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§1. Introduction

The famous example of Plis ([11] Theorem 4) has shown us that the unique-
ness in the Cauchy problem for four-fold characteristics does not hold in general
even in smooth coefficients and two independent variables. Similar but more
general examples of two independent variables have been constructed by Nakane
[7]. But when we consider triple characteristics case the results are not ap-
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plicable and we have few of information. There exists only a counter ex-
ample with non-smooth coefficients. (See [3]).

In this paper we shall give a positive result for the uniqueness in case of
equations with smooth coefficients of two independent variables and with triple
characteristics, in spite of the existence of such a counterexample. This result
will show us the uniqueness almost always holds in such a case.

In two dimensional case, there is an effective reduction technique to a
simple case that the set, on which the multiplicity of characteristic roots vary
coincides with the initial surface. This will work well in our proof. (See [13],
[14], [15] for other related results.) Qur main result is the following.

Theorem. Let P be a linear elliptic operator of order m (m=>1) with C*
coefficients in an open neighbourhood w of the origin in R:. Under the follow-
ing assumptions (a), (b) one can find an open neighbourhood @' C @ of the origin
such that every ue C=(w) satisfving Pu=0 and u|,<,=0 vanishes in o’.

Assumptions. We denote by P,(t, x, ©, ) the principal symbol.

@) palt, x, 7, &)=IT 1 Tk pit, x, v, &), where k; >0, p;(¢, x, 7, §) =(r—
a;; E)’-rE?:é a,-jl(t, x) ‘fi—l(f—a,-j E)’forj=i=0, andp,-c,:l,

with distinct non real constants a;; and a;;€ C*(®) satisfying a;;(0, 0)=0.

(b) Let 4t x), i1, j=0 (resp. 4i(t, x), j=*0) is the discriminant of
pii(t,x, 7, 1) (resp. 8. p;;(t, x,7, 1)) as a polynomial in v. We assume that
4,,(t, x) (resp. 47(t, x)) has a finite order zero at (0, 0) unless 4,;=0 (resp. 4;=0)
in w, where we say that g C*(w) has a finite order zero at (0, 0) when g(0, 0)=0
and 9%, g(0, 0)==0 for some a.

We shall mention the organization of this paper. In section two we carry
out a reduction as above and the proof of the main theorem is reduced to that of
Proposition 2.3.  'We devote ourselves to prove this from section three to section
ten. The essential part of proof is section three and section eight. The idea of
proof is a factorization of the symbol of the operator modulo terms of order
less than its order minus one, which is the same as in papers Matsumoto [6],
Okaji [9]. Another sections except for section nine is those for tedious tech-
nicalities. The argument in section nine is routine one.

Remark on notations. The set of all positive integers and all non-negative
integers are denoted by N and Z. respectively.
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§2. Reduction of the Proof of Theorem

Reduction mentioned above works well also in our case by virtue of Wata-
nabe’s theorem in [12].

First of all, it is easy to see that by making a linear change of coordinates
which preserves x-axis one can reduce (b) to a special case that 4;;(z, 0) (resp.
4/(t, 0)) has a finite order zero at =0 (namely, 4,;(0, 0)=0 and (8% 4;;) (0, 0)
=0 for some k;; for example) unless 4,;=0 (resp. 4;=0) in o, since (b) is in-
variant under such change of coordinates. Indeed, we note that for a(z, x)C*~
near the origin in R? and cER,

olatt, x+e) 0o = 33 (1) OF* 220 0, 0) ¢t

By the change of coordinates (¢, x)—(t', x")=(¢, x—ct), the principal symbol

of P is transformed to ’f[l jlk:'[op,-j where p;;=p;(t', x'+ct’, 7' +c&’, &) so that
(a) clearly holds for p;; and the discriminant of p,;(¢, x, z’, 1) and .. ps;(¢, x, 7", 1)
are 4;,(t', x'4-ct’) and 4%(t’, x'+ct’) respectively. Therefore the above special
case of (b) holds for a suitable choise of ¢ by virtue of (b). So we may assume
this instead of (b). Set 4={(}, j); 4;;=0} U {j; 4;=0}. A=¢ means that the
number of distinct characteristic roots is constant in @ and at most three. So
our theorem immediately follows from Watanabe’s theorem in [9] when 4=¢.
Thus we may assume A==¢. We will prove Theorem by contradiction when
A=£¢. Suppose that the assertion of Theorem is not true. By Malgrange’s
preperation theorem one can find 7>0, X>0 such that o,=(—7, T) X(—X, X)
C o, and that for (¢, x)Ew,,

4;i(t, x) = b;;(t, x) r;;(t, x), (I, j)E4,
4, x) =bi(t, x) ri(t, x), jEed,
A1, x) = M, jpea 4iit, %) W jeq 45, x) = b(8, X) r(2, %),
rii(t, x) = t"ff+2?;fo“1 )
P, x) = SR d o
r(t, x) = t++ 050 dx) ¢
where b;;, b}, be C*(w)), d;;,, c?j,, d, e C((—X, X)) satisfying that b;;(¢, x)==0,
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bi(t, x)%0, b(t, x)=&=0 for any (t, x) E@;, and that d;;,(0)=0, d;,(0)=0, d,(0)=0,
and k;j, k}, k are positive integers. We may assume that r(z, x)==0 when z€C,
[z| >T7/2, since dj(0)=0. We set

Ji = '{XE(—X, X);#({ZEC, l"(Z, x) = 0})21}’ i= 17 "'sk;
Jh=JyJi =J\cl(;4), i =1, -, k—1,

where cl(J;) denotes the closure of J; in (—X, X). Then J{ are open in (—X, X),
U, J! is dense in (—X, X), and #({z=C; r(t, x)=0})=i for x&J/. Next we
set

Jij =€l $({zeC\R; r(t, x) =01 = j},j =1, -, 0371, = Jii s

J! ;=7\, j+1), j=0, «++, i—1, where cl(J;, ;+,) is the closure of J; ;4, in
(—X, X). Then J/ ; are open in (—X, X), U,;U; J} ; is dense in —(X, X), and
#({zeC\R;r(z, x)=0})=j for x&J!;. By the assumption one can find
ue C=(w) satisfying Pu=0 in o, u],<,=0, and that supp uNw,*¢. So there
exists Jf; and an open interval I such that ICJ/; and ((—T, T)xI)N
supp u==¢. Since both of the numbers of distinct roots and distinct non real
roots of the equation in o, r(z, x)=0, are constant when x&1, it follows that
for i> j, there exists 0, C~(I), I=1, -+, i—j with —T/2<<0,(x) <---<<0;_;(x)
<TJ2, positive integers r,;, [=1, «+-, i, and b& C*((—T, T) xI) with b(t, x)%=0
for all (¢, x) such that 4(z, x)=b(z, x) Iﬁl (t—0,(x))", and that if i=j, 4(t, x)==0
forall (¢, x)&(—T, T)xI. Weseti =i—j,0p=—T,0;,=T,and 4;={(t,x)E
[T, TI1XI; 6,(x)<t<0,4,(x)}, [=0, -+, i,. We can take i=inf {i; 4;N
supp u=¢} and two cases arise, in one supp u {t==0, (x)} =4, in the other
supp uN {t=0,;,(x)} +¢.

In the former case we take (t, X,) € 4;,Nsupp u and ¢>0 so that
[xo—¢, xp-+€]cI. Consider paraboles P,: ¥, =t-+e Hx—xp)% (c+T)—c=0.
We can take ¢ so small that

{(t3 JC)E[—‘T', T] xI; %to = O, = bio+l(x)} =¢.
We can take
¢o = inf {c; supp uN P, *+ ¢} (1,=>c,=>0) and
(t, x)EsuppuN PN 4;, .
Then 4(t,, x,)==0 implies that the multiplicities of roots of the equation

Pu(t, x, 7, 1)=0 are constant near the point (¢,, x;). Since in this case by virtue
of the fact that the dimension is two, the multiplicities of roots of the charac-
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teristic equation of P in ¢ defined for 7, N&R?\(0) with <N, 7>=0, where
<, > is the standard inner product in RZ p,(f, x, sN+72)=0, are constant
when N, 7 are fixed and (¢, x) is close to (¢, x;) and since u(z, xX)=0 when
Y, (t, X)<0, after the suitable linear change of coordinates at (¢, x;) by an or-
thogonal matrix Watanabe’s theorem can be applied to conclude that (#,,x,) &
supp u which is contradiction.

In the latter case there exists (4, x)Esuppu {r=~0;(x)}. Since the
number of distinct roots of the equation (¢, x)=0 in ¢ is constant in x& I, any
of 4;; and 4} is of the form (1—6;,(x))" c(¢, x) with a positive integer r and a
smooth c satisfying c(¢;, x,)==0, unless it is identically zero or does not vanish
at (#,, x;). We need a lemma.

Lemma 2.1. Suppose that the discriminant of a polynomial in o,
(0,5, y) = o' +ays, y) ' 4+ +ays, y)
aiecw(U)y U= [_S9 S] X[_Ya Y]
is equal to s" D(s,y) with a positive integer n and D& C=(U) satisfying inf
78

| D(s, )| >0. Then the roots of the equation in o, q(o, s, y)=0, is expressed by
[ continuous functions p;(s, y),j=1, -, 1 for (s,y)€[0, S)X(—Y, Y) with a
S,€(0, min (S, 1)), satisfying there exists a positive integer h such that p(s", y)
belongs to C=([0, S) X(—Y, Y)) for all j.

Proof. Set
at(z, y, w) =<y 281 a;) (0, Y)+(N—1) D1 z¥ w,, i=1, -, ] for
z&C, w=(w,, -+, w)EC', and
asy) = @ a) 0s,y) a1 —oyrav,
q'(0,2,y, w) = o' +33;<, al(z, y, w) o’ .

Since a,(s, y)—ai(s, y, w)y=s"(@gs, y)—w,)/(N—1) !, for any N>n there exists
S'e(0, min(1, S)) such that when |z| <S', |w| <M =max sup(|g;|+1), the
H T

discriminant of polynomial in o is equal to z"D’(z, y, w) where D’ is a poly-
nomial in (z, w) with coefficients in C*([—Y, Y1) satisfying inf {| D'(z, y, w)| ;
1z]| <S8, |y LY, |[w|<M}>0. We set
I'=T.;={zyw);|zl<S, |y| <Y, |w| <M, z& {re" 1%
0<r<S',a<f<b}} for a,b&R suchthatb—a<w.

Since I' is simply connected, the implicit function theorem and the monodromy



190 SHIN-ICHI Fuin

theorem give x; r(z, y, wEC=(I'), j=1, ---, [ which are holomorphic in
(z, w) and satisfy q'(z; r(z, y, w), z, y, w)=0 and u, r(z, y, W)+, r(z,y, w) if
i%j, for all (z,y,w)yerl. Set Opr=A{u;r;j=1, -, I}, R={( y, w);
0<|z| <8, |¥| <Y, |w| <M}, U={T,;; a, by. Let R* be the set whose
points are determined by a pair (p, ), pER, 9= @ such that pel’, 'eU
and two pairs (p,, ¢,), (p,, ¢,) are identified if and only if p,=p, and ¢,=¢, in a
neighbourhood of p,. We define the topology of R* so that the fundamental
neighbourhood system of (p,, @) R* with p,&I" and ¢,&P, is a family of
sets {(p, 9); PEV} such that there exists I';€U such that VCI'),pE0,,
and such that ¢ =g, in a neighbourhood of p, and V is a open set with p,& V.
This definition is well defined. We define a mapping #: R*—R by z(p*)=p
if p*=(p, ¢). Then a pair (R*, =) is a covering space of R. (For the defini-
tion of the covering space we refer L. S. Pontryagin: Topological Groups. See
also Ahlfors Sario Riemann Surfaces.) Since R is arcwise connected, each
component of R* with the restriction of # to it is a arcwise connected covering
space of R. It is clear that the set V¥ ,={(p, ¢); pET'} is connected for any
reqU and ¢=®,. Let h;&Z be the number of sheets of a covering space
(R¥, m|z) of R where R¥ is the component of R* containing Vi, with
P:I’_,,,L,,,h p=u,; r. We can construct in the same way as above a covering
space (R, #;) of R for any i=1, ---, [ by the family of functions #; ; r(z, y, w)
=u; (24, y, w), j=1, -, ] where I'=I,, €U with b—a<=z/h; and I';=
{(z", y, w); (z, y, wyI'}. Then since any closed curve in R is homotopic to
one of curves C,: t—(S'/2 &% =1m 0, 0), t €[0, 1]; mE Z, for any open inter-
val is simply connected, the number of sheets of a covering space (RY, #;| z%)
of R where R}, is the component of R¥; containing a connected subset of {(p, ¢);
pE} with I'y=I"_g/ny,e/any @0d =2, ; r, is one. So, one can find F,€
C=(R) which is holomorphic in (z, w) satisfying F;=u;; » on I'; and can be
extended to a function F in C~({(z, y, w): |z| <S’, |y| <Y, |w| <M}) by
Cauchy’s integral formula. Therefore, #; (s", y, w)is C~ in [0, S)X (—Y, Y)
x {|w| <M} for I'=I_z) ;. We will take h=T]i_. h;, $;=S’, and with
FZF—n/4,1t/4: ,Lti(S, y):ﬂi,l"(ss 2 (di(sa y))) when (Sa y)E(O, Sl)x(_Ys Y)a
=F(0, y, (@0, y))) when s=0and y=(—Y, Y). Then, these have required pro-
perties. The proof is complete.

We need a definition.

Definition 2.2. Let U, ;=[0, a], X[—b, b], for a>0, b>0, and 4 be a posi-
tive integer. We set
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Ci(Us) = {g:8€C(U,,), g (", x)EC=(Upsa )}
Let o= C=([—b, b]) be a non negative function with ¢"* C=([—b, b]). We

set

F, (U, ;) (or simply F, , if not confused)
= {g;8€C7(U,;) with g=0,0rg = (t9)’ g, ehEZ,e>0,
geC=(U,,) with inf |g|>0},
lra,b

F;F,?(Ua,b) = {gEFh,¢= g$0} .
We say for a function g defined in a neighbourhood of (0, 0) in [0, o0), X R,
that g is Cj; (resp. Fj, ¢, Fifp) near (0, 0) if g is defined in U, ; for some a, b and
gE C;:(Ua,b) (I'CSp. Fh,¢(Ua,b)s F;f,fP(Ua,b))'

We set g, (1, X, ©)=p; j(t+0;,(x+x)), x+x;, 7, 1), 4,8, x)=4,(t+6, (x+x)),

x+x,), and a%(t, x) =4j(t-+6; (x+x,), x+Xx)), for xE(—¢g, &) with a small e,.
We will factorize g;; when (z, x) close to (0, 0) so that for some h=h,;,

q:(t, x,7) = fI (r—#;54(t, x)), #,4E€CY  near the origin, and
k=1
Uigp—tipwEF, i 2300, 0)—2;;,0,0) =0.

It is clear that g,; will cause no problem because of the remark above Lemma 1.
We want to consider g;;. When 23].(0, 0)==0, there is also no problem. When
4%(0, 0)==0 and 4,0, 0)=0,

gsi(t, X, 7) = ﬁ g% (t, x,7) when (¢, x) is close to (0, 0)
k=1

so that ¢ is a polynomial in = of degree k with C* coefficients and the resul-
tant of ¢{(0, 0, 7) and ¢{?(0, 0, ) is not zero. So if we let 4%/(¢, x) be the
discriminant of ¢{?(¢, x, r) as a polynomial in r, 4} EF, | near the origin which
means an above factorization of g,; is possible. Let us consider the case that
4,,(0,0)=0=4%0, 0). We first note that it is always true in this case that when
(¢, x) is close to (0, 0),

2
a'r q3j(ts X, T) =3 kl:];. (T—-/“;‘k(t’ X)), /‘L;’ke C; and ﬂ§1—ﬂ§zEF2,1
near (0, 0),

gs;(t, x, 7) = (v —25ut, X)) (r —25a(t, X) (=1 ci(t, X)) +dp(t, %)

where
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cj(t, X) = 3/2(,&;-20, x) —'ug'l(t, X)), djk(t, x) = q3;'(t9 X5 :u;'k(ts x)) .

We also note that the well known relation between the discriminant of g;; and
0, q,; that

~ 2 3 2 2
2.1 1/27 dy; = I:!;Il zg (ﬂf'k—/‘sjz) = kl;[l qaj(t’ X, #5) =k1;Il djk .
For this relation we refer B.L. van der Waerden: Algebra I. Clearly #},eC”
near (0, 0) when 4,;=0 and 44=0, and then g;,(t, x, 7)=(r —#/1(t, x)*.  When

7,;=0 and 440, ﬁ dyy(t, X)=0 for all (1, X) (0, &) X (—ey, &) with a small ,.
=1

Since both of two sets {(z, x) (0, &) X (—¢,, €)); dj(t, x)=0}, k=1, 2 are open
in (0, &,) X (—¢,, &,) if ¢, is sufficiently small, for 4} F¥,, one of them is empty.
Thus by the above remark a desired factorization of g,; is possible and by a
change of numbering if neccessary, we have d;; =0 and d;,(t, x)=—4/27 c¢,(t, x)*
which means dj,EF¥;. When Za,-EO, by Lemma 1 one can find a positive
integer & and u3;Cy near (0, 0) such that gy, x, v)= fI (z— 32, x)).
_ 2 E=1
Note that dy;(t, x) = TI (as (1 x)—s3; (8, x))? =27 I di(t, %), and that
>k =1
#51(¢%*, x) is C= in a neighbourhood of the origin in R?. Since 4;;€ F¥, near
(0, 0), 4,,(t, x)=t° A;j(t, x) in a neighbourhood of (0, 0) in R? for some positive
integer s and C™ function 4y; with 44;(0, 0)=%0. So for all k=k’, Uy (1%, x)
— tt3;/(¢%, x) has a finite order zero at (0,0), and by Margrange’s preperation
theorem, in a neighbourhood of (0, 0) in &?
Haja(t%, X)—pgp(t, X) = Hyue(t, X) (¢ s"""’"i‘l <E ¢me(x) £1)
1%
for some positive integer s, and C= functions Zjgy, ¢jpr With Z4,/(0, 0)==0.
Compairing orders of zeros at (0, 0) in the above equality, we see hs= kz Sihnts
- ESE

so we must have c¢;;,»=0 in a neighbourhood of the origin, since 4,z, x)=0(t")
for all x close to 0. This means usj,—us; E F#;1 near (0, 0) for all k==k'.
Similar argument shows that d;, & F#%; near (0,0) for all k. Therefore a de-
sired factorization of g,; is possible. When the multiplicity of £, ;(¢, x) is con-
stant in (¢, x) near (0, 0) for some (i, j, k), #; (¢, x) is C* in (¢, x) from the above
argument.

In the latter case we perform following changes of coordinates with some
>0 succesively,

t=140,(x"+x), x=x"tx, [t'|<20, |x'|<20;
r=tf%), x =% |t|<28, |% <26,
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where f & C5(R) defined by
2.2 f(s) = exp(—(62—s%"") when |s|<d, =0 when |s|>0d.

From now on, d denotes a fixed positive real number and f(s) always
denotes this function in this paper. We shall introduce some notation.

2.3) By = {a(t,x)=C=([0, T1xR); Derivatives of a of all orders are
bounded} ,

(24) B, r={at,x)=C(0, TIXR); a(t*, x)= BY*} ,

(2.5) E,r=A{a(t,x)EB,1;a=0, or a(t, x) = (tf(x))a(t, x), ehEN,
@€ B, ¢ with inf |@| >0} .

Then by denoting new variables (7, X) by (¢, x) anew and by a simple exten-
tion argument by the substitution into the variable x of real valued g C~(R)
such that | @(s)| =308/2 when |s| >75/4, 36/2> | ¢(s)| >56/4 when 76/4> |s| >
58/4, ¢(s)=s when |s| <50/4, in the latter case our proof of Theorem is reduced
to the following Proposition.

Proposition 2.3. Let {(€By  be real valued, h an integer >1, and
Pn (t, X, 7, &) a homogeneous polynomial in (z, £) of degree m>1 with By, coef-
ficients such that
s &
pm(t»' x’ T’ E) = I]; I—Iop”(tx x! T, E): (tl x: T; E)E[O, TO] XR XRZ, k"ZO
i=1 j=
(2.6) where p;y = 1, and for j=1, p;; is a homogeneous polynomial in (z, &)
of degree i with By, coefficients,

for wihch we suppose that

pii(t, x, 7, &) = I:I;[x (r—:5( x) £), (t, x, 7, E)E[0, Ti ] X RX R  with

My E By ryy #:0E By 7, for i1, satisfying that
2.7 inf |Im g;54(, x)| >0 forall (i,j, k),
t,x

%nf |'u'l'jk(ti x)—,uiljlkl(t, x)l >0 l:f izh il »
and that
(2.8) Lijp—Miw E By 1y forall (.7, k), (G, j, k).

We also suppose that for j +1,

@9) 8, pyt, x,7,6) =3 ,,ﬁ (c—2u(t, %) €), (1, x, 7, £)E[0, Ty] X R X R?
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with
YirE By 1y, k = 1, 2 satisfying that
inf |Im #j(t, x)| >0 for all k, uj1—ujEE, ¢, and that

P3i(t, x, w58, x), DEEy ¢, forall k.
Then if Q is a differential operator with the symbol Q(t, x, , E):é(t, x, 7, f(x) €),
O(t, %, 7, 6) = pult, X, 7, C(t, X) T+E) ()2 ppy(t, X, 7, E)+1 (L, x, 7, €),

where p,,_, and r are respectively a homogeneous polynomial in (z, &) of degree
m—1 with By, coefficients and a polynomial in (z, §) of degree<m—1 with By,
coefficients, where we suppose r=0 if m=1, there exists T,&(0, T,) such that
every us C=([0, T,) X R) which is flat on t=0,=0 when |x| >0, and satisfies
Qu=0 vanishes when t <T,.

