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Partial differential equations from matrices
with orthogonal columns

David Martinez Torres

Abstract. We discuss a system of third order PDEs for strictly convex smooth func-
tions on domains of Euclidean space. We argue that it may be understood as the
closure of the first order prolongation of a family of PDEs. We describe explicitly its
real analytic solutions and all the solutions which satisfy a genericity condition; we
also describe a family of non-generic solutions which has an application to Poisson
geometry and Kihler structures on toric varieties. Our methods are geometric: we use
the theory of Hessian metrics and symmetric spaces to link the analysis of the system
of PDEs with properties of the manifold of matrices with orthogonal columns.

1. Introduction

Let ¢ be a strictly convex smooth function defined on a connected subset 2 C R”. Its
Hessian H ¢ defines at each point an inner product, and therefore the inverse of the Hessian
matrix is also a smooth field of inner products. It is natural to ask whether this field is
also the Hessian of a function. If g is a field of inner products which is the Hessian of a
function, then there must be an equality of partial derivatives:

dgij _ 9gik
oxx  Oxj

1<ijk<n.

If Q has trivial first homology group, then the agreement of the above partial derivatives
implies that g is the Hessian of a function [3]. We shall assume from now on that the
domain €2 has trivial first homology group.

Definition 1.1. A strictly convex function ¢ € C°°(S2) has property d if it satisfies the
following system of third order PDEs:

9 9
1.1 —H¢ ' — —Ho¢ ', =0, 1<i, jk=<n.
( ) axk ¢ 17 axj ¢ lk —l j —n
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The purpose of this paper is to analyze the system of third order PDEs (1.1) for strictly
convex functions.

To be more precise about our focus, we note that it is possible to construct strictly con-
vex solutions to (1.1) by elementary means: every strictly convex function of one variable
has property d. If ¢;(x1) and ¢, (x,) are strictly convex functions of one variable, then
¢1(x1) + ¢2(x2) has property 4. Such a function solves the second order hyperbolic PDE
with constant coefficients

9%¢

(1.2) i 0,

and, conversely, all the solutions of (1.2) decompose (locally) as the sum of two func-
tions on each of the variables x; and x;; the parallel translates of the coordinate axes
are the (constant) characteristics of the solutions. If (1.2) is replaced by any second order
hyperbolic PDE with constant coefficients whose solutions have (constant) orthogonal
characteristics, then its strictly convex solutions will have property 4. There is a natural
generalization of this family of hyperbolic second order PDEs to arbitrary dimensions.
Its strictly convex solutions, which we refer to as functions with (constant) orthogonal
characteristics, will also have property J.

It is thus natural to study ‘how close’ a strictly convex function with property 4 may
be from having orthogonal characteristics.

Our main results describe sufficient conditions for a strictly convex function with prop-
erty 4 to have orthogonal characteristics. Among such sufficient conditions, there is a
generic one:

Theorem 1.2. If a strictly convex function has property 4 and at every point the eigenval-
ues of its Hessian are simple, then it has orthogonal characteristics.

Another sufficient condition refers to the regularity of the functions:

Theorem 1.3. If a real analytic strictly convex function has property d, then it has ortho-
gonal characteristics.

We shall prove Theorem 1.2 first for functions of two variables. For them, the sys-
tem (1.1) has two equations and the theorem will follow from an algebraic manipulation
valid under the hypothesis on the Hessian. The algebraic manipulation will have a geo-
metric counterpart: the family of second order hyperbolic PDEs with constant coefficients
whose solutions have orthogonal characteristics defines a pencil of hyperplanes on the
space of jets of order two; away from its base, and in the set where the Hessian is strictly
positive, it restricts to a foliation. Strictly convex functions with property J define a sub-
set! of the space of jets of order three. The hypothesis on the eigenvalues of the Hessian
singles out the locus of smooth points for which the jet projection is a submersion; its
image is the aforementioned foliated open subset of the jets of order two. The geometric
manifestation of our algebraic manipulation will be that the Cartan connection is tangent
to the leaves of the pullback foliation. This is why one may say that, for strictly convex

I'That strictly convex functions with orthogonal characteristics have property d means that this subset con-
tains the prolongation of any of the previous hyperplanes.
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functions, the system of third order PDEs (1.1) is the closure of the prolongation of the
aforementioned pencil of second order hyperbolic PDEs.

To go to arbitrary dimensions, we will not follow the jet space approach, as we find
the algebraic complexities difficult to manage. We shall switch our viewpoint to that of
Hessian metrics. In this language, what we are asking is when, for a given Hessian metric
on a domain of Euclidean space, its inverse metric is also Hessian. We refer to such metrics
as Hessian metrics with property 4. The first manifestation of the relevance of the metric
viewpoint will be the following.

Lemma 1.4. A Hessian metric has property d if and only if its Christoffel symbols (of the
second kind) are symmetric in the three indices.

Lemma 1.4 suggests that property 4 could be described as a feature of the tangent
or the orthogonal frame bundle of the Hessian metric with its Levi-Civita connection.
A fundamental property of Hessian metrics on domains of Euclidean space is that they
posses a universal (positively oriented) orthogonal frame bundle with connection [3],
m:(Gl(n)*, V) — P, where P denotes the set of positive matrices, and 7 and V are
a natural map and connection, respectively, which come from symmetric space theory. We
shall argue that the universal orthogonal frame bundle offers an appropriate replacement
for the jet space picture. Briefly, jet spaces of order two will be replaced by the set & of
positive matrices; the subset of the jet spaces of order three defined by property 4 will be
replaced by the submanifold of matrices with orthogonal columns € C Gl(n)*; the res-
triction of the jet projection will correspond to 7 |e: € — &; and the Cartan connection
will correspond to the universal Levi-Civita connection V. Property d for a Hessian metric
will translate as follows:

Theorem 1.5. A Hessian metric H¢ in Q2 has property d if and only if for any point x € Q
and any curve y at x € K, there exists an orthonormal frame for Hp(x) in € such that
the corresponding horizontal lift of y at that frame is tangent to €.

There will be a property analogous to the tangency of the Cartan connection to the
pullback foliation coming from the pencil of degree two hyperbolic PDEs:

Proposition 1.6. The restriction of the universal Levi-Civita connection to € defines a
(regular) involutive distribution. Its leaves are the left translates of the strictly positive
matrices O which fit in the Cartan factorization € = SO(n)D.

The generic condition on eigenvalues in Theorem 1.2 is just the open stratum of a
natural stratification of J. To describe more precisely sufficient conditions for a Hessian
metric with property J to come from a function with orthogonal characteristics, we will
analyze the interaction among this stratification, the foliation on € defined by the universal
Levi-Civita connection, and the map 7 |¢. Theorem 1.3 will hinge on real analytic features
of these objects.

As we shall see, property d for strictly convex functions appears in a problem of Pois-
son geometry in toric varieties. The so-called totally real toric Poisson structures have
properties analogous to that of Hamiltonian Kihler forms. For instance, whereas the latter
are encoded by appropriate strictly convex functions [5], the former are encoded by the
simplest strictly convex functions: quadratic forms. The most natural Poisson-theoretic
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PDE for a pair given by a totally real toric Poisson structure and a Hamiltonian Kihler
form will correspond to property d:

Theorem 1.7. Let (X, T) be a (smooth) toric variety endowed with a totally real toric
Poisson structure Tl and a Kdhler form o for with the action of the maximal compact
torus T C T is Hamiltonian. Let P denote the inverse Poisson structure to o. Then the
following statements are equivalent:

(1) The Poisson structures T1 and P Poisson commute: [I1, P] = 0.

(2) Inabasis of the Lie algebra of T for which I1 corresponds to the standard quadratic
Sfrom of R”, the strictly convex function which corresponds to o has property J.

In complex dimension one, a totally real toric Poisson structure and (the inverse of)
a Hamiltonian Kihler form always Poisson commute because the commutator is a field
of trivectors on a surface; equivalently, if we use Theorem 1.7, this corresponds to the
fact that all strictly convex functions of one variable have property 4. As it will turn out,
Theorem 1.3 will imply that in the real analytic category, such a commuting pair is the
Cartesian product of one dimensional commuting pairs:

Theorem 1.8. Let (X, T) be a projective toric Poisson variety endowed with a totally
real toric Poisson structure I1 which Poisson commutes with a real analytic Hamiltonian
Kdhler structure o. Then (X, T) is a Cartesian product of projective lines, and both T1
and o factorize.

We shall also describe a family of strictly convex functions which satisfy property J
but which do not have orthogonal characteristics. We will use it to construct Hamilto-
nian Kéhler forms in certain (7 -invariant) regions of toric varieties. These regions can be
thought of as the result of gluing to a (7'-round) O-handle several (T-round) 1-handles. An
illustration of the construction is the following:

Proposition 1.9. Let U C CP? be the complement of small T?-invariant neighborhoods
of [1:0:0]and[1:0 : 1]. Then there exist a totally real toric Poisson structure on C P2
and a Hamiltonian Kdhler form on U which Poisson commute.

