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On the topology of leaves
of singular Riemannian foliations

Marco Radeschi and Elahe Khalili Samani

Abstract. In this paper, we establish a number of results about the topology of the
leaves of a closed singular Riemannian foliation .M;F /. If M is simply connected,
we prove that the leaves are finitely covered by nilpotent spaces, and characterize the
fundamental group of the generic leaves. If M has virtually nilpotent fundamental
group, we prove that the leaves have virtually nilpotent fundamental group as well.

1. Introduction

The study of isometric group actions on Riemannian manifolds has seen a number of
important applications in Riemannian geometry.

Many of them fall under the umbrella of the so-called Grove’s program, whose goal
is to study the properties of Riemannian manifolds with non-negative (or even almost
non-negative) sectional curvature in the presence of symmetry. This program has been
extremely fruitful both in producing new examples of manifolds with non-negative sec-
tional curvature, and in proving important conjectures in the area when some symmetry is
added (cf., for instance, [4, 6, 9–11, 13, 17]).

The concept of an isometric group action can be generalized by a singular Riemannian
foliation, which roughly speaking is the partition of a Riemannian manifold into smooth
and equidistant submanifolds of possibly varying dimensions, called leaves (and the leaves
can be thought as a generalization of the orbits of an isometric group action). It turns
out that, while being more flexible than group actions (cf. for example [23]), singular
Riemannian foliations still retain a lot of the same structure of isometric group actions
(cf., for instance, [2, 7, 8, 20, 22]).

Given the action of a compact Lie group, the orbits are homogeneous spaces and thus
have a very restricted topology, which can be employed to extrapolate topological proper-
ties of the ambient manifold (e.g., [14] and [12]). In [12], the authors ask to what extent
the leaves of a singular Riemannian foliation on a non-negatively curved space are also
topologically restricted. In [7], Galaz-Garcia and the first author proved that if .M;F /
is a closed singular Riemannian foliation on a compact, simply connected Riemannian
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manifold M , then the fundamental group of a generic leaf is a product A � K2 of an
abelian group A and a 2-step nilpotent 2-group K2 – in particular, it is nilpotent. In the
present paper, we continue exploring the topology of the leaves of singular Riemannian
foliations .M;F /.

The first result states that if M is simply connected, then a generic leaf L0 of F is a
nilpotent space, i.e., �1.L0/ acts nilpotently on �n.L0/ for all n > 1.

Theorem A. If .M;F / is a closed singular Riemannian foliation on a compact, simply
connected Riemannian manifold M , then the principal leaves of F are nilpotent spaces.
Furthermore, all leaves are finitely covered by a nilpotent space.

This answers the first part of Problem 4.8 in [12]:

Question. Let F be a closed singular Riemannian foliation on a closed (simply con-
nected) Riemannian manifold M of almost non-negative curvature. Are the leaves of F

finitely covered by a nilpotent space, which moreover is rationally elliptic?

Our result does not in fact use the curvature assumption. On the rationally elliptic part
of the question, we make the following remarks:
(1) The very question of whether the leaves are rationally elliptic, only makes sense the

moment we know that the leaves are (virtually) nilpotent spaces: these are in fact
the spaces on which rational homotopy theory applies, and the rational dichotomy of
rationally elliptic vs. rationally hyperbolic spaces holds.

(2) Assuming the question above to be true, and applying it to the product foliation
.M � Sn;M � ¹pts:º/ with M simply connected and almost non-negatively curved,
would imply that every simply connected, almost non-negatively curved Riemannian
manifold is rationally elliptic, which is the statement of the celebrated (and out of
reach) Bott–Halperin–Grove conjecture. In particular, the rationally elliptic part of
the question is so far out of reach.

The second result analyzes more in detail the structure of the fundamental group of a
generic leaf L0 of a singular Riemannian foliation .M;F / with M simply connected:

Theorem B. Let .M;F / be a closed singular Riemannian foliation on a compact, simply
connected Riemannian manifold M . If L0 is a principal leaf of F , then the non-abelian
part K2 of the fundamental group of L0 is of the form

K2 Š
� sY
jD1

Z2aj � Zb2 �
kY
iD1

Gi

�
=.Zc2 � Zd4 /;

where each Gi is isomorphic to a central product of copies of Q8, with possibly one copy
of D8 or Z4.

The groups Gi in the theorem are called generalized extraspecial. These 2-groups
already occur as fundamental groups of orbits of orthogonal representations and hence
are impossible to avoid (e.g., SO.3/ acting on S4), see also a family of examples from
Section 4.2.
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Finally, we extend Theorem A from [7] by showing that when M has virtually nilpo-
tent fundamental group, the leaves of any closed singular Riemannian foliation .M;F /
have virtually nilpotent fundamental group as well:

Theorem C. Suppose .M;F / is a closed singular Riemannian foliation on compact Rie-
mannian manifold M with virtually nilpotent fundamental group. Then the leaves of F

have virtually nilpotent fundamental group as well.

In the fundamental paper [18], the authors show that every Riemannian manifold with
almost non-negative sectional curvature is finitely covered by a nilpotent space. With this
in mind, Theorem C gives the following straightforward corollary.

Corollary D. Given a closed singular Riemannian foliation .M;F / on an almost non-
negatively curved manifold M , the leaves have virtually nilpotent fundamental group.

This paper is organized as follows. In Section 2, we collect some preliminaries about
topological results for singular Riemannian foliations, and the main notation for bilinear
and quadratic forms we need in the proof of Theorem B. In Section 3, we prove The-
orem A. In Section 4, we prove Theorem B and provide a family of examples showing
that the generalized extraspecial groups can indeed appear in the fundamental group of
principal orbits of orthogonal representations. Finally, in Section 5, we prove Theorem C.

