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Non-isotopic transverse tori in Engel manifolds

Marc Kegel

Abstract. In every Engel manifold, we construct an infinite family of pairwise non-
isotopic transverse tori that are all smoothly isotopic. To distinguish the transverse
tori in the family, we introduce a homological invariant of transverse tori that is simi-
lar to the self-linking number for transverse knots in contact 3-manifolds. Analogous
results are presented for Legendrian tori in even contact 4-manifolds.

1. Introduction

In recent years, some spectacular breakthroughs in the theory of Engel structures were
obtained that have renewed interest in the field. After the solution of the existence question
for Engel structures on parallelizable 4-manifolds by Vogel [25], a number of flexibility
results, formulated in the language of h-principles, were proven, see [5, 7, 22, 23]. (For
more details, consult Section 2 and the references therein.)

In [23], del Pino and Vogel have introduced the notion of an overtwisted Engel struc-
ture, fulfilling an h-principle. The 2-tori transverse to an Engel structure play a crucial
role in this construction, similar as transverse knots played a key role in the construction
of overtwisted contact structures by Martinet [12,18]. This suggests that transverse tori in
Engel manifolds will play a similar prominent role as transverse knots in contact 3-mani-
folds as started with Bennequin’s work [2]. This would fit with the observation that in
many cases a lot of the underlying topology and geometry of manifolds is encoded in its
codimension-2 knot theory. The aim of this article is to show that the knot theory of trans-
verse tori is rich in examples that are smoothly isotopic but not isotopic as transverse tori.

Theorem 1.1. In any Engel manifold .M;D/, there exist infinitely many pairwise non-
isotopic transverse 2-tori that are all smoothly isotopic.

This result was independently obtained by Gompf in [16].
To prove Theorem 1.1, we will define in Section 3 a stabilization operation for trans-

verse tori coming from the del Pino–Vogel construction [23], that does not change the
smooth isotopy class. In order to distinguish a transverse torus from its stabilization, we
construct in Sections 4 and 5 a homological invariant, depending only on the formal data

2020 Mathematics Subject Classification: Primary 57R15; Secondary 57K45, 53D35, 57K33, 57R25.
Keywords: Engel manifolds, transverse tori, linking of tori.

https://creativecommons.org/licenses/by/4.0/


M. Kegel 44

of a transverse torus, that we will use to distinguish stabilized transverse tori. This invari-
ant can be thought of as an analogue of the self-linking number for transverse knots in
contact 3-manifolds.

We have a full h-principle for transverse immersions of surfaces [22]. On the other
hand, it remains open if transverse tori fulfill a full h-principle. Although, in recent work
of Gompf [16] it is shown that transverse tori fulfill an existence h-principle: every 2-torus
with trivial normal bundle in an Engel manifold is isotopic to a transverse torus. For
1-dimensional submanifolds of Engel manifolds, the situation is solved. The subspace
of tangent knots (also called horizontal or Engel knot) that are not everywhere tangent
to W fulfill a full h-principle [6], cf. [1, 11, 13]. Similarly, transverse curves (i.e., knots
always transverse to D) fullfill a full h-principle, see Theorem 4.6.2 in [10].

Any Engel structure D induces naturally an even contact structure by E D ŒD ;D �

(see Section 2 for details). Motivated by Theorem 1.1, we want to study codimension-2
embeddings in even contact manifolds that fit to the even contact structure. Here the nat-
ural objects are Legendrian tori, embedded 2-tori that are everywhere tangent to the even
contact structure E . With similar ideas as in the proof of Theorem 1.1, we will prove an
analogous statement for Legendrian tori in even contact structures in Section 7.

Theorem 1.2. There exist even contact 4-manifolds containing infinite families of pair-
wise non-isotopic Legendrian 2-tori that are all smoothly isotopic.

