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From octonions to composition superalgebras
via tensor categories

Alberto Daza-García, Alberto Elduque and Umut Sayin

Abstract. The nontrivial unital composition superalgebras, of dimension 3 and 6,
which exist only in characteristic 3, are obtained from the split Cayley algebra and
its order 3 automorphisms, by means of the process of semisimplification of the sym-
metric tensor category of representations of the cyclic group of order 3. Connections
with the extended Freudenthal magic square in characteristic 3, that contains some
exceptional Lie superalgebras specific of this characteristic are discussed too.

In the process, precise recipes to go from (nonassociative) algebras in this tensor
category to the corresponding superalgebras are given.

1. Introduction

In [5], Lie algebras g over a field F that admit a Z=2-grading such that the even part is
the direct sum of sl2.F/ and another ideal d, and its odd part is, as a module for the even
part, a tensor product of the two-dimensional natural module for sl2.F/ and a module T
for d, were considered. Thus, we have

(1.1) g D .sl2.F/˚ d/˚ .F2 ˝ T /:

In this case, T becomes a so-called symplectic triple system, and the invariance of the
Lie bracket under the action of sl2.F/ forces the bracket of odd elements to present the
following form:

Œu˝ x; v ˝ y� D .x j y/
u;v C hu j vidx;y

for all u; v 2 F2 and x; y 2 T , for a skew-symmetric bilinear form .� j �/ on T and a
symmetric bilinear map T � T ! d, .x; y/ 7! dx;y ; where hu j vi is, up to scalars, the
unique sl2.F/-invariant bilinear form on F2, and 
u;v D hu j �iv C hv j �iu.

All exceptional classical simple Lie algebras can be obtained in this way.
But the main point raised in [5] was that, in case the characteristic of F is 3, then the

Z=2-graded vector space d˚ T , with bracket given by the bracket in d, the action of d
in T , and by Œx;y�D dx;y for x;y 2 T , endows d˚ T with a structure of Lie superalgebra.
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This remark gave the construction of a family of new simple contragredient simple Lie
superalgebras specific of characteristic 3. Another family of such simple Lie superalgebras
was obtained in [5] by means of simple orthogonal triple systems, and most of these new
simple Lie superalgebras appeared in a unified way in the extended Freudenthal magic
square in [3]. (See also [2].)

Quite recently [14], Arun S. Kannan considered a much more general and surprising
way of passing from Lie algebras to Lie superalgebras, obtaining the simple Lie superalge-
bras mentioned above in a quite combinatorial way. Another exceptional Lie superalgebra
specific of characteristic 5, first obtained in [6], is obtained too by Kannan, using a varia-
tion of his method in characteristic 5.

Kannan considered, over fields of characteristic 3, exceptional simple Lie algebras
endowed with a nilpotent derivation d with d3 D 0. This allows to view the Lie algebra
as a Lie algebra in the category Rep ˛3 of representations of the affine group scheme
˛3WR 7! ¹r 2 R j r

3 D 0º (the kernel of the Frobenius endomorphism of the additive
group scheme Ga). The semisimplification of Rep˛3 is the Verlinde category Ver3, which
is equivalent to the category of vector superspaces. In this way, a path is obtained from
Lie algebras in Rep˛3 to Lie superalgebras.

For Lie algebras as in (1.1), we may choose d to be the adjoint action by
�
0 1
0 0

�
. In

this case, the ideal sl2.F/ constitutes a Jordan block of length 3 for d . The ideal d is
annihilated by d , and the odd part F2 ˝ T is a direct sum of Jordan blocks of length 2,
as d is nilpotent of order 2 on F2. The semisimplification process in [14] returns precisely
the Lie superalgebra d˚ T above.

In this paper, we want to concentrate on another feature in characteristic 3. Only over
fields of this characteristic there are nontrivial composition superalgebras (see [10]). Our
goal is to obtain the two unital composition superalgebras with nontrivial odd part:B.1;2/
and B.4; 2/, from the split Cayley algebra by the process of semisimplification. It must
be remarked that these composition superalgebras appeared for the first time in Shes-
takov’s work on prime alternative superalgebras [18]. Actually, we will not semisimplify
from Rep ˛3 as in [14], but from the category Rep C3 of representations of the cyclic
group of order 3 (or equivalenty, from the category of representations of the constant
group scheme C3). In other words, instead of considering algebras with a nilpotent deriva-
tion d with d3 D 0, we consider algebras endowed with an automorphism of order 3. The
semisimplification of Rep C3 is again the Verlinde category Ver3.

The paper is organized as follows. Section 2 will review the needed results from the
categories mentioned above. Our basic reference for monoidal and tensor categories will
be [11]. Concise recipes will be given to describe the superalgebra obtained from an alge-
bra in Rep C3 by semisimplification. Section 3 will be devoted to considering composition
algebras in a symmetric tensor category, to reviewing the known results on order 3 auto-
morphisms of the Cayley algebras over fields of charactetistic 3, and to using the recipes
in the previous section in order to obtain B.1; 2/ and B.4; 2/ from the split Cayley alge-
bra. Section 4 will be devoted to showing how this process of semisimplification behaves
with respect to algebras of derivations or of skew transformations relative to a nondegen-
erate symmetric bilinear form. Also, the extended Freudenthal magic square in [3] is built
in terms of composition superalgebras, and it will be shown in the last section how the
work in Section 3 can be used to obtain the Lie superalgebras in the extended square by
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semisimplification from the algebras in the last row of the classical Freudenthal magic
square, in a way different from the one considered in [14]. That is, semisimplification pro-
vides a bridge between the classical Freudenthal magic square and its extended version.

Throughout the paper, F will denote a ground field. All vector spaces will be assumed
to be finite-dimensional over F , and unadorned tensor products will be over F . Most of
the time, the characteristic of F will be 3.

2. From algebras to superalgebras

This section will review, in a way suitable for our purposes, known results on the cate-
gories Rep C3, Ver3, and sVec. For details, the reader may consult [12, 13, 17] and refer-
ences therein.

Throughout this section, the characteristic of the ground field F will always be 3.

2.1. Semisimplification of Rep C3

The category Rep C3, whose objects are the finite-dimensional representations of the finite
group C3 over F or, equivalently, of the corresponding constant group scheme, and whose
morphisms are the equivariant homomorphisms, is a symmetric tensor category, with the
usual tensor product of vector spaces and the braiding given by the usual swap: X ˝ Y !
Y ˝X , x ˝ y 7! y ˝ x.

Fix a generator � of C3. The category Rep C3 is not semisimple. The indecomposable
objects are, up to isomorphism, V0 D F , V1 D Fv0C Fv1, and V2 D Fw0C Fw1C Fw2,
where the action of � is trivial on V0, �.v0/D v0Cv1, �.v1/D v1; and �.w0/ D w0Cw1,
�.w1/ D w1 C w2, �.w2/ D w2. Any object A in Rep C3 decomposes, nonuniquely, as

(2.1) A D A0 ˚A1 ˚A2;

where Ai is a direct sum of copies of Vi , i D 0; 1; 2.
A homomorphism f 2 HomRep C3.X; Y / is said to be negligible if for all homomor-

phisms g 2 HomRep C3.Y; X/, tr.fg/ D 0 holds. Denote by N.X; Y / the subspace of
negligible homomorphisms in HomRep C3.X; Y /.

For instance, EndRep C3.V1/ consists of those endomorphisms of V1 which commute
with � . Any such endomorphism f satisfies f .v0/ D ˛v0 C ˇv1 and f .v1/ D ˛v1 for
scalars ˛; ˇ 2 F , so that f D ˛idV1 C g for a nilpotent endomorphism g. It follows that
N.V1; V1/ consists of the nilpotent endomorphisms in EndRep C3.V1/. For V2, any f 2
EndRep C3.V2/ is again of the form ˛idV2 C g for a nilpotent endomorphism, but now
tr.idV2/ D 0 as the characteristic of F is 3, and it turns out that EndRep C3.V2/ consists
entirely of negligible endomorphisms.

