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Concentration close to the cone for linear waves

Raphaël Côte and Camille Laurent

Abstract. We are concerned with solutions to the linear wave equation. Our main
result concerns the computation of the asymptotic exterior energy outside of the cone
jxj ⩾ jt j C R for R > 0 and odd dimension. This proves, in the general case, the
results of Kenig–Lawrie–Liu–Schlag (2015) (which were restricted to radial data).
Also, along the proof, we derive further expressions of the exterior energy (outside
a shifted light cone), valid in all dimension and for non-radial data. In particular, we
generalize the formulas of Côte–Kenig–Schlag (2014) obtained in the radial setting.
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1. Introduction and statement of the results

1.1. General results about asymptotic profile

In this paper, we consider solutions to the linear wave equation in any dimension d ⩾ 1:

(1.1)

´
@t tu ��u D 0;

.u; @tu/jtD0 D .u0; u1/;
.t; x/ 2 R �Rd :

We are particularly interested in understanding how the energy of w concentrates
around the light cone for large times, that is, in providing some formulas for quantities
which are typically

lim
t!C1

krx;tuk PH1�L2.jxj⩾tCR/;
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where R 2 R is fixed, in terms of the initial data .u0; u1/. This kind of quantities are
very natural when thinking of finite speed of propagation for solutions to the linear wave
equation, but are also useful in nonlinear contexts, for example for the channels of the
energy method. We refer for example to [8] for one of the first times it was used in the
context of the energy critical nonlinear wave equation. Such formulas were given in the
radial setting, notably in [6] and [15], and we aim at generalizing the result therein to
non-radial linear waves.

Our main result in this article is Theorem 1.7 below concerning the exterior energy
outside of the cone for R > 0 and odd dimension. Before stating it, we will first present
several other results that are sometimes not completely new, but in a unified presentation
which we find interesting.

We can formulate our first results on solution of the half-wave equation, that is, con-
sider et jDjf , where jDj is the operator defined as a multiplier in Fourier space:

ĵDjf .�/ D j�j Of .j�j/;

where Of is the d -dimensional Fourier transform of f ,

Of .�/ D

Z
Rd

e�ix��f .x/ dx:

For any s 2 R, we define the space PH s as the completion of �.Rd / for the norm

kf k2PH s D

Z
Rd

j�j2s j Of .�/j2 d�:

For functions of several variables (say s and other ones), we will consider in an analogous
way jDsj, where the Fourier transform is restricted to the s variable.

Our results on the half-wave equation will transfer to the wave equation as its solutions
can be written as

u D eit jDjf C e�it jDjg; where f WD
1

2

h
u0 C

1

i jDj
u1

i
and g WD

1

2

h
u0 �

1

i jDj
u1

i
:

(1.2)

We now introduce some notation. Given a function f on Rd and ! 2 Sd�1, we let
f ˙! WR! C be such that its 1-dimensional Fourier transform (as a function of � 2 R) is

(1.3) FR.f
˙
! /.�/ D 1˙�⩾0 j�j

.d�1/=2 Of .�!/:

We also use the notation

(1.4) � WD
d � 1

4
� and c0 D

1p
2.2�/d�1

�

Finally, we define the operator T as follows: for a function v defined on Rd , T v is a
function of two variables .s; !/, defined on R � Sd�1 by its (partial) Fourier transform in
the first variable s:

(1.5) Fs!�.T v/.�; !/ D c0 j�j
.d�1/=2 .ei� 1�<0 C e

�i� 1�⩾0/ Ov.�!/:

that is,
.T v/.s; !/ D c0

�
ei� v�! .s/C e

�i� vC! .s/
�
:
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Our first result is the description of the asymptotics for large times of solutions of the
half-wave equation, and then of the wave equation.

Proposition 1.1 (Radiation field and concentration of energy on the light cone).
(1) (Half-wave equation). Let f 2 L2.Rd /. Then, as t ! C1, the following conver-

gence holds:

(1.6) .eit jDjf /.x/ �
ei�

.2�jxj/.d�1/=2
f �x=jxj.jxj � t /! 0 in L2.Rd /:

Furthermore, one has

(1.7) lim sup
t!˙1

keit jDjf kL2.jjxj�jt jj⩾R/ ! 0 as R!C1:

(2) (Wave equation). Let .u0; u1/ 2 PH 1 � L2.Rd /, and let u be the solution to (1.1).
Then, as t !C1, the following convergence holds in L2.Rd /1Cd :

(1.8) rt;xu.t; x/ �
1

p
2 jxj.d�1/=2

.@sT u0 � T u1/
�
jxj � t; x=jxj

�
�

�
�1

x=jxj

�
! 0:

Furthermore, one has

(1.9) lim sup
t!˙1

krt;xu.t/kL2.jjxj�jt jj⩾R/ ! 0 as R!C1:

Of course, for g 2 L2.Rd /, one obtains the corresponding expression for e�it jDjg by
considering the complex conjugate in (1.6):

(1.10) .e�it jDjg/.x/ �
e�i�

.2�jxj/.d�1/=2
gC
x=jxj

.jxj � t / �!
t!C1

0 in L2.Rd /:

This also gives an expansion for t ! �1. Also, (2) is a rather direct consequence of (1),
as we will prove the following equality, which has its own interest:

(1.11) .@sT u0 � T u1/.s; !/ D 2c0 @s.e
i�f �! C e

�i�gC! /.s/:

This result is therefore a computation of the radiation field of Friedlander [9]. We
refer to [3]; in odd dimension, it can be classically written thanks to the Radon transform
(see [18, 21]), to which the operator T is related (see the definition (1.23), Section 4 and
Lemma 4.8).

However, as far as we can tell, the correct computation of the convergence inL2 seems
to be not classic, specially in even dimension, although an analogous formula to (1.8) can
be found in [14] by Katayama (relying on the Radon transform). Our proof follows from
a rather elementary and short stationary phase analysis.

Our formula is amenable to further computations. For example, as an easy conse-
quence, we can also compute the energy outside a (shifted) light cone, or the asymptotic
energy atC1 and �1 in the following sense.
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Definition 1.2. Given R 2 R and a space time function v, we denote

Eext;R.v/ WD
1

2

�
lim

t!C1

�
krvk2L2.jxj⩾tCR/ C k@tvk

2
L2.jxj⩾tCR/

�
C lim
t!�1

�
krvk2L2.jxj⩾jt jCR/ C k@tvk

2
L2.jxj⩾jt jCR/

��
;

assuming that the limits exist.

Then there holds the following.

Corollary 1.3 (Mass outside the light cone). Let R 2 R. We have the formula

lim
t!C1

kuk2L2.jxj⩾tCR/

D
1

.2�/d�1

Z
!2Sd�1

f �! .s/C e�i �2 .d�1/gC! .s/2L2.ŒR;C1// d!;(1.12)

for any .u0; u1/ 2L2 � PH�1.Rd /, with u a solution to (1.1). Also, in the case of an initial
datum .u0; u1/ 2 PH

1 � L2.Rd / in the energy space, we have the formula

lim
t!C1

kruk2L2.jxj⩾tCR/ D lim
t!C1

k@tuk
2
L2.jxj⩾tCR/(1.13)

D
1

.2�/d�1

Z
!2Sd�1

ei� @sf �! .s/C e�i� @sgC! .s/2L2.ŒR;C1// d!
D
1

2
k@sT u0 � T u1k

2
L2.ŒR;C1/�Sd�1/

:(1.14)

(The first equality in (1.13) is equipartition). As a consequence, there is asymptotic ortho-
gonality in the sense that

Eext;R.u/ D k@sT u0k
2
L2.ŒR;C1/�Sd�1/

C kT u1k
2
L2.ŒR;C1/�Sd�1/

:(1.15)

(Here and below, R � Sd�1 is equipped with the standard product measure). The last
two formulas (1.14) and (1.15) involving T reveal the important role of this operator in our
analysis. We can reformulate (1.15) in the following way: denoting ue (respectively, uo)
the solution to (1.1) with initial data .u0; 0/ (respectively, .0; u1/), then

Eext;R.u/ D Eext;R.u
e/CEext;R.u

o/:

Another consequence of Theorem 1.1 is related to profile decomposition in the sense
of Bahouri–Gérard [2], for which we can prove a Pythagorean expansion of the linear
energy with sharp cut-off : this in turn is useful for the channel of the energy method in a
nonlinear setting (see [4–6, 8]). Let us recall the notion of profile decomposition for the
wave equation.

Definition 1.4. Let .un;0; un;1/ be a bounded sequence in PH 1 �L2. We say that it admits
a linear profile decomposition . EU jL I .�j;n/n; .tj;n/n; .xj;n/n/j , with remainder . EwJn /n;J ,
where the EU jL and the EwJn are solutions to the linear wave equation, and the parameters
.�j;n/n; .tj;n/n; .xj;n/ are sequences in Œ0;C1/, R and Rd , respectively, if it satisfies
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(1) Decomposition: for all J ⩾ 1, there holds

.un;0; un;1/.x/

D

JX
jD1

� 1

�d=2�1
U
j
L

�
�
tj;n

�j;n
;
x � xj;n

�j;n

�
;
1

�d=2
@tU

j
L

�
�
tj;n

�j;n
;
x � xj;n

�j;n

��
C EwJn .0/;

where the remainder converges in the Strichartz space S D L2d=.d�2/t;x .R1Cd /:

lim sup
n!C1

k EwJn kS ! 0 as J !C1:

(2) Pseudo-orthogonality: for j ¤ k,

either
�j;n

�k;n
C
�k;n

�j;n
!C1;

or 8n; �j;n D �k;n and
jtj;n � tk;nj

�j;n
C
jxj;n � xk;nj

�j;n
!C1:

Proposition 1.5 (Orthogonality with cut-offs in a profile decomposition). Let .un;0; un;1/
be a bounded sequence of PH 1 � L2, and assume that it admits a profile decomposition
with waves and parameters . EU jL I .�j;n/n; .tj;n/n; .xj;n/n/j , and remainder . EwJn /n;J .

Let .rn/n and .xn/ be two sequences of Œ0;C1/ and Rd , respectively. Then

k.un;0; un;1/k
2
PH1�L2.jx�xnj⩾rn/

D

JX
jD1

rt;xU jL� � tj;n

�j;n

�2
L2.j�j;nxCxj;n�xnj⩾rn/

C k.wJn;0; w
J
n;1/k

2
PH1�L2.jx�xnj⩾rn/

C on.1/:(1.16)

Note that an interesting byproduct of the proof is an explicit formula for reconstructing
the initial datum of a solution of the wave equation from its radiation field described
in (1.8), see (3.7) and (3.9).

1.2. Odd dimension

In odd dimension, we are able to refine the previous results and the asymptotic energy
outside truncated cones jxj ⩾ t CR with R ⩾ 0.

We first consider the easier caseRD 0. From our computations, we can easily recover
the following result, which goes back at least to Duyckaerts, Kenig and Merle [8].

Proposition 1.6. Assume d odd and let u be a solution to (1.1) with initial data .u0; u1/
2 PH 1 � L2.Rd /. Then, we have

Eext;0.u/ D
1

2
k.u0; u1/k

2
PH1�L2.Rd /

:(1.17)

Then, we consider the case R > 0 where the previous result cannot hold. We are
nonetheless able to determine the solutions u that have vanishing asymptotic energy on
the exterior light cone jxj ⩾ t CR with R > 0, that is,

Eext;R.u/ D 0:
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By finite speed of propagation, initial data which are compactly supported in jxj ⩽ R

obviously satisfy this condition. We will call this space

KR;comp D
®
.u0; u1/ 2 PH

1
� L2.Rd / W .u0; u1/j¹jxj>Rº D 0

¯
;

where the equality is in the distributional sense.
It turns out that these are not the only examples. We will now need some further

notation. We denote

.Y`/`2M(1.18)

a countable orthonormal basis of spherical harmonics of Sd�1. Each Y` is the restriction
to Sd�1 of a harmonic (homogeneous) polynomial. For short, we will denote l D l.`/ the
degree of this polynomial.

The non-radiative functions will be the following. Denote, for k 2 N,

˛k WD �l � d C 2k C 2:

The ˛k also depend on `, but here and below, we silence this dependence to keep notations
light. Then let

gk.x/ D 1¹jxj>Rº jxj
˛k Y`

� x
jxj

�
:(1.19)

Note that gk 2 L2” ˛k < �d=2. We introduce

N 0
R;` D Span .gk I for k 2 N such that ˛k < �d=2/ :

Similarly, let

fk.x/ D

8̂̂<̂
:̂
�
jxj

R

�˛k
Y`

� x
jxj

�
for jxj > R;�

jxj

R

�l
Y`

� x
jxj

�
for jxj ⩽ R:

(1.20)

Note that fk 2 PH 1” ˛k < �d=2C 1. Also, the value of fk in jxj ⩽ R is not very
important; our choice allows to keep continuity and that the restriction fkj¹jxj<Rº is a har-
monic polynomial, so that fk is orthogonal to (in PH 1) to functions with compact support
in B.0;R/. Let

N 1
R;` D Span .fk I for k 2 N such that ˛k < �d=2C 1/ :

For any ` 2M, we consider the spaces

P`.R/ D N 0
R;` �N 1

R;` and P.R/ DKR;comp

?L ?M
`2M

P`.R/

(the orthogonality is related to the natural scalar product of PH 1 �L2). Then we will prove
that if u is a linear wave solution which is non-radiative, that is, such that Eext;R.u/ D 0,
then .u; @tu/jtD0 2 P.R/ (and the converse is true as well). We actually have a quantitat-
ive version of this fact: this is our second main result.
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Theorem 1.7. Assume d is odd, d � 3, and let R > 0. Let u be the solution to the linear
wave equation with initial data .u; @tu/jtD0 D .u0; u1/ 2 PH 1 � L2. Then, we have

(1.21) k.u0; u1/k
2
PH1�L2.Rd /

D 2Eext;R.u/C k�R.u0; u1/k
2
PH1�L2.Rd /

;

where �R is the orthogonal projection (in PH 1 � L2/ onto the space P.R/ .
Moreover, if .u0; u1/ 2 P.R/, then the equality

u.t; x/ D
X
`2M

v`.t; r/ Y`.!/

holds for all .t; x/ in the (outer) truncated cone CR D ¹.t; x/ 2 Rd I jxj � jt j ⩾ Rº, where

v`.t; r/ D

BX
jD1

1

rdCl�j

B�jX
iD0

di;j t
i ;(1.22)

for some di;j 2 C, and where B WD .d C 1/=2C l .

The theorem above is the generalization to non-radial data of the main result in [15]
(see also [16], where the projection onto P.R/ first appeared in the case of dimension
d D 5). Upon completion of this work, Liu, Shen and Wei [19] gave a description of non-
radiative solutions u to the wave equation (that is, such that Eext;R.u/ D 0), in odd and
even dimensions, but still in the radial case.

1.3. Even dimension

In even dimension, we are able to give a more tractable formula for Eext;0.u/.

Proposition 1.8. Assume that d is even and let u be a solution to (1.1) with initial data
.u0; u1/ 2 PH

1 � L2.Rd /. Then, we have

Eext;0.u/ D
1

2
k.u0; u1/k

2
PH1�L2.Rd /

C
.�1/d=2

.2�/dC1

� <

Z
!2Sd�1

Z 1
0

Z 1
0

.rs/.d�1/=2
s yu0.s!/r yu0.�r!/ � yu1.s!/ yu1.�r!/

r C s
dr dsd!:

More precisely, there holds

2 lim
t!C1

kruk2L2.jxj⩾t/ D Eext;0.u/

C
2

.2�/dC1
<

Z
!2Sd�1

Z 1
0

Z 1
0

r .dC1/=2 yu0.r!/s
.d�1/=2 yu1.s!/

r � s
dr dsd!:

This is therefore an equivalent of Proposition 1.6. It extends the results of [6], where
this formula first appeared for radial data (to recover this formula, notice that yu0.�r/ D
yu0.r/ when u0 is radial). Very recently, Delort also derives a similar formula in [7].
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1.4. Outline and organisation of the paper

The proof of Theorem 1.1 relies on an adequate stationary phase analysis, which is remin-
iscent of second microlocalisation. Our main input is a careful bound on the remainder
term, to derive L2 type convergence. Corollary 1.3 and Propositions 1.6 and 1.8 are easy
consequences; Proposition 1.5 requires an extra ingredient, depending on the various cases
that the cut-offs can take.