Proposition 2.3 follows from a Carleman estimate: there exists C>0 such
that for large n>>0 and small 7'>0,

(2.10) C||Qu||™>||u||™, ueS,, where

2.11) Sy = {ueC=(0, T)XR); sup(1+ | x|yt M(T—1t)*|9i 0l u| < oo
for all non negative integers i, j, k} ,

(2.12) [ul|* = 7" ull 20, yx s B2 1, uES7 .

To deduce (2.10) we shall prove that when under the assumption and
notation of Proposition 2.3 with m<3, k,,=1, r=0, there exists C >0 such that
for large n and small T,

(2.13.m) CllQu||®>|[u]|% for uesS,,

(2.14.m)  C (|Qul|"=EM) 4n= 2| Qu|| ) 2 SNy 14 1 || Qe ]| ™, uE S

where

2.15) 1l = 33+ 2esom B> 727k || Ay DY ul|+m=il2=0)
2.16) 4, = Kf€) (x, D),

that is,

A u(t, x) = 12z Sg eist=it ¢ £(xX)E* u(t, y) dvd€

(2.17) Qv = [(t<eHHVOM fERTUB I (fERETI %2 5,
{palt, x, 1, £ (2, )04 0) (4, X, 7, () O} (1, X, D, D,) .
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Our main task is to prove (2.13.3) which we will devote, and when m==3,
(2.13.m) seems already known. Once (2.13) and (2.14) is established, one can
easily pass to (2.10) using standard partial fraction decomposition.

§3. Factorization of Some Third Degree Polynomial
Definition 3.0. Let n&N, T>0. We define
o= {x =(x, =+, x, ) ER"; x,€(0, T)} .

Let py(t, x, 7, &) and p,(t, x, 7, &), (2, x, 7, £)ER%, be elements in CF(R?)
being homogeneous polynomials in (z, &) respectively of degrees 3 and 2 with
coefficients in By in (¢, x). Let A&N. We suppose that

(G.1) 8, pyt, x, 7, €) =3 f{ (c—u,(t, ) £), 2, B, with inf |Im 2| >0,
c:=3/2(u;—u,)EE, 1, dy:= py(t, x, u(t, x), VEE; 1.
Then we have
(3.2) pit, x, 7, &) = (z—uy(2, x) € (r—uy(t, x) E+(—1)! c(¢, x) &)+d\(t, x) 2.
Let { (¢, x) = By be real valued and put
3.3) Ly =7—ut,x) (@ x)c+E),l=1,2.

Then we can express uniquely

2 : .
(3.4) P2 = ;0 a; L1 &%, a,E By, 1 s
(3.5) CT+E =aq Ll+b[ E, a;, bIEBh,T Wlth inf Ibll >0 N
i,z

since ¢ is real and inf |Im g;| >0. We set
t,x

(3.6) g = pit, x, 7, C(t, X) T+E)Hf () po(t, x, 7, 8),
(3.7 g =d; b} E4ay 12 E,
(3.3) G, =<gp, H =<(ch; £)>,

where f is the function defined by (2.2) and <{z>=(1+|z|?"2. Then a direct
computation shows
3 . .
(3.9 q = LY(L,+(—1)' cb; &)+g+ A4y Li+4d; ;1 Ay L &7
+f 221 a; Li &7F,
Ail == 3a; b:}—i fOI‘ i-_-':(), AOI - (“‘1)’ Ca,—{—dl a? .
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Definition 3.1. Let T(0,1) and AEN. We say a(t, x, £)e C*(R}) be-
longs to ¢=34(T, h) for o0, 1/2] and d=(d,, d,, d;) with d, <0, if q satisfies

|8 a(t, x, &)| < C, Y *1-yfe®2. 5% for all @
where 8% = 8%1 872 9,
(3.10) Yy = 1 e U ENU2 g (po BT
Yrgp =t EYTED, e, = 141/(10h) .

Note that
3.11) abs i+ if acX? bel;.

Let 4(¢, x) and 4,(¢, x) be respectively the discriminants of ps(¢, x, 7, 1) and
8. py(t, x, 7, 1) as polynomials in =. Then similarly as (2.1),

(3.12) 4=27 ,1121 d,, 4,—4/9¢.

Since ¢, ;€ E,, 1, the possible cases are the followings.

(3.13) (1) 4=F0. (2) 4=0,4,%0. (3) 4=0,4,=0.

So from the definition of E, ,

(3.14) the only one of d, and d, is identically zero in case (2), and we have
(3.15) d;=0 for any / and ¢, =4, in case (3)

so that

(3.16) we delete sub-1 from all above notations in case (3), since in fact they
do not depend on / in this case, namely we denote &, by # and L, by L for ex-
ample.

Since ¢, d;E E,, ; it follows from (3.9)
(3.17) 2> |14A4y| =1/2 when t < T’ for some T"<(0, T).
The aim of this section is to prove the following lemma.

Lemma 3.2. Let T’ be as in (3.17). For each cases in (3.13) the following
Sacts holds for some T, (0, T").
Case (1). There exists a finite partitions of unity of R}, 3e; i+ 231 -1 eor=1
such that

(3.18) i, e € 21Ty, h);
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(3.19) lg:] <Ct™EX¥  on supp gy
where
£ = 3/2—1/(3h) ;

(3.20) CL&>=>t"* on supp @, and on supp doy; for every iE1 there exists
I = 1) {1, 2} such that

3
(3.21) g = (1+4y) ,Ié[: (Ly—o;;) if (¢, x,&)Esupp @; ,
Clg| =t™&X* on supp @; with

(3.22) o0 ZCFLD
8,0tV 301D 5, 6.t 07D, 8 0, 1YOR 3N ),

where by definition for a topological space X
aE = {ae;ecE} for ac€C(X) and ECC(X).

Case (2). There exists a finite partitions of unity of R3To, Yier 0, +25 1 pg=1
such that (3.18)~(3.20) hold, and such that I=I,U I, with I, N L =¢ so that for
every i1, (3.21) holds for some |=I(i) and

(3.23) 0,; X301 satisfying (3.22)

and for every i €1, there exists I=I()E {1, 2} and o;; satisfying (3.23) such that
(324 ¢ =(+40) Li—eé—o) [LLi—0oy) I (@xE)Ssuppy;

where

(3.25) ¢; = (=D (14+4y)7 by c.

Moreover the following facts hold.

(3.26) | g1 | <CLEP onsupp ¢, i€l
le] <CLE™* onsupp @, i€,
ce0,;€ 230D for j=1,2,3,i€l,.

Case (3). There exists a finite partitions of unity of Ry, Sier ¢:+9o=1 such
that (3.18)~(3.19) replaced ¢y, by ¢, hold and (3.21) hold for some

3.27) 0, €230 satifying

(3.22) otV FEOD
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8, 0,tON1 FOOD § o, .tV FPOD, g, g, .tV 3T,
Furthermore there exists ¥ € X} such that

(3.28) ¢¥ =1 onsuppg;;
Clo;;—ou] =max || +17KEDV? on supp of if j*k.

Proof. We may assume 7'<<1. For S€(0, T") and e<(0, 1) we set

(3.29) r'(S) = {(t, x, §)ER%; 1* G,;> &V,
TS, &) = ()N DP(N D',

for I=1, 2, i=1, 2, 3 where

(30) DY — {G,<10cH}, DP — {H,<10¢G},
PP =15 i< G,<20 B}, @' — {G,>10"1 G} with I/ .
€

Then,

3.31) 27 < |ch E|HTV2<1 on IT'HY(S, ) UTH3(S, &) if eS™*>20,
271< | g,|GPI<1 on I'(S) if S*>2,
(S, e) =TS, e) =¢ if eS™>10and ¢=0;

and there exist constant C>0 and S, (0, 7") such that

(3.32) max (2, C't ™) <> onI'(S) for SE(0,S,),
Smax(Uh2{3) CGU3> | d)|(ED* on I'y(S) for SE(0, S,) .

Indeed, H,>¢S /10 on I'*i(S,¢) for i=1,3 and G,>S™" on I',(S) which
means (3.31), since {z>>2, z&C implies |z|>1. To see (3.32) we set for
Se(0, 17,

lalo,s = max |a(t, x)|, aE By, 1.
[0, S]xR

It suffices to prove separately for each of (3.32) the existence of C and S,. Since
d,EE,, 1, dy=t'* d, for some d;EBh,T so that |g| stl‘illo,s|blo,s3<f>3+
|G ]0,s<ED® by using 0< f<1. Thus there exists C;>0 such that C, *C¢6)*>
&% on I',(S) for any S which shows the first one of (3.32) and there exists C,
such that |g;| < C, S®inWh23) (£33 on I'y(S) for any S. On the other hand
I8l =10,1°|dy| 1€]°—|ay | |£]? so that

nf 1By )" 1] 1€ 17— aulos<E> 10 GI°
’S CY/3 SminWh/3) G23(eS  on T'y(S)
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in view of the definition of I')(S). This shows the second one of (3.32) in view

of inf |b;| >0 and the first one of that.
[0,TIxR

Putting L,=H}®0 or L,=G}%s in (3.9) we get

(3.33) GH? 0, ) = (1+A4y) H, 1y(0, 2", w"),
q(Glla ') = (1 +A01) GI rz(a, 212, WIZ) s
(H1/3 ') = Hl rs(aa ler wlS) s
where §(o, ¢, x, £) is the polynomial in defined by putting L,=c in (3.9),

(3.34) ry(o, z, w) = *+(w,+w, 2) ®+w; 22 a+w, 2%, (z, w)EC xXC*,

(o, z, w) = o®*+w, a®>+w,0-+2z, (z, wEC XC?,

rio, z, w) = (1+w,) 0®+(w,—z,) o>+ w; 0+2z, (2, W)ECIXC?
(3.35) = Gi® HI®, w" = (14 A4y) ™ (—¢, EHTY3, GT¥B v, G713 v, g, GTY

= (1+40) 7" & G, w? = (1+4y) (=€, EGT+GT VP v,, GT1 vy)
B = (¢, EHT'S, g HT"), w® = (4o, HTV® vy, HT ),
v, =dy Ay E7 4V 0 7, 6 = (— 1) cb
Lemma 3.3. Set for (0, 1),

(3.36) X, = [0, 7]x {weC*; %g Wil <10 for j—1,4, max|w;| <1},

— {zEC;%SlzI <10} x {weC?; |w,| <7, |w,| <n} ,

— {(z, w)EC? X C%; 0<|z[<1o <z <@ max | w;| <7,

D 3 2'— s
| Dz W) = ¢ 0}

where Dy(z, w) denotes the discriminant of r; as a polynomial in 6. Then there

exists 7€ (0, 1) such that one can find for any 7<7, finite open coverings U;; of

X; , as a subset of C XC*, C XC? C* X C® respectively for i, holomorphic functions
i on Uy, k=1,2,3 for i+1, C* functions 2,;(t, w) on U;;N (0, +o0) xXC*

satisfying

(3.37) Uy; = B((0, w?), v), w’==0, v<<1 where B(*, v) denotes the Euclidean

open ball with the center % and the radius v,

n(o, 1, w) = IL @ —Au(t, W), (6 WE TN O, +20)xC",

|0} 6;(21;‘1(": w)+w) | <C, s,
|85 8% Auu(t, W) | < Cou 177 for k1,
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3
(3.38) (o, <) = El(a—lz;'k) on Uy,
3

ryo, ) = (1+wy) 1:!';[1(0 —A3) on Uy,

2ii87F 20 everywhere on Uy; if i==1 and k=K’ ,

100 25| <Cy on Uy; if i1,
(3.39) Cl2j—2pj | 2m’ax|12is| +1on Uy if k=K',
(3.40) >3, ¢;; =1 on a neighbourhood of X;, and ¢¥ =1 on supp ¢;;,

where the constants C,,, C can be chosen independently of u, but it is not im-
portant in our argument.

Proof of Lemma 3.3. We first consider the case i=1. From the implicit
function theorem, for any w’e C* with w3==0 for j=1, 4 one can write near (0, w°)
r,=(c+2) (6®+2,0-+2,) where 2, 2; are holomorphic and (0, w)=—w,, because
(e, 0, w)=0>+w, 0% Since w, 28=r/(0, z, w)=22, and w, z2=08, (0, z, w)=2,
+22,, and since w{==0 and 2(0, w°)==0, near (0, w°), 2,=0(z%) as z—0 and one
can write A —42,=z% 2, where 2; is holomorphic with 1,0, w*)=#0. So the fac-
torization as in (3.37) is possible near (0, w°), and for i=1 Lemma 3.3 follows

now by a standard argument by using the compactness of {weC"; —llo—s [ w;]
<10 for j=1, 4, max |w;|<1}. When i=2, for any 2’eC\ {0} one can fac-
torize ry(o, *) nealr_z(’;", 0) so that (3.38), (3.39) hold, since r,(a, z, 0)=0+z, and
Lemma 3.3 for i=2 follows from the compactness of {zC; 1—103 |z] <10} .
The case that /=3 also follows similarly, since D;#=0 on Xj, and X;, is com-
pact. The proof is complete.

Lemma 3.4. There exists €, €, (0, 1) with e,<e, and N,E[1, o) such that
&, satisfies the condition for the 7, in the statement of Lemma 3.3, that ¢~ Vo*>20,
and that e}o<<S, where S, is the constant in (3.32), and such that for the sets

(3.41) Ihi(e) = {(Z'(t, x, &), w(t, x, &)); (¢, x, E)I'"i(eds, &)}, e€(0, &) ,
we have for any e (0, &,) that

(3.42) Prie)cX,,, for i=1,2;
fll's(e)CX&e .

Proof of Lemma 3.4. From (3.32) and the definition of I',(S) there exists
C, such that
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(3.43) |v,|Gre-IBL C, SE-I/E minWhalD on '(S) for SE(0, Sy, i =1,2

where S, is the constant in (3.32). Using the fact that ¢, 4,E E, ; we see as in
the proof of (3.32) that there exists C, such that

(3'44) IAOIIO,Sgcz Sl/h, SE(O: T] .

Using (3.17), (3.31), (3.42), (3.44) one can find S,E(0, S;) and C; such that for
any & with eS™">20,

3.45 0<z<Cye¥3, 1/4< | Wit | <2 for i= 1,4, max|w}|
8 i=2,3
SCS Sl/& min (1/k,2x/3) , on P"I(S, e) ;
1/4£ lzlz, 32’ IW{ZI S C.,.(ells—{—SVG min(l/h,axls)) ,
lwézl Scs S1/3 min(l/h,2:¢/3), on ]-vl,z(S’ E) :
1/2< | 283 <1, ¢/20< | 253 | < 10/e, | wi3| < C, SV*,
|W{3! Scs(e-l SIIZ min(l/h,ZKla))(i—l)/:i for i= 2’ 3’ on I-vl.a(S’ 6) .

We take N,=(6degD,--20)/min (1/h, 2x/3) so that e~ Smin(W/h2/3/2_ ¢3(deghy+3)
if S=e"o, where D, is as in Lemma 3.3 and deg D, is the degree of a polynomial
D,. One can choose ¢,&(0, 1) such that eo(S;-e5 %> 20, and satisfies the
condition for 7, in the statement of Lemma 3.3, since N,>>1 and #>1. Then it
follows from (3.45) that for any e (0, ¢,),

(3.46) 0<z"<KCye's 1/4< | Wit <2

for i=1,4, max|w!'|<C,¢, on I''"Y(eVo, ¢) ;
i=2,3

1/4< | Z%2| <2, |w?| <2C, €3, on I'**(eVo, ¢) ;
1/2_<_ |Z{3| < 1’ 6/203 Izésl < 10/6, lwlsl Sca ES(degD3+3)’ on F"3(6N0, 5) ;
where |w|=max |w;| if w=w;eC".
1<j<n
So the first one of (3.42) is now clear, and we can choose ¢ &(0, &) such
that this holds for any e (0, ¢®). We have to estimate | Dy(z, w)| from below

on I''3(e¥o, €) to see the second one of (3.42).

By Taylor expansion at w=0 of D; and (3.46) one can find C, such that
for any e (0, &)

(3.47) | Dy(2%, w*®)| = | Dy(2", 0)| —C (17 1)deaDs1 gdeaDyt3 g h3(eNo, ) .
We see as in (2 1),

Dy(z, 0) = 27r,(0, z, 0) r;(2z,/3, z, 0) = (27z,—4z}) z,
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so that

(3.48) | D", 01 = 27| g1 Hi' | g1 @67 | Hi

To compute g; _T (€,&)® we first note that from the uniquness of the expres-
sion in (3.4) and (3.5) and L, —Lz—— ¢r+8),

(3.49) Qo —ag, by—b,EcBy, 1,

for indeed, from (3.4) for /=1, (3.5) for /=2, and the above equality we have
Pr=>3-o(a;+cd;) L €7 for some @,E B, ; and the uniqueness implies a;,+
c@;=aj,, and the latter follows similarly. Next we verify that

2 4
dy = p(t, X, ty, 1) = py(t, x, ‘314‘#1, 1) = dl_—é? c.
From this equality and (3.49) we obtain by noting inf |5;| >0
i,z
4 = 3 __ 4 1 3(14+1) .3 b3 3 1/2 2
Ty @<é)y = (dz—77* (=D ) bi&%-ay fH2E

= gt:‘*'bu'(dlfz) @6)+by(e,6) ¢
+by @)
for some by, b,y B, ¢ if Is1'. Therefore by using (3.31) and noting |g;| >
1/2G;, on I'*¥(eMo, €) for e (0, ¢,) which follows from G, >1/10G;>&™V%/10>2
on I'¥(e%o, €) for e€(0, &),
| 81— @ | HT* = €[200— |buy o | dy €| HT™®
—|Bulor|EIHT on I'¥(eMo, ), e€(0, &) -

By (3.32) and the definition of N, there exists C, such that for any e (0, ¢,) the
right hand side is estimated from below by ¢/200—C, 2482+ on I':3(e¥o, ¢)

so that one can find eé®&(0, ;) such that Ig,—-% €,€)P|Hr'>=¢/210 on

I'3(e%o, ¢) for e=(0, ¢®), and consequently by this estimate, (3.48), (3.30),
(3.31), and (3.47) we can conclude that

(3.50) | Dy(27, w'3)| > 62/200— C,(1 -+~ 1)derDs~1 gdegdyt3
on I''¥(eMo,¢) for e&(0, e®).

Hence one can find ¢® & (0, ¢®) such that I'¥(e)C X;, for e€(0, ¢®) in view
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of (3.46) and the definition of X;,. Finally we take &, =min (¢, e®), and N,
&, and &, in the proof have the desired properties for N, ¢, and ¢, in the
statement. This completes the proof of Lemma 3.4.

Set with the notations in Lemma 3.4,
Ty = (&/2)%, I'y = T'(Ty), I' = I'(Ty, ,/2) .

Let 2(s)e C~(R) with x=1 when s>1, ¥=0 when s<1/2, 0<¥ <1 when 1/2<
5<1, and define the functions on R} by

(35D @ = Xijeyes PH = @F Xy, for i=1,2,
PR =g 2 13,21/25 ¢=Ix<3 =gpfx 13,80/4 5
& =(1—x) (16071 t* GKEY™¥?),1=1,2

where ¢, =0, ; 4, ¢7k=@1,21,4o with

(3.52) 0, =2(eGy, Gr)-2(R* t* GKEY™?), I+1",ecR, and
Xy, = X(eH, GTY), X1, = X(eG; HTY) ,
Xy =2X('H'G)-x(e* H, GT"),ecR.

Then we have

(3.53)  supp eI, il =1 onsupp ¢" (X ¢ +8)=1.

We shall explain (3.53). The second one would be easily observed. ¢, 7,
and @, are as in the following:

(3.54) @, =1 when t* G,<80<&>¥2, and supp ,C {t* G,<160<&>¥?} ;
¢, = 1 when t*G,>80<&>¥? and G,>G,, and
supp ¢¥ C {1 G,;>20<EX¥* N D
@, = 1 when t* G,>80<&>*? and G,<2G, and supp ¢F
C{t* G,>20&¥ N g7 .

So, supp ¢¥CI';N 9D and 3Y(p,+&;)>1 from which the rest of (3.53) follows,
because supp %;,., CD$7(e,/2) for i=1, 2 and supp Zs s C DSV (e1/2), and be-
cause X); ¥;; .>1. From the property of ¢, in Lemma 3.4 we can choose U;;,
Aijn> ©ij» @F; as in Lemma 3.3 for 7=¢, when i=1, 2 and for #=¢,/2 when i=3.
We define

i = {(t, x, &)’ ; (", w) (1, x, )€Uy},
It = {(t, x, &) ; (2", wh) (¢, x, €)= (supp ¢F)} .
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We regard I'""/ and I'"#* as subsets of R},. Then,
(3.55) rei = ety phid, R = U (supp ¥)°,
i and ' are open in R¥, .

Now we define the functions on R}, ¢y;;, 9% j, 01:54, k=1, 2, 3 by the following:
(3.56) Prijs Piss Oujp =0 on (I'H)°,
and on I,
(3.57) P = ' 0,2, W), ofi; = ol - o¥i(2", W),

oy = Hi% 0§ (A (2", w)+wi')- (2", wh),

opp = HiP @i« 2 (2" wh)-oFi(z", w') for k=1,

Opajp = G1%- 0« 2054(2", W) - 0F(2", W),

Oz = H }/s'goalks'lsjk(zma wh)- o(2", W) .
Then ¢y;;, ¢%j, ;S C™(R},) by (3.55), because they are C= in I’ Fhii,
and (supp ¢%)°, and we see from (3.53) and (3.40),
(3.58) ¢¥;; =1 onsupp ¢y; .
From (3.37), (3.38), (3.58), and (3.33) we obtain

3
(3.59) 4(o, -) = (1+4y) (6—¢, §—op;1) ’};Iz (6—0p;1)
if (¢, x, £)Esupp ¢;;;
where ¢; = (1+4y)~*(—1)"*! ¢b, as in (3.25), and

(3.60) g(o,-) = (1+Aol)kljl (6—0y;3) if (2, x,§)Esupp ¢;;; for i=2,3.