The structure of this paper is as follows. Section 2 describes how matrices with ortho-
gonal columns are used to define the family of differential relations of second order with
constant coefficients whose solutions we call functions with (constant) orthogonal char-
acteristics; we also discuss why they have property 4. In Section 3, we do the analysis
of the system of third order PDEs (1.1) for strictly convex functions of two variables
using jet spaces. The viewpoint of Hessian metrics is introduced in Section 4. Property J
is translated as symmetry of the Christoffel symbols, an algebraically simpler condi-
tion which allows to analyze the interaction of property 4 with the Legendre transform.
Section 5 describes how the universal orthogonal frame bundle offers the appropriate
setting for the geometric analysis of property 4. We analyze the map n: (€, V) — &
from the submanifold of orthogonal matrices with the restriction of the universal Levi-
Civita connection onto the manifold of positive matrices; this is our replacement of the
subsets defined by property 4 in the space of jets of order three and two with the restric-
tion of the Cartan connection. Section 6 contains our main results: firstly, the descrip-
tion of property d as a differential relation related to the submanifold of orthogonal
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matrices € C (Gl(n)™, V) — £. Secondly, sufficient conditions for a Hessian metric
with property d to come from a strictly convex function with orthogonal characteristics.
In Section 7, we describe a family of strictly convex functions which have property d but
do not have in general orthogonal characteristics. The domains of definition of its mem-
bers are what we call polytopes with 1-handles. Despite polytopes with 1-handles are not
convex in general, we show that the family is invariant under Legendre transform. Sec-
tion 8 contains our applications to Poisson geometry. We explain how on a smooth toric
variety, the Poisson commuting equation for a totally real toric Poisson structure and for
(the inverse of) a Hamiltonian Kéhler form can be rewritten as property J for either the
Kihler or the symplectic potential [5] of the latter form. That allows us to conclude that
in the real analytic category, any such commuting pair must be the Cartesian product of
commuting pairs on projective lines. We also use the family introduced in Section 7 to
construct commuting pairs on certain topologically non-trivial regions of toric varieties
(which are not Cartesian products).

2. Solutions with orthogonal characteristics

It is possible to construct strictly convex functions with property 4 by elementary means.
(a) Every strictly convex function of one variable has property d.

(b) If ¢p1(x1),...,dn(xy) are strictly convex, then ¢; (x1) + - - - + ¢, (x5) has property J
in the product of the corresponding intervals.

(c) If ¢(x) has property 4 in 2 and B € O(n) is an orthogonal transformation, then
¢ (Bx) has property 4 in B~1(R2). This is because

H¢(Bx) = B"H¢(x)B
and, therefore, if H¢(x)! is the Hessian of ¥ (x), then (H¢(Bx))~! is the Hessian
of Y (Bx).

A function is (locally) of the form ¢ = ¢1(x1) + -+ + Pn(x,) if and only if it is a
solution of the system of second order PDEs
0%¢

2.1 =0, 1<i<j<n.
@D axian =t=J=n

The solutions of the system have (constant) characteristics given by the collection of axes.
This information can be used to rewrite (2.1) in a more geometric fashion. For any n x n
matrix A, one can define a differential operator of order two on functions with values on
matrix-valued functions by the following recipe:

(2.2) L3¢ = ATHQA.

Equivalently, the ij-th component is the Lie derivative of ¢ with respect to the (constant)
vector field defined by the i-th column of A, followed by the Lie derivative with respect
to the vector field defined by the j-th column.

Let D denote the set of diagonal matrices with strictly positive entries, and let D (£2)
denote the set of smooth functions on € with values on . It follows that a function ¢
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is strictly convex and satisfies (2.1) if and only if £2¢ € D(Q), where 1 is the identity
matrix. Let € denote the set of matrices with orthogonal columns.

Definition 2.1. A function ¢ € C°°(2) has orthogonal characteristics if there exists C €€
such that

2.3) L2 € D(Q).

Because D is invariant by conjugation by permutation matrices, in Definition 2.1 we
may assume that C has positive determinant. We will abuse notation and use € to refer to
matrices with orthogonal columns and positive determinant.

Lemma 2.2. If ¢ € C°°(2) has orthogonal characteristics, then ¢ is an strictly convex
Sfunction with property d. More precisely, ¢ is the composition of an orthogonal trans-
formation with a function with trivial mixed partial derivatives.

Proof. Because C has orthogonal columns, we can factor C = BA, with A € O and
B €SO(n). From £%¢ = CTH$C = ABTH$BA and (2.3), we deduce that BTH@B €
D(L2), or, equivalently, that Hp(Bx) € D(2). Thus, locally,

G(Bx) = ¢1(x1) + -+ Pulxn), x=(x1,...,%) € B_I(Q)v

and ¢; is strictly convex. Therefore ¢(Bx) is strictly convex and has property J, and so
the same occurs for ¢ (x) = ¢(B~1(Bx)). n

3. The two-dimensional case

We would like to know whether there exist strictly convex functions with property 4 which
do not have orthogonal characteristics. For that we find convenient to discuss the algebraic
structure of the system of PDEs (1.1). This should be easier in the lowest non-trivial
dimension.

We shall denote partial derivatives of a function ¢(x), x = (x1, x2) € Q C R?, by
means of subindices which follow a comma. We introduce independent variables to para-
metrize (homogeneous) jet spaces of order two and three:

Xx=¢11, T=¢12, (=¢20 vV=¢111, V=0¢112, © =0 122, & =¢200.

Strictly convex functions correspond to the open subset ¢ — 12 > 0, y + ¢ > 0. The
system of PDEs (1.1) corresponds to the common solutions of the following degree three
homogeneous polynomial equations:

Gy 25 ) = {E + 2§ = 2tw) +v(x8 — %) — T(V + Yo —21v) =0,
' —0 (¢ —12) + 10l + x§ —2tw) —v(x¢ — %) + 2 (VL + yo —27v) = 0.

Lemma 3.1. Strictly convex functions with property d correspond, in the space of jets of
order three of functions in the plane, to an open subset of an intersection of quadrics:

x—1>>0, y+¢>0.

(3.2) C=0v+v-—w) =0,
C=—pno+tv=§ =0,
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Proof. We interpret the equations of the cubics (3.1) as a (non-homogeneous) linear sys-
tem with indeterminates v{ 4+ y& — 27w and v{ + yw — 27v:

FWE + X —2t0) + 1V + yo —2tv) = (€ +v) (1 — 7).
TVl + x§ —2tw) + x(V§ + Yo —21v) = (U + ) (x§ — 7).

In the open subset defined by y¢ — 72 # 0, we obtain the equivalent relations

_ _Et+v T
ve+ x& ZTa)_U—i-a) 1l — &=y +1(v—w) =0,
_ ¢ E+v C—pw+t@—§ =0.
vl + yw —2tv = i
T v+tw

To each [a:b] € RP!, one can associate the following second order PDE with constant
coefficients for strictly convex functions:

(3.3) agi1—adr =be 2.
It corresponds to an open subset of a hyperplane of the space of jets of order two:
(3.4) a(x =) —br =0, x(—1>>0, y+¢>0,

whose first prolongation is

a(y =0 —bt =0,
(3.5) av—w)—bv =0, xl—12>0, y+¢>0.
alv—§&)—bw =0,

Proposition 3.2. Let ¢ € C°(2) be a strictly convex function.
(1) If ¢ satisfies (3.3) for some [a:b] € RP!, then ¢ has property J.

(2) If ¢ satisfies (3.3) for more than one [a:b] € RP!, then ¢ is —up to a degree one
polynomial — a multiple of the standard quadratic form x% + x%.

(3) If ¢ has property d and its Hessian has simple eigenvalues, then ¢ satisfies (3.3) for
some [a:b] € RPL.

Proof. The set of equations (3.3) are exactly those second order PDEs whose solutions
have orthogonal characteristics. Therefore item (1) is the specialization of Lemma 2.2
to the two-dimensional case. Alternatively, item (1) follows from the inclusion of the
solutions of (3.5) in the solutions of (3.2).

If ¢ satisfies (3.3) for more than one [a:b] € RP1, then its second jet belongs to
the base of the pencil (3.4): y —¢ = v = 0. That is to say ¢,12 = 0 and ¢ 11 = ¢ 2.
Therefore 0 = ¢ 221 = ¢,111 = ¢,112 = ¢,222. Hence ¢ is a degree two polynomial whose
homogeneous part of degree two equals k(x? + x3), k > 0.