Our main goal is obviously Theorem 1.7. The operator T is related to the Radon
transform R, which is defined as follows for a function f 2 �.Rd /:

8.s; !/ 2 R � Sd�1; .Rf /.s; !/ WD

Z
!�yDs

f .y/ dy:(1.23)

We will prove in Section 4 that some variant of the operator R can be extended to a map
L2.Rd /C PH 1.Rd /! � 0.R � Sd�1/ and that, when d is odd, one has the equality

T D c0 .�1/
.d�1/=2 @.d�1/=2s R;(1.24)

seen as operators on �.Rd /. We emphasize that @.d�1/=2s is a differential operator, and so,
in odd dimensions, T enjoys similar locality properties featured by R: this is a key aspect
of the analysis. In order to retain these locality properties for data in L2 (or PH 1 for @sT ),
we cannot use Fourier analysis and instead proceed by duality. This is the purpose of
Section 4. Special attention is required by the fact that the Radon transform has bad decay
properties, even for Schwartz class functions.

Once this is done, we can formulate and prove Theorem 1.7. An abstract lemma shows
that it is enough to describe the kernel of 1jsj⩾RT WL2.Rd /! L2.R � Sd�1/, and sim-
ilarly for @sT . The computation of both kernels is really similar, but has to be carried out
separately: we concentrate on ker 1jsj⩾RT . The computation of this kernel follows from a
combination of several observations.

First, we can restrict to compute harmonics by harmonics, that is, for functions of
the form w.jxj/Y`.x=jxj/. Second, denoting N 0

`
this kernel, we can prove that its image

by T is actually a polynomial restricted to jsj ⩽ R, with a bound on the degree. As T is
an isometry on L2, we infer that N 0

`
is finite dimensional. Third, an important property is

that N 0
`

is stable by a semi-group of dilations, from which we infer that it must be made
of very specific function w, of type w.r/ D r˛ lnˇ .jr j/. We prove that ˇ D 0 and that ˛
has to be an integer as a consequence of a further stability property, namely by applying
an operator related to the Laplacian� (correctly localized). Finally, we have to prove that
all the remaining functions do actually belong to N 0

`
. This does not follow in an obvious

way by direct computations, because of integrability issues due to low decay; instead we
use an induction and stability by derivation again.

The next sections are organized as follows. In Section 2, we prove Theorem 1.1 and
Corollary 1.3. As an application, we quickly deduce Propositions 1.6. In Section 3, we
detail the proof of Proposition 1.5. In Section 4, we develop a suitable functional frame-
work for the Radon transform in Sobolev space and in Section 5, we study the operator T

outside balls and prove Theorem 1.7.
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2. Proof of Theorem 1.1 and consequences

Before we proceed with the main proofs, first observe that T WL2.Rd /! L2.R � Sd�1/
and @sT W PH 1.Rd /! L2.R � Sd�1/ are isometries.

Lemma 2.1. The operator T WL2.Rd /! L2.R� Sd�1/ is a (well defined and ) continu-
ous map, and

8v 2 L2.Rd /; kT vkL2.R�Sd�1/ D kvkL2.Rd /:

Similarly, @sT W PH 1.Rd /! L2.R � Sd�1/ is a (well defined and ) continuous map, and

8v 2 PH 1.Rd /; k@sT vkL2.R�Sd�1/ D kvk PH1 :

Also, if d is odd, then one has the following symmetry: for s 2 R and ! 2 Sd�1,

T v.�s; !/ D .�1/.d�1/=2 T v.s;�!/;(2.1)

while if d is even,

T v.�s; !/ D .�1/d=2 H .T v/.s;�!/:(2.2)

Above, H denotes the Hilbert transform with respect to the s variable.

Proof. The point is that the Fourier multiplier defining T is of modulus 1 for all �; !. It
suffices to show the equalities of norms for v 2 �.Rd /.

Let us first prove the first statement: we compute, via Plancherel on R and Rd ,

kT vk2
L2.R�Sd�1/

D
1

2�

Z
Sd�1

Z
R
jFRT v.�; !/j2 d�d!

D
1

2�
c20

Z
Sd�1

Z
R
j Ov.�!/j2 j�jd�1 d�d!

D
1

2�

1

2.2�/d�1
2

Z
Sd�1

Z 1
0

j Ov.�!/j2 �d�1 d�d!

D
1

.2�/d

Z
Rd

j Ov.�/j2 d� D kvk2
L2.Rd /

:

For the second statement, we observe that

FR.@sT v/.�; !/ D i�FR.T v/.�; !/;

so that the same computations give

k@sT vk
2
L2.R�Sd�1/

D
1

2�

1

2.2�/d�1
2

Z
Sd�1

Z 1
0

j Ov.�; !/j2 �dC1 d�d!

D
1

.2�/d

Z
Rd

ji� Ov.�/j2 d� D
1

.2�/d

Z
Rd

jFRd .rv/.�/j
2 d� D krvk2

L2.Rd /
:
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When d is odd, observe that ei� D .�1/.d�1/=2e�i� . Therefore, for � ¤ 0,

Fs!�.T v.�s; !//.�; !/ D FR.T v/.��; !/

D c0 j�j
.d�1/=2 .ei� 1��<0 C e

�i� 1��⩾0/ Ov.��!/

D .�1/.d�1/=2 c0 j�j
.d�1/=2 .ei� 1�⩽0 C e

�i� 1�>0/ Ov.�.�!///

D .�1/.d�1/=2 FR.T v/.�;�!/:

When d is even, we have instead ei� D �i.�1/d=2 e�i� . Therefore, for � ¤ 0,

Fs!�.T v.�s; !//.�; !/ D FR.T v/.��; !/

D c0 j�j
.d�1/=2 .ei� 1��<0 C e

�i� 1��⩾0/ Ov.��!/

D �i.�1/d=2 c0 j�j
.d�1/=2 .�ei� 1�⩽0 C e

�i� 1�>0/ Ov.�.�!///

D .�1/d=2 FR.HT v/.�;�!/:

We conclude in both cases by taking the inverse Fourier transform in the � variable.

Proof of Theorem 1.1. We first prove (1), that is, the computations for the half-wave equa-
tion.

We will first assume that f 2�.Rd / is smooth and decaying, and that Of 2D.Rd n¹0º/
is smooth and has compact support away from 0.

We denote v the solution of the first (outcoming) half wave equation, so that

Ov.t; �/ D eit j�j Of .�/:

The inversion formula gives

v.t; x/ D
1

.2�/d

Z
Rd

eix�� eit j�j Of .�/ d�

D
1

.2�/d

Z C1
0

Z
Sd�1

eirx�! eitr Of .r!/rd�1 drd!

D
1

.2�/d

Z C1
0

rd�1 eitr
Z

Sd�1
eirx�! Of .r!/ drd!:

We will use the polar coordinates notations rx , !x , that is: rx WD jxj and !x WD x=jxj.
We study the second integral using the method of the stationary phase, with r fixed

as a parameter that vary on a bounded set (relative to the support of f ) and rx as a large
parameter. For r 2 R�C and � 2 Sd�1, we denote 'r;� W Sd�1! R the function defined by

'r;� .!/ D r� � !:

The second integral can then be written asZ
Sd�1

eirx�! Of .r!/ d! D

Z
Sd�1

eirx'r;!x .!/ Of .r!/ d!:

Observe that for all � 2 Sd�1, 'r;� has two critical points:
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• !1 D � , with signature.'00r;� .!1// D .0;�.d � 1// and det.'00r;� .!1// D .�r/
d�1,

• and !2 D �� , with signature.'00r;� .!2// D .d � 1; 0/ and det.'00r;� .!2// D r
d�1.

Note that the computations of the properties of '00r;� can be obtained for instance by
reducing to � D .0; : : : ; 0; 1/ by rotation invariance and working in local coordinates
! D .x1; : : : ; xd�1;˙.1 � .x

2
1 C � � � C x

2
d�1

//1=2/ close to˙� .
So, using the oscillatory integral formula, we haveZ

Sd�1
eirx�! Of .r!/ d! D

� 2�
rrx

�.d�1/=2
e�i�eirrx Of .r!x/

C

� 2�
rrx

�.d�1/=2
ei�e�irrx Of .�r!x/C Rem.r; rx ; !x/;

(2.3)

where jRem.r; rx ; !x/j ⩽
C

r
.dC1/=2
x

;

and Rem has compact support in R�C as a function of r . We refer for instance to Grigis–
Sjöstrand [11], Proposition 2.3, p. 22, or to [13], Theorem 7.7.5. In these references, the
estimates for the oscillatory integral are given for regular compactly supported functions
on Rd�1; it is easy to obtain the associated result on the compact manifold Sd�1 by
working in coordinate charts. The constantC then depends on 'r;� and some (L1) bounds
on the derivatives of ! 7! Of .r!/. One can check that once f such that Of 2D.Rd n ¹0º/
is fixed, the constant C in (2.3) can be made uniform in r and !x . We also notice that
in the above references, the estimate is sometimes written for rx � 1, but it is easy to
check that it remains true for small rx , for which it is actually trivial. We also refer to
Theorem 7.7.14 in [13] for a more geometric result on such integral on a hypersurface.

Therefore, we have the pointwise estimate of the error term

(2.4) 8t 2 R; x 2 Rd ;
ˇ̌̌ Z 1
0

Rem.r; rx ; !x/ rd�1eitrdr
ˇ̌̌
⩽

C

jxj.dC1/=2
�

We now compute the contribution of the other two terms:

Qv.t; x/ WD
� 1
rx

�.d�1/=2 1

.2�/.dC1/=2

�

Z C1
0

r .d�1/=2 eitr
�
e�i� eirrx Of .r!x/C e

i� e�irrx Of .�r!x/
�
dr

The first term writes

Qv1.t; x/ WD
� 1
rx

�.d�1/=2 e�i�

.2�/.dC1/=2

Z C1
0

r .d�1/=2ei.tCrx/r Of .r!x/ dr:

We want an asymptotic as t !C1 so that t C rx is a large positive parameter. Therefore
the phase in r is never critical, and we get that for any N 2 N, there exists CN > 0 such
that

(2.5) 8t ⩾ 0; 8x 2 Rd ; j Qv1.t; x/j ⩽ CN
1

r
.d�1/=2
x

.t C rx/
N :
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Thus we are left with the second term:

Qv2.t; x/ WD
� 1
rx

�.d�1/=2 ei�

.2�/.dC1/=2

Z C1
0

r .d�1/=2 eir.t�rx/ Of .�r!x/ dr

D

� 1
rx

�.d�1/=2 ei�

.2�/.dC1/=2

Z 0

�1

jr j.d�1/=2 e�ir.t�rx/ Of .r!x/ dr

D

� 1
rx

�.d�1/=2 ei�

.2�/.d�1/=2
f �!x .rx � t /:

(Recall that f �! W R ! C has Fourier transform FR.f
�
! /.�/ D 1�⩽0j�j.d�1/=2 Of .�!/;

note that it is a Schwartz function because the support of its Fourier transform is away
from zero).

Gathering these computations yields the following pointwise estimate: for t ⩾ 0 and
x 2 Rd ,

(2.6)
ˇ̌̌
.eit jDjf /.x/ �

ei�

.2�jxj/.d�1/=2
f �!x .jxj � t /

ˇ̌̌
⩽

C

jxj.dC1/=2
�

This will make it quite clear that the solution is concentrated close to the annulus

At;R WD ¹x 2 Rd W jt j �R ⩽ jxj ⩽ jt j CRº

for large R ⩾ 0 as t !C1 (with jt j ⩾ R). Due to the conservation of L2 norm, we will
infer that eitDjf has vanishing L2 norm outside large annuli centered around the sphere
of radius jt j.

Indeed, we have, more precisely,

keit jDjf k2
L2.At;R/

D

Z
!2Sd�1

Z tCR

rDt�R

j.eit jDjf /.r!/j2rd�1drd!

D
1

.2�/d�1

Z
Sd�1

Z tCR

rDt�R

�
jf �! .r � t /j

2
C jf �! .r � t /jO

�1
r

�
CO

� 1
r2

��
drd!

D
1

.2�/d�1

Z
Sd�1

h Z R

�R

jf �! .r/j
2dr C kf �! kL2.R/O

� Z tCR

t�R

dr

r2

�1=2
CO

� Z tCR

t�R

dr

r2

�i
d!

D
1

.2�/d�1

Z
Sd�1

Z R

�R

jf �! .r/j
2 drd! CO

� 1
p
t �R

�
;

where the implicit constant is uniform in t ⩾R⩾ 0; we used the Cauchy–Schwarz inequal-
ity, and the fact that, due to the Plancherel identity,Z

Sd�1

Z
R
jf �! .r/j

2 drd! D
1

2�

Z
Sd�1

Z 0

�1

j Of .�!/j2 �d�1 d� D
1

2�

Z
Rd

j Of .�/j2 d�

D .2�/d�1kf k2
L2
:
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Let " > 0. The above computation shows that for R large enough,ˇ̌̌ 1

.2�/d�1

Z
Sd�1

Z R

�R

jf �! .r/j
2 drd! � kf k2

L2

ˇ̌̌
⩽ ":

Therefore, for such R,

lim sup
t!C1

ˇ̌
keit jDjf k2

L2.At;R/
� kf k2

L2

ˇ̌
⩽ ";

As keit jDjf kL2 D kf kL2 , we get

lim
R!C1

lim sup
t!C1

keit jDjf kL2.cAt;R/ D 0;(2.7)

which is (1.7) for t !C1.
We can now finish up and prove (1.6). Due to the pointwise bound (2.6), we haveZ
jxj⩾t=2

ˇ̌̌
.eit jDjf /.x/ �

ei�

.2�jxj/.d�1/=2
f �!x .jxj � t /

ˇ̌̌2
dx ⩽ C

Z C1
t=2

dr

r2
�!
t!C1

0:

Now, from (2.7), one easily has that

keit jDjf kL2.jxj⩽t=2/ �!
t!C1

0:(2.8)

On the other hand, 1

jxj.d�1/=2
f �!x .jxj � t /

2
L2.jxj⩽t=2/

D

Z
B.0;t=2/

1

jxjd�1
jf �!x .jxj � t /j

2 dx

D

Z t=2

rD0

Z
!2Sd�1

jf �! .r � t /j
2 drd! D

Z
!2Sd�1

Z �t=2
rD�t

jf �! .r/j
2 drd!:(2.9)

We already saw that Z
!2Sd�1

Z
R
jf �! .r/j

2 drd! D kf k2
L2
< C1;

so that the above is an exhausting integral, which thus tends to 0 as t ! C1. We infer
from this and (2.8) thatZ

jxj⩽t=2

ˇ̌̌
.eit jDjf /.x/ �

ei�

.2�jxj/.d�1/=2
f �!x .jxj � t /

ˇ̌̌2
dx �!

t!C1
0:

Hence (1.6) is proved and (1) is complete for the case Of 2 D.Rd n ¹0º/.
For the general case, by density, it is sufficient to notice that for fixed t , the maps

f 7! eit jDjf and f 7!
�
x 7!

ei�

.2�jxj/.d�1/=2
f �x=jxj.jxj � t //

�
are linear continuous from L2.Rd / to L2.Rd / with bound uniform in t . The first one is
obvious due to Plancherel, while the second one can be obtained by a computation similar
to (2.9).
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Before we prove (2), let us first derive the formula (1.10) for w.t/ D e�it jDjg. One
can proceed as before, by noticing that up to an error term with size as in (2.4), the main
contribution is

Qw.t; x/ D
� 1
rx

�.d�1/=2 1

.2�/.dC1/=2

�

Z C1
0

r .d�1/=2e�itr
�
e�i� eirrx Og.r!x/C e

i� e�irrx Og.�r!x/
�
dr;

and that this time, the only relevant term is

Qw1.t; x/ D
� 1
rx

�.d�1/=2 e�i�

.2�/.dC1/=2

Z C1
0

r .d�1/=2 e�i.t�rx/r Og.r!x/ dr

D

� 1
rx

�.d�1/=2 e�i�

.2�/.d�1/=2
gC!x .rx � t /;

as FR.g
C
! /.r/ D 1r⩾0r .d�1/=2 Og.r!/.