From (3.40) and (3.42) 33; ¢, ,(z", w)=1 on I'"* so that 33; ¢;;;=¢"* by (3.57),
since supp (33; ¢1;;)C U supp ¢,; C I, and since supp ¢'*C I by (3.53).
Thus in view of the last of (3.53),
2
(3.61) 23 (

3
=1 =1

Ej ¢1ij+¢z)2 1.

We shall consider the estimates of derivatives of the functions constructed
above. To do so we prove the basic estimates first. We remark that since
&3~ No* > 20, e)olS,, No> 1, £>1 with the notation in the statement of Lemma 3.4,
e!"¥*>20 and Mo < S, for any e (0, ¢,) so that from (3.31) and (3.32),

(3.62) 27'< |eb, E|HTV*L1 on IHyT?,
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27'<|g|Gr'<1 on Iy,
rt=rd=¢ if c=0;
there exists a constant C >0 such that

(3.63) max (2, C™1t7%3) <> on T,
CGi*>|d,|<€>* on I, .

We also note that

(3.64) E‘%f(x) = (82 —x2)"% F(x) f(x), | x| <& where 8, is a
polynomial,

and that

(3.65) if a€E, ¢,
a“a(t, -x) = t—ul.(az_XZ)—Zaz,(zj ﬂaj(x) adj(t’ x)) a(t’ X), |X| <6
with a finite number of a,;E B, and polynomials A,;.

Lemma 3.5. We denote 8% =0% 8% 8% for a=Z3%. Then we have the fol-
lowings.

(3.66) |6%a| <C, (/Fmnte)=oy (0 for a€B,y.
(3.67) |8%,| < C, fYOM =4 (£>~%.W | g;| on I, where
(3.68) T, = Ve G .

(3.69) |0t g,| <CKE>*|g,| on I'y when d;=0.

(370)  [8%(d £ S C(VEP fUENES GrifmineTiey
Xt™*KE> . GEI3 on Iy for i=1,2.

(3.71) Iam(Cf)l < C,(tll(z")fl/“h)(E}l/z H]—lIS)min(l,dz)
Xt~ *KE>"%-H}® on I, .

We remark that from (3.62), | x| <& on I';, since g,=0 when | x| >0.

Proof of Lemma 3.5. (3.65) is easy. We show (3.67). By (3.64), (3.69),
and that d,€E, r,

(B.72) 9% g =170 —x)) "2 {(2; Baj Guj) 81+ Taj buj) [ €%}
xX&™% if |x| <0 and £30

with finite number of a,;, b,;E€ B, and polynomials of x, B,;, 7,;.
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From (3.72),

(3.73) 8% gi| <C, 17 (F—x0) 2| &| s (| g |+ €]D) if |x]| <O
and £=0.

On the other hand,
(3.74) | —x2|7F| g | P C fUOBEEP [ £ 4 [£]%) if x| <0 ;
(375 CrE,LK(NEW|E| 6|7 G+ |E|12 G +1<CY¥, on T

In fact, (3.74) follows easily from that 4, E, ;, and the second inequality of
(3.75) follows from the inequalities <€>~Y3< Ct*/°< Ct¥Y®" on I', and <{&> G7¥3
< C*BL Y on I',, both of which are consequences of (3.63) and that
2&/9>1/(6h), and from which G}/3<(1+|g,| )2 < CtYE¢>. The first one of
(3.75) is trivial. (3.67) is proved by combining (3.73)~(3.75) and using the
second fact of (3.62). (3.69) is trivially from that |£]|>1 on I'; by (3.63). We
pass to (3.70). By (3.65) and the remark before proof,

|0%(d; &) | < C, 171+ |82 —x*| %2+ |d}| |£]°777% on I,
from which (3.70) for a,>3—i immediately follows, and when a,<3—i,

|07 e |y - €]
< (1872 : |y *7)| d<EY| Sy on T,

from which (3.70) for a,<3—i follows immediately by using (3.63). (3.71) can
be proved similarly as (3.70) by using that c€E; ;. The proof of Lemma 3.5
is complete.

Lemma 3.6. Let U and V be open sets of Ry and R} respectively, let
FeC=(U), and let F=(F,, ---, F,) be C* mapping from V into U. We assume
that there exist positive functions Z(y), N;(y) on U, j=1, :+-, m, and M(x) on
V,acZ" satisfying M,.g=M,- Mg such that

sup 8% F()| Z(G) N()' <o forall acZ
where N=(Ny, -, N,,) and N* = 11:"11 N%i, and such that
sup |8% Fi(x) | My(x) ' N(F(x))'<oo forall acZ’.
Then, sup |0%(FoF) (x)| Z(F(x))™ M (x)*< oo for all e Z".

This lemma is a simple consequence of the chain rule. We omit the details.
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Definition 3.7. Let U be an open set of R", and Z(x); M (x), aEZ" be
positive functions on U satisfying M, g=M,- M. Then we say that ac C=(U)
belongs to the set S(U, Z, M,) if

sup |8%a(x)| M (x)' Z(x)"'< oo forall asZ.
€T

Lemma 3.8. Let U be an open set of R". Then we have the followings.
1. Ifaq,€E(U, Z;, M), i=1,2, then a, a,=E (U, Z,+ Z,, M,).
2. B(U,Z M)CE(U,Z, M,)if Z<Z and M,<M, for alll a.
3. Let a=(a, ***, a,) be C~ mapping from U into R" (resp. (0, +o0)") with
a,€8(U, 1, M,) (resp. a,;€E(U, a;, M,)), and let F be a C~ function on an open
set of R™ (resp. (0, +0)") containing the image of a of U such that FE
EWV,Z,1) (resp. E(V, Z,(¥*)Y). Then, FoacE(U, Zoa, M,).
4. Let a=(ay, ***, Ay Amyrr, ***» Am), M=my~+my, m;>1 be C* mapping from U
into (0, - o)™ X R"™z with a,= 8(U, a;, M,) for i=1, -, m; and a,€5(U, 1, M)
for i=m;+1, .-+, m, and F be a C* function on an open set V of (0, + o)™t X R™z
containing the image of a of U such that FEE(V, Z, (y'*)™Y) where y'=(y,, +++,
Vm) Jor yER". Then, Fea€ E(U, Zoa, M,).
5. Let acC=(U), be positive, and €5 (U, a, M,). Then, a’E(U, Z, M,) =
B(U,da'Z, M,) for all sER.

Proof of Lemma 3.8. 1 follows from Leibniz rule, and 2 is trivial. The
former (resp. latter) of 3 of the case that in Lemma 3.6, V=U, U=V, Z=Z,
F=a, N ;=1 (resp. N;=y;), F=F where the right hand side denotes the notations
in 3. 4 is similar to 3. To see 5 we take F=¢°, t €(0, +o0), s€ R in the latter
of 3. Then, a’€E(U, o', M,) which implies from 1 that a'5(U, Z, M,)C
BE(U,d'Z, M,) and a5 (U, a’Z, M,)C E(U, Z, M,) as desired. The proof is
complete.

Remark on notations. We denote a statement % in a statement #% by
#x—*, For example, 1 in Lemma 3.8 is denoted by Lemma 3.8 —1.

We set for /=1, 2, p€]0, 1], an open set U of R%o, and a positive func-
tion Z on U,

(3.77)  EXU, Z) (or simply, £5(Z) when U=R3} ) = E(U, Z, M;*) where
LP = e fUOR) g S gt (EN e

We also define

(3.78) o, = 1 when d,=£0, o, = 0 when 4,=0, for /=1,2, and
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0o = max (o, 0,) .

Fact39. 1. |97 (D' |<CL 1%,z = x4/ —1 ).
2. |(d/dE) p(&)| K CKEY* if o= C~(R) and being constant if [£| >R for
some R>0.
3. |(ddty | <Cyts7F,t >0, sER.
4. |95 0% +w) (2, w)| < Cp 1175 on Up; N (0, 00) XC*.
5. |85 8% 2t w)| < C,py %27 on Uy; N (0, 00) XC* for k1.
6. |07 4z, w)|<C,on U fori=1.

Fact 3.10. 1. a=5(1) if a€ B, ;, where we regard a as a constant func-
tion in £, With similar convention,
2. asEIKED™) if a(x, £) e ST o(R).

In view of Lemma 3.5 and that ;> C, >0 on I'; ((3.75)),

(3'79) g,EE{,I(I’,, Gl): cEEEO(P,'l u I‘I’S’ H}/3)’ d)‘ 53""'6’,5'0(]"” G§3—i)/3)
for i=1,2.

By noting Facts 3.11—1 and 3.9—1 an application of Lemma 3.8—1 to cb,&
and that of Lemma 3.6 with F=<z> and (3.79) give

(3.80) 1€8, (I, GI), HIEE(r"UT", Hi),seR .

In the similar way, applications of Lemma 3.9—1 to the last of (3.79), the
former of (3.80), Fact 3.10—1, and those to Fact 3.10—1, 3.10—2, the former
of (3.80) show that

(381) G1—(3—i)l3_ v‘-EE},’([‘I’ 1) ’
and by (3.80), (3.81), Lemma 3.8—2,
(3.82) Hy @By, BL (I U T, (G, HTY)e-903)

(3.71) shows that |8%(c&)| < C, tV@m ==, fUENEN "% on I', when @,>0, and
that |8%(c€)| <C, ML°- H}® on I', when &,=0. So, from that M’ is increas-
ing respectively on «, and p, from (3.80), and from the definition of ¥, Leibniz
rule gives

(3.83) cE-GRe 8L (I, 1),

Using (3.84), (3.79)~(3.80), Fact 3.10—1, and Lemma 3.8—1,2 it is easy to
see that

(3.84) Z, whe g, (r', 1), 2" e g (', 2.
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Applications of Lemma 3.8 —4 with (3.84) and Fact 3.9—4,5, that of the former
of Lemma 3.8-3 with (3.84) and Fact 3.9-6, and those of the former of Lemma
3.8-3 with (3.84) and that ¢,;, ¥, C7(U;;) give
(3.85) Xip+w) (2, whe s, ([T, 21,

le,,EE,‘,I(I‘"‘, ZY)?) for k=1,

2, whyes, (v, 1) for i%l,

¢|‘j(z”: W”), Sz’:'kj(z”s WIE)EELI’,(FI'I’ 1) .

Lemma 3.11. Let U and V be open sets of R" with UCV, and let Z, Z, M,
with a€Z", be positive functions on V satisfying M,.g=M,Mg. Then we
have the followings.

1. 8PacB(V, M, Z, M,) if acE(V, Z, M,).

2. Let ac=C=(V) and assume that supp da C U, that a|,=E(U, Z |y, M,|y),
and that |a| < CZ for some constant C. Then acE(V, Z, M,).

3. Leta, beC=(V)and assume thatac E(V, Z, M), that supp a N supp db C
U, that b|y€E(U, 2|y, M,|y), and that |b| SCZ~for some constant C. Then
a-b8(V,Z-Z, M,).

1 and 2 are obvious. 3 is a simple consequence of Leibniz rule. We omit the
details.

Lemma 3.12. Let I5!', and define functions on R% by
a, = Gp-Gr', @, =1t"GLKEY™?, ay = G, Hr* .
Let x(s)e C=(R) supported in [1/2, o) and =1 on [1, o), and set

by = x,(ea)) %, (R™*a;), by = xz,(ea3"), by, = z,(eay),
by = x(e7"ay)- x(e7'a;) for es(0, 5), RE(20, o), eE[e,/4, €]

where ¢, is the constant in (3.51).
Then we have that

(3.86) supp b,cI'N I, NI, byeZ; (1),
b-b,eE, (1) if bes, (1) withsupp bCIND',i=1,2,3.

Proof of Lemma 3.12. 'We note that
(3.87) aIEE;o(I'l nNr,N9', a), azEE;”,(Pb a,), a;€ E,I;,(F"lﬂ I3, a).

Indeed, the latter two are clear from (3.80) and the first one follows from (3.80),
Lemma 3.8-1, the fact that
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GyEE T'yND', Gy)

which follows from Lemma 3.8-1, the fact that ¥, <103 %, on 9' which
implies M./ <C,M%L%. t*GK&>~%2>10 and G;»>G,/10 by the definition of
X, and the range of e, R, which implies the first one of (3.86). So, the former
two of (3.87) and an application of the latter of Lemma 3.8-3 with F(y)=
%, (ey) - 1y(R7! y,) yields b, 5, (I''N TN 9, 1) so that consequently the first
one of (3.86) and Lemma 3.11-2 shows b, E,‘,o(l). To see the last one, we
observe from (3.30), the range of ¢, and the definition of x, that

(3.88) D'NIrNsupp db,CI'*i=1,2,3.
In fact,

supp dblc '{(t’ X, E)ER%O; a3(t5 X, E)E[es 25]} s

supp db,C {a;E[1/(2¢), 1/e]}, supp b;C {a;E€[¢/2, 2/e]}

933) n R:}O - {036(5/10, 10/5)} s
so that U; supp db,C D(e,/2) which implies (3.88). Since the latter of
Lemma 3.8-3 yields b, &; (I'?, 1) from the last one of (3.86) and the defini-
tion of b;, an application of Lemma 3.11-3 with U=I""3, V=R}, b=b;, a=b,
where the notations in the proof are on the right, gives the last one of (3.86) in
view of supp bCI",N9". The proof is complete.

Lemma 3.12 yields from the definitions (3.51), (3.52),
(3-89) o', ok €8;,(1),

and similarly an application of the latter of Lemma 3.8-3 with F=x in (3.51),
U=T, a=a, in Lemma 3.12 gives from (3.86) and Fact 3.9-2 that 3, € &, (I';, 1)
so that from the fact that d@,CI"; which follows from the definition of &, and
that dZ7=0 on (—o0, 1/2], Lemma 3.11-2 and the boundedness of &, yield that

(3.90) €8,(1) andsupp d@,CT,.

From the definition (3.57), and (3.85), (3.80), (3.89), Lemma 3.11-2 yield by
taking U=I"",

(3.91) P1ijs P, €85, (1),
(3.92) o1 E 8y (GY®), oppE B (GY? HTYV®) for k=1,

012k E Bpo(GI®), 015 B4 (HI®) .

To define ¢f as in (3.28) later, in the similar way as (3.51), (3.52), (3.57) we
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set with the notations in Lemma 3.12,

(3.93) oF; =[ of 0¥ w?) on I'%i
0 on (I

where ¢¥ =%(2la,)- ¥(40~*a,) - Z(e,a;) with Z € C=(R) supported in [2/3, o) and
=1 on [3/4, =), and ¢} € C7(U,;) such that ¥ =1 on supp ¢,; and inf *¢§‘,->0.

supp ¢ 7
The existence of such ¢¥ is assured by the fact that ¢f;=1 on supp ¢;.

Since for the ¥ in (3.51) we have that inf ¥>0, and since the function

supp %

7(2s) equals to 1 on supp ¥, we see from (3.93), (3.51), (3.52), (3.57) that

(3.94) @f; =1 on supp @,;, and there exists C >0 such that
¢%;=C on supp ¢f;.

As the derivation of (3.89) Lemma 3.8-3, (3.84), Lemma 3.12, and Lemma
3.11-2 show that

(3.95) lEELD.
Now the defintion of I'; gives with the notations in Lemma 3.1
v, = t1/(6h)<5> Gl—1/3 Stll(sh)+x/3<5>llzs £/ (18k) -1/ (208) w3 on r,.
This easily implies that
1 YR g S <7t on T
so that
My <214y o0 Iy, Where Yo o = YT g™ g oy ™% .

Thus, since ;> C>0 on I'; means Gi/*< C~! Y¢S on Iy, since the defini-
tion of I'** and (3.92) imply o;;;, & 5;(G}’®), and since supp o5, supp ;,
supp ¢%:j, supp ¢7;. supp d@, are all contained in I';,, we have from (3.90) ~
(3.92), (3.95), Lemma 3.8-2, Lemma 3.11-2 that ¢,;;, 9%, ¢¥5, $; €5 (R}, 1,
Voona) a0d 0,3 EE(RY, 1YPED, Yy ppa). By the latter of this, Lemma
3.8-5, Fact 3.9-3, we obtain a;;;, €/ (R}, <D, ¥p,2,.). Therefore, not-
ing that

(3.96) D™ Vaop =<
we obtain with T=7T; and the given &

(397) o'lijle tll(eh) 2527?p°'1)= ¢lijs ¢;kii’ 9”}‘1' S 220/2 .
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Similarly from Lemmas 3.11-1, 3.8-2 and that

G}IS wl — tll(ﬁh)<f>, G}IS t—1<fll(10h) w'l> Sz tl/(Gh)—1<£> ,
G}/3<E>—1 — tl/(ﬁh) w-;—l ,

we have

(3.98) 8 0 StV I, 8, 0y ELVED ZLZP0D

B¢ 0, E1YOW I
If d;, =0 which implies G, <C<{¢)?, and if /,51,, the definitions of @'z and I'*
show that G,,<C'<6)* on Ui., I''¥ and H,<CKEY* for 'Y TI'y* for any I
Thus, since o;;;, € Z, (G1") for any /, we have that

(3.99) Oy f E ZH3OPe)

(3.100) lg| <CLKEP on U, I,
le] <CLE™ on U, (UL,

if either d; or d, is identically zero.

Moreover, since (3.79), (3.92), Lemma 3.8-1 imply that c¢ -0, ;, €5, (I,
G}* HY®) for k=1, and since G}/* H/*< C{&D¥? on I''! if d, d,=0, by Lemmas
3.11-3, 3.8-2 we have that

(3.101) &0,y €KY for k1 if dd,=0.
From (3.62) we have that
(3.102) ;=0 for i=1,3if c=0.

From the fact that supp ¢f;;C I/, (3.44), (3.39), and the definition of o, ;,
(3.103)  C|op;—0p;| =max |o,;| +G¥° on supp ¢f; if k*k.

End of the proof of Lemma 3.2. We may assume that the set of suffixes of
{U;;};is {1, ---, J()} for some J())€N. We numberize the elements of the set
A={{,i,j); =1, 2,i=1, 2, 3, j=1, ---, J(i)} so that A={v(s); s=1, :-+, 5o},
so=4(4), and denote ¢;;; by @y, 9554 bY 4.6 if ¥(s)=(l, 1, j). We define

D =230y +2, 7 .

Then since @3}, =1, we have that OEE (R}, @, ¥, p.) SO that
0'e>3) ,, by Lemma 3.8-3. We shall define ¢;, 0;;, @y, @, in the statement,
Case (1). Set I={l, -+, 5o} and @y, =, @7 for I=1, 2, =@,y D7, 64 =0y
for sl
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Case (2). Set I={1, -+, so}, 4, ={(, i, ) E A, iF£1}, 4,=MN\A4,, I,={s<;
v(s)E4;}. The definitions of ¢;, 0,;, @, are the same as in case (1).
Case (3). Taking account of (3.102), (3.15) we set 4;={(l, i, j)= 4; i=2} (F¢).
With a numbering 4;={v'(s); s=1, :--, 53} and the definition I={1, ---, s;} we
set @, =@,y P71, p¥=0%F;, where v'(s)=(l, 2, j), and oy, =0y, for sEL, p,=
(@,+3,) @7'. Note that 3% ¢.+¢,>1 from (3.102).

Then the conclusion of Lemma 3.2 follows from (3.14), (3.15), (3.29), (3.51),
(3.56), (3.59), (3.60), (3.62), (3.63), (3.78), (3.93), (3.94), (3.97)~(3.101), (3.103).
The proof is complete.

§4. Pseudodifferential Operators Used in the Proof of Proposition 2.3

Let Sy o(R), 1=p=>6>0, 6<1 be the usual symbol class i.e. the set of all
a(x, &) C~(R?) satisfying for any a,

[af(x, &)| < Ce<EDm0*#  with some constant C,g

where a{f}=06% 8% a which is a Frechet space with the topology defined by semi-
norms
la|i™ = max sup |afi|{Ep—m-0=+78
|| +IBI<! =€
We recall the definition (2.2) of the function . We define ‘ac C*(R?) for
acsC~(R? by

4.1 Ta(x,&) = a(x,f(x) &) .

We denote L*(R) norm by || || and the symbol in SZ%(R) of a(x, D) b(x, D)
for a, b= Sy (R) with some p, 6, m by acbh. Then we prove an interpolation
lemma.

Lemma 4.1. (1) Suppose m'>m and let B be a bounded set of ST (R)
and bE STo(R) with |b| = CKED™ when |€| >R for some C,>0, R>0. Then
there exists C>0 such that

Ya(x, D) ull < C(e™'~"|| Fb(x, D) ul| &0 lul}),
for acB,ucsS(R), (0, 1].

(2) Let m',m, b as in (1) and ac= S}’ (R) with 6>0. Then there exists C>0
such that

|| fm2xm® g(x, D) ul| < C (e ™| Ay ul|-+e™mxm0 ||y]])
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for usS(R), e<(0, 1], where
4, = fx) &) (x,D) for s€R.