Negligible homomorphisms form a tensor ideal, and this allows us to define the semi-
simplification of Rep C3, which is the Verlinde category Ver3, whose objects are the objects
of Rep C3, but whose morphisms are given by

HomVer3.X; Y / WD HomRep C3.X; Y /=N.X; Y /:

This is again a symmetric tensor category, with the tensor product in Rep C3, and the
braiding induced by the one in Rep C3.
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Denote by Œf � the class of f 2 HomRep C3.X; Y / modulo N.X; Y /. Note that the iden-
tity morphism in EndVer3.X/ is ŒidX �, where idX denotes the identity morphism in Rep C3
(the identity map). We have thus obtained the semisimplification functor:

(2.2)

S W Rep C3 �! Ver3
X 7! X for objects,
f 7! Œf � for morphisms.

The semisimplification functor S is F -linear and braided monoidal (see Definitions 1.2.3
and 8.1.7 in [11]).

Some straightforward consequences of the definitions are recalled here:

Properties 2.1.
• EndVer3.Vi / D F ŒidVi � ¤ 0 for i D 0; 1, EndVer3.V2/ D 0, HomVer3.Vi ; Vj / D 0 for
i ¤ j .

• V0 and V1 are simple objects in Ver3, while V2 is isomorphic to 0.

• Ver3 is semisimple: any object is isomorphic to a direct sum of copies of V0 and V1.

• V0 ˝ Vi and Vi ˝ V0 are isomorphic to Vi , for i D 0; 1, both in Rep C3 and in Ver3;
while V1 ˝ V1 is isomorphic to V0 in Ver3.

Actually, in Rep C3, V1˝V1 is the direct sum of its submodule of symmetric tensors,
which is isomorphic to V2, and its one-dimensional submodule of skew-symmetric
tensors, which is isomorphic to V0. An explicit isomorphism V1 ˝ V1 ! V0 in Ver3
is Œ��, where �WV1 ˝ V1 ! V0 is the homomorphism in Rep C3 given by

(2.3) v0 ˝ v0 7! 0; v1 ˝ v1 7! 0; v0 ˝ v1 7! 1; v1 ˝ v0 7! �1:

Its inverse is Œ�0�, where �0WV0! V1˝ V1 is the homomorphism in Rep C3 that takes 1
to 1

2
.v0 ˝ v1 � v1 ˝ v0/.

• The braiding in Ver3, for objectsX;Y , is given by ŒcX;Y �, where cX;Y is the braiding in
Rep C3 (i.e., the swap x ˝ y 7! y ˝ x/. Then, identifying V0 ˝ V0 ' V0, V0 ˝ V1 '
V1 ' V1 ˝ V0, and V1 ˝ V1 ' V0 as above, we have ŒcV0;V0 � D ŒidV0 �, ŒcV0;V1 � D
ŒidV1 � D ŒcV1;V0 �, but ŒcV1;V1 � D �ŒidV0 �, because we have

cV1;V1

�1
2
.v0 ˝ v1 � v1 ˝ v0/

�
D
1

2
.v1 ˝ v0 � v0 ˝ v1/ D �

1

2
.v0 ˝ v1 � v1 ˝ v0/:

2.2. Equivalence of Ver3 and sVec

This equivalence is well known, but concrete formulas for these equivalence will be
needed later on, and hence this will be reviewed in some detail.

The objects of the category sVec of vector superspaces (over our ground field F ) are
the Z=2-graded vector spacesX DX N0˚X N1, and the morphisms f WX ! Y are the linear
maps preserving this grading: f .X N0/� Y N0, f .X N1/� Y N1. We will write f D f N0˚ f N1, with
f Na W X Na! Y Na given by the restriction of f , a D 0; 1. This is a symmetric tensor category,
with the braiding given by the parity swap:

X ˝ Y ! Y ˝X; x ˝ y 7! .�1/xyy ˝ x;
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for homogeneous elements x; y, where .�1/xy is �1 if both x and y are odd, and it is 1
otherwise.

The F -linear functor given on objects and morphisms by

(2.4)

F W sVec �! Ver3
X N0 ˚X N1 7! X N0 ˚ .X N1 ˝ V1/

f N0 ˚ f N1 7! Œf N0 ˚ .f N1 ˝ idV1/�;

is an equivalence of categories. Here the action of C3 on X N0 ˚ .X N1 ˝ V1/ is given by the
action on V1. That is, X N0 is a trivial module for C3, while �.x N1 ˝ v/ WD x N1 ˝ �.v/, for
all x N1 2 X N1 and v 2 V1.

The functor F is a monoidal functor, with natural isomorphism J W F.�/ ˝ F.�/ !

F.� ˝ �/ given by JX;Y D ŒjX;Y �, where jX;Y is the morphism in Rep C3 defined as follows,
for X D X N0 ˚X N1 and Y D Y N0 ˚ Y N1:

jX;Y W .X N0 ˚ .X N1 ˝ V1//˝ .Y N0 ˚ .Y N1 ˝ V1// �! .X N0 ˝ Y N0 ˚X N1 ˝ Y N1/

˚ ..X N0 ˝ Y N1 ˚X N1 ˝ Y N0/˝ V1/

x N0 ˝ y N0 7! x N0 ˝ y N0;

x N0 ˝ .y N1 ˝ v/ 7! .x N0 ˝ y N1/˝ v;(2.5)
.x N1 ˝ v/˝ y N0 7! .x N1 ˝ y N0/˝ v;

.x N1 ˝ u/˝ .y N1 ˝ v/ 7! �.u˝ v/x N1 ˝ y N1;

for all x N0 2 X N0, x N1 2 X N1, y N0 2 Y N0, y N1 2 Y N1, and u; v 2 V1, where � is given in (2.3).
The inverse of JX;Y is J�1X;Y D Œj

0
X;Y �, where j 0X;Y is defined as follows:

j 0X;Y W .X N0 ˝ Y N0 ˚X N1 ˝ Y N1/˚ ..X N0 ˝ Y N1 ˚X N1 ˝ Y N0/˝ V1/

�! .X N0 ˚ .X N1 ˝ V1//˝ .Y N0 ˚ .Y N1 ˝ V1//

x N0 ˝ y N0 7! x N0 ˝ y N0;

.x N0 ˝ y N1/˝ v 7! x N0 ˝ .y N1 ˝ v/;(2.6)

.x N1 ˝ y N0/˝ v 7! .x N1 ˝ v/˝ y N0;

x N1 ˝ y N1 7!
1

2

�
.x N1 ˝ v0/˝ .y N1 ˝ v1/ � .x N1 ˝ v1/˝ .y N1 ˝ v0/

�
:

Note that F preserves the braiding too. In other words, the following diagram is commu-
tative for all X; Y :

F.X/˝ F.Y / F.Y /˝ F.X/

F.X ˝ Y / F.Y ˝X/:

Œ‘swap’�

JX;Y JY;X

F.‘parity swap’/

Therefore, the functor F is a braided monoidal equivalence.



A. Daza-García, A. Elduque and U. Sayin 134

2.3. Recipe to get superalgebras from algebras in Rep C3

Given a linear map mWA˝ B ! C in sVec, the composition

F.A/˝ F.B/
JA;B
���! F.A˝ B/

F.m/
���! F.C/

gives a homomorphism F.A/˝ F.B/! F.C/ in Ver3. In particular, with A D B D C ,
given an algebra .A;m/ in sVec (that is, a superalgebraAwith product a morphismmWA˝

A! A, x ˝ y 7! x � y, in sVec), F.A/ is an algebra in Ver3 with multiplication given by
the composition

F.A/˝ F.A/
JA;A
���! F.A˝ A/

F.m/
���! F.A/:

Now, given a homomorphism �WA˝ B ! C in Rep C3, our goal is to find explic-
itly objects A; B; C in sVec and a homomorphism mWA ˝ B ! C such that there are
isomorphisms Œ�A�WF.A/! A, Œ�B �WF.B/! B, Œ�C �WF.C/! C in Ver3 that make the
following diagram commutative:

(2.7)
F.A/˝ F.B/ F.A˝ B/ F.C /

A˝B C :

JA;B

Œ�A˝�B �

F .m/

Œ�C �

Œ��

In particular, given an algebra A in Rep C3, with multiplication �.x ˝ y/ D xy, our
goal is to find explicitly the superalgebra .A; m/, unique up to isomorphism, such that
the algebras .F.A/; F.m/ ı JA;A/ and .A; Œ��/ are isomorphic algebras in Ver3. This is
achieved in Corollary 2.8.