The Hessian H¢ has two eigenvalues if and only if it misses the base of the pen-
cil. Equivalently, the field of vectors in the plane (¢ 22 — ¢11, ¢.12) € R? has no zeroes.
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Therefore we can (locally) take the quotient of the components of the vector field to get a
well-defined slope function. Property J as in (3.2) can be rewritten

(P22 — P11, 9,12), (P12, 9,11 — $22),1) = 0,
(P22 — P11, 4,12). (P12, b,11 — $22),2) = 0,

where (-, -) is the standard inner product. This implies that the slope function is constant,
which is exactly the second order PDE (3.3) for some [a:b] € RP!. |

Proposition 3.2 does not clarify whether strictly convex functions with property 4 and
which do not have orthogonal characteristics exist. As we shall discuss in Section 7, such
solutions exist: it is possible to start from a multiple of the standard quadratic form in a
subdomain of 2 which ‘bifurcates’ into solutions to different equations in (3.3) in other
subsets of the domain 2.

Remark 3.3 (The Cartan connection on jet spaces). The algebraic manipulation in item (3)
in Proposition 3.2 has a geometric counter-part. The requirement on the Hessian corres-
ponds to the regularity condition needed to identify solutions with holonomic sections
with respect to the Cartan connection: on the one hand, the subset of the jet spaces which
corresponds to property d is not smooth; the 1-forms

Eir=v(dl—dy)+ (@€ —yp)dv+1(dv—dw)+ (v—w)dr,
By =w(dl—dé)+ (& —&)dw+t(dv—de) + (v —e)dr,

are colinear in the subset w(v — w) —v(v —¢) = y — ¢ = v = 0. On the other hand,
the smooth locus of the intersection of quadrics fails to be transverse to the fibers of the
projection onto jets of order two in the points over the base of the pencil.

The connection 1-forms one has to add when passing from jets of order two to jets of
order three are:

O, =dé—vdx —vdy, O, =dt—vdx—wdy and O3 =dy—wdx—~{dy.
The pullback foliation is defined by the 1-forms

Ki=(¢E—x)do—t(déE—dy), Ky=w—-w)dv—v(dv-—dw),
Ki;=Ww-—¢)dw—w(dv—de).

The equalities

v2 Vo w?
Ki=(—-002—-1(0; - 03), KZ_?KIZ_;DL K3—?K1=—

o
=2

SRS

hold in the intersection of (3.2) with the complement of the pullback of the base of the
pencil. Therefore, holonomic sections in this subset are tangent to the pullback foliation.
Hence their order two jet must be inside a hyperplane of the pencil.

Remark 3.4. (Orthogonal characteristics and Legendre transform) Let ¢ be an strictly
convex function on a convex domain Q C R2. Its Legendre transform is an strictly convex
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function ¢* on a convex domain *, which is related to Q by a (Legendre) diffeomorph-
ism. Let us assume that ¢ satisfies the constant coefficients second order PDE:

a¢,11+c¢,22—b¢,12=0, [a:c:b]eRPz.
Because Ho* at x € Q* equals H¢™! at its related point in 2, we have the equality

agh, +cd’y +beh, =0.

Thus the Legendre transform induces an involution in the parameter space of constant
coefficients degree two homogeneous PDEs: [a : ¢ : b] + [c:a: — b]. Its fixed point set
is[1:1:0)U[a:—a:b] C RP2. To the point [1 :1:0] corresponds the Laplace equa-
tion, which has no strictly convex solutions. The projective line [a : — a : b] parametrizes
hyperbolic PDEs with orthogonal characteristics (3.3). Therefore, if ¢ is a function on
the convex domain €2 with orthogonal characteristics, so its Legendre transform is. This
invariance property holds regardless of the dimension:

£29 € D(Q) < CT(HP*)™'C € D(Q*) < CT(HP*)C € D(Q"),

where the first equivalence uses the relation between Hessian matrices of the original
function and its Legendre transform, and in the second equivalence we have inverted the
matrices and we have used CTC € D.

4. Hessian metrics with symmetric Christoffel symbols

To generalize the results in Section 3, the complexities brought by the increase of dimen-
sion shall be dealt with by shifting the perspective to that of Hessian metrics.

A Hessian metric on 2 C R” is a Riemannian metric obtained as the Hessian matrix of
a (strictly convex) function on 2. Property 4 for strictly convex functions can be translated
to a requirement for a Hessian metric: that its inverse metric be Hessian as well. In such
case, we say that the given Hessian metric has property J.

There is another natural differential condition on Hessian metrics which allows to
formulate in arbitrary dimensions the algebraic simplification of property d described in
Lemma 3.1. For a Hessian metric H ¢, the Christoffel symbols of the first kind equal the
partial derivatives of order three: I';jx = ¢ ;;x. The Christoffel symbols (of the second
kind) are .

Ty = Ho™ "y Tiji.

Let [H¢] x denote the partial derivative with respect to k of the entries of the Hessian
matrix. For each 1 < k < n, we define the Christoffel matrix

Ty =T, = Hp ' [Hl ko, = HO ' [HP] k.

Here the symbols e and * denote the superindex and second subindex for Christoffel
symbols of the first kind, and also the row and column indices in the matrices H qb_l and
[H @] ., respectively; the symbol o denotes the row index in the matrix [H¢] x.
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Definition 4.1. A Hessian metric H¢ on Q2 has symmetric Christoffel symbols if the
Christoffel symbols (of the second type) are symmetric on the three indices. Equivalently,
if its Christoffel matrices are symmetric.

Property 4 corresponds to an open subset of the solutions of a system of polynomial
equations of degree 2n — 1 in the space of jets of order three. The symmetry of the Chris-
toffel symbols is determined by a system of polynomial equations of degree n; forn = 2,
it is exactly (3.2). The generalization of Lemma 3.1 to arbitrary dimensions is that prop-
erty d translates into the symmetry of Christoffel symbols:

Proof of Lemma 1.4. The Hessian metric is invertible if and only if the i -th and j-th lines
of [Hp™']; and [H¢~1]; are equal. This is equivalent to the same condition for the
matrices [H¢™ '] ; Hp and [H¢'] ; H¢. If we prolong the identity Hp~ ' H¢p = I, then
the condition transforms into the same condition for the Christoffel matrices I'; and TI';.
This amounts to symmetry of all Christoffel matrices. ]

The problem of the symmetry of Christoffel symbols of Hessian metrics is amenable
to Lie theoretic methods. A first instance of that is the following.

Proposition 4.2. The following statements for a Hessian metric H$ on Q are equivalent:
(1) It has symmetric Christoffel symbols.

(2) There exists a Cartan subalgebra (of the Lie algebra of n x n matrices) inside of the
symmetric matrices to which the two matrices H¢ and [H §) i belong, for 1 <k <n.
(The Cartan subalgebra may vary with k.)

(3) There exists a Cartan subalgebra inside of the symmetric matrices to which the two
matrices Hp and Ty belong, for 1 < k < n. (The Cartan subalgebra may vary
with k.)

Proof. Let s be the vector subspace of symmetric matrices, and let b C s denote the
diagonal matrices; this is a Cartan subalgebra of the Lie algebra of n x n matrices.

The Christoffel matrix T is the product of the symmetric matrices H¢ ™! and [H ] ¢
Therefore H¢ has symmetric Christoffel matrices if and only if the following commutat-
ors are trivial:

[Hp~' [HPlx] =0, 1<k <n.

This is equivalent to require that [H¢] x be in the same Cartan subalgebra as Hp™!,
and, because both are symmetric matrices, this Cartan subalgebra must lie in . If B is a
orthogonal matrix which diagonalizes H ¢, then it also diagonalizes H¢ !

B'H¢B =A, B'H¢ 'B=A"1

Therefore, if H@, [H] x are in the Cartan subalgebra Adg (D) C s, then sois H¢~!. This
shows the equivalence between (1) and (2).
If (2) holds, then

Ty = Hp '[Hp]x = B"A1BB"A2B = BTA1A2B

remains in the same Cartan subalgebra of the commuting factors, which proves (3). Con-
dition (3) by definition implies the symmetry of the Christoffel matrices. ]
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By Lemma 1.4, Hessian metrics with symmetric Christoffel symbols are the same
as Hessian metrics with property J. Thus, by Lemma 2.2, strictly convex functions with
orthogonal characteristics define Hessian metrics with symmetric Christoffel symbols. We
can reprove this result with a Lie theoretic approach:

Lemma 4.3. Let ¢ € C*(Q2). If i%qﬁ € D(Q) for some C € €, then the Christoffel
matrices of H¢ for all points in Q are in the Cartan subalgebra Adc (). In particular,
H ¢ has symmetric Christoffel symbols.

Proof. By the hypotheses, for each x € Q,
C'TH$C = A, A=A(x)eD(Q), Cekt.

Hence )
H¢ = (N 'ACT,

and upon taking its first order prolongation,
[Hele = (€D AxC™".

Therefore both H¢ and [H¢] i are in Adc (D). By item (2) in Proposition 4.2 the same
occurs for ' (the action by conjugation on D of second factor of € = SO(n)D is trivial).
By Proposition 4.2, this implies the symmetry of Christoffel matrices. ]

Proposition 4.4. The Legendre transform preserves the class of Hessian metrics with
property d on convex domains.