2. Preliminaries

2.1. Singular Riemannian foliations

LetM be a Riemannian manifold. A singular Riemannian foliation onM is a partition F

of M into connected, injectively immersed submanifolds called leaves such that every
geodesic that starts perpendicular to a leaf remains perpendicular to all the leaves it meets,
and moreover, M admits a family of smooth vector fields that spans the leaves at all points.

A singular Riemannian foliation is called closed if all of its leaves are closed in M .
Given a singular Riemannian foliation .M;F / on a complete manifold M we define the
dimension of F , denoted dimF , as the maximal dimension of its leaves. The codimension
of F is defined by dimM � dim F .

A leaf L of the foliation F is called regular if its dimension is maximal, or equiva-
lently, dimL D dim F . The union of all regular leaves is an open, dense and connected
submanifold, which is called the principal stratum ofM and is denoted byM0. The union
of all other leaves is called the singular stratum of .M;F / and the connected components
of the singular stratum are called singular strata.

For a closed singular Riemannian foliation .M;F /, the canonical projection � WM !
M=F induces a metric space structure on the leaf space M=F , where the metric is given
by dM=F .�.p/; �.q// D dM .Lp; Lq/. If in addition all the leaves of F are regular, then
the leaf space is a Riemannian orbifold. In particular, given a closed singular Riemannian
foliation .M;F /, the quotient space M0=F is an orbifold.

We then call a leaf L � M0 principal if it projects to a manifold point of M0=F .
Clearly, the set of principal leaves is open and dense in M0.
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2.2. Slice theorem

In this section we describe the structure of a singular Riemannian foliation around a leaf.
For more details, we refer the interested reader to [20].

Let .M;F / be a closed singular Riemannian foliation, let p 2 M , and let Lp denote
the leaf through p. Define the horizontal space to F at p, �pLp � TpM , as the subspace
perpendicular to TpLp . Then there exists a singular Riemannian foliation .�pLp; Fp/,
called the infinitesimal foliation of F at p, with two important properties:

(1) Fp is invariant under rescalings,
(2) in an "-neighbourhood �"pLp of the origin in �pLp , the exponential map exppW �

"
pLp

! M takes the leaves of Fp onto the connected components of the intersections
L \ exp �"pLp , with L 2 F .

Furthermore, there is a group of isometries K � O.�pLp/, sending leaves of Lp to (pos-
sibly different) leaves of Fp , with the property that for any v 2 �"pLp , the leaf Lv 2 Fp
satisfies the following:

expp.K � Lv/ D Lexpp.v/ \ expp �
"
pLp:

In other words, two leaves of Fp are in the same K-orbit if and only if they exponentiate
to different connected components of an intersection L \ expp �

"
pLp , for some L 2 F .

In [20], the following slice theorem establishes a model for a singular Riemannian
foliation around a leaf:

Theorem (Foliated slice theorem). Given a closed singular Riemannian foliation .M;F /
and a point p 2 M , let .�pLp;Fp/ be the infinitesimal foliation of F at p. Then there
exist a compact Lie group K � O.�pLp/ and a principal K-bundle P ! Lp such that
the foliation F in an "-neighbourhood of Lp is foliated diffeomorphic to

.P �K �pL;P �K Fp/

It follows directly from the slice theorem that all principal leaves are diffeomorphic
to each other, and for any leaf Lp , there is a locally trivial fiber bundle L0 ! Lp from a
principal leaf L0, whose fiber is an orbit K �Lv for some principal point v 2 .�pLp;Fp/,
and it consists of a finite disjoint union of principal leaves of Fp .

2.3. The Molino bundle

Let .M;F / be a closed singular Riemannian foliation of codimension q on a compact
Riemannian manifoldM . The principal O.q/-bundle OM !M0, where OM is the collection
of orthonormal frames of TM0=TF , is called the Molino bundle. The foliation F lifts to
a foliation OF on OM whose leaves are diffeomorphic to the leaves of F on an open dense
set. Moreover, the leaves of OF are given by fibers of a submersion � W OM ! W , where W
is the frame bundle of the orbifold M0=F .

Consider the fibration O� W OMO.q/ ! WO.q/ induced by � , where OMO.q/ D OM �O.q/

EO.q/ andWO.q/ DW �O.q/ EO.q/ denote the Borel constructions of OM andW , respec-
tively. Note that O� W OMO.q/ ! WO.q/ and � W OM ! W have the same fibers and hence the
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fiber of O� is diffeomorphic to L0, where L0 is a principal leaf of F . In addition, OMO.q/ is
homotopy equivalent to OM=O.q/ D M0 and WO.q/ coincides with the Haefliger’s classi-
fying space B of M0=F . Therefore, we get the following fibration (up to homotopy):

L0
�0
!M0

O�
! B:

2.4. Bilinear and quadratic forms over Z2

Let V be a finite dimensional vector space over a field F . A quadratic form on V is a map
QWV ! F such that Q.�v/ D �2Q.v/ for all � 2 F and v 2 V , and moreover, the map
BQW V � V ! F defined by BQ.u; v/ D Q.uC v/ �Q.u/ �Q.v/ is a bilinear form.
Given a basis ¹v1; : : : ; v`º of V , it follows that

(2.1) Q.x1v1 C � � � C x`v`/ D
X̀
iD1

Q.vi /x
2
i C

X
1�i<j�`

BQ.vi ; vj /xi xj ;

Two quadratic forms QW V ! F and Q0W V ! F are called isometric (or equivalent) if
there exists an invertible linear map f WV ! V such thatQ.v/DQ0.f .v// for all v 2 V .