To begin with, note that the objects A, B and C in Rep C3 decompose as in (2.1):
A D A0 ˚ A1 ˚ A2, B D B0 ˚ B1 ˚ B2, and C D C0 ˚ C1 ˚ C2, where Ai , Bi

and Ci are direct sums of copies of Vi , i D 0; 1; 2. Write A0 DA0˚A1, B 0 DB0˚B1,
and C 0 D C0 ˚ C1. Then Properties 2.1 immediately imply the following result.

Lemma 2.2. Given objects A, B and C in Rep C3 with the above decompositions, let
�WA ˝ B ! C be a homomorphism in Rep C3. Then the inclusion maps A0 ,! A,
B 0 ,! B and C 0 ,! C , induce isomorphisms in Ver3, and the diagram

A0 ˝B 0 C 0

A˝B C

Œ�0�

Œ��

is commutative, where �0 2 HomRep C3.A
0 ˝B 0;C 0/ is given by the formula

�0.x ˝ y/ WD

´
projC0�.x ˝ y/ for x 2 A0; y 2 B0 or x 2 A1; y 2 B1,
projC1�.x ˝ y/ for x 2 A0; y 2 B1, or x 2 A1; y 2 B0.

(The projections are relative to the splitting C D C0 ˚ C1 ˚ C2.)
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In particular, if .A; �/ is an algebra in Rep C3 (this means that � acts as an algebra
automorphism), then the previous lemma restricts as follows.

Corollary 2.3. Let .A;�/ be an algebra in Rep C3, with �.x˝ y/D xy for all x;y 2A.
Pick a splitting as in (2.1). Then the algebra .A; Œ��/ in Ver3 is isomorphic to the algebra
.A0; Œ�0�/, where A0DA0˚A1 and�0 2HomRep C3.A

0˝A0;A0/ is given by the formula

�0.x ˝ y/ D x � y WD

´
projA0

xy for x; y 2 A0 or x; y 2 A1,
projA1

xy for x 2 A0; y 2 A1, or x 2 A1; y 2 A0.

(The projections are relative to the splitting A D A0 ˚A1 ˚A2.)

Remark 2.4. Let �WA ˝ B ! C be a homomorphism in Rep C3 as before. On each
of A, B and C , let the endomorphism ı in Rep C3 be defined by ı.x/ D �.x/ � x. Let
�0WA0 ˝B 0 ! C 0 be defined as in Lemma 2.2. Then, for any x 2 A1 and y 2 B1, the
following equation holds:

(2.8) �0.x ˝ ı.y// D ��0.ı.x/˝ y/ D
1

2
.�0.x ˝ ı.y// � �0.ı.x/˝ y//:

Indeed, write �0.x ˝ y/ D x � y. Let c D x � ı.y/, which belongs to C0. Then we get

c D �.c/ D �.x/ � �.ı.y// D .x C ı.x// � ı.y/ D c C ı.x/ � ı.y/;

so that ı.x/ � ı.y/ D 0 holds. Now write d D x � y 2 A0. We get

d D �.d/ D �.x/ � �.y/ D .x C ı.x// � .y C ı.y//

D d C x � ı.y/C ı.x/ � y C ı.x/ � ı.y/ D d C x � ı.y/C ı.x/ � y;

and (2.8) follows.

Let �WA˝B ! C be a homomorphism in Rep C3 as in Remark 2.4. Fix splittings
of A, B and C as in (2.1), and pick subspaces A N1 of A1 (respectively, B N1 of B1, C N1
of C1) such that A1 D A N1 ˚ ı.A N1/ (respectively, B1 D B N1 ˚ ı.B N1/, C1 D C N1 ˚ ı.C N1/),
where, as before, ı D � � id. Write A N0 DA0 (respectively, B N0 D B0, C N0 D C0). Then C

decomposes as

(2.9) C D C N0 ˚ C N1 ˚ ı.C N1/˚ C2;

and similarly for A and B. Consider the objects A D A N0 ˚ A N1, B D B N0 ˚ B N1, and C D
C N0 ˚ C N1 in sVec.

Recipe 2.5. Take projections relative to the splitting (2.9), and define the homomorphism
mWA˝ B ! C in sVec as follows:

m.x N0 ˝ y N0/ D projC N0 �.x N0 ˝ y N0/;

m.x N0 ˝ y N1/ D projC N1 �.x N0 ˝ y N1/;

m.x N1 ˝ y N0/ D projC N1 �.x N1 ˝ y N0/;

m.x N1 ˝ y N1/ D projC N0 �.x N1 ˝ ı.y N1//;

for all x N0 2 A N0, y N0 2 B N0 and x N1 2 A N1, y N1 2 B N1.
The homomorphism m is a morphism in the category sVec.
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Given any object A in Rep C3, take a splitting A D A0 ˚A1 ˚A2 as in (2.1), and a
refinement A D A N0 ˚ A N1 ˚ ı.A N1/˚A2 as in (2.9). Consider the object A D A N0 ˚ A N1
in sVec, and the linear map �AWF.A/! A defined as follows:

(2.10) �A.x N0/ D x N0; �A.x N1 ˝ v0/ D x N1; �A.x N1 ˝ v1/ D ı.x N1/:

This is a homomorphism in Rep C3, that takes F.A/ isomorphically to A0 D A0 ˚A1

and, as A2 is isomorphic to 0 in Ver3, Œ�A� turns out to be an isomorphism in Ver3.

Theorem 2.6. Let�WA˝B!C be a homomorphism in Rep C3. Pick splittings of A, B,
and C as in (2.1), and refinements as in (2.9). Define a homomorphism mWA˝ B ! C

in sVec by means of Recipe 2.5. Then, with �A, �B and �C as in (2.10), the diagram (2.7)
is commutative.

Proof. Because of Lemma 2.2, it is enough to prove that the diagram (in Ver3)

(2.11)
F.A/˝ F.B/ F.A˝ B/ F.C /

A0 ˝B 0 C 0

JA;B

Œ�A˝�B �

F .m/

Œ�C �

Œ�0�

is commutative. (Here we use the same notation �A to denote the isomorphism F.A/'A0

in Rep C3 induced by the original �AWF.A/! A in (2.10).)
Using the inverse of JA;B (see (2.6)), this is equivalent to checking that in the next

diagram in Rep C3:

F.A/˝ F.B/ F.A˝ B/ F.C /

A0 ˝B 0 C 0;

�A˝�B

j 0A;B m N0˚.m N1˝idV1 /

�C

�0

the difference ˆ WD �C ı .m N0 ˚ .m N1 ˝ idV1// � �
0 ı .�A ˝ �B/ ı j

0
A;B is negligible.

For x N0 2 A N0; yN0 2 B N0, we get

x N0 ˝ y N0

j 0A;B
��! x N0 ˝ y N0

�A˝�B
����! x N0 ˝ y N0

�0

�! �0.x N0 ˝ y N0/;

x N0 ˝ y N0
m N0
��! m.x N0 ˝ y N0/ D �

0.x N0 ˝ y N0/
�C
�! �0.x N0 ˝ y N0/;

so that ˆ is trivial on A N0 ˝ B N0. In the same vein, for x N1 2 A N1; yN1 2 B N1, we get

x N1 ˝ y N1

j 0A;B
��!

1

2

�
.x N1 ˝ v0/˝ .y N1 ˝ v1/ � .x N1 ˝ v1/˝ .y N1 ˝ v0/

�
�A˝�B
����!