Proof. Let £; denote the Lie derivative with respect to d/dx;. We can rewrite property J
for Ho as

@.1) Lo(HP™)ax = L2(HP™ ) = 0.
The differential of ¢ defines the Legendre diffeomorphism
dp: Q— Q% D(d¢) = Ho.

If we push forward each equation in (4.1) by the Legendre diffeomorphism d¢, then the
Lie derivative of the pushed forward functions —entries of the inverse Hessian— by the
pushed forward vector fields will subtract to zero as well. The entries of the inverse Hes-
sian matrix are pushed forward to the entries of the Hessian of ¢*; the coordinate vector
fields are pushed forward to the columns vector fields of the Jacobian matrix H ¢, which
at points in 2* is the matrix H¢* ™!, Therefore, property J for H¢ is equivalent to

H¢*_100[H¢*]ko* - H¢*_1*0[H¢*]koo =0,

which is the symmetry of the Christoffel matrices of H¢*. Therefore, by Lemma 1.4,
H¢* has property J. (]
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5. The universal frame bundle for Hessian metrics and matrices with
orthogonal columns

To generalize Proposition 3.2 to arbitrary dimensions, jet spaces will be replaced by (a
subset of) the principal orthogonal frame bundle of the Hessian metric with its Levi-Civita
connection. There are three reasons to do that:

(a) A function ¢p € C°°(2) has property d if and only if H¢ has symmetric Christoffel
symbols. The Christoffel symbols are the components of the Levi-Civita connection.
Therefore one may expect a reformulation of property J related to the tangent or
orthogonal frame bundle with the Levi-Civita connection.

(b) If a function ¢p € C°°(£2) has orthogonal characteristics, then the Hessian metric H ¢
splits (locally, but along the same characteristics everywhere). In other words, the
conclusion of the de Rham splitting theorem holds. Therefore, to study the relation
between property 4 and orthogonal characteristics, it may be appropriate to look at
parallel transport on the principal frame bundle with its the Levi-Civita connection.

(c) Hessian metric on domains of Euclidean space are characterized among Riemannian
metrics as those whose frame bundle is the pullback of a universal principal bundle
with connection coming from symmetric space theory [3].

For a function ¢, the information of the homogeneous part of its second jet is the same
as the one contained in its Hessian. Thus for our strictly convex functions we shall be
looking at the map x — H ¢ (x), which takes values in the positive matrices J. There, the
pencil in (3.4) defined by hyperbolic PDEs with orthogonal characteristics generalizes as
follows: the second order PDE equation (2.1) corresponds to Hessian metrics with image
in the (positive) diagonal matrices &. Matrices with orthogonal columns have a factor-
ization into an orthogonal and a diagonal matrix. Thus we may confine ourselves to the
family of second order PDEs ;(iqub € D, B € SO(n). To each of them, there corresponds
the subset Adg (D) C &; their union over B € SO(n) fills &, as any positive matrix can
be diagonalised by a special orthogonal transformation.

For a Riemannian metric defined on a subset of Euclidean space, its orthogonal frame
bundle —forgetting for the moment about the Levi-Civita connection — is constructed via
pullback: the map 7: Gl(n)* — Gl(n)™, A A~1TA1 hasas image the closed embed-
ded submanifold of positive matrices. The restriction to its image,

(5.1 7:Gl(n)T - 2,

e is a (right) principal bundle for SO(n);
* intertwines the right action of SO(n) on Gl(n)* and the adjoint action of SO(n) on &;
* is the bundle of (positively oriented) orthogonal frames for metrics on R”.

Let V be the SO(n)-invariant principal connection on 7: Gl(n)* — & which at the
identity matrix has as horizontal space the symmetric matrices’.

2Its curvature there is [, 5].
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Proposition 5.1 (Proposition 4.1 in [3]). If H¢ is a Hessian metric on 2, then the pull-
back of V by Hp: Q2 — P, x — Hp(x), is the Levi-Civita connection on the orthogonal
frame bundle of H¢. Furthermore, this property characterizes Hessian metrics among
Riemmanian metrics in domains of Euclidean space.

The appropriate replacement of the jets of order three will not be the full bundle of
orthogonal frames. It will be the subset of matrices with orthogonal columns. The fol-
lowing result, from which Proposition 1.6 in the introduction follows, shows that it is
well-behaved with respect to the universal Levi-Civita connection:

Proposition 5.2. The subset of matrices with orthogonal columns € C Gl(n)™ has the
following properties:

(1) It is a closed embedded submanifold of Gl(n)™ on which the Cartan decomposition
Gl(n)* = SO(n)& induces a product structure € = SO(n)D.

(2) The intersection of the horizontal distribution of V with the tangent bundle TC is
an involutive distribution on €. Its foliation ¥ is the one associated to the Cartan
decomposition, with leaves the left SO(n)-translates of D.

Proof. Let 1 be the inversion map on Gl(n)* andletg = w o1 : Gl(n)* — P, A ATA.
A matrix C has orthogonal columns if and only if ¢(C) € . Therefore € is the preimage
under a submersion of the closed embedded submanifold of positive diagonal matrices,
thus a closed embedded submanifold of Gl(n)*. We have already used the (unique) factor-
isation of a matrix with orthogonal columns as a product of an orthogonal and a diagonal
matrix. It is straightforward that it gives rise to a Cartesian product of manifolds € =
SO(n)D.
The product structure in (1) implies that its tangent space at C € € is

so(n)-C-bd=C-Adc-1(so(n)) - d.

The horizontal space of V there is C - s. Because the conjugation of a skew orthogonal
matrix by an orthogonal one can never be symmetric, the intersection of the tangent spaces
must be C - b. Therefore, the intersection of the horizontal space of V with T€ is the
distribution® tangent to the left translates of D by SO(n). |

Next, we argue how n: (€, F) — & provides a ‘desingularization’ of the pencil
Ad (D), B € SO(n).
Proposition 5.3. The restriction w|e: € — P has the following properties:
(1) It is a surjective map all whose values are clean.
(2) The restriction of the differential of m|e to TF has trivial kernel, and the restriction
of mle to the leaf BD is a diffeomorphism onto Ad g (D).

Proof. Let V € . Then it diagonalizes in an orthogonal basis: B'VB = A, with B €
SO(n) and A € D. Hence m(BAY?) =V, so 7|e is surjective. The fiber is

le! (V) = BAY2SO(n)a,

30ne could also deduce involutivity by recalling that the curvature of the connection is C - [, s], and,
therefore, the abelian subalgebra b is flat.
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where the latter subgroup is the stabilizer of A for the adjoint action. The kernel of the
differential of 77 at BA'Y/2 is BA'/2 . s0(n). The tangent space of € at BA/2 is BA1/2.
ad," (). Because the adjoint orbit through A intersects O cleanly at A, their intersection
—which is the kernel of the differential of 7| at BA'/2—is BAY? . s0(n)a. Therefore
all values of 7 |e are clean.

The tangent space to the leaf of % through BA'/2 is BA/2 . . Its intersection with
BAY2 . s0(n)y is trivial. Therefore, the restriction of 7 to BD is a local diffeomorph-
ism over its image. That image is, by construction, Adp (D). To conclude that it is a
diffeomorphism, one can either check that the map is bijective or argue that the manifolds
involved are contractible. u

The base of the pencil (3.4) corresponds to inner products in the plane which have a
unique eigenvalue. In arbitrary dimensions, we have analogous subsets. For each symmet-
ric matrix, we can order its eigenvalues (with their multiplicity) in an increasing sequence.
To each partition « of {1,...,n}, there correspond a subset OF; likewise, to each matrix
with orthogonal columns we can order the norm of its columns in an increasing sequence.
In that way we obtain partitions ® p, ® » and O¢ of D, & and €, respectively.

Proposition 5.4. The partitions O g, Op and O¢ are stratifications of D, P and €,
respectively, and they interact with the map mle: (€, F) — P as follows:

(1) The preimage of ©% is ©%, and the restriction is a principal bundle:
(5.2) n|@% 10 — OF.

(2) The foliation ¥ = SO(n)D of C intersects the stratum O cleanly and induces
there the foliation SO(n)®'y of OF.
(3) The foliation SO(n)®'G of O is projectable by the submersion 71|@%. Its image is
the foliation Adson)(©'g) of O'%.
It is in this sense that w: (€, F , @¢) — (P, Adsom) (D), Op) is a desingularization of
the stratified pencil.