Finally, given quadratic formsQWV ! F andQ0WV 0! F , one defines the orthogonal
sum Q˚Q0WV ˚ V 0 ! F by .Q˚Q0/.v; v0/ WD Q.v/CQ0.v0/.

3. The topology of leaves

Let .M;F / be a closed singular Riemannian foliation on a compact, simply connected
Riemannian manifold M . The goal is to prove Theorem A, that the principal leaves are
nilpotent manifolds.

We begin by collecting some of the results proved in [7] about the fundamental group
of the principal leaves of F .

3.1. Known results on the topology of leaves

Since the fundamental group of M does not change if we delete the strata of F with
codimension > 2, we can assume that we only have singular strata of codimension � 2.
Furthermore, it is known that there are no strata of codimension one, which reduces F to
only having strata of codimension two.

Let†1; : : : ;†m denote the singular strata of F of codimension two. For i D 1; : : : ;m,
choose a singular leaf L0i in†i , and let Li be a principal leaf at some distance "i from L0i .
For "i small enough, the foot-point projection �i W Li ! L0i is a circle bundle. Fix a
point pi 2 Li , and let Œci � 2 �1.Li ; pi / be the element represented by the fiber ci of �i
through pi .

Fixing a principal leaf L0 and p0 2 L0, we can choose, for each i D 1; : : : ; m, a
diffeomorphism hi WLi ! L0, and define ki D .hi /�.Œci �/ 2 �1.L0; p0/. The group K
generated by the elements ki is then a normal subgroup of �1.L0; p0/. Furthermore, there
exists a homotopy fibration

L0
�0
!M0

O�
! B;
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as described in Section 2.3. One has the following (see the proof of Theorem A in [7]):
(1) �1.L0; p0/ is generated by the subgroup K and the image of the boundary map

@W�2.B; b0/! �1.L0; p0/.
(2) H WD im.@/ is central in �1.L0; p0/
(3) Any two non-commuting generators ki and kj of K satisfy kikj D k�1j ki .
(4) Let N � K be the subgroup generated by the non-central ki ’s, and let Z.2/ denote

the Sylow 2-subgroup of Z.K/. Then �1.L0; p0/ is nilpotent, and equal to A �K2,
where A is abelian and K2 D N �Z.2/.

3.2. Proof of Theorem A

As discussed in Section 3.1, the principal leaves of F have nilpotent fundamental groups.
As a first step towards the proof of Theorem A, we prove that the principal leaves are
nilpotent spaces:

Proposition 3.1. Suppose .M;F / is a closed singular Riemannian foliation on a com-
pact, simply connected Riemannian manifoldM . Let L0 denote a principal leaf of F and
let p0 2 L0. Then �1.L0; p0/ acts trivially on �n.L0; p0/ for n � 2.

Proof. Let Œ
� 2 �1.L0; p0/ and Œ!� 2 �n.L0; p0/. The goal is to prove that Œ
� acts
trivially on Œ!�. By the discussion in Section 3.1, we may assume that either Œ
� 2 H or
Œ
� D ki for some i .

First consider the case in which Œ
�D ki for some i . Note that pi WD�i ıh�1i WL0 ! L0i
is a circle bundle whose fiber is represented by ki . This means that ki 2 ker..pi /�/,
where .pi /� is the induced map on �n. Hence we have

.pi /�.Œ
� � Œ!�/ D .pi /�.ki � Œ!�/ D ..pi /�.ki // � ..pi /�.Œ!�// D .pi /�.Œ!�/:

By the long exact sequence of homotopy groups associated to the fibration S1!L0
pi
!L0i ,

it follows that the homomorphism .pi /� is injective in �n for n � 2. This, together with
.pi /�.Œ
� � Œ!�/ D .pi /�.Œ!�/, implies that Œ
� acts trivially on Œ!�.

Suppose now that Œ
� 2H D im.@/ and choose Œˇ� 2 �2.B;b0/ such that Œ
�D @.Œˇ�/.
Consider the fibration

L0
�0
!M0

O�
! B:

Note that the action of �1.L0; p0/ on �n.L0; p0/ satisfies Œ
� � Œ!� D .�0/�.Œ
�/ � Œ!� (see
Exercise 4.3.10 in [16]). Therefore,

Œ
� � Œ!� D .�0/�.Œ
�/ � Œ!� D .�0/�.@.Œˇ�// � Œ!� D e � Œ!� D Œ!�:

This completes the proof.

Moving to the non-principal leaves, we first prove that every leaf has a virtually nilpo-
tent fundamental group.

Lemma 3.2. Suppose .M;F / is a closed singular Riemannian foliation with principal
leaf L0. If �1.L0/ is virtually nilpotent, then so is the fundamental group �1.L/ of every
leaf L of F .
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Proof. For any leaf L of F , the foliated slice theorem (cf. Section 2.2) implies that there
is a fibration L0 ! L whose fiber F has finitely many connected components. From the
long exact sequence in homotopy one then has

�1.L0/! �1.L/! �0.F /;

from which it follows that �1.L/ is a finite extension of a quotient of �1.L0/, therefore it
is virtually nilpotent as well.

Proof of Theorem A. The statement about principal leaves has been proved in Proposi-
tion 3.1, so we now have to only consider non-principal leaves.

Given a leaf L, choose p 2 L. Recall that, by the foliated slice theorem (cf. Sec-
tion 2.2), there is a locally trivial fibration �WL0 ! L whose fiber F has finitely many
connected components, all diffeomorphic to a principal leaf of the infinitesimal folia-
tion .�pLp;Fp/. Furthermore, the action �1.L/! Diff.F / induces an action �1.L/!