1

2
.x N1 ˝ ı.y N1/ � ı.x N1/˝ y N1/

�0

�!
1

2

�
�0.x N1 ˝ ı.y N1// � �

0.ı.x N1/˝ y N1/
�
D �0.x N1 ˝ ı.y N1// by (2.8)

x N1 ˝ y N1
m N0
��! m.x N1 ˝ y N1/ D �

0.x N1 ˝ ı.y N1//
�C
�! �0.x N1 ˝ ı.y N1//;



From octonions to composition superalgebras via tensor categories 137

and ˆ is trivial too on A N1 ˝ B N1. Now, for x N0 2 A N0 and y N1 2 B N1, and for ˛; ˇ 2 F , we get

.x N0 ˝ y N1/˝.˛v0Cˇv1/
j 0A;B
��! x N0 ˝ .y N1 ˝ .˛v0 C ˇv1//

�A˝�B
����! x N0 ˝ .˛y N1Cˇı.y N1//

�0

�! �0.˛x N0 ˝ y N1Cˇx N0 ˝ ı.y N1//;

.x N0 ˝ y N1/˝ .˛v0Cˇv1/
m N1˝idV1
������! m.x N0 ˝ y N1/˝ .˛v0 C ˇv1/

�C
��! ˛m.x N0 ˝ y N1/C ˇı.m.x N0 ˝ y N1//:

But �0.x N0 ˝ y N1/ D a N1 C ı.b N1/ for some a N1; b N1 2 C N1. This givesm.x N0 ˝ y N1/ D a N1. Also,
as x N0 is fixed by � , ı.a N1/D ı.�

0.x N0 ˝ y N1//D �
0.x N0 ˝ ı.y N1//. As a consequence, we get

ˆ..x N0 ˝ y N1/˝ .˛v0 C ˇv1//

D ˛.�0.x N0 ˝ y N1/ �m.x N0 ˝ y N1//C ˇ.�
0.x N0 ˝ ı.y N1// � ı.m.x N0 ˝ y N1///

D ˛ı.b N1/ 2 ı.C N1/:

It follows that the restriction ˆj.A N0˝B N1/˝V1 takes .A N0 ˝ B N1/˝ V1, which is a direct sum
of copies of V1, to ı.C N1/, which is a direct sum of copies of V0, and hence it is negligible.
In the same vein, the restriction ˆj.A N1˝B N0/˝V1 is negligible.

We conclude that ˆ is negligible, as required.

In particular, if .A; �/ is an algebra in Rep C3, with �.x ˝ y/ D xy for all x; y, and
we fix a splitting of A as in (2.1) and a refinement ADA N0˚A N1˚ ı.A N1/˚A2 as in (2.9),
Recipe 2.5 becomes the following one. (The reader should compare with Proposition 3.4
in [14].)

Recipe 2.7. Take projections relative to this splitting, and define a multiplication m (with
m.x ˝ y/ WD x � y/ on A WD A N0 ˚ A N1 as follows:

x N0 � y N0 D projA N0.x N0y N0/;

x N0 � y N1 D projA N1.x N0y N1/;

x N1 � y N0 D projA N1.x N1y N0/;

x N1 � y N1 D projA N0.x N1ı.y N1//;

for all x N0; yN0 2 A N0 and x N1; yN1 2 A N1.
The algebra .A;m/ is an algebra in sVec (a superalgebra).

In this case, Theorem 2.6 restricts to the following.

Corollary 2.8. Let .A;�/ be an algebra in Rep C3, with �.x˝ y/D xy for all x;y. Pick
a splitting ADA0˚A1˚A2 as in (2.1), and a refinement ADA N0˚A N1˚ ı.A N1/˚A2

as in (2.9). Define a multiplication in A D A N0 ˚ A N1 by means of Recipe 2.7.
Then the algebras .A; Œ��/ and .F.A/; F.m/ ı JA;A/ in Ver3 are isomorphic.
In other words, .A;m/ is the superalgebra that corresponds to the ‘semisimplification’

of .A; �/.
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3. From octonions to composition superalgebras

The notion of composition algebra on a symmetric tensor category over a field of charac-
teristic not 2 will be considered here. The order 3 automorphisms of the Cayley algebras,
i.e., of the eight-dimensional unital composition algebras, were determined in [7]. In par-
ticular, any such automorphism on a Cayley algebra over a field of characteristic 3 allows
us to view the Cayley algebra as an algebra in Rep C3, and hence to obtain, through the
semisimplification functor in (2.2), an algebra in Ver3 and thus, through the equivalence F
in (2.4), a composition superalgebra.

3.1. Composition algebras in a symmetric tensor category

A composition algebra over a field F is a triple .C ;�;n/, where �WC ˝C! C , �.x˝ y/
D xy is the multiplication of C , and nWC ! F is a nonsingular multiplicative quadratic
form, called the norm. Here, nonsingular means that either the polar form

n.x; y/ WD n.x C y/ � n.x/ � n.y/

is a nondegenerate bilinear form, or the characteristic of F is 2 and there is no nonzero
element such that n.x; C/ D 0 D n.x/. Note that the same symbol is used to denote
the norm and its polar form. Also, the polar form may be considered as a linear map
nWC ˝C! F . The norm being multiplicative means that the equation n.xy/D n.x/n.y/
holds for all x; y 2 C .

Unital composition algebras (also termed Hurwitz algebras) over a field are the ana-
logues of the classical algebras or real and complex numbers, quaternions, and octonions.
In particular, their dimension is restricted to 1, 2, 4 or 8. The reader may consult Chapter 2
of [20], Chapter VIII of [15], or the survey paper [8].

Assume in the rest of the section that the characteristic of the ground field F is not 2.
Linearizing twice the multiplicative identity, one gets

(3.1) n.xy; zt/C n.zy; xt/ D n.x; z/n.y; t/

for all x;y; z; t 2 C , and conversely, the characteristic being not 2, (3.1) gives, with z D x
and t D y, the multiplicative condition n.xy/ D n.x/n.y/.

Now, we may define a composition algebra in a symmetric tensor category C as an
object A endowed with morphisms �WA ˝ A! A and nWA ˝ A! 1, such that the
following conditions are satisfied:
(Symmetry) n ı cA;A D n, where cA;A 2 EndC.A˝A/ is the symmetric braiding.
(Multiplicativity) The following equality of morphisms A˝4 ! 1, generalizing (3.1),

holds:
n ı .�˝ �/ ı .idC c13/ D .n˝ n/ ı c23;

where we omit the isomorphism 1˝ 1 ' 1, and where

c12 D cA;A ˝ idA ˝ idA; c23 D idA ˝ cA;A ˝ idA and c13 D c23 ı c12 ı c23:
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(Nondegeneracy) The composition

A
idA˝coevA
�������! A˝A˝A�

n˝idA�

�����! A�

is an isomorphism. (We omit the associative and unitor morphisms, and coevA denotes
the coevaluation morphism 1! A˝A� in the symmetric tensor category C.)
Assume now that the characteristic of the ground field F is 3, and let .A; �; n/ be a

composition algebra endowed with an automorphism � with �3 D id. (This means that �
leaves invariant both � and n.) Then, looking at the polar form as a linear map nWA˝A

! F , the triple .A; �;n/ is a composition algebra in Rep C3.

Lemma 3.1. Let .A; �; n/ be a composition algebra endowed with an automorphism �

with �3 D id. Let A D A0 ˚A1 ˚A2 be a splitting as in (2.1). Then, with ı D � � id,
the following conditions hold:
(1) n.ker ı; ı.A// D 0,

(2) n.ı.A1/; ı.A// D 0,

(3) n.ı.x/; y/C n.x; ı.y// D 0 for all x 2 A1 and y 2 A.

Proof. For any x; y 2 A, n.x; y/ D n.�.x/; �.y// D n.x C ı.x/; y C ı.y//, and this
gives

(3.2) n.ı.x/; y/C n.x; ı.y//C n.ı.x/; ı.y// D 0:

If ı.x/ D 0, then n.x; ı.y// D 0 for all y, proving the first assertion. The second part
follows since ı.A1/ is contained in ker ı, and hence (3.2) gives the third assertion.

Now apply the semisimplification functor S in (2.2) to get a composition algebra
.A; Œ��; Œn�/ in Ver3. As nWA˝A! F is a morphism in Rep C3 (F being a trivial object
in Rep C3: F D F0), Lemma 2.2 becomes, in this case, the next result.

Lemma 3.2. Let .A; �; n/ be a composition algebra in Rep C3. Then the composition
algebra .A; Œ��; Œn�/ in Ver3 is isomorphic to the composition algebra .A0; Œ�0�; Œn0�/,
where A0 D A0 ˚A1, �0 2 HomRep C3.A

0 ˝A0;A0/ as in Corollary 2.3 and n0 is given
by the formula

n0.x ˝ y/ WD

´
n.x ˝ y/ for x; y 2 A0 or x; y 2 A1,
0 for x 2 A0; y 2 A1, or x 2 A1; y 2 A0.