Proof. The group SO(n) acts on s by conjugation. As for any proper action, it produces a
stratification of s in orbit types (see Chapter 2 of [4]): two symmetric matrices are related
if their isotropy subgroups are conjugated. It is well known that upon passing to connec-
ted components, the outcome is a (Whitney B) stratification of s. The stratification ®g is
the result of possibly collecting some of the strata of the orbit type stratification belong-
ing to the same subset of the orbit type partition; in any case, it is still a stratification for
the partial order associated to the partitions « of {1,...,n}. The stratification ®5 —made
of adjoint orbits — intersects the Cartan subalgebra d cleanly, thus inducing a stratifica-
tion ®p. Each strata there is a face of the positive Weyl chamber of diagonal matrices with
diagonal elements ordered increasingly; an open convex polytope in a vector subspace .
The partition ® » is obtained by intersecting ®¢ with the open subset of positive matrices,
thus it is a stratification. The partition ® g is also obtained upon intersection; it is a strati-
fication because for instance D is an open subset of b. Finally, ® is the pullback of ® o
by the submersion ¢, and therefore it is a stratification as well.
Let C € € with factorisation C = BA. Then ¢(C) = BA2BT, and therefore,

CeOf < AecBf < A ?ec0f < ¢(C)c 0,
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The stratum @;? is an open subset of the vector subspace * of all matrices whose sta-
bilizer contains SO(n),. Because the fiber of 7|e through C is CSO(n), and 7t|®»cf is
saturated by fibers of 7 |e, it is a principal SO(n),-bundle. This proves (1).

The fibers of ¢ are the orbits of the left SO(n)-action. The restriction g|p: D — D
is the square map, which preserves the strata of ®g. Therefore the factorization of € is
compatible with the stratification:

¢ =SO0(n)By.

Thus the intersection of the leaf of ¥ though C € ®f is CO%,. At C, the respective
tangent spaces are C - D and C - b*. Therefore the intersection is clean and this proves (2).

By item (1) above and by item (2) in Proposition 5.3, the restriction of |g« to the leaf
C - 05 C O is a diffeomorphism over its image. Its image is Adg (0') (7|p : D — D
is the inverse of the square map); it is in fact the common image of all leaves through
points of the fiber CSO(n),. |

We can now sharpen Proposition 4.2.

Proposition 5.5. Let H¢ be a Hessian metric on Q2 such that H$(S2) is contained in the
stratum . Then its Christoffel symbols are symmetric if and only if H$ and [H¢]i can
be conjugated by an orthogonal matrix to a matrix in 9, 1 <k <n.

Proof. Because the image of H¢ is contained in ®', its partial derivatives must be in
the tangent space to the stratum: [H@]x € T®O. By item (2) in Proposition 4.2, there
exists a special orthogonal matrix B which conjugates H¢ and [H¢]; to a diagonal one:
BT[H@)x B € b. Therefore,

B'[HolkB € b N TOY = d*. "

6. Differential relations on the submanifold of matrices with
orthogonal columns

We want to transfer property d for Hessian metrics into a differential condition for the
orthogonal frame bundle at the submanifold of matrices with orthogonal columns.

Let H¢ be a Hessian metric on 2 C R”. To every curve y: (—¢, €) based at x € Q we
associate a curve in & based at H¢(x):

He(y): (—e.e) > P, 1= Hp(y(1)).

Upon choosing an orthonormal frame for H¢(x), we can construct the horizontal lift of
H¢(y) based at the orthonormal frame.

Definition 6.1. A Hessian metric H¢ in Q has property € if for any point x €  and
any curve y at x € 2 there exists an orthonormal frame C € € for H¢(x) such that the
corresponding horizontal curve is tangent to € at C.

We now translate property 4 to the universal orthogonal frame bundle setting:



D. Martinez Torres 314

Proof of Theorem 1.5. We must show that a Hessian metric in 2 C R” has property € if
and only if it has symmetric Christoffel symbols.

Property € is linear in the velocity of the curve at x. Thus it is enough to prove the
equivalence for y(¢) = x + teg, 1 < k < n. Let us denote the horizontal lift at A € €
by A(t). That A belongs to € means that ATA = A € O. By Proposition 5.1 (taken
from [3]), the pullback of m: (Gl(n)*, V) — £ by H¢ is the orthonormal frame bundle
of H¢ with its Levi-Civita connection. Thus we have

0= A'ey + T Aoy (= A + T A).

The image by the differential of ¢ of the vector of A’ = A’(0) is A™ A + ATA’. Therefore
the Hessian metric satisfies property € at A if and only if

(6.1) A'T[A+ ATy A € b.

We have Ty, = Hop ' [Hp)x, Hp~! = AAT, where the latter identity uses that A is an
orthonormal frame for H¢. Hence we may rewrite [y = AAT[H¢] x. Thus equation (6.1)
is equivalent to

AT[HY) x AATA+ ATAAT[H| A = AT[HPl AN + AAT[H] 1A € D.

Because A has non-zero positive entries if its anti-commutator with a matrix is diagonal,
then the matrix must be diagonal. The conclusion is that property € is equivalent to

AT[HplyAed, A"AeD, AA"=H¢p™'
By item (2) in Proposition 4.2, this is exactly the symmetry of the Christoffel matrices. m

We can verify that strictly convex functions with orthogonal characteristics satisfy
property €.

Lemma 6.2. [f éﬁéqﬁ € D, C € €, then H¢ satisfies property €.

Proof. By definition, CTH$C = A, A € D. Therefore, C'[H¢] xC € . The matrix
CA~'/2 also belongs to € and it is an orthonormal frame for H¢. Therefore,

(CA™Y2)T[HP| ,CATV2 e b,
and thus property € holds. |

Next we analyze up to which extent Hessian metrics with property € are defined
by functions with orthogonal characteristics. As we shall see in the examples in Sec-
tion 7, for a metric with property € it may happen that horizontal lifts do not remain
in €. Theorem 6.5 will show that the geometric reason behind is that € exerts control on
the horizontal lifts of H¢(y) for all times, provided that H¢(y) is contained in a single
stratum of ® ». To exert control on lifts of curves that change strata, we need to constraint
the lifts by definition:

Definition 6.3. A Hessian metric H¢ on 2 C R” has property €K if there exist a point
x € Q and an orthonormal frame C € € for H¢(x), such that for every curve in 2 based
at x, its horizontal lift at C is contained in €.
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Theorem 6.4. If a Hessian metric H$ on 2 has property € K, then it solves i%q) € b,
Cet.

Furthermore, the following conditions are equivalent:
(1) The image H¢(S2) is contained in the stratum ©',.
(2) Property € K holds for all orthonormal frames in € over all points of H$(S2).

In either case, ¢ restricts to the leaves of the (parallel) foliation determined by the (rota-
tion of ) the subspace d* to a multiple of the standard quadratic form (up to an affine
summand).

Proof. Let x and C be a point and orthonormal frame for H¢(x) with respect which
condition €K is defined. Because 2 is (path) connected for every point y, we have a
curve y starting at x and ending at y. By the hypotheses, the horizontal lift of H¢(y)
is a curve A(?) contained in €. Therefore, it is in 7€ and horizontal. By (2) in Proposi-
tion 5.2, A(t) is contained in the leaf C D of F: A(t) = CD(¢). Because A(t) is a curve
of orthogonal frames, A(1)"H¢(y)A(t) = 1. Therefore,

CTH$C =D(t) 2 e D.

Equivalently, if C = BA, then by (2) in Proposition 5.3, 7 |e sends the leaf CD diffeo-
morphically onto Adp (D), which is where the image of H ¢ must be confined. The (local)
splitting condition for H¢ along the characteristics of C can be also argued as follows:
that A(t) C CD implies that line fields at x spanned by each column of C are invariant
by parallel transport. Thus the de Rham splitting theorem applies (and Hessian metrics
restrict to Hessian metrics).

If Hp C ©F, then by item (1) in Proposition 5.4, the frame C € € with respect to
which €K is defined belongs to ®%. By item (2) in the same proposition, all horizontal
curves based at C must be contained in the leaf C ©', of the foliation of ®f induced by F
upon clean intersection. The principal SO(n),-action takes these horizontal curves at C
to horizontal curves in ®% based at any matrix in the fiber.

Conversely, let C = BA and assume that the horizontal lifts at CB’, B’ € SO(n),
are contained in €. Then they are inside the corresponding leaf of ¥, and therefore,

Hp@c ) AdBB/(:D)zAdB( N AdB/(i))).
B’eSO(n) 5 B’eSO(n) p

Because the exponential intertwines the adjoint action, the latter intersection can be under-
stoodin s. If A € b, we have

= () Adp(d). SO =SO()..
B’eSO(n) 5

We used property €K with respect to an arbitrary point x € Q. If we select the point
whose image lies in the stratum of smallest dimension, then we conclude that H¢(2)
cannot leave that stratum.

If Hp C O, then at any point x € € all orthonormal frames in SO(n), are parallel.
This means that the common eigendirections Adp (b*) are parallel. Therefore the restric-
tion of H¢ to the foliation given by the parallel translates of Adg(d*) in 2 is flat. Hence
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on each such (affine) subspace it is a quadratic form with equal eigenvalues. Therefore,
in the local splitting of ¢ along orthogonal characteristics we shall have a multiple of the
standard quadratic form along Adpg (5%). |

The following result is more general than Theorem 1.2 in the introduction.