Or as mentioned in the introduction, one can also simply take complex conjugate in
the expansion of eit jDjg and observe that

.g/�!.s/ D g
C
! .s/:

Indeed, taking Fourier transform, there hold

FR..g/�!/.�/ D

Z
R
e�is� .g/�!.s/ds D

Z
R
eis� .g/�!.s/ ds D Fs!�..g/�!/.��/

D 1��⩽0j�j
.d�1/=2 Og.��!/ D 1�⩾0j�j

.d�1/=2
Og.�!/ D FR.g

C
! /.�/:

We now turn to (2). We recall that with

f D
1

2

�
u.0/C

1

i jDj
@tu.0/

�
and g D

1

2

�
u.0/ �

1

i jDj
@tu.0/

�
;

we have f; g 2 PH 1.Rd / and

(2.10) rt;xu.t/ D e
it jDj

�
i jDjf

rxf

�
C e�it jDj

�
�i jDjg

rxg

�
2 L2.Rd ;C1Cd /:

So that for i D 1; : : : ; d , and using (1.6) and (1.10),

@tu.t/ D
1

.2�jxj/.d�1/=2

�
ei� .i jDjf /�x=jxj C e

�i� .�i jDjg/C
x=jxj

�
.jxj � t /(2.11)

C "0.t; x/;

@iu.t/ D
1

.2�jxj/.d�1/=2

�
ei� .@if /

�
x=jxj C e

�i� .@ig/
C

x=jxj

�
.jxj � t /C "i .t; x/;(2.12)
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where k"i .t/kL2.Rd / ! 0 as t !C1. Now we have

FR.@if /
�
!.�/ D 1�<0 �

.d�1/=2 d@if .�!/ D 1�<0j�j
.d�1/=2 .i�!i / Of .�!/

D !i FR.@�f
�
! /.�/;

so that

.@if /
�
!.s/ D !i@s.f

�
! /.s/; and similarly, .@ig/

C
! .s/ D !i@s.g

C
! /.s/:

Regarding the time derivatives,

FR.i jDjf /
�
!.�/ D 1�<0 j�j

.d�1/=2 î jDjf .�!/ D 1�<0 j�j
.d�1/=2 .�i�/ Of .�!/

D �FR.@�f
�
! /.�/;

so that
.i jDjf /�! D �@sf

�
! ; and similarly, .�i jDjg/C! D �@sg

C
! :

This can be summarized by considering the function defined for ! 2 Sd�1 and s 2 R by

h.s; !/ WD @s.e
i�f �! C e

�i�gC! /.s/;

so that

(2.13) rt;xu.t; x/ D
1

.2�jxj/.d�1/=2
h
�
jxj � t;

x

jxj

��
�1

x=jxj

�
C ".t; x/;

where ".t/ ! 0 in L2.Rd ;C1Cd /. It suffices to relate h and T , which we do now by
computing the 1D Fourier transform of h in the s variable:

Fs!�h.�; !/ D i� .e
i� FRf

�
! C e

�i� FR.g
C
! /.�/

D i� j�j.d�1/=2 .ei� 1�⩽0 Of C e
�i� 1�⩾0 Og/.�!/

D i� j�j.d�1/=2
h
ei� 1�⩽0

1

2

�
yu0 C

1

i j�j
yu1

�
C e�i� 1�⩾0

1

2

�
yu0 �

1

i j�j
yu1

�i
.�!/

D
1

2
i�j�j.d�1/=2

h
.ei� 1�⩽0 C e

�i� 1�⩾0/yu0 C
1

i j�j
.ei� 1�⩽0 � e

�i� 1�⩾0/yu1
i
.�!/

D
1

2
j�j.d�1/=2

�
i� .ei� 1�⩽0 C e

�i� 1�⩾0/yu0 � .e
i� 1�⩽0 C e

�i� 1�⩾0/yu1
�
.�!/

D
1

2c0
.i�Fs!�.T u0/.�; !/ � Fs!�.T u1/.�; !//

D Fs!�

� 1

2c0
.@sT u0 � T u1/.�; !/

�
:

Via inverse Fourier transform, we get h.s; !/ D 1
2c0
.@sT u0 � T u1/, which is (1.11), and

from (2.13), we derive (1.8) and (1.9) follows similarly as for the half-wave case.

Remark 2.2. Performing similar computations in the case u0 2 L2.Rd / and u1 D 0,
which is f D g D u0=2, we can write (1.12) in a simplified form, namely,

lim
t!C1

kuk2L2.jxj⩾tCR/ D
1

2

Z
!2Sd�1

kT u0k
2
L2.ŒR;C1// d!:(2.14)
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Remark 2.3. It could seem surprising at first that, from estimates like (2.3), where the
constant C is strongly dependent on the smooth function f and some of its derivatives,
we can deduce some uniform estimates like (1.6) for anyL2 functions. It should be noticed
then that the stationary phase estimates that we use are then combined with L2 estimates.
They actually prove that the main term that we get contains all the L2 norm.

Proof of Corollary 1.3. Now, we turn to the proof of (1.12), that is, the computation of
the L2 norm outside the ball BtCR D

®
x 2 Rd I rx < t CR

¯
. From (1.6) and (1.10),

u.t; x/ D .eit jDjf C e�it jDjg/.x/

D
1

.2�jxj/.d�1/=2

�
ei�f �x=jxj C e

�i� gC
x=jxj

�
.jxj � t /C oL2.1/:

The same computations as before give 1

.2�jxj/.d�1/=2
f �x=jxj


L2
D kf kL2 ;

(and the same for g), so that, for t ⩾ 0,

.2�/d�1 ku.t/k2
L2.jxj⩾tCR/ D

Z
!2Sd�1

Z C1
tCR

ju.t; r!/j2 rd�1 drd!

D

Z
!2Sd�1

Z C1
tCR

jei�f �! .r � t /C e
�i� gC! .r � t /j

2 drd! C oL2.1/

D

Z
!2Sd�1

Z C1
R

jei�f �! .r/C e
�i� gC! .r/j

2 drd! C oL2.1/;

as desired for the L2 case.
In order to complete the energy space case, we invoke (1.8). As @sT u0 � T u1 2

L2.R � Sd�1/, we get, as before,

2k@tu.t/k
2
L2.jxj⩾tCR/ D

Z
!2Sd�1

Z C1
tCR

j@sT u0 � T u1/.r � t; !/j
2 drd! C oL2.1/

D k@sT u0 � T u1k
2
L2.ŒR;C1/�Sd�1/

;

and an analogous computation for kru.t/k2
L2.jxj⩾tCR/: as jx=jxjj D j � 1j, both limits

are equal. Hence, (1.13) and (1.14) are proved.
Finally, for (1.15), it suffices to notice that t 7! u.�t / is the solution to the wave

equation with initial data .u0;�u1/, so by the linearity of T ,

lim
t!�1

k@tu.t/k
2
L2.jxj⩾jt jCR/ D lim

t!C1
k@tu.�t /k

2
L2.jxj⩾jt jCR/

D
1

2
k@sT u0 � T .�u1/kL2.ŒR;C1/�Sd�1/ D

1

2
k@sT u0 C T u1k

2
L2.ŒR;C1/�Sd�1/

;

and the same holds for rxu. Therefore, expanding the squares,

Eext;R.u/ D
1

2

�
k@sT u0�T u1k

2
L2.ŒR;C1/�Sd�1/

Ck@sT u0CT u1k
2
L2.ŒR;C1/�Sd�1/

�
D k@sT u0k

2
L2.ŒR;C1/�Sd�1/

C kT u1k
2
L2.ŒR;C1/�Sd�1/

:
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Proof of Proposition 1.6. The goal is to compute Eext;0.u/ when the dimension d is odd.
In that case, the symmetry (2.1) is available, so that

2kT u1k
2
L2.Œ0;C1/�Sd�1/

D 2

Z
Sd�1

Z C1
0

jT u1.s; !/j
2 dsd!

D

Z
Sd�1

Z C1
0

jT u1.s; !/j
2 dsd! C

Z
Sd�1

Z C1
0

jT u1.�s;�!/j
2/ dsd!

D

Z
Sd�1

Z
R
jT u1.s; !/j

2 dsd! D kT u1k
2
L2.R�Sd�1/

D ku1k
2
L2
;

due to the first part of Lemma 2.1. As one also has the symmetry

@sT u0.�s; !/ D .�1/
.dC1/=2 @sT u0.s;�!/

(by differentiating (2.1)), similar computations show that

2k@sT u0k
2
L2.Œ0;C1/�Sd�1/

D k@sT u0k
2
L2.R�Sd�1/

D ku0k
2
PH1
;

where we used also the second part of Lemma 2.1. Summing up and using (1.15), we
conclude

Eext;0.u/ D k@sT u0k
2
L2.Œ0;C1/�Sd�1/

CkT u1k
2
L2.Œ0;C1/�Sd�1/

D
1

2
.ku0k

2
PH1
Cku1k

2
L2
/:

To conclude this section, our goal is now to give an expression of the energy outside
the light cone in even dimension, so as to prove Proposition 1.8. We adopt the following
convention for the Hilbert transform H on the real line: for f 2 �.R/, we denote

Hf .s/ D p.v.
1

�

Z
R

f .r/

s � r
dr; so that idHf .�/ D sgn.�/ bf .�/;

where sgn denotes the signum function. Also, for functions defined for .s;!/ 2R� Sd�1,
H denotes the Hilbert transform with respect to the s variable.

We start with a lemma, for which it is convenient to recall the Hankel transform,
defined for f 2 D.RC/ by

Hf.s/ D

Z 1
0

f .r/

s C r
dr:

Note that H extends to a bounded operator on L2.RC/ with norm � .

Lemma 2.4. Let f 2 L2.R/. Then

kf k2
L2.RC/ C kHf k

2
L2.R�/ D kf k

2
L2
C
1

�
=

Z 1
0

Z 1
0

Of .s/ Of .�r/

r C s
drds

D
1

2�
k Of k2

L2
C

1

�2
=

Z 1
0

Z 1
0

Of .s/ Of .�r/

r C s
drds

D
1

2�
k Of k2

L2
�
1

�2
=

Z 1
0

.H
b
f /.r/ Of .r/ dr;
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Moreover, for f; g 2 L2.R/, we have

hf; giRC � hHf;HgiR�

D
1

2i�2

� Z 1
0

Z 1
0

Of .r/ Og.s/

s � r
drds �

Z 1
0

Z 1
0

Of .�r/ Og.�s/

s � r
drds

�
:

Proof. Denote f C D 1RC.D/f and f � D 1R�.D/f . Then

f D f � C f C and iHf D �f � C f C:

Therefore,

kf k2
L2.RC/ D kf

�
k
2
L2.RC/ C kf

C
k
2
L2.RC/ C 2<

Z
RC
f � f C;

kHf k2
L2.R�/ D kf

C
k
2
L2.R�/ C kf

�
k
2
L2.R�/ � 2<

Z
R�
f � f C;

kf k2
L2.RC/ C kHf k2

L2.R�/ D kf k
2
L2
C 2<hsgn � f �; f Ci:

We denote hf; gi D
R

R f g the standard (complex) scalar product.
Using Parseval’s formula, we get

hsgn � f �; f Ci D
1

2�
h ̂sgn � f �;df Ci:

Moreover, recall that

ŝgn � g D
1

2�
csgn �bg D 1

�

1

i�
�bg D 1

i
Hbg;

where H is the R-Hilbert transform. Now

H cf �.s/ D 1

�

Z 0

�1

bf .r/
s � r

dr D
1

�

Z 1
0

bf .�r/
s C r

dr D
1

�
H bf .��/;

so that

2<hsgn � f �; f Ci D
1

�2
=

Z 1
0

Z 1
0

Of .s/ Of .�r/

r C s
drds:

Concerning the crossed term,

hf; giRC�hHf;HgiR� D hf
�
C f C; g� C gCiRC � hf

C
� f �; gC � g�iR�

D hf �; gCiRC C hf
�; gCiR� C hf

C; gCiRC � hf
C; gCiR�

C hf C; g�iRCChf
C; g�iR� C hf

�; g�iRC � hf
�; g�iR�

D hf �; gCi C hsgn � f C; gCi C hf C; g�i C hsgn � f �; g�i

D hsgn � f C; gCi C hsgn � f �; g�i:

In the computations above, we used the support properties of the functions f ˙ and g˙ in
Fourier space. As before, using Parseval’s theorem, we get

hsgn � f C; f Ci D
1

2�
h ̂sgn � f C;df Ci;



Concentration close to the cone for linear waves 219

and using again
̂sgn � f ˙ D

1

i
Hdf ˙;

we get

hf; giRC � hHf;HgiR�

D
1

2i�2

� Z 1
0

Z 1
0

Of .r/ Og.s/

s � r
drds C

Z 0

�1

Z 0

�1

Of .r/ Og.s/

s � r
drds

�
D

1

2i�2

� Z 1
0

Z 1
0

Of .r/ Og.s/

s � r
drds �

Z 1
0

Z 1
0

Of .�r/ Og.�s/

s � r
drds

�
:

Proof of Proposition 1.8. We start with (1.14), and use the change of variable ! $ �!
and (2.2), to compute

4 lim
t!C1

kruk2L2.jxj⩾t/(2.15)

D k@sT u0 � T u1k
2
L2.RC�Sd�1/

C kH@sT u0 CHT u1k
2
L2.R��Sd�1/

D k@sT u0k
2
L2.RC�Sd�1/

C kH@sT u0k
2
L2.R��Sd�1/

C kT u1k
2
L2.RC�Sd�1/

C kHT u1k
2
L2.R��Sd�1/

� 2<h@sT u0; T u1iL2.RC�Sd�1/ C 2<hH@sT u0;HT u1iL2.R��Sd�1/:

Let us give an expression for each of the three lines of the last equality above. Recall (1.5)
and observe that e2i� D �i.�1/d=2; then, for fixed !, we use the first part of Lemma 2.4
with f such that Of .�/ D c0 j�j

.d�1/=2.ei� 1�<0 C e�i� 1�⩾0/yu1.�!/. This yields, for
the u1 terms (second line),

kT u1k
2
L2.RC�Sd�1/

C kHT u1k
2
L2.R��Sd�1/

D kT u1k
2
L2.R�Sd�1/

C=
1

2.2�/d�1�2
e2i�

Z
!2Sd�1

Z 1
0

Z 1
0

.rs/.d�1/=2
yu1.s!/ yu1.�r!/

r C s
dr dsd!

D ku1k
2
L2 �

2.�1/d=2

.2�/dC1
<

Z
!2Sd�1

Z 1
0

Z 1
0

.rs/.d�1/=2
yu1.s!/ yu1.�r!/

r C s
dr dsd!:

For the u0 terms (first line), we use now f such that Of .�/ D c0i�j�j.d�1/=2.ei�1�<0 C
e�i�1�⩾0/yu0.�!/, and this gives

k@sT u0k
2
L2.RC�Sd�1/

C kH@sT u0k
2
L2.R��Sd�1/

D k@sT u0k
2
L2.R�Sd�1/

� =
1

2.2�/d�1�2
e2i�

Z
!2Sd�1

Z 1
0

Z 1
0

.rs/.dC1/=2
yu0.s!/ yu0.�r!/

r C s
dr dsd!