Recipe 2.5 with A D B and C D F gives the following.

Recipe 3.3. Let .A; �; n/ be a composition algebra in Rep C3. Take A N0 D A0 and A N1
as in (2.9), and define a bilinear map n on A D A N0 ˚ A N1 (or equivalently, a linear map
A˝ A! F/ as follows:

n.x N0; yN0/ D n.x N0; yN0/;
n.x N0; yN1/ D 0 D n.y N1; xN0/;
n.x N1; yN1/ D n.x N1; ı.yN1//;

for all x N0; yN0 2 A N0 and x N1; yN1 2 A N1.
Note that Lemma 3.1 gives n.x N1; yN1/ D �n.y N1; xN1/, so n is ‘supersymmetric’.
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And finally, Theorem 2.6 gives our next result.

Theorem 3.4. Let .A; �; n/ be a composition algebra in Rep C3, with �.x ˝ y/ D xy
for all x; y. Pick a splitting A D A0 ˚ A1 ˚ A2 as in (2.1), and a refinement A D

A N0 ˚A N1 ˚ ı.A N1/˚A2 as in (2.9). Define a multiplicationm in AD A N0 ˚A N1 by means
of Recipe 2.7, and a norm n as in Recipe 3.3.

Then the composition algebras .A; Œ��; Œn�/ and .F.A/; JA;A ı F.m/; JA;A ı F.n//
in Ver3 are isomorphic.

In other words, .A; m; n/ is the composition superalgebra that corresponds to the
‘semisimplification’ of .A; �;n/.

3.2. Order 3 automorphisms of Cayley algebras

A unital composition algebra (or Hurwitz algebra) of dimension� 2 is said to be aligned if
its norm is isotropic. For each dimension 2, 4 or 8, there is a unique split Hurwitz algebra,
up to isomorphism. The split Cayley algebra has a canonical basis with multiplication
given in Table 1. The elements of the canonical basis are all isotropic and they form a
hyperbolic basis:

n.e1; e2/ D 1 D n.ui ; vi /; i D 1; 2; 3:

All the other values of the polar form for basic elements are either 0 or follow from the
above by using that n is symmetric. Note that the ui ’s generate the whole algebra.

e1 e2 u1 u2 u3 v1 v2 v3

e1 e1 0 u1 u2 u3 0 0 0

e2 0 e2 0 0 0 v1 v2 v3

u1 0 u1 0 v3 �v2 �e1 0 0

u2 0 u2 �v3 0 v1 0 �e1 0

u3 0 u3 v2 �v1 0 0 0 �e1

v1 v1 0 �e2 0 0 0 u3 �u2

v2 v2 0 0 �e2 0 �u3 0 u1

v3 v3 0 0 0 �e2 u2 �u1 0

Table 1. Multiplication table of the split Cayley algebra.

The subalgebra spanned by the orthogonal idempotents e1 and e2 is the split Hur-
witz algebra in dimension 2, while the subalgebra spanned by e1; e2; u1; v1 is the split
quaternion algebra.

Among Cayley algebras (i.e., eight-dimensional Hurwitz algebras) over a field F of
characteristic 3, only the split one is endowed with order 3 automorphisms. The order 3
automorphisms are then classified, up to conjugacy, in this theorem.
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Theorem 3.5 (Theorem 6.3 in [7]). Let .C ; �; n/ be a Cayley algebra over a field F of
characteristic 3, and let � be an order 3 automorphism of .C ; �;n/. Then .C ; �;n/ is the
split Cayley algebra, and one of the following conditions holds:

(1) .� � id/2 D 0, and there exists a canonical basis of C such that

�.ui / D ui ; i D 1; 2; �.u3/ D u3 C u2:

(2) .� � id/2 ¤ 0 and there is a quadratic étale subalgebra K of C fixed elementwise
by � .
If F is algebraically closed, then there is a canonical basis of C such that

�.ui / D uiC1 (indices modulo 3/.

(3) There is a canonical basis such that

�.ui / D ui ; i D 1; 2; �.u3/ D u3 C v3 � .e1 � e2/:

(4) There is a canonical basis such that

�.ui / D ui ; i D 1; 2; �.u3/ D u3 C u2 C v3 � .e1 � e2/:

It must be remarked that the automorphism in item (1) above corresponds to the so
called quaternionic idempotents of Okubo algebras, while the automorphism in item (4)
corresponds to the singular idempotents of Okubo algebras. These are specific to char-
acteristic 3 and have no counterpart in other characteristics. For details, the reader may
consult [7].

3.3. ‘Semisimplification’ of Cayley algebras

Assume in this section that the characteristic of the ground field F is 3.
For each of the possibilities in Theorem 3.5, the unital composition superalgebra that

corresponds to the semisimplification of the Hurwitz algebra .C ; �;n/ will be determined
here. In order to do this, it is enough to apply Recipes 2.7 and 3.3.

Case (1). �.ui / D ui , i D 1; 2, �.u3/ D u3 C u2. Then e1, e2, v1, and v3 are fixed
by � , while �.v2/ D v2 � v3. With ı D � � id, we have

u3
ı
�! u2

ı
�! 0; v2

ı
�! �v3

ı
�! 0;

so we get a splitting CDC N0˚C N1˚ ı.C N1/˚C2 as in (2.9) withC N0Dspan¹e1; e2; u1; v1º,
C N1 D span ¹u3; v2º and C2 D 0. The multiplication in C D C N0 ˚ C N1 is given by the table

(3.3)

e1 e2 u1 v1 u3 v2

e1 e1 0 u1 0 u3 0

e2 0 e2 0 v1 0 v2

u1 0 u1 0 �e1 �v2 0

v1 v1 0 �e2 0 0 u3

u3 0 u3 v2 0 �v1 e1

v2 v2 0 0 �u3 �e2 �u1
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The norm n restricts to n on the even part C N0, and satisfies n.u3; v2/ D n.u3; ı.v2// D
n.u3;�v3/ D �1 D �n.v2; u3/.

This composition superalgebra is the superalgebra B.4; 2/ in [10, 18].
Case (2). There is a quadratic étale subalgebra K of C fixed elementwise by � , and

the action of � on K? (orthogonal relative to n) is given by two cycles of length 3.
This gives the decomposition in (2.1) with C0 D K , C1 D 0 and C2 D K?. Then the
semisimplification simply gives the composition algebra K with trivial odd component.

Case (3). u1 and u2 are fixed by � , while �.u3/ D u3 C v3 � .e1 � e2/. We get the
following chains (Jordan blocks) for the action of ı D � � id:

u3
ı
�! v3 � .e1 � e2/

ı
�! �v3

ı
�! 0;

v1
ı
�! u2

ı
�! 0;

v2
ı
�! �u1

ı
�! 0;

1
ı
�! 0;

so we get a splitting C D C N0 ˚ C N1 ˚ ı.C N1/ ˚ C2 as in (2.9) with C N0 D F1, C N1 D
span ¹v1; v2º and C2 D span ¹u3; v3; e1 � e2º. The multiplication in C D C N0 ˚ C N1 is
given by the table

(3.4)

1 v1 v2

1 1 v1 v2

v1 v1 0 �1

v2 v2 1 0

The norm satisfies n.1; 1/D 2D�1, and n.v1; v2/D n.v1; ı.v2//D n.v1;�u1/D�1D
�n.v2; v1/.

This composition superalgebra is the superalgebra B.1; 2/ in [10, 18].
Case (4). u1 and u2 are fixed by � , while �.u3/ D u3 C u2 C v3 � .e1 � e2/. We get

the following chains for the action of ı D � � id:

u3
ı
�! u2 C v3 � .e1 � e2/

ı
�! �v3

ı
�! 0;

v1
ı
�! u2

ı
�! 0;

v2
ı
�! �v3 � u1

ı
�! 0;

1
ı
�! 0;

so we get a splitting C D C N0 ˚ C N1 ˚ ı.C N1/ ˚ C2 as in (2.9) with C N0 D F1, C N1 D
span ¹v1; v2º and C2 D span ¹u3; v3; u2 � .e1 � e2/º. The multiplication table on C D
C N0 ˚ C N1 and its norm coincide with those in the previous case.
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4. Semisimplification: skew transformations, derivations

This section will show some features of the semisimplification process. The Lie algebra
of derivations of an algebra .A; �/ in Rep C3 is also an algebra in Rep C3 in a natural
way, but its semisimplification may fail to be the Lie superalgebra of derivations of the
semisimplification of .A; �/. However, the semisimplification of the Lie algebra of the
skew-symmetric transformations, relative to the norm, of a composition algebra in Rep C3
is isomorphic to the orthosymplectic Lie superalgebra of skew-transformations (in the
super setting) of the corresponding composition superalgebra.