Proof. (1) Let x=C=(R) with x=1 on [2R, o) and ¥=0on (—oo, R].
For acB and b we set b,—e™ "™ bx, c,—e~™2xm.0 p/|1p| 2, gy=a-x(27 +),
ay=a—a,, S;=a;/p, for |£|>2R and =0 for [&|<2R where @,=&™ " b+
e~max(m0) p/1p| for || >R. Then {a},cp, {d}.cs are bounded in ST, and
S9 o respectively, and e™*=(9 ¢ is bounded in S}, in ¢ by the assumption on
b. From the assumption on b it is easy to see that there exists C,g>0 for any
a, B such that

“4.2) |58 < Cop 97EY™F for |&|>R and any aEB,
|8 | <Cup e |BI<EDP<Cop pKED™P for [E|>R,
which imply that e»~»’ b, is bounded in S in ¢ and that s, is bounded in S9,

in ¢ from the inequality <€)"<C|go.(x,£)| when |£]|>R. We note that
a=s, b,+s, c,+a,. Then we need the followings:

4.3) There exists C,q for any 6 (0, 1) such that for any e St
(B < Cuplel fahs1p1 <Sf(x) EDF70ED™E .

4.9 For any e C*(R?),
(B, &) = 3 (02— yryr pr(x) () () )P

/ B8/
’.BHep,

xI(egh) (x, €), |x] <o
where D, g={(a’, BVEZ%; a>a', f'>p,a'+ ' —f<e, f'>min (1, a—a’)}
and v,/ g are polynomials depending only on @, 8, @', ', f such that ¥,/ g-=1
when @=ea’ (which implies §=5").
(4.4) is proved by induction on @ and (4.3) is a simple consequence of chain
rule and inequality that

[(f() E)B | < CapoKEDK S (x) €3)°% K f(x) €D KED7P.
Taking §=2"1 in (4.3) we see that
Tseo(em=" 1(b,)) = 32 83(’s;) Di(em ™ (by))/al+r,

1@ <[zm’/]+1

with 7,& 87 1,2, bounded in ¢ and a€Bin S} ,,; .

From (4.4) each term in the summation can be written as e~/ a, , Where
Ao, u=2) 8ol 8 &F o7 3@' b,+ 0% s, With g, pr& C7(R) depending only on «, g, @',

@,B)EDy
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B’, f so that a, , is bounded in ST.5” in ¢ and a€ B in view of (4.2).
Now we have

(4.5) Ja=em"""Is0(Pb—IB (1—2))—3] Tae u— ™ "™ re+-7(se co)+7 a5 -
@0

Since the case m<0 is trivial from (4.3), one can prove (1) by induction on

[m] using (4.3) and applying induction hypothesis to the summation in (4.5).

This completes the proof of (1).

(2) Itis easy to check that

(4.6) there exists C,py for any 6 (0, 1) such that for any e S 4 with k>0,
[(f*e)B | < Cupolal {a} 151 <FEDKED™E .

Suppose that m>0. Set gay=f"a{f&>"". Then,
4o fEO™ = 31 8% a, DIKfED™) e\, rES],.

|l <[m/CL-62]

Using (4.3) and Leibniz rule it is easy to see that for a==0

a, = i—d(a<f5>—m)(w)(<f6>m)(w) ES'I”.;(I_G)” ‘
Now when m>0.
fra = @l fE" —Xe! 7 fMa,—r,

oL LIm/(1-0)]1+1

and when m<0, (2) is trivial so that one can show (2) by induction on
[m/(1—0)]. Indeed, when m>0, we only have to estimate the first and last
term on the right of the above equality by using the boundedness of a, and r
on L* and (1) and apply the induction hypothesis to the summation by noting
[{m—(Q1—6) a}/(1—6)] =[m/(1—0)]—e¢ and max (m—(1—06) @, 0)< m. The
proof is complete.

The next lemma is one on the commutation.

Lemma 4.2. (1) Let a,=S7(R) with s>0. Then there exists C>0 such
that

4.7) Va(x, D), f1ul| <C(e|| 4n f° ull+e™™>2Olu]]), ueS, e€(0, 1] .

(2) Let a, €874, i=1,2. Then there exists C>0 such that with the motation
m=m,-+m,,
4.8) I (a a)—'a,°7ay) (x, D) ul| < C(e ]| 4,y ]|+ u]])

for usS,e<(0,1].
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Corollary 4.3. (1) Let b= ST (R) and assume b satisfies the assumption
for b in Lemma 4.1-(1). Then there exists C >0 such that

“.9) C7<(If° /b (x, D) ull+[[ulD/(I"bof*Cx, D) ul|+|[ulD< C, uES, u=0.

(2) Let a,€STi(R) and assume that a; satisfies the assumption for b in Lemma
4.1-(1) for any i. Then there exists C>0 such that

(4.10) C < (Il (a a;) (x, D) ull+1[ul])/(l a0  ay(x, D) ull+|[ull)
<C,ucsS,u+0.
Corollary 4.3 follows from Lemma 4.2.

Proof of Lemma 4.2. (1) We prove (1) by induction on [m]. It is trivial
if m<0 and we assume m>0. From (3.64),

(4.11) for any positive &, ¢, and jEN,
i <~d%—>j (f =¥, juf* forsome v,;,€Cr(R).
From (4.3),
faof® =¢§[:](ag a) f* DI(f)|a!+r with rES? ;.
From (4.11) and induction hypothesis, for >0,

I8¢ a) £~ DI(f)] (x, D) ull < Cll Ay f* ill 46~ == "1Ju]]) ,

the right hand side of which is estimated by that of (4.7) from Lemma 4.1-
(1). This proves (1).

(2) is proved in the similar way by using the fact that from (4.4),
f? D*(fay)="a,, for some a, ,=S72. The details are omitted.

Definition 4.4. Let h&eN, T<(0, 1) be given. Assume the notations in
Definition 3.1 and set ¥,=ty,. Let dER® with d,<0. Then we say that
a(t, x, £) C=(R%) belongs to 2¢=3%(T, h) if for any &

| 0” a(ts X, E) I <G, 3;{1_“1(<E>-1/2)d2_w2 Wa.llzd’_%
with some constant C, .

We write X =X (T, h) = U(UZ4U29).
d p
Definition 4.5. We set for p<[0, 1/2] and d= R?

(4.12)  2(d) = —(ody+27" &), u(d) = —27X(d,+dy), v(d) = —27 dy+d,
0s(d) = dy+max(0, #,(d)—27 dy), 0 (d) = v(d)+max (0, #(d)) .
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Then,
(4.13) Pz Pds, = (% EFEN s,

FACEY T g 12t = 14 EMAIEN

I_[ Yii Pds, = 14t FUAR) £5=di 2 16 NP DIENS
4.14) {t™% a(t, *)}seq,p is bounded in ST¥P,, for ac3?,

andin S7%:,; for as3?.
A linear mapping on RS,
A: d—(dy, #(d), v(d))

is one to one so that for any d< R? there exist J,(d), J(d), -(d), §(d)ER?
respectively determined uniquely such that

4.15) A(J(d)) = (d, #(d)— /2, dy)
A (@) =0, u(d),v(d)),
A(F(d)) = (d,, max (0, #,(d)—d,/2), max (0, dy)) ,
A4 (d)) = (d,, max (0, £(d)), max (0, »(d))) .

We set for a=C*(R%) and EC C”(R}),
a(t,x, &) = a(t, x,f(x) §), ’E = {Ya; acE} .

Fact4.6. 1. agbs3?* if a3’ bl

2. If aeX% and ¢>0,f* 8" a =‘a,, with g, ,=357".

3. If a€2? and ¢>0, (%8 a = 7a,, with a, 3?7

4, i@,

5. KT Daaypy )/ @ = P4 K>y s and 3¢ = 4 37D,
6. /3l 34(d),

7. ¥y,

5 follows from (4.13) and 2,3,6,7 follow from the formula which follows
from (4.4):
@.16)  9*(a(t,x,¢) = 3 (0% —x*) 722D 1 g(x) f73(x) (f(x) £)Ps™7
x /(@ a) (¢, x, &), | x| <F,
where the summation is taken over all the set {f=(a,,/, a;+)); l+k<a,, a,

+j=>min (a,—/, 1)} and 74 is a polynomial depending only on «, 8, f such that
rg=1 for f=a.
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We need Lemma 2 in [1] in this section and its easy extention in the next
one. We recall the definition of a pair of weight functions in [1]. We say a
pair of positive functions @, ¢ on R; X Ri form a pair of weight functions if it
satisfies the followings:

(4.17) there exist positive constants C, ¢, € such that (i) ¢c<O(x, &)<

CU+€]), C2p(x, &)=+ [€]); (i) p@>c; (i) 286 20> 1)
o(x,&) e, 7)
whenever |€]~|7|, where A~B means that |4/B| and |B/A4| are

bounded; (iv) C™* @ (p, 7)< O (x, )< COB(y, 1), C o (¥, N<o(x, £)<
Co(y, n) for all

(1 EU(, &) = {(y, 1); | y—x] <co(x, §), [n—E€| <cO(x, &)} .
Then we have the following.

Lemma 4.7. Let C>1, C;>1, ¢>0, €>0, let k, [EN, and let (M,, ---,
Moy, my, o+, my.,) be a permutation of 2(k+1) real numbers. Let B be a set of
pairs of weight functions (@, @) satisfying (4.17) with the C, c, € given above and

that sup { MM, €1 <4 and |7| <4, or 47 7| < €] <4|2]} LG,
p(x,€) O(y,7)
according to (iii). Then, there exists constant C'>0 and LEN having the fol-

lowing property: Suppose that b(x, y, &, 1), (x, y, &, n)ER™ X R* is a smooth
Sfunction in (y, 1) for each fixed (x, &) and assume that for some (9, )E B,

(4.18)  sup Dy D5 b-(agy®)7'(x, 3, &, 1) <oco forany a, BEZ
x,9,8,M

where
k
ago(x, . & m) = XTI sup (PMi77i(Q) ¢"i(Q))
rytetr,=4 j=1 QEK
'k+1+"'+'k+l=p'r1"""k+lez+
k+1
x II sup (@Mi(Q) ¢™i~"i(Q))
i=k+1 QEK
where K is the covex hull of (x, &), (x, 7), (, &), (¥, 7).
Then,

ax, &) = OS—SS e b(x, y+x, & n-+&) dydn ,

where OS—SS e~ dydn denotes the oscillatory integral and the above one is
well-defined by (4.17)-(i), satisfies the estimate

(4.19)  |a(x, )| <C|b| 4@ 9*") (x,€),

where |b|%% = max sup |D%DSb|(ayy'*)N(x,y,E.7).
lo}+|BI<i z.9,E.1
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Proof of Lemma 4.7 is parallel to that of Lemma 2 in [1], but we will give
a brief discription of proof in the appendix.

Fact 4.8. Set O(x, &)=y, 15(t, &), p(x ,)=LED>™2, for (x,E)ERXR. 1t
is easy to check that for any t&(0, T), (?,, ¢) is a pair of weight functions on
R, X R; with C=10, c=1/10, e=1/2, and that {(9,, ¢); t (0, T)} is a set of
weight functions on R, X R¢ as B in Lemma 4.7.

Lemma 4.9. Let a,2", a,=3° and set for NEN,
(4.20) rylay @ — S: rolay a,] (1—6)¥-1 d6
where
rolay, @] = (2z)~! os—gg e ay(t, x, E4-67) ay(t, X+, &) dydy .
Then, ryla, @) & 34",

Lemma 4.10. Let ac3? and g(0, x, y) C=([0, 1] X R?) with sup |0, g|
8,1,
< oo foralla. We set ’

(4.21)  ry(t, x,6) = 0S—SS e~ir" g(0, x, y) a(t, x+0y, E+67) dydy .
Then

SUP |9 | A LES Y e <0 for any .
2br%,

Remark 4.11.  Let ay(t, x, , €, n) = C=([0, 1], X R3", ¢ ) satisfying that with
00, 1) and M>0

|85 8% 85 8Y 8y ag(t, X, ¥, €, 1) | < Ciappslt, X, €) (1| p I (14| 7] ) +¥18

where Cj,gy, is assumed to be locally bounded in (¢, x, £) and to be independent
of 6. Then

(1) for any compact K C R?", OS——SS e~ qy(t, x, v, €, 1) dydn is continuous
in (0, x, £)€]0, 1] X K,
(2) one can differentiate the above oscillatory integral in (z, x, £) by differenti-

ation under integral sign any times. These are easily verified from the defini-
tion of the oscillatory integral.

Proof of Lemma 4.9. We assume the notations in Fact 4.8. From Re-
mark 4.11

(4.22) 0% rylay, @] :BSE (;) ry[0°F a, 8% ] .
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Setting bgq (2, X, ¥, &, 1)=(8*" @) (1, x, E+07) (9% @) (¢, x+y, £), we have in
view of Fact 4.6-5 that there exists C;; such that for any f<«,
(4.23)  |0; 04(bgylt, X, y—x, &, 7—E)) | < C;; 14+ sup B1-¢"(Q)
€
X sup @Y1-9"2(Q),
esg
where £7 is the segment joining & to 7 and
m; = J(d-—d—f—ﬂ):;——_], ny = J(d—a+/9)2, m{ = J(e—ﬂ)s, mé = J(e—ﬂ)z“’ .

By virtue of Fact 4.8 we get from (4.23) and Lemma 4.7 that there exists C,
such that for any f<«,
(4_24) I"a [aa—ﬁ a, o8 az]l SC, thite—ay {q;tl(d+e—a)3.¢](d+e-¢2)} (5)
for 6<[0,1].
(4.22) and (4.24) prove Lemma 4.9.

Lemma 4.10 is proved in the similar way. The proof is omitted.

Corollary 4.12. In the following, for (ii) and (iv) we suppose that ac3’,
be X’ with v(d)>0, #(d)>0, and for the others we supose that a2, beX’
with d;>>0, #,(d)>0.

Then we have
) rN[aéV Ta, bl fNP 3Tp@ tet2N©,1-0.0)

(ii) rN [aIEV fa, b]EfN/Z 2’d+s+N(0,l,0)’

(iii) ry [a{s_\l fa, Di\i b]Epr z’jp(d)+a+N(0,1—2P,0),

@) ry[0F a, DY ble fN/2 Xi+e,

(v) ri«[a’g" Div fa]EfNF/Z ZJP(dH'N(O’l_ZP’O)—i—t'iI Z(O,N,U)
where by definition,

(4.25) rMQ=ﬁ4ma—®wwa
where
rélc] = (2m)! OS——SS e~ ¢(t, x-+0y, E+07) dydy .

Proof. (i) 7X4cX7e® from Fact 4.6-4 and 7, the assumption on d, and
the definition 4, J,, and we have
(4.26) oY fa = f¥ gy with
ay = (fEXKfEX)IPNEY~A=PNL fEXA-PN Jo¥ g,

Using (4.3) and (4.6), and noting {EDUMY oY gq=37e® we see that aye
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ZTp@+2N01-P.0)  Since b=, Lemma 4.1 implies (i), (i) is similarly proved.
(iii), (iv) are particular cases of (i), (ii) respectively. Next we consider (v).
Using (4.26) and Leibniz rule we see that DY 8y fa=f?¥** g, for some dyE
STp@)+NO.1-20,0) g0 that

(4.27) ri[of DY 7a)
— (27,)-1 Sl(l_o)M—1(OS_SSe—iynfzwpls(x+0y)
0
«@y(t, x40y, E+67) dydy) do .

Using Taylor expansion at x of order N, and integrating by parts in 7 we
see that the right hand side of (4.27) equals to, with some g(6, x, y)e
C=([0, 1] X R?) satisfying sup |8%,, g| <Cy,n,,s for any a,

3%,

ez (LY e

x S: 69(1 61 (0S— S Se“”’ Di ay(t, x+6y, E+67) dydy) d6
+{ e —opicos—([e Dl ay x-+0y, 6401 00, x,3) dvany doy .

By Lemma 4.10 the integral in each term of the summation belong to
STp@+NO1-20.0 and the last term does to 3¢ with d=J,(d)+N(0,1—20, 0)
—(0, 0, N}). Since ¥, is an arbitrary positive integer, we have proved (v) in
view of (3.64) and Lemma 3.8-5. The proof is complete.

We define a,& C=((0, T); C=(R?) for ac C*(R%) by a,(-)=a(t, -). Then
taking account of (4.14),

(4.28) aob; = 3 8% a,- D2 byjal+ry[0F a, DY blJ(N—1)!,
alN
& = 31 8 D a,jal+r4 (0" DY a/(N—1)!,
23

for @, beX where in general we denote by c¢* the symbol in S7, of formally
adjoint of the operator ¢(x, D), cE Sy o(R) on S(R).

We also define acbe, afe C(R}) for a, b by
(4.29) (aob), = aob,, @, =a}.

Lemma 4.13. gobs23%* jf g X?, b 3",
This is an immediate consequence of (4.28), Lemma 4.9, and Fact 4.6-1.

Lemma 4.14. (1) Let ac2 and suppose that u(d)>0. Then there exists
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C>0 such that

1V a,Cx, D) ul] < Ctis(t s®e@ =@l f=4d2% 44y ul]
A1 WD Ay sy ull 4| Agg ull +Hludl)  for u€S, 1€, T).

(2) Let a2 and suppose that u(d)>0. Then there exists C >0 such that
1V ai(x, D) ul| < Ctos(t ™D 4y ull + || 4y ull +|ul)  for uES, €O, 7).
(3) Let a=23? and suppose that (d)>0, then there exists C >0 such that

llay(x, D) ull < Cets(@ ¥ @ljulloeay+ |lullway+Hlull)  for u€S,tE(0, T)
where |[ul|; = [[KD>* u]| .

(4) Let ac=2? and suppose that #(d)>0. Then there exists a constant C>0
such that

|| f=2xC@:0 q,(x, D) ul| < Ctéa(t @ || Agegy ull || Ayay ull - [ul])
for ueS8,t(0,7).

Fact 4.15. Set 7, =1°(&>, U =1 (&>, 1€(0,1),EER, | x| <0;5>0, s'>
0. Then for any >0,

|6% | <C, ¥, t74ED %,
[0% W,| < Cpe ToKt* E> U 2 t71(ED™s
Proof of Lemma 4.14. (1) Set
(431) ¥ = A (WD D 1) KEA(r a2 f A/ CONCER 41 1)
Then it is easy to see using Fact 4.15 and Lemma 3.8-3 that
4.32) forany e>0,ac€Z3, |87 | <C,, t < tHEKEY S T ,

Using (4.32) and (4.16) it is easy to check that 3°*Z &t~ 3% with d*=d-+a,
©, 20, —1)+¢a,(0, —2,0) for any ¢>0 and e Z%, and that the estimate
|0% f | < C,p ™1 {EY*2"%s /¥ holds for any >0 and a=Z3. In particular,
(4.33) frok I e JitHA0L0) gk S = FTp@)+e@ L0

for any €>0.
Setting b=a¥ !, and using (4.28), (4.32), (4.33), and Corollary 4.12-(i) we see
that
(4.34) bed), vell, 'bo’¥ = 'a+’a,+"a, for some

a3, 1% 3° with d' satisfying
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0,(d) < 0p(d)—1/4, 2,(d') = 1(d), di = d .

If we denote by S;(u) the expression defined by deleting C from the right hand
side of the inequality in (1), we have that

(4.35) SyW)<CS;w) and |/¥(x, D) u||<CS,u),
with C independent of (0, 1], us S .

Indeed, the latter is clear and the former is easily shown by the properties of
d', Corollary 4.3—(1), and Lemma 4.1-(1).

Now, since (1) is clear for d with ¢,(d)<0, in particular with [4o,(d)]<
—1, (1) can be shown by induction in [4o,(d)] in view of (4.34), (4.35), (4.14),
and Fact 4.6.

(2) and (3). They can be proved similarly by induction on [26(d)] by set-
ting ¥ =% @ XD 1) (ED¥ instead of the ¥ in the proof of (1) and by
using for (3) the standard interpolation in the Sobolev spaces instead of Lemma
4.1-(1). We omit the proofs.

(4) is clear when [26(d")]< —1, and we prove it by induction on [2¢(d)].
Assume o(d)>0 and (4) is true for d’ with [26(d")]<[20(d)]-1. It is easy to
see that

(4.36) la,(x, D), f7@] = fmax®@-0.0.9 g, (x, D)-+ay(x, D)
for some 2400 g4 30,

Let S;(u) be the expression defined by removing the right of the inequality of
(4). Then,

(437 Si-on @W<CS,(w) and |la(x, D) D u|| < CSy(u) with C
independent of ?&(0, 1], uS.

In fact, the former follows from Lemma 4.1-(1) and the latter does from Lem-
ma 4.1-(1) and the inequality

(4.38) If s>5>0, |/ ull. < Corll4, ul|+[lull), vES,

which can be shown by expanding the symbol <&>‘of*" and using Lemma
4.1-(2), —(1) in this order. (4.36), (4.37), and the induction hypothesis show
(4). The proof is complete.

Remark on notations. The letters T' and # in the definitions of 2, B, ,
are in common for all notations if we do not write these letters.

Recall the definition of Sx((2.11)). If a3 (T, k) and uc Sy, a,(x, D) u,
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as a function of (¢, x)&(0, T)XR also belongs to S; and 9,(a,(x, D) u)=
(8, a)i(x, D) u;+ay(x, D) (0, u),.

Definition 4.16. For a3 (T, h) and, we define the linear operator on Sy,
which we denote by Op a or a(¢, x, D), by assigning u to the function (¢, x)—
(a/(x, D) u;) (x). Furthermore, let P, be the set of all (¢, x, 7, ) C~(R?)
being a polynomial in r with coefficients in X (T, &) in (¢, x, £). With the
unique expression ¢q(¢, x, 7, £)= Ena,,(t, x, £) =% we define the operator on &,

denoted by Op g or q(¢, x, D), sending u to ?_‘, a(t, x, D) D% u.
<m

g is determined by Op ¢ in the above. Indeed, (Op q) u=0 for any u
means ¢=0, since for u=x(¢; ;) (t—1)*v(x) where k<m, X C5((0, T)) with
¥=1 near 4, (0, T), and veS and g as above, ucS; and (Op q) u(t,, *)=
i* k! ay(t,, x, D)v. We call g the symbol of Op g.