D ku0k
2
PH1 C

2.�1/d=2

.2�/dC1
<

Z
!2Sd�1

Z 1
0

Z 1
0

.rs/.dC1/=2
yu0.s!/ yu0.�r!/

r C s
dr dsd!:
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We now work on crossed terms (the last line of (2.15)): for this, we use the second part of
Lemma 2.4 with f and g such that

Of .�/ D c0 i� j�j
.d�1/=2 .ei� 1�<0 C e

�i� 1�⩾0/ yu0.�!/

and Og.�/ D c0 j�j
.d�1/=2 .ei� 1�<0 C e

�i� 1�⩾0/ yu1.�!/:

We obtain

�<h@sT u0; T u1iL2.RC�Sd�1/ C<hH@sT u0;HT u1iL2.R��Sd�1/

D �<
1

2.2�/d�1
1

2i�2
i

Z
!2Sd�1

� Z 1
0

Z 1
0

r .dC1/=2 yu0.r!/s
.d�1/=2 yu1.s!/

s � r
drds

C

Z 1
0

Z 1
0

r .dC1/=2 yu0.�r!/s
.d�1/=2 yu1.�s!/

s � r
drds

�
d!

D �<
2

.2�/dC1

Z
!2Sd�1

Z 1
0

Z 1
0

r .dC1/=2 yu0.r!/s
.d�1/=2 yu1.s!/

s � r
dr dsd!:

Summing up the three above expressions yields the desired identity.

3. Proof of Proposition 1.5

In this section, we focus on the proof of Proposition 1.5. When expanding the decompos-
ition of u in order to get (1.16), we are left with the cross terms: the main point is to show
that these cross terms tend to 0. This is the purpose of the following lemma.

Lemma 3.1. Let Eu D .u; @tu/ and, for n 2 N, let Ewn D .wn; @twn/ be solutions to the
linear wave equation (1.1), bounded in C.R; PH 1 � L2.Rd //. Let tn 2 R, xn 2 Rd and
rn > 0 be three sequences. Assume that Ewn.�tn/ * 0 in PH 1 � L2.Rd /. ThenZ

jx�xnj⩾rn

rt;xwn.0; x/ � rt;xu.tn; x/ dx ! 0 as n!C1:(3.1)

Proof. We denote xn D �n!n, where �n > 0 and !n 2 Sd�1. It is enough to prove that
for any subsequence, at least one sub-subsequence of (3.1) converges to 0. Therefore we
can assume that the following sequences converge in R or Sd�1:

tn; �n; !n;
�n

tn
;
rn

tn
;
rn

�n
;
rn � �n

tn
;
r2n
tn
� tn;

1

tn

� r2n
�n
� �n

�
;
rn � tn

�n
�(3.2)

Also observe the following claim

Claim 3.2. We can assume without loss of generality that one of the following four pos-
sibilities occur:

(1) (whole space) 1B.xn;rn/ ! 1 a.e.,
(2) (void) 1B.xn;rn/ ! 0 a.e.,

(3) (ball) there exists x1 2 Rd and r1 > 0 such that 1B.xn;rn/ ! 1B.x1;r1/ a.e.,

(4) (half-space) there exist !1 2 Sd�1 and c 2 R such that 1B.xn;rn/ ! 1x�!1⩾c a.e.
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For the claim: first assume that �n has as a finite limit. If rn!C1, we are in the case
(whole space); if rn ! 0, it is the (void) case; and if rn ! r1 > 0 has a finite positive
limit, it is the case (ball). Now assume that �n ! C1, and let !1 be the limit of !n. If
�n � rn tends to �1, we are in the (whole space) case; if �n � rn!C1, it is the (void)
case. Now if �n � rn ! c 2 R has a finite limit, we see that we are in the (half-space)
scenario.

We can now proceed with the proof of Lemma 3.1 itself. If tn has a finite limit t1 2R,
then Eu.tn/ has a strong limit Eu.t1/ in PH 1 � L2. Therefore, by Lebesgue’s dominated
convergence theorem, we see that 1B.xn;rn/rt;xu.tn/ has a strong limit V 2 .L2/1Cd ,
by inspecting each scenario of the claim. Moreover, the hypothesis of the lemma is that
rt;xwn * 0 in .L2/1Cd , thereforeZ

jx�xnj⩾rn

rt;xwn.x/ � rt;xu.tn/.x/ dx !

Z
0 � V D 0:

We now consider the case when tn has an infinite limit; we can assume without loss of
generality that tn !C1. In this case, our goal is to construct a solution Ev 2 C.R; PH 1 �

L2.Rd // to the linear wave equation (1.1) such that

krt;xv.tn/ � 1jx�xnj⩾rnrt;xu.tn/k.L2/1Cd ! 0 as n!C1:(3.3)

Assuming that such a Ev is constructed, the assumption on the weak convergence of Ewn
means that Z

rt;xwn.0; x/ � rt;xv.tn/ dx ! 0 as n!C1;

from where we deduce (3.1) immediately. We therefore focus on the construction of such
a Ev.

We recall from (2.13) that

rt;xu.t; x/ D
1

.2�jxj/.d�1/=2
h.jxj � t; x=jxj/

�
�1

x=jxj

�
C ".t; x/;

where ".t; x/! 0 in L2.Rd ;CdC1/ and

h.�; !/ D @�.e
i�f �! C e

�i�gC! /.�/:

The key point of the argument is the following:

Claim 3.3. 1j.�Ctn/!�xnj⩽rn has a limit for a.e .�;!/ 2 R� Sd�1, which we call a.�;!/.

Of course, a.�; !/ is measurable and 0 ⩽ a.�; !/ ⩽ 1 a.e.-.�; !/ 2 R � Sd�1. Let us
postpone the proof of Claim 3.3 to the end, and assume it for now. Let us then define

Qh.�; !/ D a.�; !/h.�; !/:

The relevance of the definition comes from the following claim.

Claim 3.4. The following convergence holds in L2.Rd /:

(3.4)
1

.2�jxj/.d�1/=2

�
1jx�xnj⩾rnh.jxj � tn; x=jxj/ �

Qh.jxj � tn; x=jxj/
�
! 0:
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Proof. As Qh.�;!/ D a.�;!/h.�;!/, (3.4) is equivalent to showing the convergence to 0,
as n!C1, of the quantityZ

R

Z
Sd�1
j1�!�xnj⩾rn � a.� � tn; !/j jh.� � tn; !/j

2 d�d!

or equivalently that

(3.5)
Z

R

Z
Sd�1
j1.�Ctn/!�xnj⩾rn � a.�; !/j jh.�; !/j

2 d�d! ! 0:

Now,
F�!�h.�; !/ D i�

�
1�⩽0 e

i� Of .�!/C 1�⩾0 e
�i�
Og.�!/

�
;

so that by Parseval,Z
R

Z
Sd�1
jh.�; !/j2 d�d!

D .2�/�1
Z

Sd�1

� Z 0

�1

j Of .r!/j2 jr jdC1 dr C

Z C1
0

j Og.r!/j2 rdC1 dr
�
d!

D .2�/d�1
�
kf k2

PH1.Rd /
C kgk2

PH1.Rd /

�
D .2�/d�1 2�1 k.u0; u1/k

2
PH1�L2.Rd /

:(3.6)

Also, j1.�Ctn/!�xnj⩾rn � a.�;!/j⩽ 2. Using Claim 3.3, we see that Lebesgue’s dominated
convergence theorem applies and gives the convergence (3.5). Hence (3.4) holds.

It now suffices to define Ev from Qh.�; !/, which we do by following the steps, back-
wards, of getting h.�; !/ from Eu. More precisely, define Qf ; Qg 2 PH 1.Rd / by their Fourier
transforms

OQf .�/ D �
1

i j�j

e�i�

j�j.d�1/=2
FR
Qh.�j�j;��=j�j/; OQg.�/ D

1

i j�j

ei�

j�j.d�1/=2
FR
Qh.j�j; �=j�j/:

(3.7)

Then it follows that for .�; !/ 2 R � Sd�1,

FR. Qh/.�; !/ D i� j�j
.d�1/=2

�
1�⩽0 e

i� OQf .�!/C 1�⩾0 e
�i� OQg.�!/

�
;

so that for all ! 2 Sd�1, � 2 R, and with the notation (1.3),

Qh.�; !/! D @�
�
ei� Qf �! C e

�i�
QgC!
�
.�/:(3.8)

Finally, let

(3.9) v0 D Qf C Qg and v1 D i jDj. Qf � Qg/;

and denote Ev the solution to the linear wave equation (1.1) with data .v0; v1/. Arguing as
for (2.13), we get

(3.10) rt;xv.t; x/ D
1

.2�jxj/.d�1/=2

�
�1

x=jxj

�
Qh.jxj � t; x=jxj/C Q".t; x/;

where Q".t; x/! 0 in L2.Rd ;CdC1/ as t ! C1. Now, gathering together (3.10), (3.4)
and (2.13), we see that (3.3) holds: we are done, up to the proof of Claim 3.3.
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Proof of Claim 3.3. We write

j.�C tn/! � xnj ⩽ rn” .�C tn/
2
C �2n � 2�n!n � !.�C tn/ ⩽ r2n

” � 2 Œ��n .!/; �
C
n .!/�;

where
�˙n .!/ D �tn C �n!n � ! ˙

q
�2n..!n � !/

2 � 1/C r2n ;

with the convention that Œ��n .!/; �
C
n .!/� D ; if �2n..!n � !/

2 � 1/C r2n < 0. Hence,

¹.�; !/ W j.�C tn/! � xnj ⩽ rnº D
[

!2Sd�1

®
.�; !/j � 2 Œ��n .!/; �

C
n .!/�

¯
:

In terms of the rescaled variables r 0n D rn=tn and �0n D �n=tn, this writes

�˙n .!/ D tn

�
� 1C �0n!n � ! ˙

q
�0n
2..!n � !/2 � 1/C r 0n

2
�
:

We claim that there exists a finite set F (depending only on the limits of the sequences
listed on (3.2)) such that if ! � !1 … F , then �˙n .!/ both have a limit in R as n!C1.

Consider a 2 Œ�1; 1� such that at least one of tn.�1C �0na˙ .�
0
n
2
.a2 � 1/C r 0n

2
/1=2/

does not have a limit in R. As tn ! C1, and using the fact that all terms have a limit
in R, this implies that

�1C �0naC

q
�0n
2.a2 � 1/C r 0n

2
! 0 or � 1C �0na �

q
�0n
2.a2 � 1/C r 0n

2
! 0:

We argue by disjunction of cases: denote ˛ D lim �0n, ˇ D lim r 0n, and  D lim r 0n=�
0
n.

� Assume first that ˛ is finite and nonzero, and ˇ also is finite. Then

�1C �0na˙

q
�0n
2.a2 � 1/C r 0n

2
! �1C ˛a˙

p
˛.a2 � 1/C ˇ:

Now by studying the variations of the functions a 7! ˛a ˙
p
˛.a2 � 1/C ˇ, one con-

cludes that there exists at most 2 points (for each function) where they take the value 1;
so F is a subset of these (at most 4) points.
� If ˛ is finite and ˇ D C1, then �1C �0na ˙ .�

0
n
2.a2 � 1/C r 0n

2
/1=2 ! ˙1, so

that F is empty.
� If ˛ D 0 and ˇ ¤ 1, then

�1C �0na˙

q
�0n
2.a2 � 1/C r 0n

2
! �1C˙ˇ ¤ 0;

and therefore F is empty.
� In the case ˛ D 0 and ˇ D 1, clearly

�1C �0na �

q
�0n
2.a2 � 1/C r 0n

2
! �2;

so that ��n .!/ always has a limit. For �Cn .!/ we expand

�1C �0naC

q
�0n
2.a2 � 1/C r 0n

2
D �1C �0naC r

0
n

�
1CO.�02n /

�
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Denote ı D lim rn�tn
�n
D lim r 0n�1

�0n
and assume that a ¤ �ı. Then

�Cn .!/ D tn�
0
n

�r 0n � 1
�0n

C aCO.�0n/
�
� .ı C a/�n;

which has a limit in R, even if ı D C1. Hence F � ¹�ıº.
� If ˛ D C1 and  ¤ 1, then a ¤ ˙

p
a2 � 1C  so that

�0na˙

q
�0n
2.a2 � 1/C r 0n

2
� �0n.a˙

p
a2 � 1C  /:

If a ¤ 0, the limits exist (and are infinite), so that F � ¹0º.
� In the case ˛ D C1 and  D 1, (which implies ˇ D C1). Again we see that

�0na C .�
0
n
2
.a2 � 1/ C r 0n

2
/1=2 ! C1, so that it suffices to consider ��n .!/. Then for

a ¤ 0, we are allowed to expand

�0na �

q
�0n
2.a2 � 1/C r 0n

2
� �0n

1

2a

�
1 �

r 0n
2

�0n
2

�
�

1

2atn

�
�n �

r2n
�n

�
:

This sequence has always a limit in R, which is 1 for at most one value of a. In that
case, F is made of this point and 0.

We have exhausted all possibilities for the limits, and in all cases, F is made of a finite
number of points. If ! � !1 … F , we denote �˙.!/ the limits of �˙n .!/ (whose existence
were just shown above).

Define

N D .0;C1/ � ¹! 2 Sd�1 W ! � !1 2 F º [
[

!2Sd�1

¹.��.!/; !/; .�C.!/; !/º:

Clearly, N is a negligible subset of .0;C1/�Sd�1. Also if .�; !/2.0;C1/�Sd�1nN ,
by definition of a limit we see that either j.�C tn/! � xnj ⩽ rn for all n large enough, or
j.�C tn/! � xnj > rn for all n large enough; equivalently, 1j.�Ctn/!�xnj>rn has a limit as
n!C1.

We can easily modify the proof of Lemma 3.1 to obtain a result in the setting of solu-
tions to the half-wave equation (in the L2 setting). More precisely, we have the following
lemma, whose proof is left to the reader.

Lemma 3.5. Let f 2 L2.Rd /, and let tn 2 R, xn 2 Rd and rn > 0 be three sequences.
Assume thatwn is a bounded sequence of L2.Rd / such that e�itnjDjwn*0 and eitnjDjwn
* 0 in L2.Rd /. ThenZ

jx�xnj⩾rn

wn.x/.e
itnjDjf /.x/ dx ! 0 as n!C1:

We finally prove Proposition 1.5: it is similar to the proof of Corollary 8 in [6], to
which we refer for further details. Expanding the norms, we see that it suffices to prove
that, for i ¤ j ,Z

jx�xnj⩾rn

rt;xU
i
L

�
�
ti;n

�i;n
;
x � xi;n

�i;n

�
� rt;xU

j
L

�
�
tj;n

�j;n
;
x � xj;n

�j;n

�
dx ! 0;
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and Z
jx�xnj⩾rn

rx;twJn .0; x/ � rt;xU
j
L

�
�
tj;n

�j;n
;
x � xj;n

�j;n

�
dx ! 0:

Unscaling the integrals by �j;n and then translating by xj;n, we see that these expressions
are of the form of (3.1): the condition of weak convergence hold for the term in U iL due to
almost orthogonality of the profile, and for the term in .wn;0;wn;1/ due to the construction
of the profiles U jL in terms of weak limit of rescaled and translated of S.tj;n/.un;0; un;1/.

4. The operators T and @sT on Sobolev spaces

4.1. The Radon transform on the Schwartz class

In this paragraph, we state the definitions and basic properties of the Radon transform
on �.Rd /, for the convenience of the reader. They are mostly classical: we refer to the
paper [20] or the reference book [12] for proofs and further details.