Throughout the section, the characteristic of the ground field F will be assumed to
be 3.

4.1. Skew transformations

Given an object V in Rep C3, we will denote by V ss an object in sVec, such that F.V ss/

and V (D S.V/ for S in (2.2)) are isomorphic as objects in Ver3. The vector super-
space V ss will be called a semisimplification of V . In the same vein, given an algebra
.A; �/ in Rep C3, we will denote by .Ass; �ss/ a superalgebra (i.e., an algebra in sVec)
such that .F.Ass/; F .�ss/ ı JAss ;Ass / is isomorphic to the algebra .A; Œ��/ in Ver3. The
multiplication � will be omitted if it is clear from the context,

The same applies to vector spaces endowed with a bilinear form: .V ss; bss/; or to
composition algebras .C ss; �ss;nss/.

Proposition 4.1. Let V be an object in Rep C3.

• The associative superalgebras EndF .V
ss/ and .EndF .V//

ss are isomorphic.

• Let bWV ˝V!F be a morphism in Rep C3 such that the bilinear form (denoted by the
same symbol) given by b.x;y/ WD b.x˝ y/ is symmetric and nondegenerate. Then the
bilinear form corresponding to the morphism bss WV ss ˝ V ss ! F in sVec is super-
symmetric and nondegenerate, and the orthosymplectic Lie algebra osp.V ss; bss/ is
isomorphic to the semisimplification so.V ;b/ss .

Proof. Note first that EndF .V/ is isomorphic to V ˝ V� as objects in Rep C3, where the
element v˝ f corresponds to the endomorphism w 7! vf .w/, for v;w 2 V and f 2 V�.
The multiplication in V ˝ V� is given by the following composition (associative and
unitor morphisms are omitted, as usual) involving the evaluation morphism evV WV

� ˝

V ! F :
V ˝ V� ˝ V ˝ V�

idV˝evV˝idV�

����������! V ˝ V�:

The first part follows at once because the semisimplification functor S in (2.2) is a braided
monoidal functor (see Definition 8.1.7 in [11]), and the equivalence F in (2.4) is a braided
monoidal equivalence.

For the second part, the symmetry of bss in sVec (that is, the fact that bss is super-
symmetric) and its nondegeneracy are again consequences of the fact that S and F are
braided monoidal functors. In this case, the algebra EndF .V/ is isomorphic to V ˝ V ,
where the element v ˝ w corresponds to the linear map x 7! vb.w; x/, and the multipli-
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cation is given by the composition

V ˝ V ˝ V ˝ V
idV˝b˝idV
��������! V ˝ V :

The corresponding orthogonal Lie algebra, so.V ; b/, corresponds to the subspace
Skew2.V ˝ V/ of skew-symmetric tensors, which is the image of the projection P D
1
2
.idV˝V � cV ;V / 2 EndRep C3.V ˝ V/. As usual, cV ;V WV ˝ V ! V ˝ V is the braiding

(the usual swap in this case).
Since S and F are braided monoidal functors, the semisimplification so.V ; b/ss is

isomorphic to the image of the projection 1
2
.idVss˝Vss � css

Vss ;Vss /, where now the braid-
ing css

Vss ;Vss is given by the parity swap. This is the subspace of super-skew-symmetric
tensors in V ss ˝ V ss , and this, in turn, is isomorphic to the orthosymplectic Lie superal-
gebra osp.V ss;bss/.

4.2. Derivations

As mentioned at the beginning of the section, derivations present a different behavior
under semisimplification. Note that any automorphism � of an algebra .A; �/ induces an
automorphism Ad� W d 7! � ı d ı ��1 in its Lie algebra of derivations.

To begin with, given a Lie algebra .L; �L/, an algebra .A; �A/ in Rep C3, and a
morphism ˆWL˝A! A in Rep C3 given by x ˝ a 7! x:a; ˆ is an action by deriva-
tions of L on A if and only if the following two conditions are satisfied for all x; y 2 L

and a; b 2 A:

Œx; y�:a D x:.y:a/ � y:.x:a/; x:.ab/ D .x:a/b C a.x:b/;

where Œx; y� D �L.x ˝ y/ and ab D �A.a˝ b/. This can be written as follows:

ˆ ı .�L ˝ idA/ D ˆ ı .idL ˝ˆ/ ı .idL˝L˝A � cL;L ˝ idA/;

ˆ ı .idL ˝ �A/ D �A ı .ˆ˝ idA C .idA ˝ˆ/ ı .cL;A ˝ idA//;

where the first equality holds in HomRep C3.L˝ L˝A;A/, while the second holds in
HomRep C3.L˝A˝A;A/, and therefore all this goes smoothly under semisimplification.

As a consequence, we obtain our next result.

Proposition 4.2. For any algebra .A; �/ in Rep C3, there is a natural homomorphism
Der.A; �/ss ! Der.Ass; �ss/ from the semisimplification of the Lie algebra of deriva-
tions of .A; �/ into the Lie superalgebra of derivations of the superalgebra .Ass; �ss/.

We will compute next the semisimplification of the Lie algebras of derivations of the
algebras .C ; �; n/ in cases (1), (3) and (4) of Subsection 3.3. As in Subsection 3.3, the
situation in case (2) is quite trivial.

Take the canonical basis of the split Cayley algebra C as in Table 1, and write U D

Fu1 C Fu2 C Fu3, V D Fv1 C Fv2 C Fv3. The characteristic of F being 3 implies that
the Lie algebra of derivations Der.C/ splits as (see Proposition 4.29 in [9])

(4.1) Der.C/ D � ˚ adU ˚ adV ;

where, as usual, adx.y/ D Œx; y�, and where � D ¹d 2 Der.C/ j d.e1/ D 0 D d.e2/º.
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At this point, it should be remarked that, the characteristic being 3, Der.C/ is not
the contragredient Lie algebra attached to the Cartan matrix

�
2 �3
�1 2

�
. (See Example 3.4

in [14].) This contragredient Lie algebra is, in fact, a subalgebra of Der.C/ given by � 0 ˚

adU ˚ adV , with � 0 a subalgebra of � isomorphic to gl2.F/.
Moreover, the restriction of � to U gives an isomorphism � ' sl.U/. The subspace

adC is a seven-dimensional ideal of Der.C/ isomorphic to the projective special linear Lie
algebra psl3.F/, and the quotient Der.C/=adC is again isomorphic to psl3.F/. Under the
isomorphism � ' sl.U/, any trace zero endomorphism f of U acts trivially on Fe1 C
Fe2, as f on U, and as �f � on V , where f � is determined by the equation n.f .u/; v/D
n.u; f �.v// for all u 2 U and v 2 V . We will identify � with sl.U/ and will denote
by Eij the linear endomorphism of U taking uj to ui and sending ul to 0 for l ¤ j . In
particular, ade1�e2 is identified with twice the identity map I3 D E11 CE22 CE33.

In case (1) of Subsection 3.3, and because Ad� .adx/ D ad�.x/ for all x, it is easy to
compute a splitting of Der.C/ into Jordan blocks relative to the nilpotent transformation
� WD Ad� � id, as follows:

E32
�
�! E22 �E33 �E23

�
�! E23

�
�! 0;

E12
�
�! �E13

�
�! 0;

E31
�
�! E21

�
�! 0;

adu3
�
�! adu2

�
�! 0;

adv2
�
�! �adv3

�
�! 0;

ade1�e2 ; adu1 ; adv1
�
�! 0:

Therefore we get a splitting Der.C/ D D N0 ˚D N1 ˚�.D N1/˚D2 as in (2.9) with D N0 D
adF.e1�e2/CFu1CFv1 and D N1 D Fadu3 ˚ Fadv2 ˚ FE12 ˚ FE31.