For q;,€ Py, j=1, 2 with qukE a;, ©*, a;, €X, we define g,04, by

<m;
(4'39) 41°42(ty X5 Ty E)
— 05— {[e 53 @ry )71 81 g1t %, v, £4m) Dl gy, 3+, €) dyd.
J "'1

Then,

(4.40) 724t x, D) = q,(¢, X, D) q;(t, x, D) ,
o = S 17517 5; 01 g1-D3 Dl g
+(N,—1) "' ry [0 8; q,, DY Di q;] forany N,EN
where, by definition,

ralgs, g2) = kg ralay, a,;] 7.
'”1

i<m,

Actually these are true when ¢; are monomials in 7 so that they are true in
general, since all terms are bilinear in ¢, and g,.

For EC X (T, h), we set

Op E=the set of all operators with the symbol in E.

Definition 4.17. For real numbers £ >0, />0, N >k we define 4*"¥(resp.
B*1.¥)—=the set of all symbols being a finite sums of symbols of the form:

a+fVb; as’ 2, (resp. 2%, be2®  with
ded® ec 4, (resp. d, e€ 4, )

where
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4t = {deR?;0>d, > -2, 1(d) >0, d;>0, 0,p(d) =k},
4, = {dER?;0>d,> -2, 5(d) =0, v(d) =0, 0 (d) = k}
with the notation
B(d) = (0, dy, dy)) ,
and we set
AN (resp. BN = Op A"Y (resp. Op B*"Y),
A*N (resp. B#N) = A®%¥ (resp. BH%V),
A+N (resp. BV) = APV (resp. BV .
From Fact 4.6-4
Ak,I,NcBIe,l,N .
and clearly,
Abr'oN1 (resp. Bholv Vi) C Ak2'2 V2 (resp. BherlzV2)
if k<k, ,<hL, Ny>N,.
In general, for a ring R and E;CR, a;ER, i E finite set I, the set >} a; E;
i€l
is defined by {3} q; ¢;; e;E;}. We use this notation for the ring of symbols
il

with the product as functions and the one of their defining operators on S, in
Definition 4.16.

Lemma 4.18.

(1) A, Ay Abttehtial (resp. BirthplitipN)

if A,k (resp. Br'sN) and N >k,+k,.

(2) If beC™(RY) satisfies with dE 4, ,,

(4.41) [8°b(t, x, &)| < C, t™(KEXT Y2 g 1,55 {ED™™  for all

Op(ac’b—a’b), Op (fbea—a’b) € Bmoxtthy= V20N

for acB¥=¥ N>max(k,+ky1).

(3) Suppose that ac X1V satisfies

(4.42) 0,0 301D, 0aes 3, .

Then we have the followings:
(i) Op(acb—7’a-b), Op(bo’a—b-'a)E A VEIN (resp. PEHU2LNY) if e gbhN
(resp. B¥"N) with N>1/2+k.
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() Op ‘a—(Op fay*c Y=+ 0p ZONO for any t and N>1, where for
g=>G a, "€ P, we denote by (OP q)* the operator with the symbol gt =
S S o(¥) Dt af 7 so that

Op Q) u,v) =, (Op *v) for u,vESy,

where ( , ) denotes the inner product if L*((0, T) X R).

(ii) If b satisfies (4.41), [Op’a, Op bl Op 3¢+ fN Op ZON0 for any
N>1.

(iv) If b satisfies (4.42), Op(ao’b—/(ab)) & A"¥ for any N >1.

(4) For any acXi(resp. 2%, s€[0, ), and NEN, there exists be
Z4-0.00 (resp, 34~ O0) such that

supp bCsupp a, f'-fa—(Fa+7 b)of & fV 191 JON0

(4)" For any ac2? (resp. 2%), s€[0, ), and N EN, there exists b 340
(resp. 24~ such that

supp bCsupp a, faof*—f*(fa+ b)E [V 141 TON0

(5) For any ac2?, s&(0, ), and e€(0, 5s), and NEN there exists be
34=00.Y sych that

ffa—acf*—bof "t td FON0
Proof. (1) Let us prove the former case. We may assume
A; = Op(Pa;+-fV b)), with a;€3%),, b, 3¢, d'c 4k, ecd,,, .
Now,
(a,+fY b)o(Pa,+fV by) = fao’ay -+ a,0(fV b)+fY byo(fa,+fV b,) ,

and the first term &€ A4 'tV from (4.28), Fact 4.6-2 and -4, and Corollary
4.12-(iii), and for the third one this is also clearly true in view of Fact 4.6-4.
Since for >0

85 fa, = 857 (0 ay) & f S b08
Leibniz rule shows
0% fa,- DY(fY by)E f¥ Sz for any a

which would show that the second term also € Ax*%-h*%2¥ in view of Corollary
4.12-(iii). This proves the former one, and the latter is similary proved by
using Fact 4.6-3 and -7, and Corollary 4.12—(iii) and (iv).
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(2) We first note that
(4.43) beN,3% with d° satisfying J,(d°) = d,
and that for k&N we have
(4.44) froB)Er3! for &>0, 04 b)e N J4-0e0
>0
ag(fb)e N f° 32010
1>8>0

(4.43) follows from (4.15), (4.41), and that d,=0 which follows from d€4, ,.
The first one of (4.44) are easy consequences of (4.41) and (4.16) which imply
that

(4.45) |87 b| S CLED 1™ fED )2 ‘f‘;”s,llzd3
for all @ and e<(0, 1),
(4.46) 0F Tb = frLEXTHT (fEDK FED) ™ T(KEX 2 8E b)

for e€[0,1) and kEN .

The second one follows from (4.45), since d&€4, , implies that v(d)>0,
#(d)=>0, di=0. The last one follows from (4.46), (4.41), (4.3), (4.6), Fact
4.6-7, and that d€ 4, , as in the proof of Corollary 4.12-(i).

We may assume that a=a,+f¥ b, with a,, b, in Z=©®~29_ for proof of (2),
because {t’ £><E> and d;=0. (4.41), (4.44), Fact 4.6-2, and Leibniz rule
show that for all kEN

447 8% b,-fY% D} Th & 3 by k=KD 0,20 |

0L ('b)-DE(f¥ b) & f¥ Jthamsin s,

6§ ’b-Dt ’a,, 8% fa,- DE(’D)” 3 (ky+hy—k(2)(0,-2,0)
An application of Corollary 4.12—(i) with p=1/4 and of Corollary 4.12—(ii) and
—(iv) respectively show that the reminder term 7, in the asymptotic expansion
(4.18) with N=M of fboa and ao’b belong to BV for any large M, in view of

(4.43) and the second one of (4.44). So (4.47) shows (2).
(3) We first note that from (4.42) and (4.16),

(4.48) 0, faEZ'(O"Zv"), fa; aEZ’”,f’ 6§ facf 2&0/.2-1,1)+(k—1)(o,—1,0)
for any >0 and kEN .

To simplify the notation we set

FN[a: b] = rN[alﬁv a, Dﬁ:v b] s
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I,a, b] =fz’f dta-Dibjk!, for abel.
=1

@) To show the former one we may assume b='g,+f% b), a,2%), 2",
ded®!, ecd,,. The second one of (4.48) and Fact 4.6-2 and -3 show that

(4.49) ILffa, ‘e’ S0, [fa, f¥ ble fY Ze+0-10
Ful’ay, Tal€ fM+D2 521 @0, -10
Fulfa, [ bl O Sy 010,
for any M>0,

and using the first and third one of (4.48) we see that

(4.50)  Lf'ay, ‘alef Z4HO1Y, L0k, TalEe St 00
Ful’ay, Tal € U2 371 p@+0-10 5 [ Fgle Jet @10

for any M .

This shows the former of (i). The latter is shown in the similar way.
(ii) The second of (4.42), Fact 4.6-2, and Leibniz rule show that

o D fac’ X1/5%~1Y  for any eEN ,
and that
Py [6F DY /3] = ri[8}~! D¥=1 8, D (fa)|€ fO D/ ZO.LO | 5ON-10

from (4.48), Corollary 4.12—(v). This proves (ii).
(iii) (4.42)~(4.44) and (4.48) show that

Iyl’a, ’B], Iy[’b, 7a]E7 2,
fN[fa, fb]ef(N+l)/2 Jd+@©,N-1-5,0 for any €,
T'N[fb, fa]EfN“ Yd+(N/2-1)(0,1,0) ,

as in the proof of (2). So (iii) is proved.
(iv) From (4.42) and the last one of (4.48)

0t(Ya)-DE(b)e’ I for any kEN .
From (4.42) and the first one of (4.48)
,:N[fa’ fb]E f(N+1)/2 >(0,-2,0)

This proves (iv).
(4) Let us define inductively a; & 2 34-©% for je Z, so that
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a=a,
(%); fila;—Taoft—f* fa; St f¥ ZOND

a; = f?a} for some 4} in 35~

with supp @} C supp a.
Assume a;, 0<i<j has been chosen. Since a;=f"?a} with a;€3;~ %", and
since

k'™  fk DX(f°) = g, f*¥% with g,€Cy(R) forany kEN,

setting
@jyy = — é g 0fa; and a;, =f02al,,
where
N = 4(N+|ld]|+1) with ||d|| = -1 |d;]
we obtain

f° faj-faj°fs—fs fﬂj+1 = —N!"! "171-;1[@“rl fdj; Dy f],

ah €40+ with supp a},,Csupp a

so that (x); holds in view of Corollary 4.12—(ii) and the fact that a,-EZ'gP(d)C
¢4 311410.=20 which follows from Lemma 3.8-2 and 5. Since f#/*={&>~il*
(fLEDK fEXY L FEY!, and since {&)i/* 34~ 00N 3¢ we have

fif? £ 34-00.0) = filt g4 3N =3IH0,-2,0

in view of (4.3), (4.6), Fact 4.6-6. Now by setting b=31Y_, a; and by using
(*)ja

fs'fa—aofs-“fbofs—fs'fa)v.;.lEfN tdl Z(O,N,U)
which proves the former of (4) in view of

SUII=(F+D/(0,-2,0) — FON0)

The latter is similar.
(4)" By the asymptotic expansion, for any a& X%, (resp. 2¢) and 5>0,

asf* = 33197 @ ALY M7 ry (08 g, D £

The summation can be written as f°(‘a+7/b) with b&Z{7{*0D (resp. J¢~1001)
satisfying supp bCsupp a as in the proof of (4). Since E‘f,ZCZ’gﬂ(d) (resp.
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3¢ 34(d)), the last term is in
Forrniz 3 p(d)+(M +1) (0,1,0) (resp. fO1+H/2 34(d)+(M +1) (0,1,0))

by Corollary 4.12—(ii). By Lemma 3.8-2 and -5 for any N there exists M EN
such that the last term is in

[N 4 JON0 (resp. fN 1% 2(°-N-°)) .

This completes the proof.
(5) The proof is similar to that of (4). One can define inductively a;, j =1, ...,
N=N-+3(||d]|+1)+1, in Z¢-0.09 5o that

o =a,

f°iOp a;—(Op a;) f*i—f*i+1 Op a;, 1" Op TONO, OSjS]V'——l

where s; = s—je/(]\7+ 1).

N—-1
Then setting b = —37] a;of*i~*** we have
i=1

peXi-0on
f* Op a—(0p @) f*+(0p b) f*7*—f'F Op azy&t™ Op TNV

which show the assertion. The proof is complete.

Lemma 4.19. Let ||-||=|-||.2&,-
(1) Let ac3%)(T, h) with oy(d)=k, dy=—21,1>0, and p,;,(d)>0. Then,
there exists C>0 such that for any us Sy

[1(Op 7a) u), || < Ce =2 (|| 4, £ wy| | 4-]| Ay ||+l ]), 1 €0, T) -
() Let ac34(T, k) with o(d)=k, dy=—21,1>0, and p(d)=0. Let s>O0.
Then, there exists C>0 such that for any us Sy,
(| fe+maxC@0((Op a) u),|| < Ct (|| A f° wyl| -+ Ap—y ]|+l ,
10, T).
() Let acZ%(T, h) and s>0 be as in (2). Then there exists C>0 such that
for any us Sy,
1£°((Op ‘@) w) || < Ct 72 (¢'|| Ay f* sl |+ 1| Ay el |- lae]]), 1 €O, T)

Proof. (1) Since wuy(d)+dy=k—I and #,5(d)=0, {tEP*/2@ (&)<
(&Yt 50 that g X (73! 0.0+¢*-DO~LD g by applying Lemma 4.13-(1) with
u, for u and with (—2/, 0, 0)+(k—1I) (0, —1, 1) for d and by estimating the term
[l £ A, u,|| by Corollary 4.3(1) one obtain the desired inequality.
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(2) From Lemma 4.13-(4) and Corollary 4.3—(1) one can easily see that for A€
fmax®0) Op 5(-2.-2¢:-10.0 gnd 5’ >5>0, there exists C>0 such that for us Sy,

@.51) AT wll< Ce2 || 4, £ wl |+l A wll4-llwll), €0, T)

As in the proof of (1) we have a3 2--2¢-D.0 from f(d)>0 and k—I=%(d)
+v(d). When s=0, (4.51) with s"=s=0 implies (2). When s>0, from Lemma
4.18—(5) and the uniqueness of the symbol,

(4.52) for e=(0,s) there exists b&X?~ 00D ret~2 JOLO gatisfying
[ a—aof’—bofst =r.

We consider separately two subcases: (i) max(k, 0)<1/2, (ii)) max(k, 0)>1/2.
In (i), we have b t™# 2° so that from (4.52) one can derive (2) by using (4.51)
with s'=s and with f™2x®% Op g for A. 1In (ii), again Lemma 4.18—(5) implies
that

(4.53) for &&(0,1/2) there exists b, 3?0 and r,e¢ 2 3010
satisfying fY2 b—bof¥2—pof V=% =, .
Take ¢ and ¢, in (4.52) and (4.53) as e-+¢;<C1/2 so that setting ¢'=1/2—e and
e"=1/2—e—e¢,, we have
frrs g—f# aofs_fk-llz bofs+e'__fk—1/2 blofs+!" = fk r+fl¢—1/2 .

Since b, b, 32-2-12-D.0 from u(d)>0, one would obtain (2) by applying
(4.51) with Op f*a, Op f¥*b, and Op f* 2 b, respectively for A and using
Lemma 4.1-(1) to estimate the terms ||4,_,;,f° || and ||44_;p—; w]|. This
completes the proof of (2).

(3) The proof is similar to that of (2). From Lemma 4.18—(4), there exists
beX?-00) and re& X040 sych that f° fa—'aof*— bof*=t"#r. From [(d)
>0 and k—/=za(d)+v(d) we have that aq, b X2:"2¢-D.00 Then, Lemma
4.13-(2) and Corollary 4.13—(1) shows (3). The proof is complete.

Now we recall the definition of a norm |[-||™ on &;.
Definition 4.20. For s=0, ---, 6 and n>1 we define norms on S;:
Il =, 33 72753\ 4, Df ul| i
i+2j<s

edllesy = 33 114;2 DF il ™
i+2j<s

ihiez,

It is easy to see that
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(4.54) all @ <Nl Nl < ledller, s i 55,
@59 @< e, e < (1) 1 ulgs,
llls,m <Iltll s, u+a» for @>0.
Lemma 4.21. (1) Let A= B*"¥, Then there exists C>0 such that
140 CL Ay =410 | Ay, w4204l o+99)

) Let A= B*"Y with s/2-+k<N. Then there exists C>0 such that
AUl < C(ll 4y ul| G5 OO || Ay ul| G20+l 6520
14t < € 33 (s tll -t w1120

Hll it wllto—i,mrziviry H el mr2r+im) -
(3) Let acR. Then there exists C>>0 such that for n>max (0, @)1,

”tw u“(s,ﬂ)-g C”u“(s,n—u) s
1 ull @< Cllulli&™ .
(4) Let acBy. Then there exists C>0 such that
”au”(s.n)scnu”(s,n) .

Proof. (1) We may assume that 4=0p (fa-+f" b), ac3?, be3* with
d,ec4,,. Since o(d)=k—I, B(d)>0, "t EYV2>LEXV2, and d,> —2I when
ded,,, we see 14t YWD (VDL (171 (B EYLPILED. S0 a, be
F2-26-00  Thys (1) is an immediate consequence of Lemma 4.19-(2), —(3).
(2) We may assume A=0p(‘a+f¥ b) with a, b3 %9 from the proof of
(1. We set
(4.56) A® = Op(D! a) if A = Op a, by definition.

Then by using Lemma 4.18-(1),
Ay Di A =3 A,y A5 D?, and
n<i
Ai/Z A(f—l)E$k+(i+j"'m)/2,(i-m)/2+l.1v .
Now by using this, (1), and Lemma 4.2-(2), (2) is proved in a straightforward

way.
(3) A simple consequence of Leibniz rule and (1). This completes the proof.

Lemma 4.22. Let A= A*"Y (resp. B*"Y). Then if N>k+j2, AN
SARHIBIHIN (rogpn  @EHIRIVIZLNY Iy particular [D,, A] € JAFTYBHULN (pesp,
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BEH2IRUZNY ywhen N >k-+1/2.

This lemma is easy.

§5. The Basic Estimates

Let T®<(0, 1), aE B, 1(0), and 6 ¢* I (T, h) with e<(0, 1) satis-
fying

(CB)) dgaett Xy, 0, 61 39,9, 6 I,

(5.2) inf|Ima|>0,

and set

(5.3) L = D,—Op(afé+o),0 =75.

Then the following proposition is fundamental for the proof of Proposition 2.3.

Proposition 5.1. There exists C>0 and Ty<T® such that for T<(0, T,)
andusS,, n>1,

|| Lual | = C {0~ 2(|| D, ul| ™ +-|| 4, ul| ™) +n"2 ||u]| ¥}
Proof. Let T (0, T™) and u S, and set

(5.4 A, = Op (Re (af£+0)), 4, = Op (Im (af € +0)) ,
L, = D,—A,, L, = A,-+nt™".

Then, since ¢ ™" Lu=L, v—iL, v, setting v=t"" u, n>>1 we have

(1Zul|®)? = ||y vIP-+T M) +IIL, VI
JO) = —2Im(L,v, L, v),

(5.5) there exists T, (0, T®) such that for any T&(0, Tp), n>1,veS;,
JE)=n/2 [t v|P—1/5 (| Ly VI Ly vIP) -

where 2o,nxp and (, )=(, )%,nxp- Let us show that

To do so we first note that
(5.6) 2iIm(L; v, L, v) = (v, [Ly, L) v)+((L;—LE) v, L, v)+(LF—Ly) v, L, v) .
Next noting

L¥—L, = A,—A¥, L¥—L, = A¥—4,,
[Ly, Ly] = [Dy, Al —[4,, Al +-int ™2,
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and using Lemma 4.18-(ii) and —(iv) and (5.1) we see, in view of e€(0, 1),
3.7 L¥—L,e A2 1 0p 3°, [L,, L,)—int 2" A .
From the latter of (5.7),

(5.8) S, =iQIm(L, v, L,v)—n||t"1v|P)
= (1", AV)+((L1_L:11‘) v, L, V)‘f‘((lfzk —Ly)v,L,v)
for some AsJAM!.

So, estimating ||4v||, ||(L;—L¥) v|| by (5.7) and Lemma 4.29-(1), —(2), and using
[IV|< 1%~ v]| we see that there exists C;>0 such that for T€(0, T®), n>1,
veSy,

(5.9) 18, <Gl AT V][I Ay vIPHIIVI 227 vID- Z: IIZ; vIF/10 .

On the other hand, (5.2) and Lemma 4.1-(i) show that there exist C,, C;>0
such that for T (0, T®), veS,, t<(0, T),

[[Im a(t, <) fD, v(t, )lo=C; || 4, v(z, llo—Cs [Iv(2, Il
where |||l = ||*|l 2R, -

Thus, since §&¢® XO~1) with ¢>0 from Lemma 4.29-(1), there exists T,
0, T) and C,> 0 such that for T (0, 1), v&eS,, t (0, T),

[1(4, v) (@, llo=Co/2 || 4y v(2, llo—Cy lIv(E, o
which means that there exists C;>0 such that

(5.10) for T€,1),veS,t(0,T),
14 | S C(l| 42 vI[+Iv]D) -

Since || 4y, v|[*=(4y,* Ay, v, v), and since by noting { X2 SV/3(R) from (4.3),
the asymptotic expansion the symbol of 4,,* shows by breaking off after 2
terms, that

Ay,* = fa(x, D)+b(x, D) with acSi§ and be STV,

one can obtain using Lemma 4.2-(ii) and 4.1-(i) that there exists C;>0 such
that

(.11) |4y vIP< Gl 4y vI[+IVID (v -

From (5.9)~ (5.11) it follows by using ||v||<||¢*7! v|| that there exists C,;>0
such that for T€(0, 7)), ve S, t (0, T), n>1,
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|Sul = ZIIL V10 C, To(lidy vl 1™ vll-+11e™ 1)
Now using this and
(5.12) 14z VII<IILy vl 4+ |l V], vE ST,
we obtain that there exists T,&(0, T;) such that for T€(0, Tp), vESy,
(5.13) |84 < SYIL vIF/5-HI V72
This shows (5.5) which implies that for T (0, T,), u Sy, n>1,
(5.14) Izl P2 [l vIP2-+4 S IL IS -

Finally we observe that there exists C;>>0 such that for T (0, T®), us Sy,
n>1,

(.15 1D; ul| P <Ly v]|+ G |4y vl (270 v]]

(5.10), (5.12), (5.14), (5.15) show the desired inequlity. This completes the
proof.