We recall the definition of the Radon transform Rf of a function f 2 �.Rd /:

8.s; !/ 2 R � Sd�1; .Rf /.s; !/ WD

Z
!�yDs

f .y/ dy;

where dy refers here to the surface measure on the hyperplane ¹y 2 Rd I! � y D sº. It can
be checked that Rf 2 �.R � Sd�1/, and that Rf is even in the sense that

.Rf /.�!;�s/ D .Rf /.!; s/:(4.1)

An important related operator is its adjoint R�, defined for ' 2 �.R � Sd�1/ by

.R�'/.x/ WD

Z
!2Sd�1

'.x � !;!/ d!;(4.2)

so that R�' 2 �.Rd /, and for f 2 �.Rd / and ' 2 �.R � Sd�1/, the following duality
relation holds:Z

R�Sd�1
.Rf /.s; !/ '.s; !/ dsd! D

Z
Rd

f .x/ .R�'/.x/ dx:(4.3)

We have the following important unitarity property in L2 of the Radon transform (and in
fact, in any PH s), up to a constant related to c0 (which appeared in (1.4)).

Proposition 4.1 (Unitarity). For every f 2 �.Rd /, we haveZ
Ry

jf .y/j2 dy D c20

Z
Rs�Sd�1!

j@.d�1/=2s Rf .!; s/j2 dsd!;(4.4) Z
Ry

jrf .y/j2 dy D c20

Z
Rs�Sd�1!

j@.dC1/=2s Rf .!; s/j2 dsd!;(4.5)

R.@xj f / D !j @sRf;(4.6)

R.�f / D @2sRf:(4.7)



R. Côte and C. Laurent 226

Proof. We refer to Theorem 3.13 on page 31 of [17], where the proof is done in odd
dimension, but holds for even dimension as well. The identity (4.5) is obtained by com-
bining (4.4) and (4.6). Note also that Lemma 2.1 can actually provide a proof of this
Proposition 4.1 once the link between R and T is precised, as will be done in Lemma 4.8
below. We also refer to Lemma 2.1 of [12].

Proposition 4.2 (Inverse). For every f 2 �.Rd /, we have

f D R�.c0 jDsj
d�1/Rf:

Note that, in odd dimension, .c0jDsjd�1/ is a differential operator.
The extension of the Radon transform to distributions presents some difficulties mainly

coming from the fact that R� does not obviously preserve decay: for example, it does not
map �.Rd / or D.Rd / into itself.

One can however easily extend R to compactly supported distributions E 0.Rd /.

Proposition 4.3 (Radon transform on E 0). The operator R� maps (continuously) E.R �
Sd�1/ D C1.R � Sd�1/ into E.Rd / D C1.Rd /. As a consequence, for u 2 E 0.Rd /,
one defines its Radon transform Ru 2 E 0.R � Sd�1/ by the formula

hRu; 'iE 0.R�Sd�1/;E.R�Sd�1/ WD hu;R
�'iE 0.Rd /;E.Rd /:(4.8)

Furthermore,

8' 2 �.R � Sd�1/; �R�' D R�.@2s'/;(4.9)

so that (4.7) also holds in E 0.Rd /:

8u 2 E 0.Rd /; R.�u/ D @2sRu:(4.10)

Proof. See Section 4 in [20], and in particular Theorem 4.9.

An important result for our purpose is the description of the range of the Radon trans-
form. We will make extensive use of the following result, which describes the images of
Schwartz class functions.

Theorem 4.4 (Theorem 2.1 in [20]). The function g 2 �.Sd�1 � R/ can be written as
g D Rf for some f 2 �.Rd / if and only if the following two conditions are fulfilled:

(1) g is even, that is, g.!; s/ D g.�!;�s/ for any .!; s/ 2 Sd�1 �R,

(2) if Y`.!/ is a spherical harmonic of degree l and if 0 ⩽ k < l integers, thenZ
!2Sd�1

Z
s2R

g.s; !/sk Y`.!/ dsd! D 0:(4.11)

In proving Theorem 1.7, it will be important for us to know the Radon transform of
product of radial functions and spherical harmonics. This makes use of the Gegenbauer
polynomials, whose definition and properties are recalled below.
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Definition 4.5. Let � 2 R�. For any l 2 N, we define the Gegenbauer polynomials C �
l

by iteration: C �0 .t/ D 1, C �1 .t/ D 2�t , and for l ⩾ 2,

C �l .t/ D
1

l

�
2t.l C � � 1/C �l�1.t/ � .l C 2� � 2/C

�
l�2.t/

�
:

For � D 0, the Gegenbauer polynomials are the Chebychev polynomials, for which
a similar formula holds, but this will not be used here since it corresponds to the even
dimension d D 2.

Proposition 4.6 ([1], Section 22, p. 773). Each C �
l

is a polynomial of degree l which is
an even (respectively, odd ) function if l is even (respectively, odd ).

The polynomials t 7! C �
l
.t/ are orthogonal on the interval Œ�1; 1� for the weight

function .1 � t2/��1=2. More precisely, for l; m 2 N and � > �1=2, we haveZ 1

�1

C �l .t/ C
�
m.t/.1 � t

2/��
1
2 dt D ıl;m

� 21�2��.l C 2�/

lŠ.l C �/�.�/2
�

We will be using mostly in the specific case � D d=2 � 1, because those polynomial
appear when computing the Radon transform of functions involving spherical harmonics.

Proposition 4.7. (1) If h.s;!/D g.s/Y`.!/, where g 2C1.R/ and g.�s/D .�1/lg.s/,
then .R�h/.x/ D W.jxj/Y`.x=jxj/, where

W.r/ D .R�l w/.s/ WD
jSd�1j

C
d=2�1

l
.1/

Z 1

�1

C
d=2�1

l
.t/g.rt/.1 � t2/.d�3/=2 dt:(4.12)

We have W.r/ D r lv.r2/, where v 2 C1.R/.
(2) Similarly, if f .x/ D w.jxj/Y`.x=jxj/, where w.r/ D r lv.r2/ and v 2 �.R/, then

.Rf /.s; !/ D k.s/Y`.!/, where

(4.13) k.s/D.Rlw/.s/ WD
jSd�1j

C
d=2�1

l
.1/

Z C1
jsj

C
d=2�1

l

� s
r

�
w.r/rd�2

�
1�

s2

r2

�.d�3/=2
dr:

The function k is in �.R/ and satisfies k.�s/ D .�1/lk.s/.
(3) Furthermore, under the notations of (2),wDR�

l
.c0jDsj

d�1/Rlw, and moreover,Z C1
0

jw.r/j2 rd�1d D c0

Z C1
�1

jjDsj
.d�1/=2Rlwj

2 ds:

Proof. These results are the content of Lemmata 5.1 and 5.2, and Theorem 5.1 of [20].

4.2. Extension for the operators T and @sT

Let us first relate the operator T and the Radon transform; this, in particular, proves rela-
tion (1.24). We start with expressing the Radon transform via a partial Fourier transform.
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Lemma 4.8. The map defined on �.Rd / by F �1�!sŒ
Of .�!/� is the Radon transform in the

direction !. That is,

Rf .s; !/ WD

Z
!�yDs

f .y/ dy D F �1�!sŒ
Of .�!/�.s/:(4.14)

As a consequence, one has the following equality as operators �.Rd /! � 0.R � Sd�1/:

T D md .Ds/R; where md .�/ WD c0j�j
.d�1/=2

�
ei�1�<0 C e

�i�1��0
�
:

In particular, if the space dimension d is odd, then (1.24) holds:

T D c0 .�1/
.d�1/=2 @.d�1/=2s R:

Proof. For fixed!, we compute for f 2�.Rd / the 1D Fourier transform of s 7!Rf .s;!/.
Then

.FRRf .�; !//.�/ D

Z
Rf .s; !/ e�i�sds D

Z
s

Z
!�yDs

f .y/ e�i�s dyds

D

Z
s

Z
y2s!C!?

f .y/ e�i�!�y dyds

D

Z
x2Rd

f .x/ e�i�!�x dx D Of .�!/:

(We have used Fubini’s theorem with Rd D
S
s2R.s! C !

?/ for the last line). This
proves (4.14). The second equality is then direct via 1D Fourier transform, using the defin-
ition (1.5).

If furthermore d is odd, recalling that � D d�1
4
� , we distinguish the odd cases mod-

ulo 4:
• if d D 4k C 1, md .�/ D .�1/kc0j�j2k , so that T D c0@

2k
s R,

• if d D 4k C 3, md .�/ D ic0j�j2kC1.�1/kC1.�sgn.�// D i.�1/kC1c0�2kC1, so that
T D �c0@

2kC1
s R.

This yield the last equality, that is, (1.24).

In order to apply homogeneity arguments, we would like to extend the previous applic-
ations to other spaces, in particular, those containing homogeneous function of the form
jxj˛Y`.x=jxj/ with �d < ˛ < 1� d=2 that are not in PH 1 because of the behaviour close
to zero. The purpose of this section is then to properly define @sT and T in some larger
distributional sense.

We will present the statement in a context adapted to PH 1 and L2, as it is our interest
here. One could proceed via partial Fourier transform, specially in view of Lemma 2.1.
However, we crucially rely on locality properties in our argument, which follow from that
of the Radon transform. In order to achieve this, it is natural to proceed by duality, and for
this, the restriction to odd dimension appears naturally. We begin with definition for the
adjoint of T .

Definition 4.9. We define a map T �W �.R � Sd�1/! E.Rd /, by letting

T �' WD c0R�@.d�1/=2s '; for ' 2 �.R � Sd�1/.
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We also need L2 type spaces with symmetry.

Definition 4.10. We denote:

L2odd.R � Sd�1/ WD
®
g 2 L2.R � Sd�1/I g.s; !; s/ D �g.�s;�!/; a:e:

¯
;

L2even.R � Sd�1/ WD
®
g 2 L2.R � Sd�1/I g.s; !/ D g.�s;�!/; a:e:

¯
:

Proposition 4.11. Assume d ⩾ 3 is odd. Then, the operator T can be extended

T W
[
�2R

H �.Rd /! � 0.R � Sd�1/

so that it satisfies

(1) if f 2 �.Rd /, then T f D c0.�1/
.d�1/=2 @

.d�1/=2
s Rf .

(2) If u 2 H �.Rd / for some � 2 R and ' 2 �.R � Sd�1//,

hT u; 'i� 0.R�Sd�1/;�.R�Sd�1// D c0 hu;R
�@.d�1/=2s 'iH�.Rd /;H��.Rd /:

(3) If u 2 H �.Rd /, then

T .�u/ D @2sT u:(4.15)

(4) If u;v 2
S
�2RH

�.Rd / satisfy uj¹jxj>Rº D vj¹jxj>Rº in the distributional sense, then
.T u/j¹jsj>Rº D .T v/j¹jsj>Rº.
(Here and below, ¹jsj > Rº D ¹.s; !/ 2 R � Sd�1I jsj > Rº takes into account both
variables .s; !//.

Furthermore, @sT extends to a linear map PH 1 ! � 0.R � Sd�1/ as follows: if u 2
PH 1.Rd / and ' 2 �.R � Sd�1//,

h@sT u; 'i� 0.R�Sd�1/;�.R�Sd�1/ D c0 hru;rR�@.d�3/=2s 'iL2.Rd /d ;L2.Rd /d :(4.16)

Therefore, @sT is defined on
S
�2RH

�.Rd /C PH 1.Rd /, and enjoy the locality property:
if u; v 2

S
�2RH

�.Rd /C PH 1.Rd / satisfy

uj¹jxj>Rº D vj¹jxj>Rº

in the distributional sense, then

.@sT u/j¹jsj>Rº D .@sT v/j¹jsj>Rº:

As mentioned above, the proof of Proposition 4.11 is essentially done by duality. The
starting point for extending T is the next property.

Lemma 4.12. Assume d is odd.
For any � 2 R, T � maps continuously �.R � Sd�1/ into H �.Rd /.
Moreover,rR�@

.d�3/=2
s maps (continuously)L2.R�Sd�1/ intoL2.Rd /d , and maps

(continuously) �.R � Sd�1/ into H �.Rd /d for all � 2 R.
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Proof. It is enough to prove the results for all � 2 N.
Regarding T �, the case � D 0 is given by duality from (4.3) and (4.4). Let k 2 N.

For ' 2 �.R � Sd�1/, in view of (4.9), we see that �kT �' 2 L2.Rd / for any k 2 N so
that T � maps �.R � Sd�1/ into H 2k.Rd /. This gives the result.

For rR�@
.d�3/=2
s , we also work by duality, first for �D 0. The identity (4.3) gives for

j 2 ¹1; : : : ; dº, after several integration by parts,Z
R�Sd�1

@.d�3/=2s .R@xj f /.s; !/ '.s; !/ dsd!

D .�1/.d�1/=2
Z

Rd

f .x/ @xj .R
�@
.d�3/=2
s '/.x/ dx:

Using (4.6) for the left-hand side, we getZ
Rd

f .x/@xj .R
�@
.d�3/=2
s '/.x/ dx

D .�1/.d�1/=2
Z

R�Sd�1
!j @

.d�1/=2
s .Rf /.s; !/ '.s; !/ dsd!:

Due to (4.4) and the Cauchy–Schwarz inequality, we concludeZ
Rd

f .x/@xj .R
�@
.d�3/=2
s '/.x/ dx ⩽ c0 k'kL2.R�Sd�1/ kf kL2.Rd / :

This implies k@xj R
�D

.d�3/=2
s 'kL2.Rd / ⩽ c0 k'kL2.R�Sd�1/ by duality, which is the case

� D 0. As for the other term, we treat the other regularities by applying� which gives the
same result by changing ' to @2s'.

Proof of Proposition 4.11. The identity (4.3) gives directly that for every f 2 �.Rd / and
' 2 �.R � Sd�1/,Z

R�Sd�1
.T f /.s; !/ '.s; !/ dsd! D

Z
Rd

f .x/ .T �'/.x/ dx:(4.17)

Therefore, as a by-product of Lemma 4.12, we can extend T as an operator on H �

and @sT on PH 1. Indeed, for any u 2 H �.Rd /, with � 2 R, we can define a distribution
T u 2 � 0.R � Sd�1/ by

hT u; 'i� 0.R�Sd�1/;�.R�Sd�1// WD hu; T
�'iH�.Rd /;H��.Rd / :(4.18)

The bracket defines a distribution due to Lemma 4.12. The identity (4.17) gives that (4.18)
coincides with (1.24) for u 2 �.Rd /.

With this new definition, by duality, we still have the formula

8u 2 H �.Rd /; T .�u/ D @2sT u;

where � has to be understood as an operator H �.Rd /! H ��2.Rd / (both being sub-
spaces of � 0.Rd /), while @2s is understood acting on � 0.R � Sd�1/. That means the
equality makes sense in � 0.R � Sd�1/.



Concentration close to the cone for linear waves 231

Similarly, for u 2 PH 1, formula (4.16) and Lemma 4.12 allow to define @sT 2 � 0.
We have extended @sT in two ways, on [�2RH

�.Rd / and on PH 1.Rd /. In order to
see that it indeed defines an extension[�2RH

�.Rd /C PH 1.Rd /! � 0.R�Sd�1/, it only
remains to check that for u 2 [�2RH

�.Rd /\ PH 1.Rd / the two definitions coincide. That
relies on verifying that for u 2 [�2RH

�.Rd /\ PH 1.Rd / and ' 2 �.R� Sd�1//, we have

�c0 hu;R
�@.d�1/=2C1s 'iH�.Rd /;H��.Rd / D c0 hru;rR�D.d�3/=2

s 'iL2.Rd /d ;L2.Rd /d ;

which is easily done using again (4.9).
We now prove the support properties (4). A similar result is contained in Theorem 4.9

of [20] for R, and follows from duality; we give a proof in the case of T for complete-
ness. Note that for this point, we use very strongly that the dimension is odd and that the
operators are local.