Aut.��.F //, which factors as �1.L/
 
! �0.K/! Aut.��.F //. In particular,

(1) the subgroup G1 WD ker � �1.L/ has finite index in �1.L/ and it acts trivially
on ��.F /,

(2) the fibration induces a map �1.L0/
��
! �1.L/! �0.F /. Thus G2 WD ��.�1.L0// is

a nilpotent subgroup of �1.L/ with finite index.
Consider G WD G1 \G2 � �1.L/, which is by the points above a nilpotent subgroup

with finite index. We will now show that G acts nilpotently on each �n.L/, i.e., the lower
central series �mG .�n.L// � �n.L/ defined iteratively by

�1G.�n.L// D �n.L/; �mC1G .�n.L// D ¹
 � ˛ � ˛ j 
 2 G; ˛ 2 �
m
G .�n.L//º

eventually becomes trivial.
Consider the long exact sequence

� � � ! �n.F /! �n.L0/
��
! �n.L/

@
! �n�1.F /! � � �

Let ˛ 2 �n.L/, and 
 D ��.
0/ 2 G, where 
0 2 �1.L0/. Recall that @.
 � ˛/D 
 � @.˛/,
where the action on the left is �1.L/ acting on ��.L/, while on the right we have the
�1.L/-action on ��.F /. Since G � G1, we have

@.
 � ˛/ D @.˛/ H) @.
 � ˛ � ˛/ D 0;

and therefore

�2G.�n.L// � ker.@/ D ��.�n.L0// D ��.�1�1.L0/.�n.L0///:

Finally, we notice that if ˛ D ��.˛0/ with ˛0 2 �n.L0/, then


 � ˛ D .��.
0// � .��.˛0// D ��.˛0/ H) 
 � ˛ � ˛ D ��.
0 � ˛0 � ˛0/:

By induction on m, one then has

�mC1G .�n.L// � ��
�
�m�1.L0/.�n.L0//

�
:

Since by Proposition 3.1, �2
�1.L0/

.�n.L0// D 0, we have �3G.�n.L// D 0, which proves
that G acts nilpotently on �n.L/, hence finishing the proof.
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4. Fundamental groups of the principal leaves

This section consists of two parts. The first part is devoted to the proof of Theorem B. In
the second part, we provide examples of singular Riemannian foliations whose principal
leaves have fundamental groups of the form discussed in Theorem B.

Suppose that .M;F / is a closed singular Riemannian foliation on a compact, simply
connected Riemannian manifold M . Fix a principal leaf L0 of F and p0 2 L0. Let N
and K2 be the subgroups of �1.L0; p0/ discussed in Section 3.1.

Consider the graph � with vertices the generators ofN and an edge between ki and kj
if and only if kikjk�1i D k

�1
j . Note that for every generator ki of N , there exists another

generator which does not commute with ki . Therefore, � does not contain any isolated
vertices. Note moreover that for every connected component �i of � , all vertices of �i
square to the same element ci . In addition, by the proof of Theorem A in [7], for any
generator ki of N , we have k4i D 1 and k2i is central in K. Therefore, ci is a central
element of N of order two. Altogether, we get that there is a map C W �0.�/ ! Z.N/

defined by C.�i / D ci .

Notation 4.1. From now on, we fix an element c of Z.N/ which is of the form k2i for
some generator ki of N . Moreover, Nc denotes the subgroup of N that is generated by all
the vertices in �c WD C�1.c/.

Recall that given a group G, the Frattini subgroup ˆ.G/ is the intersection of all the
maximal subgroups of G. Furthermore, we recall the following.

Definition 4.2. A 2-group G is called generalized extraspecial if ˆ.G/ is central, and
ˆ.G/ D ŒG;G� D Z2.

We prove two important properties of the groups Nc .

Lemma 4.3. Let ¹Ncºc2Im.C/ be the collection of groups defined above. Then

(1) for c ¤ c0, the groups Nc and Nc0 commute,

(2) each Nc is a generalized extraspecial 2-group.

Proof. First, we prove (1). Let k1; : : : ; k` be the generators of Nc , and let k01; : : : ; k
0
r be

the generators ofNc0 . As vertices of � , there is no edge between any ki and any k0j , which
means that each ki commutes with any k0j in K. Hence the result follows.

As for statement (2), if k1; : : : ; k` denote the generators of Nc , then V D Nc=hci is
isomorphic to Z`2 and is generated by Œk1�; : : : ; Œk`�. It follows that Nc fits into a short
exact sequence

1! hci ! Nc ! V ! 1

and in particular one has that both N 2
c WD hg

2 j g 2 Nci and the commutator subgroup
ŒNc ; Nc � coincides with hci ' Z2. Therefore, the same is true for the Frattini subgroup
ˆ.Nc/ since for a 2-group G, one has ˆ.G/ D G2 � ŒG;G�.