Theorem 6.5. If a Hessian metric H¢ on Q2 has property € and H(S2) is contained in a
stratum of © p, then it has property € K. In particular, ¢ has orthogonal characteristics.

Proof. Let Hp(S2) be contained in ®,. This stratum is foliated by SO(n)®';, and we
want to show that for each curve y(¢) in Q2 the derivative of H¢(y(¢)) is tangent to this
foliation. By property €, for each # there exists an orthogonal frame C € € such that the
horizontal curve A(¢) at C has derivative at zero tangent to €:

A0) eTeENTa ' (0%) = C -ad (D) N C - (so(n) + d¥)
=C - (so(n)a + D) = Tr[c" (©%).

Therefore, the intersection € N n|gl(®’fp) = O% is clean, and A4’(0) belongs to Of.
Because the vector is horizontal, by item (2) in Proposition 5.4, it is tangent to the foliation
SO(n)®',. Thus, by item (3), the tangent vector of H¢(y) at 7o is tangent to the foliation
SO(n)®',. Because 2 is connected, this implies that H¢(£2) is contained in one of the
leaves of SO(n)®%,. |

The following result is a more precise statement that Theorem 1.3 in the introduction.

Theorem 6.6. Let Hop be a real analytic Hessian metric on 2 C R". Then ¢ has prop-
erty € if and only if it has property € K. In such case, H¢ is the restriction to Q of a
product Hessian metric on a (rotated) cube.

Proof. The stratification ®» has a finite number of strata. Therefore there exists one
stratum ©', whose pullback by H¢ has non-empty interior Q" C Q. By Theorem 6.5
and Theorem 6.4,

H¢(Q') C Adp(®'5), B € SO(n).

In particular, H¢(2) must be contained in the real analytic submanifold Adg(D)*. By
Proposition 5.4, the restriction

7le : BD — Adp(D)

is a diffeomorphism from a horizontal submanifold. Therefore all lifts of curves in 2 at
C € Oy are contained in B C €, which is property €K

The image of 2 by the orthogonal projection onto a characteristic line is connected,
and hence an interval. The restriction of ¢ to the foliation of Q2 by affine lines parallel to
the characteristic line is locally projectable. Because the interval has trivial topology local
projections must agree on overlaps. ]

4The real analytic closure of Adp (©'%) is the exponential of Adg (d). This means that H¢$(S2) can only
intersect strata of dimension equal or less to that of ®'%;; the equidimensional strata are those which under
permutations go to open subsets of b¥).
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7. Bifurcation of orthogonal characteristics along quadratic forms

We shall construct in Proposition 7.1 a family of Hessian metrics with property 4 which
do not have orthogonal characteristics, and, hence, by Theorem 6.4, which do not have
property €K. The family, despite being defined on domains which are not necessarily
convex, will be also invariant under Legendre transform.

Firstly, we shall describe the domains © we are interested in. Let ° be an (open
convex) polytope. By this we mean a domain defined as the points where a finite number of
affine maps are strictly positive; the zero set of each such map is a supporting hyperplane.
The closure of the polytope need not be compact. Let Rll X R;’_l be the result of applying
an orthogonal transformation By, 1 <1 < m, to the splitting R” = R x R”~1, We consider
the polytope Qll = I; x F;, where the factors are polytopes in R}, R;’_l , respectively; we
shall refer to R as the primary characteristic of 2} . We shall assume that R} is oriented
and we shall denote by p; the infimum of the interval /; (the interval may not be bounded
from above). We shall refer to H; := p; x R?‘l as the primary supporting hyperplane.

We shall assume that

* the polytopes Q°, Qj, ..., Q,, are disjoint and that Q} and 2}, i # j, have disjoint
closure;
* the primary supporting hyperplane H; for Qll is also a supporting hyperplane for °

and Q) N H; C 9Q2° N H;.

We define €2 to be
(7.1) Q=Q°U@QIUpix F)U - UL U pm x Fp).

We refer to 2 as in (7.1) as a polytope with 1-handles.
Secondly, we shall introduce appropriate strictly convex functions on the polytope
with 1-handles. Let ¢¢ be a multiple of the standard quadratic form on R”:

Bo(x) = k(x4 -- + x2).

Let y = (y1, ..., Vn) be the coordinates which correspond to the image by B; of the
canonical basis 1, ..., e, and let ¢;(y) = q;(y2, ..., 1) = k(¥3 + -+ + y2). Then we
have:

(7.2) po(y) = k(YT +-+y) =kyi +a(a..... 3.

Proposition 7.1. Let ¢ be the function defined on the polytope with 1-handles 2 as fol-
lows:

PlQ0Up X FyUUpmx Fp = P00 ¢|szll =¢1 +4q1,
where ¢;(y) = ¢1(y1) a strictly convex smooth function on I tangent at p; to ky? at
infinite order. Then it has the following properties:
(1) It is a smooth and strictly convex function on SQ.
(2) It has property .

(3) The image Hp(2) C P is contained in the union of the closed stratum and the two
open strata of lowest dimension of © p.
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(4) If there are two 1-handles on which ¢; is not a quadratic form and the primary
characteristics are neither equal not perpendicular, then H¢ does not have prop-

erty €X.

Proof. That ¢ is smooth and strictly convex is a consequence of (7.2) and of the definition
of ¢;.

The restriction of ¢ to Q° has property J; the restriction to each Qll has orthogonal
characteristics given by the columns of B;. Therefore ¢ has property 4 on the closure of
the union, which is 2. s

By construction, H¢ sends Q0 to the closed stratum of ® », and thus so Q09 if ¢y is
not a quadratic form, then H¢ sends an open subset of Qll to the strata positive matrices
with two eigenvalues so that one is simple:

H$@Q% C () Adp(D). H¢(sz})mAdB,( N AdB/(i))> £ 0.
BeSO(n) B’eS(0(1)x0(n—1))

By Theorem 6.4, if H¢ has property €K, then ¢ has orthogonal characteristics for
some C € € (or B € SO(n)). On a 1-handle Qll with ¢; different from a quadratic form, ¢
has orthogonal characteristics exactly for all B;SO(n),D. The 1-handles Qll and QII have
primary characteristics which are neither equal nor orthogonal if and only if B;SO(n), N
B;iSO(n), = 9. |

Proposition 7.2. Let Q be a polytope with 1-handles and let ¢ € C°°(2) be as in Pro-
position 7.1. Then the following holds:
(1) The Legendre map d¢ on Q is a diffeomorphism, its image Q* is a polytope with
1-handles, and Qll * and Qll have the same primary characteristic.

(2) ¢* is a function as in Proposition 7.1.

Proof. Because ¢ is strictly convex, d¢: Q2 — R” is alocal diffeomorphism. Because ¢|qo
is a quadratic form, d¢(Q°) is another polytope. The restriction ¢|911: 1,xF, decomposes

as a sum of strictly convex functions ¢; + q;. The subset dq)(Sle) is another 1-handle
because I; is 1-dimensional, Fj is a polytope, and ¢q; is a quadratic form; furthermore,
because the Legendre transform commutes with orthogonal transformations, dqb(Qll) =
I x F}*, where the product decomposition is also with respect to ]Rll X R;’_l. The con-
dition on the non-overlap of the closures of the 1-handles can be restated as follows: if
two 1-handles have common primary supporting hyperplane, then their polytopes there
have non-intersecting closure. This implies that if we prolong each /; C R; across p; to

a larger interval I; so that [; x F; C Q% U p; x F; U Q}, then

d¢(Q°) Ndep(p; x F;UQ)) =0,
dp(l; x Fy) N d(l; x Fj) N (R"N\d$(Q°) =0, i # ).

Therefore, d¢: 2 — d 2 is a bijection and thus a diffeomorphism onto another polytope
with 1-handles.

Because the Legendre transform of a multiple of the standard quadratic form is a
multiple of the standard quadratic form, it follows that ¢* belongs to the class of functions
described in Proposition 7.1. ]
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8. An application to Poisson geometry

We shall show that property d for strictly convex functions is equivalent to the Poisson
commuting equation for Poisson structures related to Kéhler forms on toric varieties. We
shall use

(a) our classification of real analytic inversible Hessian metrics to deduce a factorization
result;

(b) the family of strictly convex functions with property J introduced in Section 7 to
produce pencils of Poisson structures on regions of projective varieties which inter-
polate from a Kéhler structure to a Poisson structure with a finite number of Kihler
leaves.

Definition 8.1 (Section 4 in [2]). A Poisson structure IT on a toric variety (X, T) is

(1) toric if the bivector field IT is T-invariant, of type (1, 1) and positives, and if the
symplectic leaves of I equal the finitely many orbits of the torus action;

(2) totally real if the orbits of the (maximal) compact torus 7" are coisotropic submani-
folds.