We first notice that u � v 2 E 0.Rd / � [�2RH
�.Rd / is supported in B.0; R/. Let

' 2 C10 .R � Sd�1/ so that ' is supported in ¹jsj > Rº � Sd�1, that is, '.s; !/ D 0 for
jsj ⩽ R, and in particular, @.d�1/=2s ' D 0 for jsj ⩽ R. By the definition (4.2) of R�, it is
clear that we have .R�@.d�1/=2s '/.x/ D 0 for jxj ⩽ R. Now, we can compute

hT u � T v; 'i� 0.R�Sd�1/;�.R�Sd�1// D hu � v; T
�'iH�.Rd /;H��.Rd /

D c0 hu � v;R
�@.d�1/=2s 'iH�.Rd /;H��.Rd /:

This is zero thanks to the respective support properties of u � v and .R�@.d�1/=2s '/.
A very similar computation yields the result for @sT .

We define the scaling operator on Rd (respectively, R � Sd�1) for � > 0 by

M�.x/ D �x; x 2 Rd ;

M�.s; !/ D .�s; !/; .s; !/ 2 R � Sd�1

(with a slight abuse of notation), so that for u2 � 0.Rd /, f 2 �.Rd / and v 2 � 0.R�Sd�1/,
' 2 �.R � Sd�1/, we have

hu ıM�; f i� 0.Rd /;�.Rd / D �
�d
hu; f ıM1=�i� 0.Rd /;�.Rd /;

hv ıM�; 'i� 0.R�Sd�1/;�.R�Sd�1// D �
�1
hv; ' ıM1=�i� 0.R�Sd�1/;�.R�Sd�1//:

We say that a distribution u 2 � 0.Rd / is homogeneous of order ˛ if u ıM� D �
˛u.

Lemma 4.13. Assume d is odd.
If u 2 H �.Rd /, then .@sT /.u ıM�/ D �

1�.d�1/=2.@sT u/ ıM�.
In particular, if u is homogeneous of order ˛, then T u is homogeneous of order ˛ C

.d � 1/=2, and @sT u is homogeneous of order ˛ � 1C .d � 1/=2 (the latter is also true
if u 2 PH 1.Rd //.
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Proof. We easily get that for ' 2 �.R�Sd�1/, R�.' ıM1=�/.x/D .R
�'/.x=�/, so that

T �.' ıM1=�/ D c0R
�@
.d�1/=2
s .' ıM1=�/ D �

�.d�1/=2.T �'/ ıM1=�. So, we compute

h.@sT u/ıM�; 'i� 0.R�Sd�1/;�.R�Sd�1//D � �
�1
hu; .T �@s/.'ıM1=�/iH s.Rd /;H�s.Rd /

D ���2�.d�1/=2 hu; .T �@s'/ ıM1=�iH s.Rd /;H�s.Rd /

D ���2�.d�1/=2Cd hu ıM�; .T
�@s'/iH s.Rd /;H�s.Rd /

D ��1C.d�1/=2 h.@sT /.u ıM�/; '/i� 0.R�Sd�1/;�.R�Sd�1//:

We saw in Lemma 2.1 that T was, in some sense, isometric on L2 (and @sT on PH 1/.
Below, we precise the range.

Lemma 4.14. We consider here the restriction of T toL2.Rd / (which we still denote T /.
We saw that T is an isometry from L2.Rd /! L2.R � Sd�1/. Then

Range.T / D

´
L2even.R � Sd�1/ if d � 1 (mod 4);
L2odd.R � Sd�1/ if d � 3 (mod 4):

Similarly, the restriction @sT W PH 1.Rd /! L2.Sd�1 �R/ is isometric and

Range.@sT / D

´
L2odd.R � Sd�1/ if d � 1 (mod 4);
L2even.R � Sd�1/ if d � 3 (mod 4):

Proof. The extension and the unitarity come from (4.4). Concerning the range of T , we
assume that d D 4k C 1 (that is, d � 1 (mod 4)) to fix ideas, and it is enough to prove
that L2even.S

d�1 � R/ � Range.T /: indeed, Range.T / is closed since T is an isometry,
and is clearly contained in L2even.S

d�1 �R/.
In view of Theorem 4.4, it suffices to prove that any function in h 2 L2even.S

d�1 �R/
can be approximated by a function of the form @2ks g, where g 2 �.Sd�1 �R/ is even and
satisfies (4.11). Decompose h.!; s/ D

P
`2M h`.s/Y`.!/ (recall that .Y`/`2M form an

orthonormal basis of spherical harmonics of L2.Sd�1/ of degree l D l.`/). The condition
that h is even can be written h`.�s/ D .�1/l h`.s/. Given " > 0, we are looking for
g` 2 �.R/ so that

•
P
k;l

hk;l � jDsj.d�1/=2gk;l2L2.R/ ⩽ ",

• gk;l .�s/ D .�1/
lgk;l .s/,

•
Z
s2R

gk;l s
jds D 0 for j D 0; : : : ; l � 1.

Translating this conditions in the Fourier side yields

•
P
k;l k

bhk;l � j�sj.d�1/=2ygk;lk2L2.R� /
⩽ ",

• ygk;l .��s/ D .�1/l ygk;l .�s/,

•
d j

d�j
ygk;l .0/ D 0 for j D 0; : : : ; l � 1.

These conditions can clearly be met: this gives the result for Range.T /.
One can argue in a similar way in dimension d � 3 (mod 4), and for @sT .
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5. The Radon transform outside a ball

Our goal in this section is to prove Theorem 1.7. We will mostly study properties of the
Radon transform on L2 or PH 1. Throughout all this section,

we assume that the dimension d is odd.

We define the operator

1jsj⩾R W L
2.R � Sd�1/! L2.R � Sd�1/; .1jsj⩾Rf /.s; !/ D 1jsj⩾Rf .s; !/:

This is obviously an orthogonal projection. We will be interested in the operators

1jsj⩾RT W L2.Rd /! L2.R � Sd�1/ and 1jsj⩾R@sT W PH
1.Rd /! L2.R � Sd�1/:

Definition 5.1. Denote the kernels

K0R D ker.1jsj⩾RT / � L2.Rd / and K1R D ker.1jsj⩾R@sT / � PH 1.Rd /

respectively, and write �R and �1R for the orthogonal projections on KR and K1R respect-
ively.

Lemma 5.2. Let H and H 0 be two Hilbert spaces, let �WH ! H 0 be a unitary operator
(that is, isometric and bijective), and let p be an orthogonal projection on H 0. Then,
denoting by � WH ! H 0 the orthogonal projection on ker.p�/, there holds

8f 2 H; kf k2H D k.p�/.f /k
2
H 0 C k�.f /k

2
H :

Proof. Consider ��1p� WH !H . One computes that it is an orthogonal projection with
kernelN D ker.p�/, that is, ��1p� D 1� � . Therefore, the Pythagorean theorem yields
that

8f 2 H; kf k2H D k.�
�1p�/.f /k2H C k.1 � �

�1p�/.f /k2H :

As ��1WH 0!H is isometric, we have k.��1p�/.f /kH Dk.p�/.f /kH 0 and 1���1p�
D � , so that the above equality writes

8f 2 H; kf k2H D k.p�/.f /k
2
H 0 C k�.f /k

2
H :

As a direct consequence of the above lemma and of Lemma 4.14, we get that

8u1 2 L
2.Rd /; ku1k

2
L2
D k1jsj⩾RT u1k

2
L2.R�Sd�1/

C k�0Ru1k
2
L2.Rd /

;(5.1)

8u0 2 PH
1.Rd /; ku0k

2
PH1
D k1jsj⩾R@sT u0k

2
L2.R�Sd�1/

C k�1Ru0k
2
PH1.Rd /

:(5.2)

Our main goal in this paragraph will be to give explicit expressions of the kernels K0R
and K1R, and to relate them to the space P.R/ defined in the introduction. We emphasize
that for this, we will make an essential use that d is odd.

The main object of this section is to obtain the following theorem. We denote

PH s.jxj ⩽ R/ D ¹f 2 PH s.Rd / W Suppf � B.0;R/º;
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and recall (1.18) that .Y`/`2M is an orthonormal basis of spherical harmonics, l D l.`/ is
the degree of Y`, and

˛k D �l � d C 2k

(it also depends on `), and we defined in the introduction the functions fk (adapted to
the PH 1 context) and gk (adapted to the L2 context), see (1.19)–(1.20).

Theorem 5.3. Assume d is odd. Then

K0R D L
2.jxj ⩽ R/

?L
N 0
R; where N 0

R D

?M
`2M

N 0
R;`(5.3)

(here ? means L2-orthogonality) and

N 0
R;` D Span.gk W k 2 N�; ˛k < �d=2/:

Similarly, there holds

K1R D
PH 1.jxj ⩽ R/

?L
N 1
R; where N 1

R D

?M
`2M

N 1
R;`;(5.4)

(here ? means PH 1-orthogonality) and

N 1
R;` D Span.fk W k 2 N�; ˛k < 1 � d=2/:

Remark 5.4. The kernel of the partial Radon transform has already been computed by
Quinto (see (3.14) in [22]) in different (weighted) spaces, namely L2p.E/, defined by their
norms

kf kE;p D
p
2
jxj.d�1/=2.1 � jxj�2/p=2f 

L2.¹jxj⩾1º/:

He proves there (see Corollary 3.4 in [22]) that the null space of 1jsj⩾1RW L
2
p.E/ !

L2p.E
0/ is the closure of the span jxj�d�kY`.x=jxj/ where 0 ⩽ k < l and k � l is even.

We however do not rely on this result, and actually use a different approach of proof.
Theorem 5.3 is actually similar to the main result in [15] (that was restricted to radial

data). Their method was based on expansions involving Bessel functions, while ours, tak-
ing advantage of scaling and action of �, should provide a simplified (or at least shorter)
proof.

We will first consider the L2 case, that is prove (5.3), and then treat the PH 1 case for
which the proof is analogous, and we will only highlight the differences.

Proof of (5.3). As the dilation f 7! 1

Rd=2
f .�=R/ is an isometry on L2.Rd /, without loss

of generality, we can assume that R D 1.
Step 1. Reduction to spherical harmonics.
We define N 0

1 to be the L2-orthogonal complement of L2.jxj ⩽ 1/ in K01 :

K01 DW L
2.jxj ⩽ 1/

?

˚ N 0
1 ;

so that we have the explicit description

N 0
1 D

®
f 2 L2.Rd /If D 0 on ¹jxj ⩽ 1º and T f D 0 on ¹jsj > 1º

¯
:
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It is convenient to introduce the following notation: if wWR! R and Y WSd�1 ! R
are two functions, then we define

w ˝ Y W Rd ! R; x 7! w.jxj/ Y
� x
jxj

�
:

As all the functions we consider have symmetry in the s variable, we keep track of it
in the following definitions. For this, we denote

L2rad;l D
®
w 2 L2.R; jr jd�1dr/I 8r 2 R a.e.; w.�r/ D .�1/lw.r/

¯
;

which we endow with the natural Hilbert norm:

kwkL2rad
WD jSd�1j1=2 kwkL2.Œ0;C1/;rd�1dr/:

The symmetry we impose on functions w 2 L2rad;l is essentially technical (the informa-
tion required is given for r ⩾ 0); it is given for coherence with the definition of Rl (in
Proposition 4.7), mostly in Step 2 below. Then, for ` 2M, let

L2` WD ¹f 2 L
2.Rd /I 9w 2 L2rad;l ; f D w ˝ Y`º;

so that

L2.Rd / D
?M
`2M

L2` ;

and the map L2rad ! L2
`
, w 7! w ˝ Y`, is a bijective isometry up to a constant:

kw ˝ Y`kL2 D kY`kL2.Sd�1/kwkL2rad
:

The main point of this step is that T preserves the structure in L2
`
. More precisely, denote

Tl WD c0 .�1/
.d�1/=2 @.d�1/=2s Rl :

Then, due to Proposition 4.7, Tl can be extended to an isometry from L2rad;l to L2.R/ (and
arguing as in Lemma 4.14, it is actually bijective):

8w 2 L2rad; kTlwkL2 D kwkL2rad
;(5.5)

and we have the formula

8w 2 L2rad;l ; T .w ˝ Y`/ D Tl .w/˝ Y`:

We will now fix ` 2M and study the kernel

N 0
1;` WD ker.1jsj⩽1Tl / D ¹w 2 L2rad;l Iw ˝ Y` 2 N 0

1 º;

so that

N 0
1 D

?M
`2M

.N 0
1;` ˝ ¹Y`º/:
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Step 2. The kernel N 0
1;`

is finite dimensional.

Let us first give an insight of the range of T` when restricted to N 0
1;`

.

Lemma 5.5. Letw 2N 0
1;`

. Then there exists a polynomial P , with degP ⩽ l C .d � 5/=2
(with the convention that deg 0 D �1/, and such that

8s 2 R; .Tlw/.s/ D 1jsj⩽1P.s/:

Also, P has the parity of l C .d � 1/=2.

Proof. By definition, q.s/ D Tlw is an L2.R/ function supported on Œ�1; 1�. We would
like to use formula (4.13), but we have to be careful about integrability issues, so we work
by duality instead. We prove that q.k/ D 0 on � � 1; 1Œ in the sense of distributions, for
k ⩾ l C .d � 3/=2, and proceed via smooth approximations.

Let ' 2D.�� 1; 1Œ/. For " > 0, let � 2D.¹jr j> 1º/\L2rad;l be such that kw � �kL2rad

⩽ ". Since � 2 L2rad;l is smooth and compactly supported far from zero, it can be written
�.s/ D r lv.r2/ for some v 2 D.R/ � �.R/. In particular, we can apply Lemma 4.7 to
compute Tl� and its derivatives. Using that � is supported in ¹jr j > 1º, formula (4.13)
gives for jsj < 1,

.Rl�/.s/ D
jSd�1j

C �
l
.1/

Z C1
jsj

C �l

� s
r

�
�.r/rd�2

�
1 �

s2

r2

�.d�3/=2
dr

D
jSd�1j

C �
l
.1/

Z C1
1

C �l

� s
r

�
�.r/rd�2

�
1 �

s2

r2

�.d�3/=2
dr:

We now differentiate kC .d � 1/=2 times (using that Rl� is a smooth function in �� 1;1Œ)
to obtain� dk
dsk

Tl�
�
.s/

D c0 .�1/
.d�1/=2 jS

d�1j

C �
l
.1/

Z C1
1

�.r/rd�2
dk

dsk
@.d�1/=2s

h
C �l

� s
r

��
1 �

s2

r2

�.d�3/=2i
dr:

Since C �
l

is a polynomial of order l and .1� s2=r2/.d�3/=2 is a polynomial of order d � 3
(d is odd!), the right-hand side is zero if k C .d � 1/=2 > l C d � 3. In particular, for
k ⩾ l C .d � 3/=2,

8s 2 Œ�1; 1�;
� dk
dsk

Tl�
�
.s/ D 0:

As Tl is isometric (see (5.5)), we have

kq � Tl�kL2sym
D kw � �kL2rad

⩽ ":

Since q D 0 for jsj ⩾ 1, there holds kTl�kL2sym.jsj⩾1/
⩽ " andˇ̌̌ Z

R
'.k/.s/q.s/ ds

ˇ̌̌
⩽
ˇ̌̌ Z
jsj<1

'.k/.s/ Œq.s/ � Tl�� ds
ˇ̌̌
C

ˇ̌̌ Z
jsj<1

'.k/.s/Tl�ds
ˇ̌̌

⩽ 2"k'.k/kL2 :
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Therefore, we obtain that
R

R '
.k/.s/q.s/ds D 0 for any ' 2 D.� � 1; 1Œ/. Hence, q is a

polynomial of degree less or equal to l C .d � 5/=2 on � � 1; 1Œ. Since q is a L2 function
that is zero on ¹jsj ⩾ 1º, this gives the result.

Remark 5.6. It is likely that the previous method applies well to other spaces like H��

(as the Radon transform was extended to these spaces), as long as its elements can be
approximated by functions with compact support in ¹jsj ⩾ 1º.

Corollary 5.7. The kernel N 0
1;`

is finite dimensional, of dimensionK`⩽bl=2C.d�1/=4c.