Let L,=D,—Op (a; f€+0,), i=1, 2, 3 be three operators as in (5.3) for
fixed e. 'We define
(5.16) M) = M,(u, L,) = ||L; L, u||+||L, L, u]|*,
Mn(u) = Mn(u’ L;) = 2 “Lcr(l) Lo‘(z) Lu'(3) u“(n) s
Gegs
for u Sy, n>1 where &, denotes the symmetric group of degree 3.
Corollary 5.2. There exists C>0 and T,&(0, T™) such that for n>1,
TE(0, T,), ue Sy
@ Allull =+ 33 (1D, L, ]+ 114, L ] 9)+n7 331y, DS ul]®
i=1 =0
<CM(u),
(i) n* llull‘”+3)+n'1’22(HDfL L; ul|®+|4; L; L; u|*)
+nt 3 34, Dz"”L ull‘"’+n”’32 (|45 DF ul|™ < CM,,(w)

i=1 k=0

Proof. For the sake of simplicity we denote by C or C; a constant in-
dentdepen of T, n, uS;. We only prove that Proposition 5.1 and (i) imply (ii).
the similar way one can prove (i) assuming Proposition 5.1. Exept the inequality

(5.17) S=n"3Y || 4, D} u]|® < CM, (1) ,
k=0
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the validity of the others immediately follows from the assumption. So, it
suffices to prove only (5.17) assuming all other inequalities in (ii), and those
in (i), Proposition 5.1, for any 7 <(0, 7;) with uniform constant C with some
T, (0, T®). Using the assumption and applying Corollary 4.3—(2) to 4, 4,
we see that
2
(518)  S<n {311y, D ull+Cull g Ay -+l )}
< C{n VY M,(D; u)+My (A, u)+M,(w} for T<T,.
We note that from Lemma 4.18—(3)-(iv) and (5.1)
[Ll‘: Dt]Ete—l L)ql,za [Lis AI]EJI’Z s
and that from Lemmas 4.18-(3)-(i) and 4.22,
[Lis [Lj, D,]]Etg_l Jl3/2'1/2'3/2+t9‘2 u41.2 ,
[L;, [Lja Ax]]EuZlm'w'z .
Therefore, since
[Li Lj: Dt] = [Ln [Lja Dt]]+[Lja Dt] Li‘HLia Dt] Lj s
[Li Lj’ Ax] = [L,-, [Lj’ Al]]+[Lj: Al] Li+[Li7 A1] Lj >
we see by Lemma 4.21-(1),

(5.19) II1L; L; D, MH(”)S Ca{HAa/z uH("+3/z_g)+HAl u”(”"-z—e)“l”“u”(”z_e)
+ 33 (14, L u|| 04| Ly ] %)} Dy L; L |
1E(7, )

for T<T,,
(5.20) [I1L; L; 4, u||(”)£C3{HA3/2 ull(”+1/2)+||/11 u”("H)‘l‘”u”(”H)
3, (e Lyl -+l )} 11y Ly Ly ]
for T<T,.

Applying Lemma 4.1-(1) with e=m"" and using the assumption we see that

(521 O I e [ s
<C, T (0~ || dg ul| " +M,u)) for T<T,.

(5.18)~(5.21) and the assumption imply that if T<<T;,
S C(T® n2 || 45 ]| 4- M, () .

This proves (5.17) for sufficiently small 7. The proof is complete.
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§6. Lemmas on the Commutation

We first study commutations involving in operators as in (5.3). We pre-
pare three lemmas.

Lemma 6.1. Let a,€C*(R,XR,), i=1, 2,3 such that for some M>0 and
0|0, 1),

185 05 ai(y, n)| < CoglnDM %1 forall @, 5.

Then, we have the followings.
(i) If a, is constant in 7,

OS—SS e a(y, m) a(y) dydn
— ([ e @ m 4@+, a0, { @, @) @) d0) dyan.
(i) 1f a, and a, are constant in y,
0s—{{ e am afm) axty, m dyan
= 05—({ e @© 2 . 1)+ @, ) 0) d0-a0) D, a3, )
+a(0){ 0, @) 0n) d8- D, 0y, m)+ 1 [ (0, 0 0n) d6- D ay. n) dvdn.

This is an immediate consequence of the integration by parts. We omit the
proof.

Lemma 6.2. For d', ---, d*€ R® with di<0 for any j, we denote by S
d", -+, d* the set all families F={F s}acz®pcz? of subsets Fg=1{b7
(t, x, 3, &, NEC(RY), j=1, -, n(a, YU {¥eZs, vieZi=1, -,k

j=1, -, n(e, B); Zk‘, A =q, Ek} 4 =8} where n(a, B)EN such that for any
i=1 i=1

rEZ?% there exists Cogy>0 such that for j=1, ---, n(a, p)

i k
61) 180,65, 6, 1) | SCpy tZhmrdi=ar, 51 1]
o Starri=r 7
{ sup @@ -NDa=k T~V £ LGy —£))
0<o<1 e
X sup @f @ N Dg=sid=Yiu(y £ L o(n —E))}
0<0<1

where @,, ¢ are functions in Fact 4.8.
We denote by | (a, B)|y the infimum of constants C,gy satisfying (6.1) for F=
{Fp}. We denote by F(d*, ---, d¥) for d*, ---, d* as above the set of all b(t, x, y,
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&, n)E C=(R%) such that there exists F < S(d*, -, d¥) satisfying with the nota-
tions as above

n(a, 8
(6.2) 87,608, b(t,x,y,6,0) =) bt x,y,&,7) forany e, .
ji=1

Then we have the followings.
(1) Let bjcF(d*, ---, d¥), b,&F(é', -+, "), and set b=b,-b,. Let FV&S
(d*, -, d*), FP & S(e', -+, €') be families for b,, b, as above respectively. Then
beF(d*, -, d* €', ---, &) and one can find a family F for b as above such that
|F (a, B)|y<21HPHM sup [ FD(al, BY)| 1+ | FO(, )] 92 -
altai=a
i+ =4
ritri=r
(2) Let d*, ---, d* as above be given. Then there exist C,>0 and L,EN for
any a € Z3 such that if be F(d*, -, d¥), if F €S(d*, ---, d*) is a family for b as
above, and if

bitt, %,€) = 05—{{ e70-200 bt x, y, &, ) dyd,
we have

(6.3) 10% b(t, x, )| S Cy( sup  n(d, )| Famls) tZh=1di=
A+, =

VISZa

X (0,2 =, J(@)s+ J(—aks) (x, &) - (p=h =, J(@)+ J(—a)) (x, &)
for any ac Z3 .

Indeed, (1) is a simple concequence of Leibniz rule and (2) follows by noting

> (“) OS_SS e~ i0=n =8
A+Q0, M) =a A

X 8%,4,6 040 b(t, x, 9, €, 9) dydy ,

o~ bo(t, X, E) =

by using (6.2) ,and by applying Lemma 4.7 with B in Fact 4.8 and /=k.
Let us define the topology in 2¢ by the semi-norms

|al$) = sup |8 a| Frort ey ™) ety % for @€ Z3.
t,x,§

Then 2 becomes a Frechet space.

Lemma 6.3. Let a,€2%, q,&2°, and ;€320 i=1, 2 satisfying
9, 7,232 gnd 9, 1,&2°. Set m,=1—r,(t, x, ) and for 6 [0, 1, define

Lo = Iinlay @) = 05— ([ e a0, x, 4+0m) m(1 %, 2, €-0m) at, x40,
dydy ,
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Lo = I34"a;, a)] = OS— Sg e~ a(t, x, E+07) (z, =,) (¢, x, T, E+67)
Xayt, x+y, &) dydy ,

Ly = I3yla, a)] = OS—SS e V" a(t, x, E+0n) m(t, x+y, 7, §)
Xay(t, x+y, &) dydq .

Then, for i=1 or 3 there exists b; o(t, x, §)E C=([0, 1]y X R}), j=1, 2 such that
{b; e}e and {b,}e are bounded in 3 and X*+e~ L respectively and satisfy-
ing I; g=b, g @+ b, 9, and for i=2 there exist b; o(t, x, )= C([0, 11, X R}), j=1,
o, 4 such that {bie}e, {bseteU {bs0}e, and {b,e}e are bounded in 3%*e,
X+e-QLO | gpd 3ate=O20 respectively and satisfying

Lo = b1 ) Tyt 3051 by j e Ti+Dye -
Proof. Applying Lemma 6.1 —(ii) for i=1, 2 and —(i) for i=3 we obtain
Ly = OS—SS e a(t, x, E+0n) (my(t, x, 7, £) ay(t, x+, £)
—7(0,t,x,&, 1) D, a)t, x+y, &) dydn ,
ho=05—(| e a0 5 400 @ ) (37, O aft, 142, 0)
— (k,,-)2=(1,z) 70,1, x, &, m)mit, x,7, &) D, a)t, x+y, &)
+(21 %) (6, x, €, 1) D} a(t, x+, £)) dydy ,
Ly = os-Sg e (ay(t, x, E+07) 7, x, 7, §)— 08¢ ay(t, x, € +67)
XT(t, X, 3, £)) a(t, x+y, €) dydn ,
where, by definition, for a2,
a0, 1, x, £,7) — 0 S: 8¢ a(t, x, E-+0sn) ds, &(t, x, , £) — S: 8, a(t, x-+sy, £) ds.
Now the desired results follow from Lemma 6.2 in view of the assumption on
a;, T
For q(¢, x, 7, £)€ C*(R?%) we define “g= C~(R%) by
Tqt, x, 7, &) =q(t, x, 7, f(x) §) .
Now, we are ready to prove the following two commutation lemmas.
Lemma 6.4. Let L;=0Op =, i=1,2,3 with z,=t—t,, 1;=7%, #,& 351V
satisfying with e=(0, 1),

64) 8, 1, € XD, 0, 7,€ 3%, 0, 7, € 1IN
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Then, for A=0p a, ac 2,
(i) AL,—Op(ar)E | AN if a =O0pr; for some j, N=>1,
(Jlk“”” if A& AP and N >k+1/2,

PHULLN if Ae BBV and N >k+1/2,

(i) L; L;—Op(m;m)etrt AN for N1,

(i) L; A—Op(an)E( AFY2H2N if g Je!N and N >k+1/2,
(_@Huz,l-ﬂ/z,w lf ac BN and N2k+1/2,

(iv) AOp(z;7z;)—Op(ar;x;) = A; L;+A; L;+A;; with

(1) Air Ajefllz uqk+1/2,l,1v—1/2, A,-J-EJ”H"’N {f AEJ"’I’N, N2k+3/2,

(2) Au AJ_E_@H-I/Z,I,N’ AijE$k+l.l,N lf AE.@””'N, NZk—l—l,

(3) A, A, 2NN, A, e AN if A=Op -, for some I, N>3/2,

(v) AL;L;—Op(ar;n;) = A; Li+A; L+ A;; with

(1) Ai’ Ajefllz Jkﬂ/z,l.N—l/z, AUEIE_I uqk+1.l,N lf

AeJkhY N >k-+3/2,

(2) 4;, A;eB+ahy A,-,-Et"'l_@”“""" if A€ BN, N>k+1,

(vi) L;L; L,—Op= = i1 4, Li+A4;

am, with Ajet®™ ' A and A;pets? A3,

1

where #=
To state the next lemma we make a definition.

Definition 6.5. Let L;, i=1, 2, 3, be three operators as in Lemma 6.4. We
define
C=C(L,): =the set of all operators on Sy of the form:

2 Aij L Lt '=231 A; L, with A,;€0p ISG000 4 fuz juaizs,
A;E0p 37300 12 L3 .

F:=F(L;)=the set of all symbols g with Op g&C(L;);
E:=the set of symbols of the form

E]€=o a Tk with
a, (= t—l(fz’(ﬁ,l,o) _jr_f3/2 2(0,1,0)), a, = t_l Bl/2,1l2,3[2 ,

min(2,j) 3 3-!

GE >) D) ) t-Weks-l-i) putil2izz

k=0 =0 j=0

C(,::OPE.

Lemma 6.6. Let L, 7z, %, x, i=1,2,3 be as in Lemma 6.4 and set
z=[1}.17; and let o33 ),.
(i) mofp—n-fpeF+E.

(i) Let q(t, x, 7, €) = > au(t, x) & ayE B, 1, ay=1. Assume that =
+/<3
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@ x,7,8)=7"q(t, x, v, §) when (t, x,E)ssupp ‘o. Then it follows that
wfop—Spofge F+E.
Before the proof of these lemmas we note

Fact 6.7. (1) If as2ip (resp. 2?%) with p,,(d) >0 and d; >0 (resp.
#(d)>0 and v(d)>0), 8 fac fil* 371,200 (resp. 8f fa & fiI? 3¢+0:70),
This follows from Fact 4.6—4 and —7, (4.3), and (4.6). (See the proof of
Corollary 4.12—(i).)
(2) Let ac A*"Y (resp. B#"V). Then 0¢’a is a sum of the symbols of the
form: a, +fNa2; a]Efm lelz(dﬁ(o.i.o)n fj fZ"f72(°'°-f> (resp. fjlz 3d+(0,7,0) nfjf
34-00.0) g, & 3010 with d € 4% (tesp. 4, ), eE 4, .

(3) Let 7, be symbols in Lemma 6.4. Then from the proof of Corollary 4.
12—(@),
8] v, & fUHDIZ FOILO ) £7 FF(=NO0D ( £5 £ 5A-DO.01)

for j=#0. r;as well as 7, also satisfies (6.4), and
fo ai TiEfE(lo/’g_j'l) n f3(0,-i=1,0)
for j=£0, 6>>0. This follows from (4.16).

Proof of Lemma 6.4. (i) follows from Lemma 4.18 —(3)—(i)) and —(iv).
(ii) follows from (i) and the assumption on z;. (iii) follows from Lemmas 4.18 —
(3)—() and 4.22. Let us show (1) of (iv). We have

6.5) ao(m;w)—am,w; = 33117 6L a(t, x, €) Dix; ;) (t. x. 7, &)
1=1

Q)M —1)1! 51(1 —O-H0S— SS i7" 8% a(t, x, E+07)
0
X DY(x; =;) (t, x+y, 7, &) dydn) db .

From Fact 6.7—(2) and —(3) the summation in (6.5) takes the form:
(6.6)  b;m+b; w;+b;; with by, b & fYE JEUEEN-IL e JRLLN

Since b;=f"% ¢; for some ¢;E AN -12 the summation defines the operator
in the desired form by (i). The oscillatory integrals in the integral terms are
sums of terms with the notation in Lemma 6.3:

ra[ajeu a, D;, T; Dy! Tj]9 1<ISM; I':;fo [6? a, DY 7)), 1k, I} ={i,j} .

Thus from Lemma 4.9 and 6.3, the integral term takes the form (6.6) when
M>2N so that this term defines the operator in the desired form (i). (2) and
(3) can be shown in the similar way.
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In view of the equality
AL; L;—Op(ar; #;) = A(L; L;—Op(=; =;))+Op(ao(x; ©;—ar; @) ,

(v) follows immediately from (ii), (iv), Lemma 4.18 —(1), and the fact that
AN peb¥ in general.
To see (iv) we note that

L;L; L,—Op= = (L; L,—Op(x; m)) L;+[L;, L; L,—Op(x; m})]
+[D, Op(=; 7)]—(Op ;- Op (7’; m,)—Op(; T; ) .

The first and last terms have the desired forms respectively from (ii) and (iv).
From (i) and (ii) we see

©.7 [L;, AlE AF+Y2IHZN if g W'Y and N>k+1/2.
So the second term has the desired form in view of (ii) and that in general
6.8) 17 b N C JEFURIUEN G N>E41/2 .

Finally, the symbol of the third term equals to —D; z;-w,—D, z,-x;. Hence,
one can easily see, from the fact that 8, r;&¢*~* A“¥ for N >1 and (i), that this
term the desired form. This completes the proof.

Remark 6.8. The presence of the factor f** for 4; in (v)—(i) in Lemma
6.4 is important.

Proof of Lemma 6.6. (i) We have
(69) molp = 3 sI7VS1)171 0,50,/ D,* D, Ta(t, %, 7, )
s=0 j=o
1
3 s!“(N—l)!"I(Zn)'ls a —ﬁ)N‘l(OS—SS =7 83 Y n(t, x, v, E+67)
=0 0
XDg*D,N To(t, x+y, €) dydn) db .

Since f* D,*D, fo=/3{75=7:? for any 2>0 from Fact 4.6—2, in view of Fact
6.7—(3) the first summation minus z-’¢ takes the form

3
(6.10) 2 by my -2 by wy+-by
k1 k=1
with bk,EfZ'§721'°'°)+f”2 n A¥¥, by XGH00 412 N AN for k=0,
N>3/2 N>3/2
By & Z(-300  fU2 ) gaA2LN,

N>3/2
The symbols of the form (6.10) are in F+E in view of Lemma 6.4—(i) and
—(v). On the other hand, the oscillatory integrals in the integral terms are
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sums of terms with notations in Lemma 6.3 respectively in s as in the following.
s =0:I7%[0{* 7, 8% 7,, DY To], {p, q. r} = {1,2,3},0<k<N;
135" [0¢ 7,, DY 7o), {p, q. 1} = {1,2,3} ;
nl 11 0¢'sw,, DY 79, 31j; = N.j>0.
s=1: Iffo'[—alév 7o Dy DY f¢],;=*=512 rel0f~* 7,0t v,, D, DY /9], 0<k<N.
s =2:1y[0f v,, D} D} q] .

Thus, by Lemmas 6.3 and 4.9 the summation of the integral terms takes the
form

3
(6.11) ,El Cpy 0y 7L'l+ ];21 Cp 7!.',,—}-6'0
with ¢, € fVF2 FO.-LY o e fNID/Z 5(-1-10)  for k=0,
CE fN+D2 F(=2-L0)

From Lemma 6.4 —(i) and (v) the symbols of the form (6.11) are in F+E when
N>6. This proves (i).
(ii) We have that
N-1 . .
Tpolq—'(eq) = )17 01 79+ Di /g
+WN—D1™ 2 ralo} Yo, au(£E)1 <

Since 8Y p& f¥/2 3ON9_ the second summation €E for N >6 in view of the
definition of E. On the other hand ,from the assumption, for j==0.

ol7p-0i7qg= 3 IM=-( X Cp,;08i79-I1087)
Ic(1,2,3) isIf J=(ik)E‘N*(I) 1154
0<FUN<3 > ip=i
kEL

where ] #; means 1 when I°=¢.
€I’

Since 81 fg- I 8t 7, & fi~42 F3©-8D.0) this is the symbol of the from (6.10)
kel
so that it is in F+F from the proof of (i). This completes the proof.

Lemma 6.9. Let 7, 30%?, i=1,2,3 and set == ]_i[ (r—7,). Let
pe3® and let q(t. x,7, €)= k+Zl' 3a,,,(t, x) €'t ay B, 1. Assume,_t;lat z(t, x, 7, &)
='q(¢, x, v, &) when (t, x, £) Essupp fo. Then,

zofp—FgofpcE.

Proof. We have
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(6.12) zolp =j§ss(j! k) D Dt z-0] 6% fgv—l—j%ﬂ(j!(k—l) Nt
er[-D'erEk”; atjaxk f¢] .

From (4.3) and (4.6), it follows that if ¢;=7%; with #;&3{*%?,

Okt =110k T, = PNSKEDKFEN
X F(KEYE ag ?j)<§>—lz+he FAI G120

for keN, 2eR, 1<2<k. This implies particularly

32 Tjefa/z 25(0.1,0), ag z'J-EfZ"‘“”l"’) n falz 313(0,1,0) ,
32 ,Z.J_Efslz 2(0,1,0) n fZ'Z(O,l,O) .
Using this and Lemma 4.3, one can easily see that the second summaiton in

(6.12) takes the form
f¥%(b, 7?+b, v-+by) with b,3O10 p X100 b e F(=2-10
which is in F+E. On the other hand, from the assumption
Di Diz-0} 8% /p = Di Dt /q-8} 8t 7o
so that the first summation is equals to go’p. This completes the proof.

Lemma 6.10. Let L,=D;—at, x) f(x) D,, ;€ B,, 1, i=1, 2, 3.

2
(1) L, L,=O0p(1I (r—a; fE))+t"*1 bfD, for some bE B, ;.

i=1
(2) Assume that a,—a, S E, /\{0}. Then there exists r &N such that any dif-
ferential operator of the form L=b, fD,+b, D, b,Et" f" B, ; can be expressed
as L=c, L+c, L,, c;EB, 7.
(3) Assume that a;—a;E E, ;\ {0} for any distinct i, j. Then there exists r €N
such that any differential operator of the form R= 33 b;; f'D;Dj, b;;&t"f" B, 1

0<i+ <2
can be expressed as R= ¢2 ¢;j L Li+ X ¢; L;, ¢;j, ¢; EBy, .
3 itj 3

4 Set Q=0p(Il (r—a,f€)). Then for any >0, [Q, f”] is expressed as

i=1
Dby Ly Li+>3b; Li+-tY"" ¢, f D, +c, with b;;, b;, ¢, E By, .
i 7
(5) Let R= 3] a;;f'D;Dj, a;;EB; 1, m>1, and let ac B;. Then, [R, a] can

i+j<m

be written in the form X\ b,; f*D;Dj, b;;E B, 1.

i+j<m—1
(1) is trivial, (2) and (3) is a simple consequence of Lagrange’s interpolation
formula and (1), and (4) is that of Leibniz rule and (1). (5) is proved by a direct
calculation. The details are omitted.
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Lemma 6.11. Let L;=D,—A;, L; =D, —A}, with A; and A} in Z®29,
j=1,2,3, and let R=Di+3} B; D}, B;& Op 370379, Then if B& Op 3459,
L, L,L; B—BR can be e;c;Jressed as E Bf Lt L+ ,E B! L! + By with Bf;e
t710p 3°, Bist 2 0p 3° for i=0, Bi=t™® Op 3°.

Lemma 6.11 is proved in a straightforward way by using Lemma 4.13 and the

fact that [L, A]€0p SCH-20% if [ —D,— A, with 4, € Op IS®-20, and if
AsO0p 3”.