Given generalized extraspecial groups G1 and G2, with Frattini subgroups generated
by c1 and c2, respectively, define the central product G1 �G2 by

G1 �G2 WD .G1 �G2/=h.c1; c2/i:
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This is again a generalized extraspecial group, since

ˆ.G1 �G2/ D ˆ.G1/ �Z2 ˆ.G2/ Š Z2:

The � operation is furthermore associative, and thus it makes sense to define, for a
generalized extraspecial group G, the central product powers

.G/�m WD G �G � : : : �G„ ƒ‚ …
m times

Generalized extraspecial 2-groups are, as the name suggests, a generalization of extra-
special 2-groups, that is 2-groups such that ˆ.G/ D Z.G/ D ŒG;G� Š Z2. These groups
have been thoroughly studied at least since the 60’s, see [15]. They are extremely sim-
ple: an extraspecial group has the form .Q8/

�m or .Q8/�.m�1/ � D8 for some m � 1,
where Q8 is the quaternion group and D8 is the dihedral group of order 8 (cf. Theo-
rem 2.2.11 of [19]). It then follows from Lemma 3.2 in [27] that:

Theorem 4.4. A generalized extraspecial 2-group is of the form G � Zn2 , where G is
one of

Q�m8 ; Q
�.m�1/
8 �D8 or Q

�.m�1/
8 � Z4:

4.1. The associated quadratic form

LetG be a generalized extraspecial 2-group withˆ.G/D G2 D hci, and let V WD G=hci.
It is easy to check that V is a vector space over Z2.

Define the functionQG WV ! Z2 byQG.Œg�/ D k, where g2 D ck . Since c is central
in G and has order two, for any g 2 G, we have .cg/2 D cgcg D c2g2 D g2 and thus
QG.Œcg�/DQG.Œg�/. Therefore,Q WDQG is well-defined and in fact a quadratic form as
defined in Section 2.4. Furthermore, the bilinear formBQ associated toQ (cf. Section 2.4)
satisfies

ghg�1h�1 D cBQ.Œg�;Œh�/; for g; h 2 G:

In order to see this, note that both g2 and h2 are central elements of G. Therefore,

cBQ.Œg�;Œh�/ D cQ.Œg�CŒh�/ c�Q.Œg�/ c�Q.Œh�/ D .gh/2g�2h�2 D ghg�1h�1:

The quadratic form of each generalized extraspecial group can be explicitly computed.
For this, consider the quadratic forms:

HC W Z
2
2 ! Z2; H� W Z

2
2 ! Z2; Q1 W Z2 ! Z2;

HC.x; y/ D xy; H�.x; y/ D x
2
C y2 C xy; Q1.x/ D x

2:

We have the following.

Proposition 4.5. SupposeG is a generalized extraspecial 2-group and let V WDG=ˆ.G/.

(1) If G D .Q8/�m, then V ' Z2m2 and

QG D H
˚m
� D

´
H˚mC for m even,
H� ˚H

˚.m�1/
C for m odd.
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(2) If G D .Q8/�.m�1/ �D8, then V ' Z2m2 and

QG D H
˚.m�1/
� ˚HC D

´
H˚mC for m odd,
H� ˚H

˚.m�1/
C for m even:

(3) If G D .Q8/m � Z4, then V ' Z2mC12 and

QG D H
˚m
C ˚Q1 D H

˚m
� ˚Q1:

(4) If G D G0 � Zn2 with G0 as in the previous points, then V ' V 0 ˚ Zn2 and QG D
QG0 ˚ 0

˚n.

Proof. This proposition follows easily from the following straightforward facts:
(1) For G D Q8, G=ˆ.G/ ' Z22 and QG D H� .
(2) For G D D8, G=ˆ.G/ ' Z22 and QG D HC .
(3) For G D Z4, G=ˆ.G/ ' Z2 and QG D Q1.
(4) Given G1 and G2 with quotients Vi D Gi=ˆ.Gi /, one has

.G1 �G2/=ˆ.G1 �G2/ D V1 ˚ V2 and QG1�G2 D QG1 ˚QG2 :

(5) Given G with quotient V D G=ˆ.G/, one has

.G � Zn2/=ˆ.G � Zn2/ ' V ˚ Zn2 and QG�Zn2
D QG ˚ 0

˚n:

Remark 4.6. The group Nc discussed above is generated by elements of order four, that
is, the ki ’s. Moreover, for each ki , there exists kj such that kikjk�1i k�1j D c. This is
reflected in the corresponding quadratic formQWV !Z2D ¹0;1º as follows. There exists
a basis ¹v1; : : : ; v`º of V Š Z`2 with the property thatQ.vi /D 1 for all i , and for each vi ,
there exists vj such that BQ.vi ; vj / D 1. We call such quadratic forms admissible.

The next step consists of understanding which of the quadratic forms in Proposi-
tion 4.5 are admissible. We start by reducing the problem to quadratic forms without
trivial summands:

Lemma 4.7. LetQWV ! Z2 be a quadratic form. If there exists a splitting V D V1 ˚ V2
such thatQ splits asQD q˚ 0˚n, withQjV1 D q andQjV2 D 0

˚n, thenQ is admissible
if and only if q is admissible.

Proof. Suppose that Q is admissible and choose a basis

¹.v1; w1/; : : : ; .vmCn; wmCn/º

of V1 ˚ V2 with the property that Q.vi ; wi / D 1, and for every .vi ; wi / there exists
.vj ; wj / with BQ..vi ; wi /; .vj ; wj // D 1. After possibly rearranging basis elements of
V1 ˚ V2, we may assume that ¹v1; : : : ; vmº forms a basis for V1. SinceQ.vi ;wi /D q.vi /
and BQ..vi ;wi /; .vj ;wj //D Bq.vi ; vj /, the basis ¹v1; : : : ; vmº of V1 is admissible for q.
On the other hand, if ¹v1; : : : ; vmº is admissible for q and ¹w1; : : : ;wnº is any basis of V2,
then

¹.vi ; 0/ j i D 1; : : : ; mº [ ¹.v1; wj / j j D 1; : : : ; nº;
forms an admissible basis for Q.
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We now apply Lemma 4.7 to classify the admissible quadratic forms.