First, we will give some relevant background on Engel and even contact structures
in Section 2. In Section 3, we will recall some facts about transverse tori from [23]. In
particular, we will review a method of constructing transverse tori in Engel manifolds
from transverse knots in contact 3-manifolds and define a stabilization operation that will
not change the smooth isotopy class of the transverse torus. To show that this stabilization
operation changes the isotopy class as a transverse torus, we devote Section 4 to the linking
class, a homology class, which can be seen as a generalization of the linking number,
defined for general subsets in topological spaces. From this we can define the self-linking
class in Section 5, and deduce a way of computing it for transverse tori coming from
transverse knots via the del Pino–Vogel construction of transverse tori. Using this method,
we will distinguish transvere tori that are all smoothly isotopic. The remaining section is
devoted to Legendrian tori in even contact structures and to prove Theorem 1.2.

Conventions. We work in the smooth and oriented category, i.e., all manifolds, maps, and
ancillary objects are assumed to be smooth. In addition, all manifolds and geometric struc-
tures on them like Engel and contact structures are assumed to be oriented and cooriented.
Homology groups are always understood over the integers.

2. Background

2.1. Topologically stable distributions

An Engel structure is a maximally non-integrable tangential 2-plane field D on a 4-mani-
fold M , i.e., its iterated Lie-brackets ŒD ; ŒD ;D �� give the full tangent bundle TM . It
is well known that Engel structures admit a local normal form, which means that Engel
structures can only be studied globally. Moreover, the set of Engel structures on a 4-mani-
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fold M is open in the set of 2-dimensional distributions on M . In general, a class of
k-dimensional distributions on an n-manifoldM is called topologically stable if it is open
and admits a local normal form. The classification of such distributions in terms of geo-
metric structures on manifolds can be traced back to Cartan [20, 24]: every topologically
stable distribution is

• a line field (k D 1 and n arbitrary),
• a contact structure (k D n � 1, n D 2m C 1 odd; locally written as the kernel of a
1-form ˛ with ˛ ^ .d˛/m non-vanishing),

• an even contact structure (k D n � 1, n D 2mC 2 even; locally written as the kernel
of a 1-form ˛ with ˛ ^ .d˛/m non-vanishing),

• or an Engel structure (k D 2 and n D 4).
Although Engel structures play a distinguished role in the above classification, since

they are the only class that exists only in the special dimension 4, they are the least under-
stood class of topologically stable distributions. In dimension 4, all these geometries are
closely related. An Engel structure D on a 4-manifold M induces an even contact struc-
ture E by E D ŒD ;D � and the so-called characteristic line field W � D defined by
ŒW ;E� � E . Finally, every 3-dimensional hypersurface N in M transverse to W carries a
canonical contact structure defined by � D E \ TN .

It is therefore not surprising that Engel structures, contact structures and even contact
structures often behave in the same way structurally. In the following short summary, we
will outline a few points. First of all, by definition all these structures look locally like a
standard model �

R3; �st D ker.dz � y dx/ D h@y ; @x C y@zi
�

in the contact case,�
R4;Dst D ker.dz � y dx/ \ ker.dy � w dx/ D h@w ; @x C y@z C w@yi

�
in the Engel case, and�

R4;Est D ŒDst;Dst� D ker.dz � y dx/ D h@w ; @y ; @x C y@zi
�

in the case of an even contact structure.
The existence question for these structures has been solved, and can be simplified

by the statement that such a structure exists whenever there is no obvious obstruction
coming from the underlying algebraic topology. Some relevant references are [3, 5, 8, 10,
12, 17–19, 23, 25]. On the other hand, the uniqueness question up to homotopy through
such structures is in general open.

2.2. Contact structures

We first discuss the 3-dimensional contact case. We have to distinguish the cases where
the underlying 3-manifold is open or closed. From Gromov’s work [17], cf. [10], it follows
that there is an h-principle for contact structures on open manifolds. Roughly speaking,
an h-principle holds if the inclusion of a genuine structure into the formal data of the
structure is a weak homotopy equivalence. In this situation, it implies that two positive
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contact structures on an open manifold are homotopic through positive contact structures
if and only if they are homotopic through tangential 2-plane fields. Thus, the problem of
classifying contact structures on open manifolds up to homotopy reduces completely to
algebraic topology methods.