Proof. The space of symmetric polynomials of degree at most m has dimension m=2C 1
or .mC 1/=2, depending on the parity of m and even/odd polynomial; in any case, it is at
most bm=2C 1c. Lemma 5.5 thus implies that TlN

0
1;`

is contained in a finite dimensional
subspace of dimension less than bl=2C .d � 1/=4c. Since Tl is an isometry on its range,
as seen in Step 1, N 0

1;`
is therefore finite dimensional with the same dimension.

Step 3. The kernel N 0
1;`

is spanned by functions of the type ln.jr j/pr˛ , ˛ 2 C, p 2 N.

We now have some precise information about the image of N 0
1;`

by Tl , so that it only
remains to invert it. Since Tl is invertible in the appropriate L2-related spaces, it might be
possible to directly use Lemma 4.7 to recover N 0

1;`
by applying the inverse of T` to func-

tions which are the product of a polynomial by an indicatrix function. Yet, we prefer to
apply homogeneity arguments that yield directly the result that N 0

1;`
, being finite dimen-

sional, can only contain the restriction of homogeneous distributions.

Lemma 5.8. For any �> 1, define the dilation/restriction operator S� acting on functions
wWR! R by

8r 2 R; .S�w/.r/ WD 1jrj>1w.�r/:(5.6)

Then for any ` 2M, S� maps N 0
1;`

into itself.

Proof. Let w 2 N 0
1;`

, and consider v D .S�w/˝ Y`, so that Tl .S�w/˝ Y` D T .v/.
Observe that

v D 1jxj⩾1..w ˝ Y`/ ıM�/ D .1jxj⩾�.w ˝ Y`// ıM�:

Therefore, using Lemma 4.13, adapted to T instead of @sT , we infer

T .v/ D ��.d�1/=2
�
T .1jxj⩾�.w ˝ Y`//

�
ıM�:

Now, let ' 2 D.R � Sd�1/ be so that ' is supported in ¹jsj > 1º. We get

hT .v/; 'i� 0.R�Sd�1/;�.R�Sd�1/

D ��.d�1/=2�1 hT .1jxj⩾�.w ˝ Y`//; ' ıM1=�i� 0.R�Sd�1/;�.R�Sd�1/:

The assumption on Supp.'/ implies that ' ıM1=� is supported in ¹jsj > �º. Applying
Proposition 4.11 to 1jxj⩾�.w ˝ Y`/, we get that

.T .1jxj⩾�.w ˝ Y`//j¹jsj>�º�Sd�1 D .T .w ˝ Y`//j¹jsj>�º�Sd�1 D 0;



R. Côte and C. Laurent 238

since w 2 N 0
1;`

and � > 1. So, we have proved that for any test function ' supported in
¹jsj > 1º,

hT .v/; 'i� 0.R�Sd�1/;�.R�Sd�1/ D 0:

In other words, T .v/ D 0 on ¹jsj > 1º; hence, 1jsj>1Tl .S�w/ D 0 and S�w 2 N 0
1;`

.

We now state a general fact, which describes finite dimensional spaces of 1D functions
invariant by scaling.

Lemma 5.9. Let N � L1loc.Œ1;C1// be a finite dimensional vector space such that for
any � > 1, S�.N / � N . Then, there exist a finite set I , .˛i /i2I � C, .pi /i2I � N so that

N D Span.r 7! log.r/j r˛i I i 2 I; 0 ⩽ j ⩽ pi � 1/:

Proof. Notice that all the .S�/�>1 are commuting applications:

S�Sˇ D S�ˇ :

Also, in the logarithmic variable s D log.r/, s ⩾ 0, S� is the translation with generator
the derivation. That is, if w 2 N and vW s 7! w.es/, we have with this representation that

Seˇ v.s/ D 1s⩾0 v.s C ˇ/;

and this defines a semigroup. Denote A the infinitesimal generator of ˇ 7! Seˇ . Choose a
basis of N so that A has a Jordan form: it is block diagonal, and each diagonal block (of
size say p C 1) takes the form

J D

2666666664

˛ 1

˛ 1 .0/

˛ 1

.0/
: : :

: : :

: : : 1

˛

3777777775
; so that e�J De�˛

2666666664

1 � �2

2
� � �

�p

pŠ

1 �

1 �

.0/
: : :

: : :

: : : �

1

3777777775
:

In particular, in this basis .g0; : : : ; gp/ we can write for any s; � ⩾ 0,

g0.s C �/ D e
�˛ g0.s/;

g1.s C �/ D �e
�˛ g0.s/C e

�˛ g1.s/;

:::

gp.s C �/ D
�p

pŠ
e�˛ g0.s/C � � � C e

�˛ gp.s/:

Taking s D 0 in this equalities gives

gj .�/ D
�j

j Š
e�˛g0.0/C � � � C � � � C e

�gj .0/;
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that is, denoting fj W s 7! sj e˛s , there holds2666666664

g0.0/ g1.0/ g2.0/ gp.0/

g0.0/ g1.0/

g0.0/ g1.0/

.0/
: : :

: : :

: : : g1.0/

g0.0/

3777777775

266666664

f0
f1
f2
:::

fp�1
fp

377777775 D
266666664

g0
g1
g2
:::

gp�1
gp

377777775 :

Observe that g0.0/ ¤ 0 (otherwise g0 � 0, which would contradict .gj /j being a basis),
so that the above matrix is invertible, and the .fj /0⩽j⩽p form a basis of each block of the
Jordan base of A in N . We get the result getting back to the original variable r D es .

Gathering together the above two results, we infer that N 0
1;`

admits a basis made of
functions w 2 L2rad;l such that, for r ⩾ 0,

w.r/ D 1r⩾1 ln.r/p r˛(5.7)

for some p 2 N and ˛ 2 C. Denote B the set of couples .p; ˛/ 2 N �C which appear in
this basis: due to Lemma 5.9, B is a finite union of ¹.0; ˛i /; .1; ˛i /; : : : ; .pi ; ˛i /º.

Finally, we state a second stability result, to be used in the following step.

Lemma 5.10. Consider the operator L�W f 7! 1jxj>1�f . Then L� (is well defined and )
maps N 0

1 \L
2
`

to itself : that is, for all f Dw˝ Y` 2N 0
1 \L

2
`
, we also have 1jxj>1 L�f 2

N 0
1 \ L

2
`
.

This is of course strongly connected to the explicit special form of w 2 N 0
1;`

.

Proof. For w as in (5.7), a direct computation yields that 1jxj>1.�.w ˝ Y`// 2 L
2 (it is

a smooth function on ¹jxj > 1º), and recalling the form of the Laplacian in spherical
coordinates, this function belongs to L2

`
. Now, from (4.15), we also have that

T �.w ˝ Y`/ D @
2
sT .w ˝ Y`/;

so that 1jsj>1T �.w ˝ Y`/ D 0. By Proposition 4.11, T .1jxj>1�.w ˝ Y`/ and T �.w ˝

Y`/ coincide on ¹jsj > 1º, and are both 0 there. Hence 1jxj>1�.w ˝ Y`/ 2 N 0
1 .

Step 5. N 0
1 \ L

2
`

is spanned by the gk .
We recall the following formula, valid for p 2 N and ˛ 2 C: for x ¤ 0,

�
h

log.jxj/p jxj˛ Y`
� x
jxj

�i
D
�
Œ˛.˛ C d � 2/ � l.l C d � 2/� log.jxj/p(5.8)

C p.2˛ C d � 2/ log.jxj/p�1 C p.p � 1/ log.jxj/p�2
�
jxj˛�2Y`

� x
jxj

�
(with the convention that jxj0 D 1; for the convenience of the reader, a derivation of this
formula is presented in Appendix A). We now claim:
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Lemma 5.11. Let .p; ˛/ 2 B. Then p D 0, ˛ < �d=2 and ˛ D �l � d C 2.k C 1/ for
some k 2 N.

Proof. Let w 2 N 0
1;`

be such that

8r ⩾ 1; w.r/ D ln.r/p r˛:

(1) As w 2 L2rad;l , ˛ < �d=2.
(2) We next prove that ˛ D �l � d C 2.k C 1/ for some k 2 N.
As N 0

1 \L
2
`

is isometric to N 0
1;`

, it is finite dimensional. On the other hand, it is stable

by L�, due to Lemma 5.10. Therefore, for all k 2 N, L�k.w ˝ Y`/ 2 N 0
1 \L

2
`
. Now, as L�

has the same action as � for ¹jxj > 1º, direct computations which follow from (5.8) give
that for jxj > 1,

Q�k.w ˝ Y`/.x/ D Ck log.jxj/p jxj˛�2k Y`
� x
jxj

�
C

p�1X
jD0

cj;k log.jxj/j jxj˛�2k Y`
� x
jxj

�
;

for some coefficients cj;k 2 C, and where C0 D 1 and, by induction, for k 2 N,

CkC1 D ..˛ � 2k/.˛ � 2k C d � 2/ � l.l C d � 2//Ck :

However, the functions .r 7! log.r/j jxj˛�2k/k2N are linearly independent (recall that
˛ < �d=2), so that the . Q�k.w ˝ Y`//k are too: as N 0

1 \ L
2
`

is finite dimensional, this
implies that for some k 2 N, CkC1 D 0. In other words,

.˛ � 2k/.˛ � 2k C d � 2/ � l.l C d � 2/ D 0:

As ˛ � 2k < 0, we infer that ˛ � 2k D �l � d C 2.
(3) Let us finally prove that pD 0. We argue by contradiction and assume that p 2N�.

Then, thanks to the structure of B already precised, we have .1; ˛/ 2 B. Without loss
of generality, we can furthermore assume that ˛ is minimal for this property. Now, we
compute that for jxj > 1,

�
h

log.jxj/ jxj˛ Y`
� x
jxj

�i
D
�
Œ˛.˛ C d � 2/ � l.l C d � 2/� log.jxj/C .2˛ C d � 2/

�
jxj˛�2Y`

� x
jxj

�
:

If ˛ ¤ �l � d C 2, by linear independence, we would have .1; ˛ � 2/ 2 B, which would
contradict the minimality of ˛. Hence ˛ D�l � d C 2 and as ˛ < �d=2, 2˛C d � 2 < 0
is not null, so that .0; ˛ � 2/ D .0;�l � d/ 2 B. Applying L� and using (5.8) repetitively,
we would get .0;�l � d � 2k/ 2 B for all k 2 N, which contradicts that B is finite.
Therefore p D 0.

Let N` 2 N be the maximum of the k such that .0;�l � d C 2k/ 2 B. Then by
applying repetitively L� (and using (5.8)) to w˝ Y`, where w 2 L2rad;l and w.r/D rN` for
r ⩾ 1, we get that for all k 2 J1;N`K, .0;�l � d C 2k/ 2B. Recalling the definition (1.19)
of the gk , we can reformulate this by saying that

N 0
1 \ L

2
` D Span.gk I k 2 J1;N`K/:(5.9)
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Step 6. Conclusion.
We now complete the description of N 0

1 \ L
2
`
, that is, we prove that

N 0
1 \ L

2
` D Span.gk I k 2 N; ˛k < �d=2/:

For this, it suffices to prove that if ˛k < �d=2, then gk 2 N 0
1 \ L

2
`
.

It is certainly possible to prove this by direct computation using the formulae of
Lemma 4.7 and 4.12. Similar computations are made for instance in Quinto [22], For-
mula (3.14) (see also Sections 7.3-7.4 on p. 795 of [10] for related computations). Yet, it
is not easy (but certainly doable) to justify the computations when the functions do not
have enough decay.

Instead, we will use some ideas related to Lemma 5.10.

Lemma 5.12. Let k 2 N such that ˛k < �d=2. Then gk 2 N 0
1 \ L

2
`
.

Proof. Observe that, as ˛k < �d=2, gk 2 L2` .
Since � is a differential operator, we have .�gk/¹jxj>1º D �.gk/¹jxj>1º in the sense

of distributions (the � being an operator on distributions either in Rd or in ¹jxj > 1º).
As .gk/¹jxj>1º is a smooth function, formula (5.8) (with p D 0) applies for k ⩾ 1, in the
classical sense, to give

�.gk/¹jxj>1º D ck.gk�1/¹jxj>1º;

for some ck 2 R, either in the classical sense or in the distributional sense in D 0.jxj > 1/.
Thanks to the previous remark, we obtain

.�gk/¹jxj>1º D ck.gk�1/¹jxj>1º:

Using now part (4) of Proposition 4.11, this gives

.T .�gk//j¹s>1º D ck.T gk�1/¹s>1º:

Using this time part (3) of Proposition 4.11 and after restricting to ¹s > 1º, there holds

.T .�gk//j¹s>1º D .@
2
sT gk/¹s>1º:

As gk 2 L2` , denote hk 2 L2.¹jsj > 1º/ such that .T gk/j¹jsj>1º D hk ˝ Y`: we obtained
for k ⩾ 1,

(5.10) @2shk D ck hk�1:

Similarly, and by the definition of ˛0 and spherical harmonics, we get

�.g0/¹jxj>1º D 0:

Let us prove by induction on k (such that ˛k < �d=2) that hk D 0.
For k D 0, the function u.t; x/ D g0.x/ is solution of □u D 0 on ¹jxj > jt j C 1º

(outside of the light cone). In particular, by finite speed of propagation, the solution w to
the wave equation with initial data .g0; 0/, satisfies w.t; x/ D g0.x/ on ¹jxj > jt j C 1º.
In particular, (2.14) gives

0 D 2 lim
t!C1

kwk2L2.jxj⩾tC1/ D kT g0k
2
L2.¹s⩾1º�Sd�1/ :

This proves that h0 D 0.
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Let k ⩾ 1 and assume that hk�1 D 0. In view of (5.10), we infer that there exist
˛; ˇ 2 R such that hk.s/ D ˛s C ˇ for s > 1. As hk 2 L2.¹jsj > 1º; ds/, ˛ D ˇ D 0 and
hk D 0. This completes the induction.

Now, hk D 0 precisely means that 1jsj⩾1T gk D 0, and so gk 2 N 0
1 .

This completes (5.3), that is, the proof of Theorem 5.3 in the L2 case.

Proof of (5.4). As g 7! 1

Rd=2�1
g.�=R/ is an isometry on PH 1.Rd //, we can assume as

before that R D 1. In this proof, all orthogonalities are meant with respect to the PH 1

scalar product.
Step 1. Reduction to spherical harmonics.
We now define N 1

1 to be the PH 1-orthogonal complement of PH 1.jxj ⩽ 1/ in K11 :

K11 D
PH 1.jxj ⩽ 1/

?

˚ N 1
1 :

The explicit description of N 1
1 is now different from the L2 case, as it involves the har-

monic extension of in B.0; 1/:

N 1
1 D

®
f 2 PH 1.Rd /I�f D 0 on ¹jxj < 1º and @sT f D 0 on ¹jsj > 1º

¯
:

Analogously to the L2 case, we define

PH 1
rad;l D

®
w 2 PH 1.R; jr jd�1dr/I 8r 2 R a.e.; w.�r/ D .�1/lC1w.r/

¯
:

This time, we equip PH 1
rad;l with a family of norms which are all equivalent, but adapted to

the Y`:

jSd�1j�1kwk2
PH1

rad;l
WD k@rwk

2
L2.Œ0;C1/;jrjd�1dr/

C l.l C d � 2/
w
r

2
L2.Œ0;C1/;jrjd�1dr/

:

Then, we can define

PH 1
` WD ¹f 2

PH 1.Rd /I 9w 2 PH 1
rad;l ; f D w ˝ Y`º;

so that

PH 1.Rd / D
?M
`2M

H 1
` ;

and the map PH 1
rad;l !

