any p0 2 E2, there exists p 2 E2 such that the curve ¹p0 � ı�.p�10 � p/ W � 2 Œ0; 1/º
contains points outside E2. The horizontal segment E3 is obviously h-convex and star-
shaped with respect to every point in E3. It is however not star-shaped with respect to
points in H n E3. It is not strictly star-shaped in H either. Indeed, for any p0 2 E3, we
can find � < 1 close to 1 such that 0 2 ı�.p�10 � E3/ and dH .0;H n .p�10 � E3// D 0; in
other words, p�10 �E3 is not strictly star-shaped with respect to 0.

Assuming strict star-shapedness, we prove stability of h-convex hull.

Proposition 5.9 (Stability of h-convex hulls of star-shaped sets). LetE �H be a bounded
open (respectively, closed) set that is strictly star-shaped. LetEj be a sequence of bounded
open (respectively, closed) sets in H such that dH .E; Ej /! 0 as j !1. Then there
holds

(5.15) dH .co.E/; co.Ej //! 0 as j !1.
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Proof. By definition of h-convex hull and ı�.p/ 2 Hı�.q/ provided p 2 Hq , it is not
difficult to verify that

(5.16) co.ı�E/ D ı�.co.E//

for any � > 0.
Owing to the strict star-shapedness condition on E, for each fixed 0 < � < 1 we have

ı�.E/ � Ej when j � 1 is sufficiently large. It then follows that co.ı�.E// � co.Ej /.
By (5.16), we get ı�.co.E// � co.Ej / for all j � 1 large.

Since the strict star-shapedness also implies E � ı1=�.E/ and

dH .E; ı1=�.E// > 0

for any 0 < � < 1, we can use a symmetric argument to show that co.Ej / � ı1=�.co.E//
for j � 1 large. Hence, ı�.co.E// � co.Ej / � ı1=�.co.E// and ı�.co.E// � co.E/ �
ı1=�.co.E// imply that

dH .co.E/; co.Ej // � dH .ı�.co.E//; ı1=�.co.E///

for j � 1 large. Letting j !1 and then �! 1 yields (5.15).

The strict star-shapedness is only a sufficient condition to guarantee the stability of
h-convex hull. It would be interesting to find a sufficient and necessary condition for this
property.
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