However, for open manifolds, there is in general a difference between homotopy
through contact structures and isotopy. The first such example was found by Bennequin,
see [2]. He showed that there exists a so-called overtwisted contact structure �ot on R3 that
is homotopic through contact structures but non-isotopic to the standard structure �st. This
can be proven by studying Legendrian knots, always tangent to the contact structures, or
transverse knots, always transverse to the contact structures, and their classical invariants:
the self-linking number sl for transverse knots, and the Thurston–Bennequin invariant tb
and the rotation number rot for Legendrian knots.

For closed manifolds, the situation is different. Eliashberg [8] distinguishes two classes
of contact structures: the overtwisted contact structures (containing a Legendrian unknot
with vanishing Thurston–Bennequin invariant), and the tight contact structures (contain-
ing no such unknot). Then he shows that the overtwisted contact structures fulfill an h-
principle, implying that two positive overtwisted contact structures are homotopic through
positive contact structures if and only if they are homotopic as tangential 2-plane fields.
On closed manifolds we have Gray’s theorem, implying that two contact structures that
are homotopic through contact structures are also isotopic [12].

On the other hand, the tight contact structures are closely linked to the underlying
topology of the manifold, and do not only depend on the algebraic topology of the under-
lying 2-plane field. As in the case of R3, tight contact structures are closely related to their
Legendrian and transverse knot theory. In fact, a contact manifold is tight if and only if
every nullhomologous transverse knot T fulfills the Bennequin bound sl.T /� 2g.T /� 1,
or equivalently, if every nullhomologous Legendrian knot L fulfills tb.L/ C rot.L/ �
2g.L/ � 1, where g denotes the genus of the underlying smooth knot type [9].

Recent developments show that the situation in higher dimensions is formally the
same, see [3].

2.3. Even contact structures

For even contact structures and Engel structures, we can ask how much of the above dis-
cussion carries over. First, we discuss the case of even contact structures on 4-manifolds.
For open manifolds, there is again an h-principle by the work of Gromov [17]. Surpris-
ingly, we also have a full h-principle for even contact structures on closed manifolds by
work of McDuff [19], so we do not need to restrict to a subclass. However, Gray stabil-
ity does not hold in general, not even for closed manifolds [21]. The reason is that every
even contact structure E comes together with a so-called characteristic line field W � E

uniquely defined by ŒW ;E� � E and a small perturbation of E can change the dynamics
of W completely. (A version of Gray’s theorem holds if we can assume the characteristic
line field to stay fixed during the homotopy between the even contact structures [15].)

In conclusion, we can say that even contact structures on open or closed manifolds
will behave structurally similar to contact structures on open manifolds, i.e., the study of
even contact structures up to homotopy reduces completely to algebraic topology, but even
contact structures up to isotopy are more interesting to study.
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2.4. Engel structures

The situation for Engel structures is less well understood. First, we observe that any Engel
structure D on a 4-manifold M induces a flag of its tangent bundle

W � D � E � TM;

where E is the associated even contact structure and W its characteristic line field. Thus,
in the oriented case, a 4-manifold admitting an Engel structure has to be parallelizable.
On the other hand, this is the only obstruction to the existence of an Engel structure: every
parallelizable 4-manifold admits an Engel structure. This follows for open manifolds again
by Gromov’s h-principle, and was proven for closed manifolds by Vogel [25], cf. [5].

If a full h-principle holds is unknown, but recently ([23]) the subclass of overtwisted
Engel structures fulfilling a full h-principle was introduced. One of the main questions
in the field of Engel structures asks if there are Engel structures that are not overtwisted.
Moreover, it is not clear if overtwistedness is a property that is preserved under homotopy
of Engel structures. And thus we can more generally ask if there exist Engel structures
that are not homotopic to overtwisted Engel structures. For Engel structures, there also
exists the class of loose Engel structures that satisfy an h-principle as well [7]. Unlike the
overtwisted Engel structures, that are characterized by a local property, these loose Engel
structures are given by a global property. It is not clear how loose Engel structures are
related to overtwisted ones.