Recipe 2.7 gives the multiplication in the Lie superalgebra Der.C/ss DD N0˚D N1. The
subspace D N0 ˚ Fadu3 ˚ Fadv2 is an ideal isomorphic to osp.1; 2/.

Moreover, the action of Der.C/ss on C ss D C N0˚C N1 is determined by its action on the
odd part (as the odd part generates the whole superalgebra, see (3.3)). Using Recipe 2.5,
we obtain

adu3 � u3 D adu3.ı.u3// D Œu3; u2� D v1;
adu3 � v2 D adu3.ı.v2// D Œu3;�v3� D e1 � e2;
adv2 � u3 D adv2.ı.u3// D Œv2; u2� D e1 � e2;
adv2 � v2 D adv2.ı.v2// D Œv2;�v3� D u1;
E12 � u3 D E12.u2/ D u1;

E12 � v2 D �E12.v3/ D 0;

E31 � u3 D 0;

E31 � v2 D �E31.v3/ D v1:

It turns out that Der.C/ss D D N0 ˚ D N1 is isomorphic to the Lie superalgebra Der.C ss/
(see Theorem 5.8 in [10]).
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In case (3) of Subsection 3.3, C D Q ˚ Q?, where Q is the quaternion subalgebra
spanned by e1, e2, u3, v3 and Q? (orthogonal subspace relative to the norm) is spanned by
u1, u2, v1 and v2. This is a Z=2-grading of C that induces a Z=2-grading of Der.C/whose
even component is ¹d 2 Der.C/ j d.Q/ � Qº is the span (with the notation used in the
previous case) of E12, E21, E11 �E22, ade1�e2 , adu3 and adv3 . The derivations E12, E21
and E11 � E22 are all fixed by Ad� , while the remaining three elements form a three-
dimensional indecomposable module for the action of Ad� (i.e., isomorphic to V2 in
Rep C3). The odd part decomposes into the direct sum of the following Jordan blocks
for the linear endomorphism � D Ad� � id of Der.C/:

E31
�
�! �E23 C adu2 � adv1

�
�! �adu2

�
�! 0;

E32
�
�! E13 � adu1 � adu2

�
�! adu1

�
�! 0;

E13
�
�! 0; E23

�
�! 0:

Therefore we get a splitting Der.C/DD N0˚D N1˚�.D N1/˚D2 as in (2.9), withD N1 D 0
as there are no Jordan blocks of length 2, andD N0Dspan ¹E12; E21; E11�E22; E13; E23º.
It turns out that Der.C/ss is a Lie algebra (its odd part is trivial) of dimension 5, which is
the direct sum of a copy of sl2.F/ and a two-dimensional abelian ideal: FE13 C FE23.
This ideal is the natural two-dimensional module for the copy of sl2.F/.

By the proof of Lemma 5.3 in [10], Der.C ss/ is isomorphic to sl2.F/. Actually, it turns
out that the ideal FE13 C FE23 in Der.C/ss acts trivially on C ss . (Recall that the action
is given by Recipe 2.5.) In this case, the natural homomorphism in sVec from Der.C/ss

into Der.C ss/ is surjective.
In case (4) of Subsection 3.3, lengthy but straightforward computations give the fol-

lowing Jordan blocks for the action of the nilpotent endomorphism � D Ad� � id:

E32
�
�! E22 �E33 �E23 CE13 � adu1 � adv2 C adv3

�
�! E23 C adu1 � adv3

�
�! 0;

E31
�
�! E21 �E23 C adu2 � adv1

�
�! �adu2

�
�! 0;

adu3
�
�! I3 C adu2 C adv3

�
�! �adv3

�
�! 0;

E12
�
�! �E13

�
�! 0;

adv2
�
�! �adv3 � adu1

�
�! 0;

E21
�
�! 0:

Therefore we get a splitting Der.C/ D D N0 ˚D N1 ˚�.D N1/˚D2 as in (2.9), with D N0 D
FE21, D N1 D FE12 C Fadv2 , �.D N1/ D FE13 C Fadu1Cv3 , and D2 the linear span of
adu2 , adv3 , adu3 , I3, E31, E32, E23 C adu1 , E21 �E23 � adv1 and .E22 �E33/CE13 �
adv2 . In consequence, we may take Der.C/ss D D N0 ˚ D N1, and Recipe 2.7 gives that
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in Der.C/ss ,

ŒE21; E12� D projD N1.E22 �E11/ D �projD N1.I3 CE22 �E33/;

D �projD N1.E22 �E33/; as I3 2 D2,

D projD N1.E13 � adv2/; as .E22 �E33/CE13 � adv2 2 D2,

D �adv2 ; as E13 2 �.D N1/,

and all the other brackets are trivial.
The action of Der.C/ss on C ss D F1C Fv1 C Fv2 is given by Recipe 2.5: E21:v2 D

�v1, and all the other products are trivial.
In this case, the kernel of the natural homomorphism in sVec from Der.C/ss into

Der.C ss/ is D N1, and this homomorphism is neither injective nor surjective.

5. The extended Freudenthal magic square

Assume for a while that the characteristic of the ground field F is just different from 2.
Different authors [1,16,19] have considered several symmetric constructions of Freu-

denthal’s magic square in terms of two unital composition algebras. We shall follow
here [4], but restricted, for simplicity, to the use of the so-called para-Hurwitz algebras.
Let .C ; �; n/ and .C 0; �0; n0/ be two unital composition algebras over a field F of char-
acteristic not 2. Denote in both cases the multiplication by juxtaposition, and consider the
new multiplications N� given by N�.x; y/ D x � y WD x y, where x D n.x; 1/ � x is the
standard conjugation. Define similarly N�0. Consider the associated triality Lie algebras:

tri.C ;�;n/ WD ¹.d0; d1; d2/ 2 so.C ;n/3 j d0.x � y/D d1.x/ � y C x � d2.y/ 8x;y 2 Cº

and similarly for tri.C 0;�;n0/. These are Lie algebras with bracket given componentwise,
satisfying that the cyclic permutation

(5.1) � W .d0; d1; d2/ 7! .d2; d0; d1/

is a Lie algebra automorphism (triality automorphism). Denote by � 0 the corresponding
automorphism of tri.C 0;�;n0/. If C is a Cayley algebra, then the projection of tri.C ;�;n/
on any of its components gives an isomorphism tri.C ; �;n/ ' so.C ;n/.

For simplicity, we will just write tri.C/ and tri.C 0/.
The vector space

g D g.C ;C 0/ D .tri.C/˚ tri.C 0//˚ .˚2iD0�i .C ˝ C 0//;

where �i .C ˝ C 0/ is just a copy of C ˝ C 0 (i D 0; 1; 2), becomes a Lie algebra with the
bracket defined as follows:

• the Lie bracket in tri.C/˚ tri.C 0/, which thus becomes a Lie subalgebra of g,
• Œ.d0; d1; d2/; �i .x ˝ x

0/� D �i .di .x/˝ x
0/,

• Œ.d 00; d
0
1; d
0
2/; �i .x ˝ x

0/� D �i .x ˝ d
0
i .x
0//,
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• Œ�i .x ˝ x
0/; �iC1.y ˝ y

0/� D �iC2..x � y/˝ .x
0 � y0// (indices modulo 3),

• Œ�i .x ˝ x
0/; �i .y ˝ y

0/� D n0.x0; y0/� i .tx;y/C n.x; y/� 0i .t 0x0;y0/ 2 tri.C/˚ tri.C 0/,

for .d0; d1; d2/ 2 tri.C/, .d 00; d
0
1; d
0
2/ 2 tri.C 0/, x; y 2 C , and x0; y0 2 C 0, where tx;y is

the element of tri.C/ defined as follows:

(5.2) tx;y WD
�
sx;y ;

1

2
.rylx � rxly/;

1

2
.lyrx � lxry/

�
;

with sx;y Wz 7! n.x; z/y � n.y; z/x, lx Wz 7! x � z, and rx Wz 7! z � x, and similarly for C 0.
The Lie algebras thus obtained are semisimple (simple in most cases) and, if the char-

acteristic of the ground field F is neither 2 nor 3 then the type of the Lie algebras obtained
is given by Freudenthal magic square, where the index over each row (respectively, col-
umn) is the dimension of C (respectively, C 0):

1 2 4 8

1 A1 A2 C3 F4

2 A2 A2 ˚ A2 A5 E6

4 C3 A5 D6 E7

8 F4 E6 E7 E8

If the characteristic of the ground field F is 3, instead of simple Lie algebras of type A2
or A5 we obtain forms of the projective general Lie algebra pgl3.F/ or pgl6.F/, and
instead of simple Lie algebras of type E6, we obtain Lie algebras of dimension 78 whose
derived ideal is simple of type E6 (the simple Lie algebra of type E6 has dimension 77 in
characteristic 3).