Theorem 4.8. Any admissible quadratic form QWZ`2 ! Z2 is isometric to one of the
following, up to orthogonal sum with 0˚n W

(4.1) H˚mC .m � 2/; H� ˚H
˚m�1
C or H˚mC ˚Q1 .m � 2/:

Proof. Since the quadratic forms over Z2 are classified (see Proposition A.1), we only
need to check the admissibility condition. By Lemma 4.7, we may assume that Q does
not split as q ˚ 0˚m. We break the proof into cases.

Case 1. Q D H� ˚H˚m�1C , where 2m D `.
The quadratic form Q is given by

Q.x; y; z1; z2; : : : ; z2m�2/ D x
2
C xy C y2 C z1z2 C � � � C z2m�3 z2m�2:

Let e1; : : : ; e` denote the standard basis elements of Z`2 and consider the following basis:

v1 D e1 C e2; v2 D e3 C e4; : : : ; vm D e2m�1 C e2m;

vmC1 D e1;

vmC2 D e1 C e3; vmC3 D e1 C e5; : : : ; v2m D e1 C e2m�1:

Then Q.vi / D 1 for all i , and for every vi , there exists vj such that BQ.vi ; vj / D 1.
Hence Q is admissible.

Case 2. Q D H˚mC , where 2m D `.
Note that the only element of Z22 that is mapped to 1 by HC is .1; 1/. Therefore, HC

is not admissible. However, if m � 2, then the following basis of Z`2 is admissible for Q:

v1 D e1 C e2; v2 D e3 C e4; : : : ; vm D e2m�1 C e2m;

vmC1 D e1 C e2m�1 C e2m;

vmC2 D e1C e2C e4; vmC3 D e3C e4C e6; : : : ; v2m D e2m�3C e2m�2C e2m:

Case 3. Q D H˚mC ˚Q1, where m � 2 and 2mC 1 D `.

Let ¹v1; : : : ; v2mº denote the basis constructed for H˚mC in Case 2, and let v2mC1 D
e1 C e2mC1. Then ¹v1; : : : ; v2mC1º forms an admissible basis for Q.

For Q D HC ˚Q1, the elements with non-zero quadratic form are .1; 1; 0/, .1; 0; 1/,
.0; 1; 1/, .0; 0; 1/. Among these, the only vectors with non-zero bilinear form are the first
three, which are linearly dependent and thus do not form a basis. Hence HC ˚Q1 is not
admissible.

Recall that the group Nc (cf. Notation 4.1) is a generalized extraspecial group with an
admissible basis. From the previous theorem, we then get:

Corollary 4.9. If Nc is a generalized extraspecial group whose corresponding quadratic
form is admissible, then, up to a direct product with copies of Z2, the groupNc is isomor-
phic to one of the following:

(4.2) .Q8/
�m1 ; .Q8/

�.m1�1/ �D8 .m1 � 2/ or .Q8/
�m1 � Z4 .m1 � 2/:
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Proof. This follows trivially by comparing the quadratic forms in Proposition 4.5 with the
classification of admissible quadratic forms in Theorem 4.8.

Finally, we prove Theorem B.

Proof of Theorem B. Fix p0 2 L0. As discussed in Section 3.1, the non-abelian part K2
of �1.L0; p0/ is a 2-group of the form K2 D N �Z.2/, where N is generated by the non-
central generators ofK andZ.2/ denotes the Sylow 2-subgroup ofZ.K/. Furthermore, by
the discussion in Section 4, N D Nc1 � � �Nck , where the elements ci 2 Z.K/ have order
two. By Corollary 4.9, each Nci is of the form Gi � Zai2 , where Gi is one of the groups
listed in equation (4.2). Let a D

P
i ai . Finally, since all the groups Nci commute with

one another by Lemma 4.3, one has

Nci \Ncj � Z.Nci / \Z.Ncj / and Z.Nci / � Z.K2/:

Therefore

K2 Š
�
Z.2/ �

kY
iD1

Nci

�
=Z0 D

�
Z.2/ � Za2 �

Y
Gi

�
=Z0;

whereZ0 �Z.2/ �
Q
i Z.Nci / is the subgroup ofK2 generated by the intersectionsHij D

Nci \Ncj and H0j D Z.2/ \Ncj . Since the groups Hij , H0j are all abelian and central,
commute with one another, and have elements of order 2 or 4 (becauseZ.Nci /DZai2 �Z2
or Zai2 � Z4), it follows that Z0 D Z˛2 �Z

ˇ
4 for some ˛ and ˇ.

4.2. Examples of fundamental groups of principal leaves

The family of examples below shows that the non-abelian groups Gi discussed in Theo-
rem B actually arise as fundamental groups of principal leaves of homogeneous singular
Riemannian foliations.

Let ¹e1; : : : ; enº be the standard basis of Rn. The Clifford algebra Cl.0; n/ on Rn is
defined as the associative algebra generated by e1; : : : ; en, where multiplication of the
elements ei is given by

e2i D �1; ei ej D �ej ei :

Consider the subset E.n/ D ¹˙ei1 : : : ei2k º � Cl.0; n/ containing products of even num-
bers of the ei ’s. This is easily seen to be a group under the product of Cl.0; n/. In [3],
Czarnecki, Howe, and McTavish prove that for the action of G D SO.n/ � SO.n/ on
Mn�n.R/ defined by .g; h/ � A D gTAh, the fundamental group of a principal orbit is of
the form E.n/ � Z2. In this section, we investigate the structure of E.n/.