Since Gray’s theorem for Engel structures does not hold [21], there can be also Engel
structures that are homotopic but not isotopic. The first such examples were found on R4

by Gershkovich [14]. One possibility to construct such an example is by using an over-
twisted contact structure �ot on R3 as follows. Let X1 and X2 be two linearly independent
vector fields in �ot. Then it is easy to see that Y1 WD @t and Y2 WD cos.t/X1 C sin.t/X2
generate an Engel structure on R4, where t is a coordinate on the extra R factor. In [14],
Gershkovich used contact geometry to distinguish this Engel structure from the standard
Engel structure on R4. Such Engel structures could potentially also be distinguished by
the classical invariants of transverse tori.

3. Transverse tori

In [23], del Pino and Vogel used embedded transverse tori in Engel manifolds as gener-
alizations of transverse knots in contact manifolds. In this section, we recall the relevant
definitions and constructions from [23].

Definition 3.1. An embedded 2-torus T in an Engel manifold .M;D/ is called a trans-
verse torus if it is everywhere transverse to D .

In principle, this definition would make sense for any embedded surface, but in the
oriented case any such surface would inherit a parallelization and a trivialization of its
normal bundle (both coming from the parallelization of the Engel structure). Thus, if we
restrict to oriented closed surfaces, every transverse surface is a torus. We remark that
the same reasoning applies for non-orientable closed surfaces, and we observe that any
non-orientable closed transverse surface is a Klein bottle.
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Example 3.2. We consider the 4-torus T 4 with angular coordinates .�1; �2; �3; �4/ and
Engel structure given by the span of @�1 and cos�1@�2 C sin�1@�3 C @�4 . Then the 2-torus
given by ¹�1 D �2 D 0º is a transverse torus.

In [23], the following construction of transverse tori in standard neighborhoods of
transverse curves is described. A transverse curve C is an embedded S1 in an Engel
manifold .M;D/ that is everywhere transverse to the induced even contact structure
E D ŒD ;D �. By standard methods, one can prove the following two lemmas, see Propo-
sition 2.7 and Lemma 2.8 in [23] for details.

Lemma 3.3. Let C WS1 ! .M;D/ be an embedding. Then C is isotopic to a transverse
curve. Moreover, if C1 and C2 are two transverse curves in .M;D/ that are smoothly
isotopic, then they are isotopic as transverse curves.

Lemma 3.4. Any transverse curve C in .M;D/ admits a neighborhood .�C;D/ (where
here D denotes the restriction of the Engel structure of M to �C / which is, for some
R > 0, Engel diffeomorphic to the following standard neighborhood:�

S1 �D3
R;Dst D ker.d� � y dx/ \ ker.dy � w dx/

�
;

where � is an angular coordinate of S1, .x; y; w/ are Cartesian coordinates on the
disk D3

R with radius R in R3, and the Engel-diffeomorphism sends C to S1 � ¹0º.

In particular, there exist many transverse curves, and in any standard neighborhood we
can construct transverse tori with the following lemma, see Lemma 3.3 in [23] for details.

Lemma 3.5. Let K be a transverse knot in .D3
R; � D ker dy � w dx/. Then

S1 �K � .S1 �D3
R;Dst/

is a transverse torus.

With Lemmas 3.3, 3.4 and 3.5, we get transverse tori in any Engel manifold. We call
a transverse torus arising like this a del Pino–Vogel torus. On the other hand, not every
transverse torus is a del Pino–Vogel torus. Indeed, if a transverse torus arises as above, it is
nullhomologous, since it bounds the embedded 3-manifold S1 � F , where F is a Seifert
surface of K in D3

R. In particular, we see that the transverse torus from Example 3.2 is
not a del Pino–Vogel torus. Moreover, it is not clear if the core C and the profile K in the
above construction are unique.