Remark 8.2. Totally real toric Poisson structures are good candidates to be limits of
Hamiltonian Kéhler forms: for such a form, its inverse Poisson bivector is 7 -invariant,
of type (1, 1) and positive; there is a unique symplectic leaf of which the 7 -orbits are
Lagrangian submanifolds. Thus it is natural to look for converging sequences of such
bivectors so that in the limit the unique symplectic leaf breaks into the finitely many orbits,
and the 7-symmetry is enlarged to T-symmetry. One possible source would be a totally
real toric Poisson structure which Poisson commutes with (the inverse of) a Hamiltonian
Kihler form. In such case, the convex combination of the bivectors would be a smooth
family of (inverses of) Hamiltonian Kéhler forms converging to the totally real toric Pois-
son structure.

On a toric variety, a T -invariant Poisson structure has a simple infinitesimal descrip-
tion: its restriction to the open dense orbit (which, upon fixing a point, is identified with T')
followed by the logarithm map, defines a constant Poisson structure in the Lie algebra
of T. The infinitesimal counterpart of a toric Poisson structure is a Hermitian inner prod-
uct. If it is totally real, it corresponds to an inner product on i t, where t denotes the Lie
algebra of T'. In such case, we say that ey, ..., e, € it is an adapted Darboux basis if the
inner product becomes standard; equivalently, ey, ..., e,,ieq,...,ie, is a Darboux basis
for the inverse constant symplectic structure.

On a toric variety, a Hamiltonian Kahler form can be described by (Legendre dual)
strictly convex functions: a Kdhler potential in logarithmic coordinates and a symplectic
potential in momentum map coordinates [5].

The Poisson commuting equation for a totally real Poisson structure and a Hamiltonian
Kihler form corresponds —in appropriate coordinates — to property J:

3The (real) quadratic form £ > &(JIT*(J*£)), £ € T X, is semi-positive and only vanishes in the kernel
of TT#*.
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Theorem 8.3. Let (X, T) be a toric variety endowed with a totally real toric Poisson
structure T1 and a Kdhler structure o for which the action of T is Hamiltonian. Let P be
the inverse Poisson structure of a. Then the following statements are equivalent:

(1) I and P Poisson commute: [I1, P] = 0.
(2) In an adapted Darboux basis, the Kdhler potential ¢ has property d.
(3) In an adapted Darboux basis, the symplectic potential ¢* has property d.

Proof. We regard the equation [IT, P] = 0 as the defining equation for degree 2-cocycles
in the Poisson cohomology of IT: d P = 0. In logarithmic coordinates, exp* IT has an
inverse which is a (constant) symplectic structure & on t @ it. Therefore,

E# : ('%.,dexp* H) — (Q.,d)
is an isomorphism of chain complexes (see e.g. Proposition 6.12 in [6]). Hence
[exp" Texp™ P =0 = do =0. w(X.Y) = exp® P(E"X.E"Y).

Letey,...,eqn,ie1,...,ie, be an adapted Darboux basis for the totally real toric Pois-
son structure. In the fixed coordinates and associated frames of the complexified tangent
and cotangent bundles, the matrices of IT and E are

20 1 i (0 —I
# = n # - n
=3 (_In 0) and 2 (In 0 )

2(0 ¢
i\-g¢ O
denote the matrix of exp* P¥, then

b et et (0 —L,Y2(0 g\i 0 -I,\_i(0 g
a)—uexpPu—z(In O)i(—gOZIn 0o )=3l=¢ o)

Hence

&3]

If we let

—1I _
o =wx)= > Zgjk(x) dzj Ndz,

7.k
Its exterior derivative is
do = -~ Z dgi Adzi AdE = —- Z i(%dz + 28 4 )/\dZ-/\dZ-
2 2 &ij i j 2 2 zi k PER k i j
i,j=1 i,j=1k=1
= _l_( Xn: (Bg,-k — agik) Adz; Ndzi ANdZ
2 - 8zi aZj ! J k
i,j,k=1
n o do:
+ (@—@)/\dzi/\dij /\dfk>.
0Zk 0z;

i,7,k=1
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Because the entries of g only depend on x, we have

a 280 _ =
N A EA

8xk an

9gjk _ 9gik _ l(agjk B agik)
8x,~ ij

aZ,' 3Zj 2
I 0 g_l
2\—¢t o0 )

and g~ is the Hessian of the Kdhler potential ¢. In particular, g and its inverse are sym-
metric matrices. Renaming the set of indices in the first summand and using the symmetry
of g, we obtain

9gij agik_l(agij 3gik).

The matrix of exp* o is

1

doi: Do
do=0 S0 _ 8k o jk<n
Ooxg  0x;
This is exactly property J for the Hessian metric g~! = H¢.
The symplectic potential of ¢ is the Legendre transform of ¢. By Proposition 4.4, ¢
(in R™) has property d if and only if ¢* (in d¢p(R™)) has property J. |

Theorem 8.4. Let (X, T) be a projective toric variety endowed with a toric Poisson struc-
ture T1 which Poisson commutes with a real analytic Kdhler structure o for which the
action of T is Hamiltonian. Then (X, T) is a Cartesian product of projective lines, and
both 11 and o factorize.

Proof. Because o is real analytic, the Kihler potential ¢ is real analytic; the Legendre
transform preserves analytic (strictly convex) functions. Therefore, by Theorem 8.3, the
symplectic potential ¢* has property 4. By Theorem 6.6, ¢* is defined in a Cartesian
product of intervals I1 x --- x I, (we may dispense with the rotation by changing accord-
ingly the adapted Darboux basis). One must have the equality dp(R") = I x --- X I
because otherwise by repeating the Legendre transform we would get a domain for the
original Kéhler potential strictly containing R”. Thus the interior of the moment poly-
tope A is a Cartesian product of intervals. A product of intervals has a property invariant
under affine transformations: it is limited by pairs of parallel hyperplanes. Because A is
a Delzant polytope, there is an affine transformation that takes the integral lattice of t*
to Z", a vertex of A to the origin, and the facets containing this vertex to the coordin-
ate hyperplanes. Because A must be still described by parallel hyperplanes, is it actually
a Cartesian product of intervals in this integral affine coordinates of t*. The fan of the
Delzant polytope determines the toric variety (X, T). The fan of a cube in (R”, Z") cor-
responds to CP! x ... x CP1.

To show that the Kéhler form o also splits as a sum of Kéhler forms on each projective
line, we use toric charts for (X, T). For that we observe that the linear part of the above
affine transformation must be a permutation followed by a (signed) re-scaling of each
Euclidean direction. Therefore, if we dispense the affine transformation, we deduce that
in the fixed compatible Darboux basis, the subset iey, ..., ie, is —up to re-scaling of its
members — an integral basis of t. Let us re-scale to a basis €1, ...,&,,i€1,++ ,1&, SO that
the second block is an integral basis of it. In the corresponding coordinates, the Kihler
potential of o is still a sum of strictly convex functions on each coordinate, and therefore
the Legendre diffeomorphism still sends it =~ R” to a cube. Let v be the vertex of its
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closure whose coordinates are smaller than those of the others. The basis of inner pointing
integral vectors normal to the facets containing v is exactly i¢eq, ..., i&,. Therefore, for
the standard toric chart associated to v (see, e.g., Section 5 of Chapter 2 in [1]),

(CH"OC"CcCP!'x---xCP!, (0,...00=(0:1],....[0:1]),

the identification® of T with (C*)" comes from the Lie algebra identification which sends
ieq,...,i&, to the canonical basis of R” C C”. In other words, upon having identified T
with the open orbit of X, the product structure induced by X = CP! x ... x CP'on T
is exactly the factorisation of the torus coming from the (complex) basis ey, -+ , e, of its
Lie algebra. The factorisation of X decomposes 0 = 01 + -+ + 0y, 0% € Q2(X). Each oy
is basic for the k-th projection

X>CPl'x...xCP!' - CP!,

because it has that property in the open dense subset T. The compatibility of IT with the
product structure is also immediate. Therefore,

(X,T,M,0) = (CP!,C* T;,01) x--- x (CPY,C*, T1,,04),
where symplectic forms are invariant under the action of 7. ]

Let €2 be a polytope with 1-handles. Its outer boundary will be the subset of the boun-
dary lying in supporting hyperplanes for the 1-handles which are parallel to the primary
ones but not equal to them; its inner boundary will be the subset of the boundary in
supporting hyperplanes of the polytope which are not primary supporting hyperplanes of
some 1-handle.

Theorem 8.5. Let (X, T) be a toric variety with fan given by the polytope A C (R",Z"™).
Let Q be a polytope with 1-handles such that the intersection 02 N A is contained in the
union of the outer boundary of 2 and an orthogonal subset of supporting hyperplanes of
the inner boundary of Q.