Lemma 4.10. Let G0;n�1 be the group defined by the generators �1; e1; : : : ; en�1 and
the relations

.�1/2 D 1; .ei /
2
D �1; Œei ; ej � D �1 .i ¤ j /; Œei ;�1� D 1:

Then the groups E.n/ and G0;n�1 are isomorphic.
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Proof. We have

G0;n�1 D ¹˙ei1 : : : ei` j 1 � ij � n � 1; e
2
i D �1; ei ej D �ej eiº:

Given an ordered set I D .i1; : : : ; im/ with indices ij in ¹1; : : : ; n� 1º, let eI D ei1 : : : eim .
Notice that if I D .i1; : : : ; im/ and J D .j1; : : : ; jp/, then eI eJ D eI[J , where I [ J D
.i1; : : : ; im; j1; : : : ; jp/. Now, define the map  WG0;n�1 ! E.n/ by

 .eI / D

´
eI for jI j even,
eI[¹nº for jI j odd.

First, we claim that  .eI eJ / D  .eI / .eJ / for multi-indices I and J .
Case 1. jI j and jJ j are both even. In this case, we have

 .eI eJ / D  .eI[J / D eI[J D eI eJ D  .eI / .eJ /:

Case 2. jI j and jJ j are both odd. In this case, we have

 .eI eJ / D  .eI[J / D eI[J D eI eJ D eI eJ .�enen/ D eI[¹nº eJ[¹nº D  .eI / .eJ /:

Case 3. If jI j is even and jJ j is odd, then

 .eI eJ / D  .eI[J / D eI[J[¹nº D eI eJ[¹nº D  .eI / .eJ /:

Case 4. If jI j is odd and jJ j is even, then

 .eI eJ / D  .eI[J / D eI[J[¹nº D eI[¹nºeJ D  .eI / .eJ /:

Therefore,  is a homomorphism. It is easy to see that  is injective, and hence an
isomorphism since the groups G0;n�1 and E.n/ have the same order.

The groups G0;n�1 have been classified by Salingaros [24–26] (cf. [1]). We use this
classification to write the group E.n/Š G0;n�1 as a central product. This gives rise to the
following list for fundamental groups of the principal orbits of the G-action onMn�n.R/:

E.n/ � Z2 Š

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

..Q8/
� n�42 �D8/ � Z22 for n � 0 .mod 8/;

.Q8/
� n�12 � Z2 for n � 1; 3 .mod 8/;

..Q8/
� n�22 � Z4/ � Z2 for n � 2; 6 .mod 8/;

.Q8/
� n�22 � Z22 for n � 4 .mod 8/;

..Q8/
� n�32 �D8/ � Z2 for n � 5; 7 .mod 8/:

We do not know, however, whether all groups in Theorem B do in fact arise as funda-
mental groups of principal leaves in a simply connected manifold.
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5. Virtually nilpotent fundamental group

In this section, we consider singular Riemannian foliations .M;F /, where the fundamen-
tal group of M is virtually nilpotent. As the following example shows, the fundamental
group of a principal leaf is not necessarily nilpotent in this case.

Example 5.1. Let OM D C2 � S1 and consider the homogeneous foliation OF on OM

induced by the linear action of T 3 D T 2 � S1. Let M D OM=Z2, where the non-trivial
element g of Z2 acts by g � .z1; z2; t / D . Nz1; Nz2; t C 1

2
/. Note that M inherits a singular

Riemannian foliation F D OF =Z2.
The manifold M is orientable, and is homotopy equivalent to S1. In particular, M is

nilpotent. However, the principal leaf of F is T 3=Z2, which has fundamental group

G D Z2 Ì Z D ha; b; c W cac�1 D a�1; cbc�1 D b�1; ab D bai:

Since G` D ha2
`
; b2

`
i for any `, G is not nilpotent.

Nevertheless, in what follows, we prove that the fundamental groups of the leaves
contain a nilpotent subgroup of finite index.

Notation 5.2. Throughout the rest of this section, L0 denotes a principal leaf of F .
Furthermore, we fix p0 2 L0, and K D hk1; : : : ; kmi denotes the normal subgroup of
�1.L0; p0/ discussed at the beginning of Section 4. Recall that there is a homotopy fibra-
tion

L0
�0
!M0

O�
! B;

which induces a long exact sequence

0! H ! �1.L0; p0/
.�0/�
! �1.M0; p0/

O��
! �1.B; b/! 1;

where H D @.�2.B//, as well as an action of �1.B; b/ on L0. Denote by OK the group
generated by H and c �K, for c 2 �1.B; b/. Notice that for every 
 2 �1.M0; p0/ with
c D O��.
/, and every g 2 �1.L0; p0/,

.�0/�.c � g/ D 
.�0/�.g/ 

�1:

Lemma 5.3. Let .M;F / be a closed singular Riemannian foliation on a compact Rie-
mannian manifold M . If �1.M/ is n-step nilpotent, then .�1.L0; p0//nC1 � OK, where
.�1.L0; p0//nC1 denotes the .nC 1/-th group in the lower central series of �1.L0; p0/.

Proof. Since removing strata of codimension > 2 does not change the fundamental group
of M , we can assume that M only contains singular strata of codimension � 2. In partic-
ular, we use the notation and results in Section 3.1.