There are different types of natural equivalence relations on transverse tori. We briefly
discuss them to fix our notation. Two transverse tori T1 and T2 in an Engel manifold are
called (ambient) isotopic if there exists an Engel diffeomorphism f W .M;D/! .M;D/

that maps T1 to T2 and is isotopic (through Engel diffeomorphisms) to the identity. Two
transverse tori T1 and T2 in an Engel manifold are called equivalent if there exists an
Engel diffeomorphism f W .M;D/! .M;D/ that maps T1 to T2. Obviously, ambient iso-
topy implies equivalence, the reverse implication is in general false (since not every Engel
diffeomorphism will be isotopic to the identity). Two transverse tori Ti WT 2! .M;D/ are
called isotopic if there exists a homotopy between them through transverse tori. Ambient
isotopy implies isotopy, but other than in the smooth category, the isotopy extension theo-
rem does not hold, i.e., there exist transverse tori that are isotopic but not ambient isotopic.
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Note that E intersects a transverse torus in a line field, the so called characteristic folia-
tion, which will be preserved under ambient isotopy but not under isotopy. Two transverse
tori Ti WT 2! .M;D/ are called formal isotopic if there exists a homotopy between them
through formal transverse tori. Every isotopy can be also seen as a formal isotopy. In Sec-
tion 6, we will properly define formal transverse tori and demonstrate that our invariants
will distinguish transverse tori only up to formal isotopy. It remains open if transverse tori
fulfill a full h-principle, i.e., if any two formal isotopic transverse tori are isotopic.

In Theorem 1.1, we show that in any Engel manifold there are infinitely many non-
formally isotopic transverse tori that are all smoothly isotopic. The construction of these
examples is via the obvious stabilization operation. Let T be a del Pino–Vogel transverse
torus with core C and profile K. We define the stabilization Tstab of T to be C � Kstab,
where Kstab is the stabilization of K. Since it is not clear if the profile is unique, the
stabilization could depend on K and C , and it is not clear if the transverse knot K is
an invariant of T . However, we would expect that Tstab is not isotopic to T . In the next
sections we will develop an invariant, similar to the self-linking number of transverse
knots, that will enable us to distinguish stabilizations of transverse tori.

4. The linking class for embedded tori

In this section, we will introduce a generalization of the linking number to higher dimen-
sional embedded submanifolds. We believe that this invariant, which we call linking class,
is known to the experts, but we could not find a discussion in the literature. Other defini-
tions of linking numbers in higher dimensions are mostly given for embeddings of spheres
and differ from our discussion here, see for example [4].

Let L and T be submanifolds of dimension l and t of a topological m-manifold M .
Then we define the l-th linking class lk.L; T / to be the homology class

lk.L; T / WD ŒL� 2 Hl .M n T /:

We remark that for nullhomologous knots L and T in a 3-manifold M , we can identify
H1.M n T / canonically with H1.M/˚ Z, where the first linking class lk.L; T / lies in
the Z-summand and can thus be identified with an integer, the linking number.

To make a useful invariant out of the linking class, we first need to compute the homol-
ogy of M n T . With a view to our application and for concreteness, we consider two
special cases in the following lemmas.

Lemma 4.1. Let T and T 0 be embedded 2-tori with trivial normal bundle in a 4-mani-
fold M . If T and T 0 are nullhomologous in H2.M/ and if H3.M/ D 0, then the linking
class lk.T 0; T / takes values in a free abelian group of rank 2, generated by the meridi-
ans ˛ and ˇ of T .

Proof. We choose an identification of �T with S1 � S1 � D2 such that S1 � S1 � pt
is nullhomologous in H2.M n V�T /. Then we consider the following part of the Mayer–
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Vietoris sequence and the images of the generators under the homomorphisms:

0 �!

ŠZ3‚ …„ ƒ
H2.@�T /

f
�!