PH 1
`

, w 7! w ˝ Y`, is a bijective isometry up to a constant, for the
appropriate norm:

kw ˝ Y`k PH1 D kwk PH1
rad;l
:

Again, @sT preserves this structure: @sT D c0.�1/.d�1/=2@
.dC1/=2
s Rl can be extended to

a (bijective) isometry from PH 1
rad;l to PH 1.R/:

(5.11) 8w 2 PH 1
rad;l ; k@sTlwk PH1.R/ D kwk PH1

rad;l
;
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and the commutative diagram still holds:

8w 2 PH 1
rad;l ; @sT .w ˝ Y`/ D .@sTlw/˝ Y`:

As mentioned above, we will use the harmonic extension on B.0; 1/, that is, the oper-
ator P such that, for f 2 PH 1, Pf satisfies Pf .x/ D f .x/ for jxj ⩾ 1 and �Pf D 0 on
B.0; 1/, so that

N 1
1 D ¹f 2 =.P / I @sT f D 0 on ¹jsj > 1ºº :

The operator P is actually the PH 1-orthogonal projector on PH 1.jxj ⩽ 1/?. Observe that
the action of P on PH 1

`
is simple: for w 2 PH 1

rad;l ,

P .w ˝ Y`/.x/ D

´
.w ˝ Y`/.x/ D w.jr j/Y`.x=jxj/ if jxj ⩾ 1;

w.1/ jxjl Y`.x=jxj/ if jxj < 1:

In other words, we can define an operator Pl W PH
1
rad;l !

PH 1
rad;l ,

w 7! 1jxj<1 sgn.x/lC1 jxj` C 1jxj⩾1w;

so that for all ` 2M and w 2 PH 1
rad;l ,

P .w ˝ Y`/ D .Plw/˝ Y`:

We will now fix ` 2M and study the kernel

N 1
1;` WD ker.1jsj⩽1Tl / D ¹w 2 PH

1
rad;l Iw ˝ Y` 2 N 1

1 º

D
®
w 2 PH 1

rad;l Iw.r/ D cr
l for 0 ⩽ r < 1 and @sTlw D 0 on ¹jsj ⩾ 1º

¯
:

Observe that there holds

N 1
1 D

?M
`2M

.N 1
1;` ˝ ¹Y`º/:

Step 2. The kernel N 1
1;`

is finite dimensional.

Lemma 5.13. Letw 2N 0
1;`

. Then there exists a polynomialP with degP ⩽ l C .d � 3/=2
(with the convention that deg 0 D �1/, and such that

8s 2 R; .Tlw/.s/ D 1jsj⩽1P.s/:

Also P has the parity of l C .d C 1/=2.

Proof. TheL2 proof adapts mutatis mutandis, working on q.s/D@sTlw which is inL2rad;l .

Corollary 5.14. The kernel N 0
1;`

is finite dimensional, and its dimension is at most bl=2C
.d C 1/=4c.

Proof. As in the L2 case, this is consequence of @Tl being an isometry and @Tl .N 1
1;`
/

being finite dimensional, in view of the previous lemma.
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Step 3. The kernel N 0
1;`

is spanned by functions of the type ln.jr j/pr˛ , ˛ 2 C, p 2 N.

Lemma 5.15. For any � > 1, define the dilation/restriction operator QS� acting on func-
tions w 2 PH 1

rad;l by

QS�.w/ WD .Pl .r 7! w.�r//:(5.12)

Then for any ` 2M, QS� maps N 1
1;`

into itself.

Proof. The proof follows the path of its L2 counterpart with a little variation due to the
harmonic extension. We also need the operator P �, which is defined as P on PH 1.Rd /,
but performs the harmonic extension on B.0; �/ instead (P � is a rescale of P , not to be
confused with Pl , which is a quotient map of P ).

Let w 2 N 1
1;`

, and consider v D . QS�w/˝ Y`, so that @sT .v/ D .@sTl . QS�w//˝ Y`.
The key point is that

v D .P �.w ˝ Y`// ıM�:

Now, using Lemma 4.13, we infer

@sT .v/ D �
�.dC1/=2.@sT .P

�.w ˝ Y`/// ıM�:

Let ' 2 D.R � Sd�1/ so that ' is supported in ¹jsj > 1º. We get

h@sT .v/; 'i� 0.R�Sd�1/;�.R�Sd�1/

D ��.dC1/=2 hT .P �.w ˝ Y`//; ' ıM1=�i� 0.R�Sd�1/;�.R�Sd�1/:

The assumption on Supp.'/ implies that ' ıM1=� is supported in ¹jsj > �º. Also,
P �w D w on ¹jxj ⩾ � so that, applying Proposition 4.11, we get that

.@sT .P
�.w ˝ Y`//j¹jsj>�º�Sd�1 D .@sT .w ˝ Y`//j¹jsj>�º�Sd�1 D 0;

since w 2 N 0
1;`

and � > 1. So, we have proved that for any test function ' supported in
¹jsj > 1º,

h@sT .v/; 'i� 0.R�Sd�1/;�.R�Sd�1/ D 0:

In other words, @sT .v/D 0 on ¹jsj>1º; hence, 1jsj⩽1@sTl . QS�w/D 0 and QS�w 2N 1
1;`

.

Now observe that QS has the same action as S for jr j ⩾ 1: for w 2 PH 1
rad;l , and r ⩾ 1,

. QS�w/.r/ D w.�r/ D .S�w/.r/, so that we can still use Lemma 5.9 as is. We conclude
that N 1

1;`
admits a basis made of functionsw 2 PH 1

rad;l such that, for some p 2N and ˛ 2C
and r ⩾ 0,

w.r/ D

´
ln.r/p r˛ if r ⩾ 1;

r l if 0 ⩽ r < 1:
(5.13)

Denote again QB the set of couples .p; ˛/ 2 N � C which appear in this basis: due to
Lemma 5.9, QB is a finite union of ¹.0; ˛i /; .1; ˛i /; : : : ; .pi ; ˛i /º.
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The other stability result, suitably modified, also holds in the PH 1 context. The only
subtlety is the definition of extension operator. We already defined the harmonic exten-
sion P , but it can easily be extended in the following way: if f 2 C.¹jxj ⩾ 1º/ is continu-
ous up to the boundary, one can consider the harmonic extension g of f jd�1S in B.0; 1/:

�g D 0 on B.0; 1/; gjSd�1 D f jSd�1 :

Then we still denote

Pf W x 7!

´
g.x/ if jxj ⩽ 1;

f .x/ if jxj ⩾ 1:

If w 2 C.Œ1;C1// then this is simply

P .w ˝ Y`/ D Qw ˝ Y`; where Qw.r/ D

´
.sgn.r//.dC1/=2jr jl if jxj ⩽ 1;

w.r/ if jr j ⩾ 1:

Observe that if w 2 H 1
sym.¹jr j ⩾ 1º/ in the sense that

kwk2
PH1

rad;l .¹jrj⩾1º/
WD k@rwk

2
L2.¹jrj⩾1º;jrjd�1dr/ C l.lCd �2/

w
r

2
L2.¹jrj⩾1º;jrjd�1dr/

< C1;

then
Qw ˝ Y` D P .w ˝ Y`/ 2 PH

1
` ;

and the map w 7! Qw is a continuous linear map.

Lemma 5.16. Consider the operator Q�W f 7! P ..�f /j¹jxj⩾1º/. Then Q� (is well defined
and) maps N 1

1 \
PH 1
`

to itself : for all f D w ˝ Y` 2 N 1
1 \

PH 1
`

, we also have Q�f 2
N 1
1 \

PH 1
`

.

Proof. If suffices to prove it for f D w ˝ Y`, where w is of the form (5.13). A direct
computation (like (5.8)) yields that .�f /jj¹jxj⩾1º D v ˝ Y`, where v 2 C.¹jr j ⩾ 1º/, and
recalling the form of the Laplacian in spherical coordinates, v 2 PH 1

rad;l .¹jr j ⩾ 1º/. Now,
from (4.15), we also have that

T �.w ˝ Y`/ D @
2
sT .w ˝ Y`/;

so that @sT �.w ˝ Y`/ D 0 on ¹jsj > 1º. Proposition 4.11 yields that @sT .P .v ˝ Y`//
and @sT �.w ˝ Y`/ coincide on ¹jsj > 1º, and that are both 0 there. Therefore, Q�f D
P .v ˝ Y`/ 2 N 0

1 .

Step 5. N 1
1 \ L

2
`

is spanned by the fk .

Lemma 5.17. Let .p; ˛/ 2 QB. Then p D 0, ˛ < �d=2C 1 and ˛ D �l � d C 2.k C 1/
for some k 2 N.

Proof. If w 2 N 0
1;`

is such that

8r ⩾ 1; w.r/ D ln.r/pr˛;

the condition that w 2 PH 1
rad;l writes ˛ < �d=2C 1.
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Then as Q� acts as � on jr j ⩾ 1 (like L� does), the proof of Lemma 5.11 works word
for word.

Let QN` 2 N be the maximum of the k such that .0;�l � d C 2k/ 2 B. Then by
applying repetitively Q� (and using (5.8)) to w˝ Y`, where w 2 PH 1

rad;l and w.r/D rN` for
r ⩾ 1, we get that for all k 2 J1; QN`K, .0;�l � d C 2k/ 2 QB. Recalling the definition (1.20)
of the fk , we can reformulate this by saying that

N 1
1 \

PH 1
` D Span.fk I k 2 J1; QN`K/:(5.14)

Step 6. Conclusion.

Lemma 5.18. Let k 2 N be such that ˛k < �d=2C 1. Then fk 2 N 1
1 \

PH 1
`

.

Proof. Observe that, as ˛k < �d=2C 1, fk 2 PH 1
`

. Moreover, due to (5.8) (with p D 0),
for k ⩾ 1,

1jxj>1�fk D dk1jxj>1fk�1 for some dk 2 R;

and by the definition of ˛0 and spherical harmonic,

1jxj>1�f0 D 0:

Therefore, due to Proposition 4.11, there hold

.@sT .1jxj>1�gk//j¹s>1º D .@sT .�gk//j¹s>1º D .@
2
s .@sT gk//¹s>1º:

As gk 2 PH 1
`

, let hk 2 L2.¹jsj > 1º/ be such that

.@sT fk/j¹jsj>1º D hk ˝ Y`I

we obtained for k ⩾ 1 that

@2shk D dkhk�1:(5.15)

Let us prove by induction on k (such that ˛k < �d=2C 1) that hk D 0.
For k D 0, the function u.t; x/ D f0.x/ is solution of □u D 0 on ¹jxj > jt j C 1º

(outside of the light cone). In particular, by finite speed of propagation, the solution w to
the wave equation with initial data .f0; 0/, satisfies w.t; x/ D f0.x/ on ¹jxj > jt j C 1º.
In particular, (1.13) gives

0 D 2 lim
t!C1

krwk2L2.jxj⩾tC1/ D k@sT f0k
2
L2.¹s⩾1º�Sd�1/ ;

This proves that h0 D 0.
Let k ⩾ 1 and assume that hk�1 D 0. In view of (5.15), we infer that there exists

˛; ˇ 2 R such that hk.s/ D ˛s C ˇ for s > 1. As hk 2 L2.¹jsj > 1º; ds/, ˛ D ˇ D 0 and
hk D 0. This completes the induction.

Again, hk D 0 precisely means that 1jsj⩾1@sT fk D 0, and thus fk 2 N 1
1 .

This concludes the proof of Theorem 5.3.
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We can now complete the:

Proof of Theorem 1.7. The relations (5.1) and (5.2) write

k.u0; u1/k
2
PH1�L2

D ku0k
2
PH1
C ku1k

2
L2

D k1jsj⩾R @sT u0k
2
L2.R�Sd�1/

C k�1Ru0k
2
PH1
C k1jsj⩾R T u1k

2
L2.R�Sd�1/

C k�0Ru1k
2
L2
:

First, due to (1.15) and symmetry, there holds

Eext;R.u/ D k@sT u0k
2
L2.ŒR;C1/�Sd�1/

C kT u1k
2
L2.ŒR;C1/�Sd�1/

D
1

2

�
k1jsj⩾R @sT u0k

2
L2.R�Sd�1/

C k1jsj⩾R T u1k
2
L2.R�Sd�1/

�
Second,

ker�R D P.R/ D K1R �K
0
R D ker�1R � ker�0R;

so that
k�R.u0; u1/k

2
PH1�L2

D k�1Ru0k
2
PH1
C k�0Ru1k

2
L2
:

Therefore, we conclude that

k.u0; u1/k
2
PH1�L2

D 2Eext;R.u/C k�R.u0; u1/k
2
PH1�L2

:

This is (1.21). It remains to describe u when u0 2 K11 and u1 2 K01 , on the outer cone
C1 WD ¹jxj ⩾ t C 1º for t ⩾ 0 (the case t ⩽ 0 being treated with data .u0;�u1/ and by
scaling, we get the description for any R > 0). For this, it suffices to compute the solu-
tion vk to (1.1) with initial data .fk ; 0/ on C1 for any k 2 N (notice that for large k, these
solutions to the wave equation do not belong to PH 1 �L2). Indeed, for k ⩾ 0, then @tvkC1
is the solution to (1.1) with initial data .0; �fkC1/. As .�fkC1/j¹jxj>1º D ckgkj¹jxj>1º
with ck ¤ 0 for k ⩾ 1, so that by finite speed of propagation, 1

ck
@tvkC1 coincides on C1

with the solution to (1.1) with initial data .0; gk/.
We prove by induction on k 2 N that there exist ˛k;j 2 R, for j 2 J0; kK, such that

8.t; x/ 2 C1; vk.t; x/ D

kX
jD0

˛k;j t
2.k�j /fj .x/:(5.16)

For k D 0, simply recall that .�f0/jjxj>1 D 0 so that for .t; x/ 2 C1, v0.t; x/ D f0.x/.
Assume that (5.16) holds for some k ⩾ 0, and let us prove it for k C 1. Observe

that �vkC1 is a solution to (1.1), with initial data .�fkC1; 0/. As .�fkC1/j¹jxj>1º D
ckfkj¹jxj>1º for some ck 2 R. By uniqueness in the Cauchy problem for (1.1) and finite
speed of propagation, we infer that

8.t; x/ 2 C1; @t tvkC1.t; x/ D �vkC1.t; x/ D ckvk.t; x/:

By the induction hypothesis, we infer that, for all .t; x/ 2 C1,

@t tvkC1.t; x/ D

kX
jD0

˛k;j t
2.k�j /fj .x/:
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Integrating in time twice for each fixed x, (with @tvkC1.0; x/ D 0 and vkC1.0; x/ D
fkC1.x/, we get that, for all .t; x/ 2 C1,

vkC1.t; x/ D ck

kX
jD0

˛k;j

.2.k � j /C 1/.2.k � j /C 2/
t2.k�j /C2fj .x/C fkC1.x/:

This ends the induction step. Notice that ˛k;k D 1 (by induction or by evaluation at t D 0).
The proof of Theorem 1.7 is complete.

A. Computations of the Laplacian of some functions

Using the Laplacian in polar coordinates,

�f D
1

rd�1
@

@r

�
rd�1

@f

@r

�
C
1

r2
�Sd�1f D

@2f

@r2
C
d � 1

r

@f

@r
C
1

r2
�Sd�1f(A.1)

We first compute

1

rd�1
@

@r

�
rd�1

@

@r
r˛
�
D ˛.˛ C d � 2/r˛�2:

In particular, since jxjl Y` is a harmonic polynomial, we have

0 D �Œr lY`� D l.l C d � 2/r
l�2Y` C

r l

r2
�Sd�1Y`;

which gives �Sd�1 Y` D ��lY`, with �l D l.l C d � 2/. It gives also

(A.2) � Œr˛Y`� D Œ˛.˛ C d � 2/ � l.l C d � 2/� r
˛�2Y`:

We also compute

1

rd�1
@

@r

�
rd�1

@

@r
log.r/p r˛

�
D r˛�2

�
˛.˛ C d � 2/ log.r/p C p.2˛ C d � 2/ log.r/p�1 C p.p � 1/ log.r/p�2

�
;

which gives (5.8), namely,

�Œlog.r/p r˛ Y`� D r˛�2Y`
�
Œ˛.˛ C d � 2/ � l.l C d � 2/� log.r/p

C p.2˛ C d � 2/ log.r/p�1 C p.p � 1/ log.r/p�2
�
:
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