Letting �WL0 !M denote the inclusion, one then has

��..�1.L0; p0//nC1/ � .�1.M; p0//nC1 D 1:

Therefore, given any curve ˛ representing an element of .�1.L0; p0//nC1, there exists a
disk N�WD2 !M extending �.˛/. By transversality, this can be deformed to only intersect,
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transversely, the singular strata†1; : : : ;†m of codimension 2, and the intersection consists
of finitely many points ¹q1; : : : ; qrº with qj 2†ij . For each j D 1; : : : ; r , let q0j be a point
in N�.D2/ close to qj , let uj be a curve in N�.D2/ connecting p0 to q0j , and let  j be a small
loop in N�.D2/ based at q0j , turning once around qj . Finally, let 
j D uj ?  j ? u�1j . Then:

(1) For each i D 1; : : : ; r , Œ
j � 2 �1.M0; p0/ is conjugate to .�0/�.kij / with kij 2 K �
�1.L0; p0/. By the discussion in Notation 5.2, it follows that Œ
j � D .�0/�.cj � kij /
for some cj 2 �1.B; b/.

(2) .�0/�Œ˛� D Œ
1� ? � � � ? Œ
r � D .�0/�..c1 � ki1/ ? � � � ? .cr � kir // in �1.M0; p0/.
Since H D ker..�0/�/, it follows that

Œ˛� D h..c1 � ki1/ ? � � � ? .cr � kir //

for some h 2 H . In particular, Œ˛� 2 OK, and therefore .�1.L0; p0//nC1 � OK.

We are finally ready to prove that if .M;F / is a closed singular Riemannian folia-
tion with �1.M/ virtually nilpotent, then the fundamental group of every leaf is virtually
nilpotent as well.

Proof of Theorem C. Notice that if � W OM !M is a finite cover, and . OM; OF / is the lifted
singular Riemannian foliation, one has that a leaf OL 2 OF has virtually nilpotent fun-
damental group if and only if the corresponding leaf �. OL/ 2 F does. Therefore, up to
replacing M with a finite cover OM , we can assume that �1.M/ is nilpotent.

LetL0 be a principal leaf, and consider the Hurewicz homomorphism hW�1.L0;p0/!

H1.L0IZ/ and let G D h�1.2 �H1.L0IZ//. Clearly, G has finite index in �1.L0; p0/,
Since �1.L0; p0/=G Š H1.L0IZ/=2 � H1.L0IZ/ is finite. We claim that if �1.M/ is
n-step nilpotent, then G is .nC 1/-step nilpotent.

By Lemma 5.3, GnC1 � G \ OK. The proof is complete once we prove that G com-
mutes with OK. Notice that OK is generated by H , and by elements of the form c � ki for
c 2 �1.B; b/ and ki one of the generators ofK. Recall thatH is central in �1.L0; p0/ (in
particular, G commutes with H ), and for each g 2 �1.L0; p0/, gkig�1 D k˙1i . Since
�1.B; b/ acts on �1.L0; p0/ by group automorphisms, it also follows that for every
g 2 �1.L0; p0/, g.c � ki /g�1 D .c � ki /˙1.

Notice that if g.c � ki /g�1 D .c � ki /" (for " D ˙1), then g�1.c � ki /g D .c � ki /" as
well. In particular, for every g1; g2 2 �1.L0; p0/, and every .c � ki / 2 OK, one has

Œg1; g2� � .c � ki /Œg1; g2�
�1
D .c � ki /:

The main observation is that, by definition, any element g 2 G can be written as

g D g23 Œg1; g2� � � � Œg2k�1; g2k �

for some g1; : : : ; g2k 2 �1.L0; p0/ and therefore, for any generator .c � ki / of OK, one has

g.c � ki /g
�1
D g23 Œg1; g2� � � � Œg2k�1; g2k �.c � ki /Œg2k�1; g2k �

�1
� � � Œg1; g2�

�1g�23

D g23.c � ki /g
�2
3 D g3.c � ki /

"g�13

D .c � ki /
"2
D .c � ki /:
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Therefore, G commutes with OK and hence GnC2 D ŒG;GnC1� � ŒG; OK� D ¹1º.
This proves that the principal leaves of F have virtually nilpotent fundamental group.

The corresponding statement for the non-principal leaves then follows from Lemma 3.2.

A. Classification of quadratic forms over Z2

The classification of quadratic forms over Z2 is well known. However, what appears usu-
ally in the literature is the classification of nondegenerate quadratic forms, which is not
what interests us here. Therefore, we provide the details of the classification.

Proposition A.1. Every non-trivial quadratic form on Z`2 is isometric to one of the fol-
lowing:

H
˚m1
C ˚ 0m2 ; H� ˚H

˚m1�1
C ˚ 0m2 or H

˚m1
C ˚Q1 ˚ 0

m2�1;

where 2m1 Cm2 D `.

Proof. Let H WZ22 � Z22 ! Z2 be the bilinear form given by

H..x; y/; .z; w// D xw C yz:

By the classification of bilinear forms over Z2 (cf. for example Proposition 1.8, Corol-
lary 1.9 and the discussion below in [5]), every symmetric bilinear form on a vector
space V over Z2 is isometric to Hm1 ˚ 0m2 , where 2m1 C m2 D `. By equation (2.1)
in Section 2.4, it is easy to see that there are two equivalence classes of quadratic forms
associated toHm1 , that is, the quadratic formsQ DHm1

C andQ DH� ˚H
m1�1
C , where

H˙WZ22 ! Z2 are given by

HC.x; y/ D xy and H�.x; y/ D x
2
C y2 C xy:

Similarly, to 0m2 correspond the quadratic formsQ0D 0 andQ˛.x1; : : : ;xm2/D
P˛
iD1x

2
i

for any 1 � ˛ � m2. However, Q˛ is isometric to Q1 ˚ 0m2�1. Moreover, one has well
known isometries

H
˚m1
C ˚Q1 ' H� ˚H

˚m1�1
C ˚Q1 and H˚2C ' H

˚2
� ;

which conclude the proof.
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