ŠZ‚ …„ ƒ
H2.�T /˚H2.M n V�T / �! H2.M/:

S1 � S1 � pt 7�! .S1 � S1 � 0; 0/ 7�! 0

˛ WD S1 � pt � @D2 7�! .0; ˛/ 7�! 0

ˇ WD pt � S1 � @D2 7�! .0; ˇ/ 7�! 0

The map f is injective, and we write for simplicity again ˛ and ˇ for their images in
H2.M n V�T / (see Figure 1). Since T D S1 � S1 � 0 is nullhomologous, it maps to 0 in
H2.M/. The generators ˛ and ˇ are boundaries in �T and thus also vanish in H2.M/.
Therefore, f acts on the generators, as stated. Since f is injective, it follows that ˛ and ˇ
are primitive elements in H2.M n V�T / and thus generate a free abelian group of rank 2.
Since T 0 is nullhomologous in H2.M/, it follows that T 0 seen as a homology class in
H2.M n V�T / is a linear combination of ˛ and ˇ, which implies the statement.

˛ D S1 � pt � @D2 ˇ D pt �K � @D2

T DS1�K

T 0 D S1 �K0 T 0 D �˛

Š

Figure 1. Top row: the generators ˛ and ˇ are presented in the front projection of an R3-slice.
Bottom row: the push-off T 0 is isotopic to sl.K/˛.

Lemma 4.2. Let K and K 0 be nullhomologous knots in a closed 3-manifold N . We con-
sider LD S1 �K and L0 D S1 �K 0 inM D S1 �N . ThenH2.M nL/ is isomorphic to
H1.N /˚H2.N /˚Z and the linking class lk.L0;L/ takes values in the last free abelian
group generated by S1 � �K , where �K is the meridian of K.

Proof. First we combine Poincaré duality, excision and the universal coefficient theorem,
to deduce that

H2.M n V�L/ Š F2.M;L/˚ T1.M;L/;

whereF2.M;L/ denotes the free part ofH2.M;L/ and T1.M;L/ the torsion ofH1.M;L/.
By applying the relative Künneth formula to S1 � .N;K/, we compute

Hk.M;L/ Š Hk�1.N;K/˚Hk.N;K/:
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Next, we consider the long exact sequence of the pair .N;K/,

0 �! H2.N / �! H2.N;K/ �! Z
0
�! H1.N / �! H1.N;K/ �! 0;

where the map Z! H1.N / is the 0-map since K is nullhomologous in N . Thus

H1.N;K/ D H1.N / and H2.N;K/ Š H2.N /˚ Z:

Putting everything together and using thatH2.N / is a free group, we get thatH2.M n L/
is isomorphic to H1.N / ˚ H2.N / ˚ Z, where we can follow the above isomorphisms
to see that the Z-summand is generated by S1 � �K . Since L0 is nullhomologous in
H2.M/ and K 0 is nullhomologous in H1.N /, it follows that L0 seen as a homology class
in H2.M n L/ is a multiple of S1 � �K .

5. The self-linking class for transverse tori

Let T be a transverse 2-torus embedded in an Engel 4-manifold .M;D/. We denote by T 0

the embedded 2-torus that is obtained by pushing T into the W -direction. The smoothly
embedded link of 2-tori T [ T 0 in M is an invariant of the transverse torus T . Similar as
for the definition of the classical invariants for Legendrian or transverse knots in contact
manifolds, we define the following invariant for transverse tori.

Definition 5.1. Let T be a transverse 2-torus in an Engel 4-manifold .M;D/. Then we
define the self-linking class sl.T / as the homology class

sl.T / WD lk.T 0; T / 2 H2.M n T /:

Next, we will see that for a del Pino–Vogel torus, the self-linking class is related to the
self-linking number of its profile.

Lemma 5.2. Let T be a del Pino–Vogel transverse torus in .M;D/ with a fixed choice of
a core C and a profile K. In the notation introduced in the proof of Lemma 4.1, we can
express the self-linking class of T as

sl.T / D sl.K/ � ˛ 2 H2.M n T /:

Proof. We get an identification of T with

S1 �K � .S1 �D3
R;Dst/ � .M;D/:

In this local model, T 0 is defined to be the push-off of T in the w-direction. In this situa-
tion, T 0 is S1 �K 0, whereK 0 is the push-off ofK inw-direction. If we draw the transverse
knot K � .D3

R; ker dy � wdx/ in its front projection to the wx-plane, we see that K 0 is
isotopic to the blackboard framing of this projection (see Figure 1).