Lemma 6.12. Let 9=/3° and q= ES} a; [t &, a,;EB, . Then
ifi<z

gop—q-p.9°q—q-pEE.
Proof. Setb;= 3} a;;€ so that g= >} /b, r*. Since b; satisfies (4.41) in
i<2-¢ i<2
Lemma 4.18 —(2), we have go’b, —¢-/b,, 'b;00 —p'b, = B¥?~#:¥ for i <2 and any
N. by=ay and @oay—@-ay € F300"D 4 f32 FOLO since 8 pe fH2 SHOLON
SEIXO0=B  Thus, we have proved the second statement and first one is also
clear, since moreover, fb,o(r'ogp—1’ )= E for i==0 in view of Lemma 4.18—(1).

Lemma 6.13. Let ¢=’3° and g€ E. Then qop, poqEE.

Proof. Letg= 2‘,2 a; T'€E. By virtue of the fact that FY®1~#0 c Y O.1-£0)
kE N, one can show,isn the same way as in the proof of Corollary 4.12—(i) that
9oy, Gop S 171/ SONO L fU2 FOLY)

It follows from Lemma 4.18—(1) that 3} pog;-7‘, 3] g;op-7'€E, and also g;o
(rfop—rip)E E for i =0 by Leibniz rul(:‘.S 1 These faz:stls prove the result.

Definition 6.14. Let =39, (7, h). Then we define the set 27, d € R®
with d,<0 by
S = {fa; a3}, supp aCsupp ¢} .
Definition 6.15. Let p=23Y), and g= >} a; ' & with a;;EB,, and
i+7i<3
az;=1 be given. We define
4,; ={deR’; d = —a,, 0,)(d) = ay+a,—i/2, 1,),(d) >0} for
ecZ3,ie€Z.; F, = the set of all finite sums of symbols in

{fl==l2 f 3% q; ac 3¢, dEd,, ;, 0<|e| <i} for
iEN, where 8% = 8% 822 8% .
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We also define

Qu; =[G ydai 5% for i€N and e€Z3 with 0<|a|<i,
o0 =7q, and
F={q,;;0<|e|<i} for iEN, where
dyi = (—a, 0,0)+(ey/2+2,—if2) (0, —1,1) for acZ’ and i€Z,,
Yo =g Jl =yl s for dER®.
Fact 6.16. (1) f*90” ’be’24;® for any beXq), and e>0.
(2) 8% 9| < C,p t (<t fHAM £571 g0 £))2%2 (EY™ )¢ for 0.
() fe#2 0" pier f3{% D for €>0.
(4) If g=ar' & with a€ B, 1, i+j <3, and a=1 when i=3 and j=0, we have
q M:f(i-wl)/z F(boproa & Yiroal2-il2) o1
with a;+j+I1<3,jE€Z,, 1<2, and b3} satisfying |8°b| < C, 17 {E)7%.

Proof. (1) Nothing but Fact 4.6—2. (2) A result of the estimates that
18°(° /7 )| SCLE f7 €3 K f7 71" D) aled™ a7

for e>0, s>0, s'>0, and Lemma 3.8—3.
(3) A simple consequence of (4.16) and (2).
(4) This is shown by a direct calculation.

Lemma 6.17. (1) Let g=ar* with ac’X?+f%2 32, o(d)+ k<32, —d+
k<3, k<2, 5i(d)=u((0, d,, d3))=0. Then, q<E.
(2) F,CE if j=3.
() d,.€4,,; 2% it for ded, ;.
4 a%"“EZ'?IZ z'faEZ"{,z.
() aq,;EF;, for acZX and iEN.
(6) any qEF; can be expressed in the form of a sum of symbols of the form
aq,; with ac2} and 0<|a| <i.

Proof. (1) follows from the inequality that
T KOy ST CEY I

(2) follows from Fact 4.16—(4) and (1). (3) is clear from the definition. (4)
follows from Fact 4.16—(2). (5) follows from (3) and the definition. (6) fol-
lows from (3), (4), and the definition of F;.

Lemma 6.18. Let ¢ and q as in Definition 6.15 be given and suppose that
i<2and acX). Then,
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4°Gy;—0" Gair 40,i°0— " G0, € 23 F;+E.
i<i<e
Proof. In view of Fact 6.16—(4) and —(2) for i €N one can express g,,; as
S fG=adiz fp, ! where b, — 0 if @;-+I>3 and where b,
1=0
satisfies |0° b;| < Cp, Y1 (ED¥ I -o/2=il2=By*eBy. =Py for &>0. Thus we have
in view of Corollary 4.12—(i) and Lemma 6.17—(1),

N 3 N
aoq, ;— g_,‘o Dfa-8%q, [k, g, ;00— >} IE (s'k)'D: Dtgq, ;-0; 0t acE

s=0

for sufficiently large N (in fact N>5). So, in view of Lemma 6.17—(2), it
suffices to show that

(6.13) .Ds a'a; qdiEl:i'Fs, Di l)f q,,--a’f a; aEE+s+k fOI‘ SEN.
3 » § Ya,

To do so we note that a=’a with some a3}, satisfying supp 4Csupp o,
from the assumption. Then

(6.14) Dia-9;q,; = > eih(x)/Dia-fits—odl? fe. gk i
k41Bl<s
B=0

X(fE)f218*+ g,
where ef:€ C7(R) with e}:6=0 if |@| =i=0, and

(6.15) D Digq,;-0i85a= > ( s )f(i+s-u1)/2+s{2
B\ P2
s

X 0405 af0y Panflw,if07 B g

By Fact 6.16—(3), D af** 8% yiai( f&)P2c S ia+B.i+s s0 that Df a-85 g, ;€ Fipy
for when |a]=i=0, #%0 for non trivial terms in the summation of (6.14).
Similarly by Fact 4.16—(1) and—(2), f*2 8% 85 a-/8§ P2 e S Jiw+Bsri+i $0
that in view of the fact that when |a|=i=0, 8,<s implies that 8§ Pz%e.i=0
in the summation of (6.15), we obtain the latter of (6.13). This completes the
proof.

Lemma 6.19. Let ¢ and q as in Definition 6.15 be given. Set

d={(a, )eZ3 XZ,; a=0 and i=0, or 0<|e|<Li<2}, 4'=4\{(0, 0)},
and Q,=O0p q,,; for 2=(a,i)e4. Then for any SEN there exists IEN such
that for any n€4 and A,, -+, A,E0p X one can find Ay, A€4', j=I, -, 1,
k=l, ---, s, €0p X} such that

[Qus Al"'As]—E)\,j Ql\ A?\jl"'A}\jsECO .
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Proof. Set gy =gq,,; for 2=(a,i)€4. Let acX and p=(e,i). By
Lemma 6.18, aogu—quoaE ;< ;<, F;+E. By Lemma 6.18 and 6.17—(6), for
any g € F; with j <2 one can find g,&2], for all 2€4;={i€4; 21 =(a, i) with
j<i<2} such that g—2,c,; xcan EE. These two facts shows the Lemma for
s=1. Next we assume that s>1 and that the Lemma is true for 1, ---, s—1 so
that 1, N, 1<i<s—1 as in the statement exist. Then for any v & 4 there exist
A, A€M, j=1, -+, I,_;, k=1, -+, 5—1, € Op 3§ such that [Q,, 4;---4,_;]—
2,,; Or A jy+++ A3 ;51 €C,, and there exist 4,;€0p 25, A€ 4’, j=1, -, 1, such
that [Qu, A]—2); Or 4y;EC,. Since [Qp, Ay A =[Qu, Aye++ As-1] A+ Ay
Ay _1[Qp, 4], the Lemma also holds for s in view of Lemma 6.13.

Next corollary is important for estimation of commutators in §7.

Corollary 6.20. Let %, t;, =;, L;, for i=1,2,3 be as in Lemma 6.4. Let ¢
and q be as in Definition 6.15. Suppose that q(t, x, v, &)= ﬁ (=72, x, &),
i=1

(¢, x, &)supp ¢. Then one can find 1,EN for any s€N with s>2 such that
for any Ay, -+, A,€0p X there exist Aj;€0p 2y and Q,€C(Ly),I1=1, -, 1,
j=1, <=+, s—1, such that

[opfq: AI'"AS]'_E;LI Ql All'"Als-—]Eco .

Proof. Assume the notations 4’, g, in the statement and the proof of
Lemma 6.19. By Lemma 6.19 one can find ,EN such that for any 4;E0p
3, j=1, =+, s, there exist A,;,=0p a,j; with @, €35 for 2&€4’, j=1, -, [,
k=1, ---, 5, such that

[Op /g, Al'“As]——Z)t,j OP(%WA;k) ijz"‘AA,-sECo .

Since gyoayj, € Fi+F,+E by Lemma 6.18, it turns out in view of Lemma 6.13
that the proof is complete if we show that

(6.16) Op peC+C, if peFUF,.

To see this we may assume that p—fG~*0"2 ¢f3%¢ with a—'d, a4, with
de€4,; and supp @ C supp ¢, 0<|a|<i<2. We devide the argument into
two cases: (1) a,+a;>0 (2) a,=a,=0. First we consider (1). From the
assumption on g, 5”(1-& is a sum of the following form:
BT (r—%)); 0<#(J)<3, b=a- [ 08n 0%iz 7, with I+ ¢,
jer i€I
INJ=¢,40UJ) = 3—0‘1,12 By = @y, |ﬂj]>0 for B;= (/9,'1, ﬂjz) .

From the definition of d,; and the assumption on 7;, b€ X}, with e=(—a,,
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0, 0)-+#()/2 (0, —1,1). Thus, in view of i>e,, p can be written in the form:

1;2 by 7 7+ é by my; by 12 N AVEN bye [V 0 AN
=] =1

N=1/2 N=>1
which belongs to F+E by Lemma 6.4—(i), (v). Next we pass to (2). p=a-
WS‘_, BG—#U))! I #; and a=/2770"9. So, Lemma 6.4—(i) and (v) imply
)=3-a, il

that p F+E. Tnis completes the proof.
Next we shall study the localization of the operator Qp, in (2.17).

Definition 6.21. Let q=i§53a,- ; 7 &/ with a;;EB,, ¢ and a;,—=1. We define
for v = (yl’ Vz)’ H = (lul: luz)EZ-ZH
G = fn . ai;z,f(azl aEz o q).< fE)‘”z"*z)/2<t"h f5>(v1—!h1)/z FoVtE
Lemma 6.22. {f&> Y2 q,.cE when I€Z,, [+ |v|+|u| >3, ,<2, and
|v|+|u|>0. Before the proof we note that

6.17) for e€R,acZ3, |0 ED| K Cpe KtFED 7M1 ED™ .
Proof of Lemma 6.22. 1If g=ar'¢’, i<2, aE B, 1, and if v<(i, j), we have
(6.18) Gon = 33 Guny 05105 - (fE) 2 FEXC M (y fEH 1l
1;‘;2'”1*‘”1-1"""1 with g, EB~(R,) .
If g=13,
(6.19) gy = 0 when v,+|x|>0, and

- !
dovm0 =171 <f"'f5>"1’z-(3 3! )‘-':3“"1 when »,<3.
—y)!

Thus using the fact that 841 8} g-t*1=¢™**V/k.p, for some b,E B, 1, the ine-
qualities that min (,, 1)/h—,/(20h) >0 for 2>, >0 and that >’ ED,
and (6.17) we see that when IEZ,, |v|+|#|>0, and #,<2,{f &> g, is a
sum of symbols of the form:

(6.20) fark; k<2, vi+m/2+k<3, act ™2 3¢ with
dy = —v,0(d) =3—k—(|v|+|u|+)/2,d; =0,
and q satisfies the estimate that
|8%a] < Ct= /2= 11 EYT DA%

In view of the definition of E the symbols in (6.20) are in £ when [+ |v|+ | x|
>3. So the proof is complete.
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We define a similar set of operators as C.

Definition 6.23. Let L;, i=1, 2,3 as in Lemma 6.4. We define C'=C'(L;)
=the set of all operators on Sy of the form:

§ Aj L Li+23; 4; Li+4,
(==
with 4, B2 A, B for i+ 0, AyS BV

F'=F'(L;)=the set of all symbols g with Op q=C'(L,).
We shall show an analogous result of (6.16).

Lemma 6.24. Let 9=2°, and let q be as in Definition 6.21. Let x;, t;, T;, Ly,

e€(0,1), and z= ]'3[ =, be as in Lemma 6.4. We suppose that ¢>1/(10k), and
i=1
that

q(t, x, 7, &) = f[ (z—%;(t, x, £)), (¢, x, E)Esupp ¢ .
Then, quo’p & F'(L)+E if 0<|v|+|u| <3.
For the proof of the lemma we make a definition.

Definition 6.25. We recall Definitions 3.7 and 6.15. With U=R%, and
MP =%, MP =y'~%, for e Z3 where y'? =% {E) %y )% for dER?
by definition, we set for a positive function Z on U,

ED(Z) =B(U,Z, M), i=1,2.

Clearly,

(6.21) 34, = BO@yd), 3¢ = EO@yY)
so that

(6:22) 34, C s SOdstigdy)

Indeed, using v? =% (¢ "% %) < t% ®%1742%) and Lemma 3.8-5 and 2 we have
EOp) =141 BNV~ yd) Cth B (¢ @4t9%9)) which implies (6.22). We also
have

(6.23) £8 OO C 3o+ (=109 when &>1/(10h),

(6.24) {5712 BlbN — BRIFIEN G >]111/2 and e3> 1/(204) .

Indeed, 1% =t {tEY™VELED 1P~ EDT A< 7t EDM? when &> 1/(10h).
So (6.23) holds by (6.21), Lemma 3.8—5 and 2. And if d€4,; with k, [ as in
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(6.24), P'd =1 (g% EYFD L (XY@ Ly (EWVDHED L2 (e from the in-
equalities d,> —2/ and #(d)>0, so that r*~V2yp'd Ky (EHR—I-12 y=1/2+100K)
OV ATHILEN "2 from € >1/(20k). Thus, 23X C 3¢ with e=
(—21—-1,—(k—I—1/2), 0)E4, 1.z, Which shows (6.24) in view of the definition
of BN,

Proof of Lemma 6.24. We have

(6:29) Guop = 33117 {3317 01 0 quu- D} Di g

05 02 gy, DI DIV IGUNY
We assume that 0<<|v| -+ || <<3. Since from (6.20), qw=:§0 fa,o* with a,
(t, x, §) € C=(R}) satistying |98” a,| < C, t~C~#~2) {£>52~*~23 which implies by
Lemma 3.8—5 that the notation in Definition 3.7, g,&t~ ¢ ®E (R, {E)*7*, M,)
with M,=t""1{&>"%, the terms ry,,[-] in (6.25) are in E for large N, for in-
deed, by Corollary 4. 12—(i) with o=1/4 they can be written in the form kE: byr*

with b€t~ 330 for N>12, and ¢t72f33° C 1 BY3123 =33 30  g3/2.3/2:3,
A direct calculation shows that

(626) a:' aé G = E Clnmfyz—m a‘.:z—m(fj—l)f"falm' t D(vy+i, v+ DBy, m)
m<p,
with aE C*(RY) satisfying

[8% Gy | SCLKED T et m=imDl s (g u )71 47
By (6.26) one can easily see that

(6.27) o; a£ gw-Di Difp = % a1 G(vgt s, gt Dby pig—m) With

m<,
another g, &3 ¢~"+mO.LY gyuch that g, =0 if #,>>0 and m=0, and such that
supp a;,, Csupp ¢.

For non trivial terms in the summation in (6.27), | (v;+1, v, D)+ (&, 2, —m) |
>0, since when #,>0, a,,#0 implies that u,—m-/>0. So noting that
ac’X° and g€ E implies aq =, the fact that by #, <2, Lemma 6.22, and that
a;, €2°, we have only to show that

(6.28) faguEF' if acX® with supp a C supp ¢, and if 0<|v]|+ || <3.

Since f*z+ 8%z (0} 8} 841 q) = L, e H(@n o 010, q) (FE) with e €
¢ 2

B=(R,), and since supp aC supp ¢, “aq,. with 0<|v|+|x| <3 can be expressed
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as a sum of the following symbols:
(1) The case »,-+ | #|>0.

’b- HI(z'—r,); 0<#() <3,b =a,a, ] 8=, with

SE ser
J*¢,INS =¢, T UJ) = 33—y, gr“ = (4, [, v,-+k) with
i+k<u, r’+0¢,a = ag¥~"1 with g€ B=(R,), a, = Y& M2 gF

(2) The case y,=|u|=0. (v;=|#|+|v|>0 then.)
BT (t—7y); B (1) = 3—vy, b = at ™1 EWEXM2
sEI

We consider the case (1) first. We set by=a, [] 8" 7, and b,= HJsz with
sET SE,

by, = PN {EDMDL Y ¢ From (6.17) we have {1 EYM2LEYHRI2 e
I JIOLO+O-DRO-LD - So if we set Jy,={sEJ; ri>0} and J,=J\J,, b,E1"
292 for s&€J, and b,,e X" for s€J, in view of (6.22) and Lemma3.
8—2. Hence, by (6.23) and Lemma 3.8—2, b,,&3¢ %9 for any s&J which
implies b, I¥NCL00  Since a,=b, b, with by=E&* {EY7* LEDUH- P 30 we
have g,&3¥NCL00 and therefore beIC-#M-100  We have shown that
fag,u takes the following form in the case (1):

(6.29) S by 7y Ty 31 by 7y by €750, b, @I I200)
LESY k=1

It is clear from (6.17) that in the case (2), ‘ag,. also takes the form (6.29).
Now, by Lemma 6.4—(i) and (v), “aq,u with 0<<|v|-+ || <3 defines an oper-
ator of the form of the right hand side of (v) in the same lemma with
k=I=1/2 and N=3, and from (6.24), t*~! G¥>¥23C P23723 which completes
the proof.

We shall use for proof of Proposition 2.3 the localization operator of the
form @", ne N with ®=0p ¢, =23}, and ¢" being an element of partitions of
unity of R} which is contained in 3}, and any element v of which satisfies
supp dyrC {t°C>>c} for some ¢>0 and 0<<e<e,. Such partitions of unities
have been constructed in Lemma 3.2. So, we need to know that ®"—Op ¢" is
small in norm.

Lemma 6.26. Let 0<e<e, and ¢>0. Let a, be23,(T, h) whose gradi-
ents supported in D= {t°CE>>c}. Then, if T is small, Op(fa°’b)—O0p(fa-’b)
et A" for any N>0.

Proof. Since {t1€>< CtE) in Dy, for d XY, supported in D,
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(6.30) |8” o* aé G| < Coyy t2EFD2 (ENE=DI, T

If Tis small, |§]>1 on D, so that using (4.16) and Lemma 3.8—5 one can
show that for @ as above,

fe 8% fdetz(w2+w3)/z le(/—zwl,o,0)+(az—w3)/2(0,—1,1) for >0 ,

and that ‘a also satisfies (6.30) if k-+/>0, which imply that 8% /q.8f be
1°7%}), for k>0 and that ry[8} fa, t~¥%* DY /bl f¥/2 3° in view of Lemma
3.8—5 and Corollary 4.12—(i). This completes the proof.

Corollary 6.27. Let a be as in the above lemma. Then, if T is small, for
any n>2 we have

©Opa)'—0Op((fa))st* A*¥ for N>O0.

Next lemma is the one to handle the reminder term in Corollary 6.27 when the
localization of g, is carried out.

Lemma 6.28. Let q be as in Definition 6.21. There exists Ny>0 such that
if 0<|v|+|u| <3, for any act® AN with N> N, and ¢>0, we have

Gwoa—aogyu— 31 Ayp°qupEE
0<lal +1BI<3
By=#y

with a,gEt® 3°.