If .C ; �; n/ is a Cayley algebra, then the projection �0 W .d0; d1; d2/ 7! d0, gives a
Lie algebra isomorphism tri.C ; �; n/ ' so.C ; n/. In other words, for any d0 2 so.C ; n/
there are unique d1; d2 2 so.C ; n/ such that .d0; d1; d2/ lies in tri.C ; �; n/. Hence the
triples tx;y in (5.2) span the triality Lie algebra tri.C ; �;n/.

Therefore, the linear map # W so.C ;n/! so.C ;n/, given by

(5.3) #.sx;y/ D
1

2
.lyrx � lxry/;

is a Lie algebra automorphism that makes the following diagram commutative (with � as
in (5.1)):

(5.4)
tri.C ; �;n/ tri.C ; �;n/

so.C ;n/ so.C ;n/:

�

�0 �0

#

Hence we also have

(5.5) #2.sx;y/ D
1

2
.rylx � rxly/:
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The natural and the two half-spin actions of so.C ; n/ are involved in the Lie bracket
of g.C ;C 0/. The natural action ˆ0 is given by the composition

so.C ;n/˝ C
�˝idC
����! Skew2.C ;n/˝ C

idC˝n
����! C ;

where so.C ;n/ is identified with Skew2.C ;n/ as in Section 4.1. This composition behaves
as follows:

sx;y ˝ z 7! .�x ˝ y C y ˝ x/˝ z 7! �n.y; z/x C n.x; z/y D sx;y.z/:

The two half-spin representations ˆ1 and ˆ2 are respectively the compositions

so.C ;n/˝ C
�˝idC
����! Skew2.C ;n/˝ C

idC˝‘swap’
�������! C ˝ C ˝ C

� 12 N�ı. N�˝idC /

���������! C

given by

sx;y ˝ z 7! .�x ˝ y C y ˝ x/˝ z 7! �x ˝ z ˝ y C y ˝ z ˝ x

7!
1

2
..x � z/ � y � .y � z/ � x/ D

1

2
.rylx � rxly/.z/;

and

so.C ;n/˝ C
�˝idC
����! Skew2.C ;n/˝ C

idC˝‘swap’
�������! C ˝ C ˝ C

1
2 N�ı.idC˝ N�/

��������! C

given by

sx;y ˝ z 7! .�x ˝ y C y ˝ x/˝ z 7! �x ˝ z ˝ y C y ˝ z ˝ x

7!
1

2
.�x � .z � y/C y � .z � x// D

1

2
.lyrx � lxry/.z/:

The commutativity of (5.4) is then equivalent to the commutativity of the following
diagram:

(5.6)
so.C ;n/˝ C C

so.C ;n/˝ C C

ˆ0

# i˝idC
idC

ˆi

for i D 1; 2. Note that all the homomorphisms above are given in terms of the norm n, the
multiplication N� and the braiding (the ‘swap’).

This symmetric construction of Freudenthal’s magic square was extended, over fields
of characteristic 3, by using the unital composition superalgebras B.4; 2/ and B.1; 2/
in [3], thus obtaining an extended Freudenthal’s magic square that includes many of the
exceptional contragredient simple Lie superalgebras in characteristic 3. As before, in the
second row or column, the superalgebras obtained are no longer simple, but their derived
subalgebras are simple.
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All these Lie superalgebras have been obtained by Kannan [14] by considering nilpo-
tent derivations of degree 3 of some of the simple exceptional Lie algebras, and thus
looking at these as Lie algebras in the category Rep ˛3, whose semisimplification is
again Ver3.

Actually, the semisimplification of Cayley algebras in Section 3 provides a bridge
between the symmetric construction of Freudenthal’s magic square and the extended
square in [3].

Assume from now on that the characteristic of our ground field is 3.
Any order 3 automorphism of a unital composition algebra .C ; �; n/ is also an auto-

morphism of its para-Hurwitz counterpart, and then it induces an order 3 automorphism
of so.C ;n/ and of tri.C ; �;n/ commuting with the triality automorphism.

Therefore, starting with an order 3 automorphism � of a Cayley algebra .C ; �; n/
such that its semisimplification is isomorphic to either B.1; 2/ or B.4; 2/, there is an
order 3 automorphism induced in g.C ;C 0/, where we combine the order 3 automorphism
on C and the identity automorphism in C 0. The action of this order 3 automorphism is as
follows:

• .d0; d1; d2/ 7! .Ad� .d0/;Ad� .d1/;Ad� .d2//, for .d0; d1; d2/ 2 tri.C ; �; n/, where
Ad� .d/ D � ı d ı ��1,

• the action on tri.C 0; �;n0/ is trivial,
• �i .x ˝ x

0/ 7! �i .�.x/˝ x
0/ for any i D 0; 1; 2, x 2 C , and x0 2 C 0.

This allows us to consider g.C ;C 0/ as a Lie algebra in Rep C3.
As any automorphism of .C ; �;n/ commutes with the standard conjugation x 7! Nx D

n.1; x/� x, it turns out that the semisimplification of .C ; N�;n/ is the para-Hurwitz super-
algebra .C ss; �ss; nss/. For these superalgebras, the projection �0W .d0; d1; d2/ 7! d0 is
a Lie superalgebra isomorphism (see [10]). Using Proposition 4.1, we get a chain of iso-
morphisms of Lie superalgebras:

tri.C ; N�;n/ss ' so.C ;n/ss ' osp.C ss;nss/ ' tri.C ss; �ss;nss/:

The commutativity of (5.4) shows that, under these isomorphisms, the Lie super-
algebra automorphism � ss of tri.C ss; �ss; nss/ corresponds to the automorphism #ss

of osp.C ss; nss/, and the commutativity of (5.6), together with the fact that the ˆi ’s
are defined in terms of n, �, and the braiding, shows that #ss satisfies the ‘super’ ver-
sions of (5.3) and (5.5). But tri.C ss; �ss; nss/ is spanned by the ‘super’ versions of the
triples tx;y in (5.2) (see [10]). It follows that, under the isomorphisms above, the auto-
morphism � ss of tri.C ; N�; n/ss corresponds to the cyclic permutation .d0; d1; d2/ 7!
.d2; d0; d1/ in tri.C ss; �ss;nss/, and, as a consequence, it follows that the Lie superalge-
bra g.C ;C 0/ss is isomorphic to the superalgebra g.C ss;C 0/ in [3].

The same arguments work if both C and C 0 are Cayley algebras endowed with order 3
automorphisms. We also get an induced order 3 automorphism of g.C ;C 0/. These order 3
automorphisms allow us to see g.C ;C 0/ as a Lie algebra in Rep C3 and get its semisim-
plification g.C ;C 0/ss , which is isomorphic to g.C ss;C 0ss/.

In other words, the Lie superalgebras in the extended Freudenthal’s Magic square can
be obtained by semisimplification of the Lie algebras (in Rep C3) in the fourth row of the
classical Freudenthal’s magic square in characteristic 3.
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It must be pointed out here that in [14], g.B.1; 2/;B.1; 2// is obtained from the excep-
tional Lie algebra of typeE6 endowed with a suitable nilpotent derivation of order 3, while
the above comments show that g.B.1; 2/; B.1; 2// is obtained too from the exceptional
Lie algebra of type E8, that is, from the Lie algebra g.C ;C 0/ where both C and C 0 are the
split Cayley algebras, endowed with automorphisms of types (3) or (4) in Theorem 3.5.
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