Then there exist an open subset Xq C X invariant under the action of T and a Kdhler
form o € Q%(Xq) with the following properties:

(1) The action of T on (Xq, o) is Hamiltonian with momentum map the union of <2
with the interior on each face of A of the outer and inner boundaries of 2.

(2) The Poisson structure which corresponds to o Poisson commutes with any toric Pois-
son structure for which the canonical basis of R" is an adapted Darboux basis up
to scaling.

Proof. We start with a function ¢ € C°°(£2) as in Proposition 7.1, on which we shall
impose natural boundary conditions’. Let Qll be a 1-handle whose supporting hyperplane

°Th0ugh we do not need it here, the toric chart could be chosen compatible with the monoid structure, so
that (1,..., 1) corresponds to the fixed point in the open orbit.

"The functions will satisfy well-known boundary conditions to produce Kihler metrics (see, e.g., Chapter 2
in [1]). These metrics/complex structures are constructed fixing the symplectic structure. Because we are inter-
ested in keeping fixed the complex structure, we are going to be very explicit with the computation of the Kéhler
potentials and corresponding symplectic forms.
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in the outer boundary of €2 intersects dA. Let «; be the unique integral affine map which
vanishes in the supporting hyperplane and it is positive on A. We shall assume that ¢;
equals %al (log(at;) — 1) near the end of I; opposite to p;. This is always possible because
the existing constraint on ¢; is near p;.

The region X C X is the result of adding certain points to exp(2* @& iR") C X. By
item (1) in Proposition 7.2, the primary characteristics of Qll * and Qll are the same, and
the orientation is also preserved. Because A determines a fan, the primary characteristic
Rll C R” = it determines a 1-parameter subgroup C; C T together with an isomorphism
C; = C~ (the Lie algebra is trivialized by a positive integral vector in ]Rll). Because the
derivative of ¢; near the boundary point opposite to p; goes to infinity, /;* C ]Rll is a semi-
infinite interval in the positive half line; in particular, it is a semigroup; let ]DD;’ C (Cl* be
the semigroup exp(/;* & i R}). This semigroup acts (freely) on exp(Qll * @ iR"). If we let
T; C T be the subtorus which exponentiates the complexification of R?‘l, then we can
factor

8.1 exp(Q}” @ iR") = DY x exp(F; @ iR c T = C; x T.

We define X C X to be the union of exp(2* @ i R") with the closure of every D7 -orbit in
exp(Qll* @ iR"), for every 1-handle whose supporting hyperplane in the outer boundary
of Q intersects dA (for the moment we assume that no inner boundary components are
in dA). B

The function ¢* defines a Kéhler form o = i ddlog(¢*) on exp(Q* & iR") for which
the action of T is Hamiltonian. We want to argue that o extends to a Kidhler form on Xg.

Firstly, we show how upon adding the orbit closures to exp(Qll* @ iR") (and not in
exp(Q* @ iR"™)) we get an open subset X; C X which is T-invariant and to which the
product structure in (8.1) extends. For that we use the toric atlas (as a monoid) determined
by the polytope A (see Section 5 in Chapter 2 of [1]): to each vertex v € A, there corres-
pond a toric chart which identifies the union of orbits of X which correspond to the star
of v with the standard affine toric variety: (C", (C*)"). The standard integral basis of the
Lie algebra of (S!)" comes from the integral linear forms vy, , ..., v;, associated to the
affine forms o in particular, this describes how for each toric chart t @ it —for which
we already have picked a basis — is identified with the Lie algebra of the standard complex
torus R” @ iR”. The point in the open orbit of X which determines the monoid structure
goes to the unit (1,...,1) € C".

Let us fix a toric chart of a vertex v which belongs to the supporting hyperplane of QII
and A. Under the identification of T with the standard torus (C*)", we can assume that
the (trivialized) subgroup C; = C* maps to the first factor of the standard torus so that on
trivializations the isomorphism is given by the inversion. Thus D maps to a semigroup
]D); C C* contained in the unit disk. Let W; C C” be the image in the toric chart of the

second factor exp(F; @ iR}~"). Then the image of exp($2; * @ iR") is
(zwi,...,wp), zeD?, w=(wy,...,w,) €W.
Therefore the image of X; is also completely contained in the toric chart and equals

(zwy,...,wp), zeD7U{0}, (wr,...,w,) € W,
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Because W} is a codimension 2 submanifold which intersects each complex line parallel
to the z;-axis transversely in at most one point, we deduce that X; is an open subset which
extends the product structure. By construction, it is also 7'-invariant.

To show that o extends to a Kéhler form on X;, we shall work with its inverse Poisson
structure P. The decomposition

¢*IQ}*(y) =¢; 1) + a7 2. ... y1)

implies that on the image of the exponential map of the 1-handle, the bivector P decom-
poses as P; + P;, where each summand is a field of bivectors tangent to one of the
foliations in the product decomposition (8.1). The second field of bivectors is easier to
describe: in the Lie algebra, the foliation is given by translates of F; C R;’_l. On each
such leaf, the Kéhler potential for the corresponding Kihler form is the quadratic form g; .
Therefore P] corresponds to a constant bivector on £ ¥ x iR". The exponentiation of a
constant bivector to the (abelian) Lie group has an alternative description: it is the field
of bivectors obtained by replacing each vector in the decomposition in A2(t @ it) by its
corresponding infinitesimal vector field for the action by (left) multiplication. Because
the action of T on itself extends to an action on X, it follows that P/ is the restric-
tion of a (Poisson) structure on X. To describe P; on each semigroup orbit, we may
assume that ¢; (y1) equals —%al (log(ay — 1)) everywhere in I;. The Legendre transform
of —3(=r)(log(—r) — 1) for r < 0 is 1 exp™2". Using that the Legendre transform com-
mutes with orthogonal transformations and its behavior under translation and scaling, we
obtain

1 _
¢l*(y1) — Eexp 2y1/1vil _yldl»

where d; is the distance of the boundary point of /; different from p;. Since we are inter-
ested in Kihler forms/bivectors we may dispense with the linear summand. Under the
semigroup identification log: D — I & iR, the potential pullbacks to 1/(2zZ). Under

the identification ]D);’ — ID)f, it maps to %zf. Under the action on the standard toric chart,

. 1 _ . 2(1% 0 ) _ .
it maps to lezl- Hence the bivector P; there equals 9z A g5y hear zp = 0, which

extends to X;. Both P; and P} are non-degenerate in the added points, and thus o extends
to a Kéhler form.

For boundary components in the inner boundary, we change coordinates by a rotation
so that all supporting hyperplanes involved are coordinate hyperplanes. Then we impose
the same boundary conditions as above on the corresponding summands of the multiple
of the standard quadratic form in these coordinates. We may have supporting hyperplanes
with non-empty intersection, say k of them. This means that we shall have to work with
the corresponding coordinates and hence with a splitting into a vector subspace of dimen-
sion k and its orthogonal complement. We shall work on a toric chart associated to a vertex
in the intersection of the supporting hyperplanes. There, the foliation corresponding to the
vector subspace will have leaves given by the action of (C *)k on the first k coordinates on
an appropriate slice. Hence by adding the closure of (semigroup) orbits, we shall obtain
an open subset. The computation of the Kihler potential for the inverse symplectic form
of P; on such leaves is analogous.

The computation of the image of the momentum map is straightforward. ]
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The proof of Proposition 1.9 in the introduction is a minor variation of the following.

Example 8.6 (Attaching a toric 1-handle to the standard commuting pair). Let A be the
standard n-simplex in R”. Let Q0 be the truncation of the (open) cube of side (0, 1/n) by
the hyperplane x; + - -+ + x, = 2/3. Let Q! be the 1-handle with the primary character-
istic spanned by (1, ..., 1), and so that its primary supporting hyperplane is x; + -+ +
Xn = 2/3, the parallel one is x; + --- + x, = 1, and the (n — 1)-dimensional polytope is
the (translation of) the intersection of the cube and the primary supporting hyperplane.
We let 2 be the polytope with 1-handles determined by ©2° and Q! above. It satisfies
the hypotheses of Theorem 8.5. By going through its proof, we check that:
* In the toric chart associated to the origin, o (near the origin) will be the standard
(constant) Kéhler form ’5 > ; dzj A dZj;the open cube is a (punctured) polydisk which
is appropriately truncated.

* Near the truncation hypersurface W, the Kéhler form is

i 1 _

» Attaching the 1-handle amounts to the following: the truncating hypersurface W is
stable under the diagonal action of S'. Then each such orbit is being ‘capped’ by
a (holomorphic) disk which is Kihler for o; the disk is nothing but (a part of) the
projective line determined by the orbit, its center being in the hyperplane at infinity
CP"™ = C" U CP" ! this is done for the whole F; x (Sl)nfl—family.

* The inverse of Kéhler form o is a Poisson bivector field P which Poisson commutes
with the totally real toric Poisson bivector field IT which in the previous toric chart is

2225_ o
i ; J jazj E)Zj-
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