By an easy homology computation in H2.M n V�T / and the definition of the self-
linking number for transverse knots, it follows that

sl.T / D lk.T; T 0/ D ŒT 0� D ŒS1 �K 0� D sl.K/ � ŒS1 � pt � @D2� D sl.K/ � ˛:
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With this preparation, we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. By the local normal form for Engel structures, it is enough to work
in .R4;Dst/. Let T0 be a del Pino–Vogel transverse torus of the form C �K0, where C is
a transverse curve in .R4;Dst/ and K0 a transverse knot with self-linking number sl.K0/
in the .D3

R; ker dy � wdx/-slice of a standard neighborhood .�C;Dst/ of C . We denote
by Tn the n-fold stabilization of T0, i.e., the transverse torus given by C �Kn, where Kn
denotes the n-fold stabilization of K0 with self-linking number sl.Kn/ D sl.K0/ � n.

Note that since Kn is smoothly isotopic to K0, it follows that Tn is smoothly isotopic
to T0, for all n 2 N0. Next, we want to show that the Tn are pairwise non-isotopic as
transverse tori by comparing their self-linking classes. For that we use Lemma 5.2 to
compute the self-linking classes for some choice of ˛ and ˇ as

sl.Tn/ D sl.Kn/ � ˛ D .sl.K0/ � n/ � ˛:

But since ˛ is a primitive element in a free abelian group, its divisibility sl.Kn/ is indepen-
dent of the choice of ˛ and ˇ, and thus distinguishes the transverse tori Tn pairwise.

6. Formal transverse tori and their self-linking classes

We recall that a formal Engel structure on M (in the oriented setting) consists of three
oriented and cooriented subbundles .W1;D2;E3/ of TM such that W �D � E � TM .
A formal transverse torus in a formal Engel manifold .M IW ;D ; E/ is an embedding
f WT 2 !M covered by a family of injective bundle maps .Fs/s2Œ0;1�WT T 2 ! TM such
that F0 D Tf and F1.T T 2/ is transverse to D . We have obvious inclusions of the space
of Engel structures and the space of transverse tori into their formal counterparts. Next,
we generalize the definition of the self-linking class to formal transverse tori.

Let T D .f; .Fs/s2Œ0;1�/ be a formal transverse torus in a formal Engel manifold
.M IW ;D ; E/, and set W1 WD W . Since W1 is transverse to F1.T T 2/, we can apply
the homotopy lifting property to obtain unique (up to homotopy) line fields Ws that are
transverse to Fs.T T 2/, for all s 2 Œ0; 1�. Then W0 is transverse to T D f .T 2/, and we
denote by T 0 the 2-torus which is obtained by pushing T into W0-direction. We define the
self-linking class sl.T / of T as the homology class

sl.T / WD lk.T 0; T / 2 H2.M n T /:

Since W0 is unique up to homotopy, this is well-defined and generalizes the previous
definition.

We will now demonstrate that the self-linking class does not change under homotopy
through formal transverse tori, and also does not change through formal homotopy of the
ambient Engel manifold.

Lemma 6.1. Let .Wt ;Dt ; Et /t2Œ0;1� be a family of formal Engel structures on a closed
4-manifoldM , and let .Tt /t2Œ0;1� be a family of formal transverse 2-tori such that Tt is for-
mally transverse to Dt . Then there is a smooth ambient isotopy that identifiesH2.M n T0/
and H2.M n T1/. Under this identification, the self-linking class sl.T0/ of T0 equals the
self-linking class sl.T1/ of T1.
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Proof. Since Tt is a smooth family of embedded 2-tori in M , the isotopy extension the-
orem guarantees the existence of a smooth ambient isotopy of the Tt , i.e., a family of
diffeomorphisms .Gt /t2Œ0;1�WM !M such thatG0 D IdM andGt .T0/D Tt . By restrict-
ing this ambient isotopy to the complements, we obtain a family of diffeomorphisms, for
simplicity again denoted by .Gt /t2Œ0;1�WM n T0 ! M n Tt , such that G0 D IdMnT0 . We
use the induced isomorphism on homology to identifyH2.M n Tt / withH2.M n T0/, for
any t 2 Œ0; 1�.

Now let Tt D .ft ; .F
t
s /s2Œ0;1�/, where ft W T 2 ! M is an embedding, and where

.F ts /s2Œ0;1�W T T
2 ! TM denotes a family of injective bundle maps with F t0 D Tft and

F t1 .T T
2/ transverse to Dt . As in the definition of the self-linking number for formal

transverse tori, we obtain a family of line fields W s
t such that W1

t D Wt and W s
t is

transverse to F ts .T T
2/. Applying again the homotopy lifting property, we see that W0

t

is homotopic to TGt .W0
0 /. But this implies that the homology class ŒT 00� gets mapped

under .Gt /� to ŒT 0t �, and thus the self-linking classes of T0 and T1 get identified.

7. Legendrian tori in even contact manifolds

In this section, we will briefly initiate the study of tangential embeddings of maximal
dimension in even contact structures.

Definition 7.1. An embedded 2-torus L in an even contact 4-manifold .M; E/ is called
Legendrian if it is everywhere tangent to E , i.e., TL � E .

It is possible to construct examples coming from Legendrian knots in contact 3-mani-
folds as follows.

Example 7.2. Let K be a Legendrian knot in a contact 3-manifold .N; �/. Then

L D S1 �K � .S1 �N;E WD @� ˚ �/

is a Legendrian torus, where � denotes an angular coordinate on S1.

Observe that in these examples the characteristic line field W is tangent to L. This is
always the case: if p is a point in L, where L is transverse to W , then L is transverse in
a whole open neighborhood of p. But this neighborhood projects along W to a surface F
in a contact 3-manifold .N; �/ such that F is tangent to � , implying that such a point p
cannot exist. In particular, we do not have any Legendrian tori in the local normal form
.R4; Est/ of an even contact structure. More generally, it is known that the W -orbits of
a generic Engel manifolds are isolated (Theorem 27 in [22]), cf. [21], and thus a generic
Engel manifold contains no Legendrian 2-torus.

By a similar argument as for transverse surfaces, we argue that a general closed Legen-
drian surface has to be a 2-torus if it is orientable, and a Klein bottle if it is non-orientable.
We now define a homological invariant for Legendrian tori from the linking class as fol-
lows.

Definition 7.3. Let L be a Legendrian torus with trivial normal bundle in .M; E/. We
denote by L0 the embedded 2-torus obtained by pushing L into a direction transverse
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to E , i.e., in the TM=E-direction. The Thurston–Bennequin class tb.L/ is defined as

tb.L/ D lk.L0; L/ 2 H2.M n L/:

Proof of Theorem 1.2. Let K0 be a nullhomologous Legendrian knot with Thurston–Be-
nnequin invariant tb.K0/ in a contact 3-manifold .N; �/, and let L0 be the Legendrian
torus S1 � K0 in .M D S1 � N; E D @� ˚ �/. We write Ln for the Legendrian torus
S1 �Kn, whereKn is some n-fold stabilization ofK0 with Thurston–Bennequin invariant
tb.Kn/ D tb.K0/ � n. We note that the Ln are all smoothly isotopic, since the Kn are
smoothly isotopic.

By Lemma 4.2, we know that tb.Ln/ is a multiple of �K0 . Next we compute this
multiple. The push-off L0n is given by S1 � K 0n, where K 0n is the push-off of Kn in the
Reeb-direction of �. A computation in homology yields (see Figure 2)

tb.Ln/ D ŒL0n� D ŒS
1
�K 0n� D tb.Kn/ � �K0 D .tb.K0/ � n/ � �K0 2 H2.M n L0/;

and thus the Legendrian tori Ln are all pairwise non-isotopic.

Š

L0 D S1 �K 0

L D S1 �K

L0 D �S1 � pt � @D2 D �˛

Figure 2. The push-off L0 is isotopic to tb.K/˛.
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