Proof. Let act*(f2Y,+f" 2°) with e>0 and let v, € Z% with 0<|v|+
|#] <3. Using (6.26), the fact that 8% b & t* 34~ (resp. f¥ 8% b t* /345"
for ¢'>0) if bet® ¢ (resp. bet®/2{;) which follow from (6.21), Lemma
3.8—5, and (4.16), and the one that [t &) {tnfE)* =2y, for s>0, we

have that when i, j&Z, and N> H-TJ> 0,
(6.31) ai o’ Gy 9; 0la= Z‘_Jn biy D(vy+i, vt j— 1By, m)

m<by
with blm = tE(fZ’gl—zMz-f'm—l)/Z(ﬂ,—1,1) +f(N—(i+f)/2) Z'(Fz—m+1)(0,1,0))

such that b;, =0 if #,>0 and #,>m.
We note that from the fact that
if a=B*"¥ and beB¥"'N with N>k-k', abs BF+ 1+

which follows from the fact that d4+-eES 4,y ;4 if d=4,,; and e=4,, ., that
J(d)=d if de4, ,, and Fact 4.6—7, and we also note that f/2q&IOL0 if
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as YL which follows from (4.3) and (4.6). Using these facts we see
(6.32) if aeB"? and qEE, ag<EE.
Thus, noting that {f&d*2act®* %Y for ac IWFOL-D [N 3020 apd
a>0, and that A%¥ C B®", and using (6.32) and Lemma 6.22 we see that
(6.33) aguEE for as/Z{OL-N4f 2300 with jeZ, and
v, u€Z% with |v|+|u]|>0,j+|v]|+|#|>3, and 1,<2.
Since it follows from (6.20) that for v, € Z2 with 0<|v|+|u| <3, gu=
k§2]f avt with gz, x, &) € C*(R%) satisfying |0%a,| < C, 1~ @ 021 (gH5 2k
=0

which implies by (4.16) that |8% fa,| < C, t @B~ fEDV2-k{ED~ 5™ % for any
e&(0, 1), there exists M, N such that for any M > M, and i<2,
(6'34) rM[ag{av D%‘IWL rM[a:' algw%ﬂ-, D; Diwa]EE~

by using the fact that DY g,&¢=¢~" J6E-M/HE.~1.0) |
Corollary 4.12—(i), and Lemma 4.19 for the former, and by using the fact
that g,¢=¢» 330-=121 and Corollary 4.12—(i) for the latter. In (6.31)

we have that i+j+|v|+|u| =g—m+1+|(@, +1i, v,+j—1)+ (4, m)|, that
| i+, vptj— D)+ (1y, m)| >0 if b,,,+0, and that #,<2. So, from (6.33) we

have in (6.31) that 0} 8} gyu-8i 0} a€ E if i-+j+ ||+ |#| >3 and Nz%_J—I—Z
Thus, for act® A%Y with >0 it follows that
(6.35) guwea— 33 (i) D Df q,u-0} 8 ac E

if 0<'+|]5l+lu| <3 and N>(M,+2)/2+2.
Now we claim that for any d, e R?® with d,=e, =0, 0,,,(d)<0, 0(e)<0, there
exists N,>0 such that
(6.36) for N>N,, ac/3¢,+f¥ 3¢, and a, fE Z% with 0<|a|+|B| <3,

there exist ayy &2 for pairs (A, 7)EZ2 X Z% with 2>ea, r> 8 and with r,=5,
and |A|+|7|<3, such that g,/ J}Y5OL DL N2 FOLOYe g =3, +
fN2 3¢ for (2, 7)== (a, B), satisfying that

°5—a*Gug— 2) Oy GwEE .
&

It is not difficult to show Lemma 6.28 using (6.31), (6.33), (6.35), (6.36). The
details are omitted and we shall prove (6.36).
Since for any >0 and any be C~(R%) satisfying with d € R3 that |8“ b
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(, x, &) | <C,t™ K> "4 for any a€ Z3 (see Definition 6. 25 for the defini-
tion of ¥+'¢),we have by (4.16) that 8% /b="b, with b,(t, x, §) € C*(R%) satisfy-
ing |0Pb,| <Cpt*1 P (&> " Ps-np’®, and since |8% ¢! | < C,y' 171 {ED™
by (6.17), for any i€ N

(6.37) I 0% qup = 33 f1¥P2-0,1P (051 032 0F1 )  fE) 2P0

I1<i
X <te],f£>(°s1_ﬂ1)/2 t_¢1+ﬂ1 . fbl

with b, & C~(RY) satisfying | 8% b,(t, x, &)| < C, t™*1<{&>"* *s, We may assume
that a="a,-+f¥ a, with a,&3%),, a,&3° for d, e as in (6.36). Since 8} a,
e e ZI-12G-D0.~LY) and 8} a, EYPe X010 for j, e Z, with i>],
we have by (6.37) that when N> M, and i N with i <M, where M, is the one
in (6.34),
(6.38) 0} aD:q. =3 quron by for some b e/Fi-12E-H0.~LY

1<i

+fN-i Z'e+(i—l)(0,l,0) .
We take Ny=2M,+2 so that N—i>N/2>2 if N> N, From (6.33) and the
assumption on d, e, we have that
(6.39) if |a|+|81+1=3, qupro,n LEE.
And we also have in (6.38) that
(640) b,,E fz'zli/—ZIIZ(O,—l,l) +fN/2 2¢+(0,1,0) ,
(6.41) b’ 3{p+fM? 3 forall I.

In view of (6.34), (6.38)~(6.41) prove (6.36) with N, as in the above by the
asymptotic expansion of the symbol aoq,, with breaking off it after M, terms.

Next we shall study effects of localization by the partitions of unities in
Lemma 3.2

Definition 6.29. Let X be a subset of R} and let acX. We say a be-
longs to X% y, dEeR® with d,<0, p€[0, 1/2] (resp. 2%, d= R® with d,<0) if
a satisfies

sup |8% a|yriteyryteeyryds <oo
5, PEX

(resp.“,i\g)ex | 8% a|PT% L&Y Yy, 98 <<00)

It is clear that
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(6.42) a3’y (resp. 2%) and supp aC X implies a2 (resp. 2°9),
ac ¢ 4 (resp. 2%) implies 8” ac 34 (resp. T5™)
ac 3%y (resp. 24 ;) and bEI}; y (resp. 2%) implies abe 3%} ¢
(resp. 2%*°) ,
a,be3¢ ; (resp. %) implies a+b= 3§ 4 (resp. %) .

We set
ZX: de (LPJZ XUE ).

Lemma 6.30. Let a< C°(R}) satisfying with some k, 1>0 that
|8%a(t, x, E)| < Cp t™#*1EY"% for any acZ3, and let bE i), (resp. 2°).
Then, for any N &N there exists M &N such that

fao’p— a:f a-Dif bljl, Tbofa— 2 an b-Di ajj lethk fN JON0

<K
Proof. Since 3%, 37129, it suffices to consider the latter case that b& 3?,
Since act™* Z{{¥%Y, Fact 4.6 —7 and Corollary 4.2—(i) show the first
one. Next, from (4.16), we have for any >0 that |8%fa(t, x, &)| <
Cet T *1KEY %% 50 that DWW aet~* FU+9©-20  Thus, Corollary 4.12—(ii)
shows the second one. The proof is complete.

The following lemma is an easy consequence of (4.16).

Lemma 6.31. (1) Let acXiy (resp. 2%). Then, for any >0 and
aEZ3, there exists a,, 3% (resp. X5*) such that f**2-0%fa='a,, with supp
A, CSUPD a.

(2) Let ac C~(R%) satisfying the estimates of the a in Lemma 6.30. Then, for
any €0 and ac Z3, there exists a,, & C*(R}) such that f *2.0% a="a,, with
the estimates that |8Pa,(t, x, &)| < Cg t *~"17PL (DI~

Lemma 6.32. Let D,—Op’a with ac C*(R}) satisfying the estimates for a
in Lemma 6.30. Let bE X4, (resp. 3?). Then, for any NEN there exists
cet—k Z’?[—Fz(l 1/2)(0,— 1,1)+ Z‘]i.;—( -1,0,0) (resp. t—k Z'd+(l—1/2)(0,—2,0) __I__ Z’d+(—1,0,0)) Wlth
supp cCsupp b such that [L, Op Fb]—Op ‘ce [V té17% ZON.0)

Proof. This follows from Lemma 6.30 and 6.31 in view of the equality,
[L, Op ‘b]=0p D; "b—[Op “a, Op 7b].

Lemma 6.33. Let g(t, x, £)=d&3+f"2 at* with dEE,  and a= B, ;. Let
X be a subset of R and assume that | g| < Ct™ {ED¥? with £=3/2—1/(3h) (resp.
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lg| < CLEXH on X. Then,

Iaﬁ gl S Ca a2t <E>3/2—¢3'<t¢hf1/(loh) E>mln(]a|,1)/2 on X
(resp. lawgl < Cu 1% <E>2+rnin(1,w,)—w3 on X)

Proof. We only prove the former case and the latter one is proved similar-
ly. When {£>< 2, the inequality clearly holds. To consider the opposite case,
we note that

(6.43) 12 fUCOR CERE L2 fH00M g2

When <£>>2, using d&®=g—f"*aé®, |g|"*< C(|tf |V |&|+/¥¢|€]), and the
assumption, we see for @==0 and (7, x, £)= X that

| aag(t, X, 5)] < C¢ P <5>3/2—w3 (tK/3+l/ 3h) fl/(4h) <4:>1/2
—1—1"‘/3 f1/7 <E>1I6 +t‘ f1/3 <E>1/2) .

Using #/3-+1/(3h)>e,/2 and (6.43) show that the first term in the parenthesis
on the right can be estimated by fY@h-Y@m 4% (1008 g2 and  ysing
2£/3>¢,/2 and (6.43) show that the second one and the last one are estimated
respectively by fY7-VEB (g% fU A0 N6 qpd fUI-U@R) (4%, f1/A0M £5V2 - Thys,
we get the desired inequality for @40 and for a=0 nothing but the assump-
tion. The proof is complete.

Lemma 6.34. Let g and X be as in Lemma 6.33 and let bE X%, x (resp.
3%). Then, dbst™= S50 0%e f 12 ZT0- 31 0% (resp. dbe I3 0%,

Proof. Let 2(f)e C=(R) with =1 when |£|>1 and y=0 when |£] <1/2.
Break up db as xdb+ (1—x)db. The second term & 4 37~ (resp.
21 3QM.9) for any N € N,-and expressing the first term as &3 bxg—f? ab&~'x,
and using the fact that ger™ I¥% Y (resp. T5® %) by Lemma 6.33,
we have in view of (6.34) that xdb & ¢~ IYX" D4 f V2 I/ x"D*e (resp.
2x©-20%e)  This completes the proof.

Lemma 6.35. Let L;=D;—a,(t, x) f(x) D, with a;,EB, 1, i=1,2, 3, let
be’xy,, and let with c;, ¢;;E By, 1,
R =f(x) (33 ci(t, ©) f(*) D, I,
i=1
+ 121 ¢i(t, X) Ly Li4-1"*"1 ¢o(2, x) f(x) D) .
=7

Then,

[Op b, RIEC,, Op b-REC(L)+C, .
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Proof. 1t is easy to see that bofV2e V2 /3},+fN ZOLO for all NEN.

So, the second one follows from Lemma 4.18 —(1). Next, we set B=0p b, C;=
fY ¢, fD, for i==0, C;j=f"?c;;, Co=t"*"1 ¢, f**D,. Then,

3
(6.44) [B, Rl = 25 (B, C.] L;+G[B, L)+ X (B, C;j) Li L+ C;1B, L] L,

i= (S

+C;[L;, [B, Lill+Cy;[B, Lj] L)+[B, G,
(645 [B,Cle N AY“Y for i+0 and [B, L]E N AY2YEN

N>1/2 N>1/2

by Lemmas 4.18 —(3)—(i) and 4.22,
[B, C;;]€0p /330 4f¥ Op ZONO for N>0
by Lemma 4.18—(4),
[, [B, L]l NQ 1Jll"'”

by Lemmas 4.18 —(3)—(i) and 4.22,

[B, CO]E n tl/h—lJl/Z.N
N>1/2

by Lemma 4.18—(1).
Thus, from Lemma 4.18 —(1) and that A*"¥C B*"¥ all terms are in (6.44)
except the first ones in the each one of the second summation. Next, we note

(6.46) L; L; = Di+-dy(t, x) f(x) D, D,4-dy(t, x) f(x)* D}

+ 41 dy(t, x) f(x) D, ,
and we let ae C*(R}) satisfying the estimate for ¢ in Lemma 6.30. From
Lemmas 6.30 and 6.31, for b,&/3}/;®~Y we have bjofac ¢~ /3¢-150.-2.0 1
SY~ XOMO for any MEN. So, (6.45) and (6.46) show that [b, C;j] L, L;E
C,- This completes the proof.

Lemma 6.36. Let b&X%), (resp. 3%) and let ac C*(R}) satisfying |8%al|
S C ™"k LED!" %,  Then, there exists ¢, c,, belonging to t=* Z4j!-1»0.~11
(resp. t™* Z4+(-1UDO.=20) with supp ¢, Csupp a N supp b satisfying ‘ao’h—
f(a-b)—fcl and "bofa—'(a-b)—7I¢, are in fN 41~k JON.0),

This is an immediate consequence of Lemma 6.30 and 6.32.

Lemma 6.37. Let b='b with b€33,,. Let L=D,—f(x)a(t, x) D, with
a€ By 1. Then,

[, Op b]€ Op(3SH09 - FUHO~1D L £V FON0) for NEN.
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Lemma 6.38. Let g=d&-+f"2at® with dEE,; and acB, , and let
eEXY),. Assume that |g| <Ct ™ <EX¥* on supp ¢ with £ in Lemma 6.33.
Then, for any bE B, 1,

Tpof(bg)et™ A¥%3
Lemma 6.37, 6.38 are immediate consequences of Lemmas 6.30, 6.31, 6.33.

Lemma 6.39. Let g=d&*+f"? at® with dEE,; and aE B, 1, and let
o€, (resp. 2°).  Assume that | g| < Ct™™ (EX* (resp. | g| < CLED?) on supp
¢. Then,

(1) d(ff)lofqo—d(ff)l-fgvet—" fz'(lll;zxo,—l,l)w_‘_fllz fzg;—z-slzxo,—l,l)
(resp. F30-3D0.~20%¢) for any IS Z,,
) d(ff)’ofgaet_‘ fz’g;;s/Z)(o,—l,l)+e+f1/2 2’51/—51)(0,—1,1)+e

(resp. FXU~DO20%)y for any I Z,,

(3) fsao(bd(fé')l)_bd(ff)l. f¢e t—K fz'gl,-é-z)(o,—l,l)'i-e_!_fllz fz'(l—3/2)(0,—1,1)+e
1o fN ZON

(resp. 7ZU-UDO.20 et ge, fN FON0) for any bE B, 1, IEZ,,

and NEN,

(4) f¢°(bd (fE)I)Et_K f2(1—3/2)(0,—1,1)+f1ﬂ fZ'(II/EI)(""I’l)“—{—t"lfN 3 0,N,0)

(resp. FX¢-DO20 LN g, FON0) for any bEB,, 1, IEZ,, and NEN.

Proof. (1) and (2) follow from Lemmas 6.30, 31-(1), 34. (3) and (4) follow
from Lemmas 6.30, 31, 34, and that d€E, ;. Indeed, for any ¢>0 and jEN
we have for some b;, € By,  that f® 8;(bd(f€)")=b;, d(f€)'. This completes the
proof.

Lemma 6.40. Let g=d&*+-f"2 a* with d€E, 1 and aE B, 1, let p€373),,
and let L=D,—f(x) X(t, x) D, with A& B, ;. Assume that |g| < Ct ™D on
snpp ¢.

(1) For any bEB,, 1 and any IE Z ., there exists ¢ belonging to

" _fz’(ll/;s/Z)(o,-—l,l)_i_fl/Z fzgl/—z-l)(o,—l,l)_l_fzv 2(0,1\],0) such that

Op ‘p-bdf'D.-L=0p c- L.

(2) ForanyleZ, and any N €N, there exist c,, ¢, belonging respectively to

t—x f2§1/53/2)(0,—1,1)+f1/2 fz‘il/;l)(o,—l,l), t—x fz’il/-ES/Z)(O,—l,l)

+fl/2 fz'&l/—z-l)(o,—l,l)-l-(—l,o,ﬂ)+t—x fz’gl/;l)(o,—l,l)_*_fllz fz'gfl-é-llz)(o,—l,l)

+f¥ IOV sych that

df'D:-L-Op’p =Op c,-L+Opc,.

(3) Forany bEB, 1, any IEZ,, and any NEN, there exist c,, ¢, being res-
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pectively in t™* fZ’{’/;"’)("-—l'l)_;_fl/Z /2(1—3/2)(0.—1.1)+fN ZO.N.0)

t—x(fZ'ﬁ;!i/Z)(O,—l,1)+(—1,0,0)_*_fZ'“;l)(O,-—l,l)
_i_fuz(fzviz/?n(o,-l,1)+(—1,o,0)_q_jz'gl/;llz)(o,—l.l))_i_fzv SON9 cuch that
[bdf'D;<L, Op 7¢] = Op ¢;-L+Op c,.
Proof. (1) follows from Lemma 6.39-(4). Next, as for (2) and (3), setting
A=df'D, B=0p ‘¢ we have
ALB = A[L, BlI+ABL and b[AL, B] = bA[L, Bl+[bA, B] L.
So, (2) and (3) follow from Lemmas 6.36, 37, 39—(1)~(3), and the fact that if

reX®¥0 with NEN, f' (¥ r)ye N 2XON¥-L9 for any /€N. This com-
pletes the proof.

§7. Lemmas on the Estimates

Remark on notations. Constants denoted by C or C; in the inequalities
involving the norms || ||, || |ls.0, || |{3) are always independent of n, T, ue Sy.
We also remark that u always denotes an element of Sr.

Lemma 7.1. (1) Forany k,IEN with 1<k,I1<6,n>1, TE(0, 1),
[ Ay ]| #HE=B0D < C (nE=D02)| A,y u]| 5 402 || | (50022

(@) ||D; u]|™ >2Y2 n||u)|**Y for n>1, TE(0, 1).
(3) Let L;,i=1,2,3 be three operators as in Corollary 5.2. Then for small
T,n>1,
lull @B < CM, ) .

(4) Let L; beasin(3). Then, for small T,n>1,

2
2 33Oy L, L w47

i k=0

3
3T VMY | Ay, L ul[ D < CM (1)
i=1 k=0

(5) Let Q be an operator on Sy, with T, in the statement of Corollary 5.2, and
L; as in (3) of the form,

3
0 =:§Aij L; L_,-+ E A; L+ A, with
At B0, A;et™ BB for (0,

min(2,5)

d,e” SIS 51 p-twrra-i-iy gurenrzirzm |

k=0 =0 j=0

Then, for small T,n>2,
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|Qul|™ < C (V2 M)+ ullE5 ) .

©) w5 |lull < [lull 55>+, n>d—s/2.
(7) 2i+iSs ”f'D;t {u”(”)SC”u”(zS,n), s =1, 2’ 3.
® lullonw=<C 317+ DI Djull®, s = 1,2,3.

Proof. To see (1) one only have to apply Lemma 4.1-(i) with e=tm™%
(2) is a direct consequence of a simple integration by parts. (3) and (4) im-
mediately follow from Corollary 5.2 and (1), (2) in this lemma. (5) is proved by
straightforward but tedious applications of Lemmas 4.21-(1) and —(3), 7.1-(4),
and 4.18-(1). We omit the details. (6) follows from (4.55) and the definition.

(7) follows from Lemma 4.1-(1). (8) follows from Lemma 4.1-(1), and (2) in
this lemma.

Lemma 7.2. Let L; be three operators as in Corollary 5.2.
(1) Let QC'(L)). Then, for small T, n>2,
1Qul|™ < C(M,y_1j00 )+ M,y (1) -
Q) Let QC(L;). Then, for small T, n>2,
1Qull™ < C(M,—syqomy (f* u)+n~% M, () .
(3) LetqeC, Then, for small T, n>2,
Qull™ < C(n™% M, (u)+-1ul| &) .

Proof. (1) is easily proved by Lemmas 4.21, and 7.1-(3), -(4). (2) is proved

by Lemmas 4.19, 7.1-(3) and —(4) for the estimation, and by Lemmas 4.18-(3),

4.22 for the commutation involving f¥®" and L,. Next, to see (3) we let 0=0p

q with g== 22} u, % with g, 2 satisfying the condition for a, in the definition
k=0

of E. Then, it is easy to see using Lemma 4.18-(1) and —(3)—(iv), and Lemma
4.22 that Q—Op a,- L, L, is an operator as in Lemma 7.1-(5) which proves (3)
in view of Lemma 7.1-(4). This completes the proof.

Lemma 7.3. Let L; be three operators as in Corollary 5.2. Set 1= f[ (t—a;
i=1

(t, X) f(x) E—0a,(t, x, £)) with the notations just above (5.16). Then we have the
followings.
(1) For small T,n>1,

C™ M,@)<|0p 7 ul| ™ < CM,(u) .
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(2) Let ¢, q be as in Lemma 6.6 with T=T, being as in Lemma 7.1-(5) and
we assume that the assumption in (ii) of that Lemma holds for =, ¢, q here. Then
Jor small T, n>2,

1109 707 ull < C(My-ypaom (£ )17 M, (0)-+1|0p 7q ull*”
Il /)

Proof. (1)is proved by Lemmas 6.4-(vi), 4.22—(1), and 7.1-(4). Next, from
(5.1) and that g;E B, 1, a; £+, being in X{)5~"V(T,, h) satisfies (6.4). Thus,
by the assumption one can apply Lemma 6.6-(ii). Now, the desired inequailty
follows from Lemmas 7.2-(2), —(3), 4.21—(1). This completes the proof.

Lemma 7.4. Let ¢ €33,(Ty, h), g= 3 a;,(t, x) 7 & with ap=1 and a;;€
i+j<3

By, 7,» and q; be the homogeneous part of q of degree 3 in (v, £). Suppose that

g3= f_[ (x—2; &) with 2;E B, ¢, satisfying inf |Im 2;|>0. Then, we have the
ji=1 t,%

Jfollowings.
(1) For small T and n>2,

n7 My, ) < C™* ||Op 7q ull ™ +lullf™) ,
where by definition,
(7.1 My (2) = M,(-, L), Ly,; = D,—2,(t, x) f(x) D, .
(2) For small T and n>=2,
M,,.(Op "o u) < C(||0p q ull™ +[lullg™ ** +lull g, m) -

Proof. (1) We just have to apply Lemmas 7.3—(1), 7.1-(7) and —(6) in
this order to the left hand side in view of the assumption on g,.
(2) Noting the assumption on g; we apply Lemma 7.3—(2) for ¢ with ¢ here
and fY@M to get that

[10p /gz070 ul| ™ +]|Op /g5 f4®P u||™
< C(Mo,n—u(zoh) (fl/(m) u)—!—n'l/z Mo,n(u)‘HlOP st uH(")
+ ] | 52/ 2OMDY

The desired inequality can be obtained by estimating the left hand side from
below by Lemma 7.3, the term involving ¢, on the right by Lemma 7.1-(7), and
the second term on the right by (1). The proof is complete.

Definition 7.5. We define for o= X?,,(T, h),
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2o ={0pop; ¢ =g@po-0p, forsome o,&X;,i=1,-,k} for keN,
Y40t = {identity on Sz} ,

where we define g,0---0p, =@, 0(@,0---0¢,) for k>2 inductively.

Lemma 7.6. Let p&3%,(T,, h) and q :,.,%lsaii © &, a;;E By 1y dx=1.

Let L,, = be as in Lemma 7.3 and let M,(+)=M,(+, L;). We suppose that the

assumption on q in Lemma 7.4 holds for q here, and we let M, ,(-) be defined by

(7.1). Finally we let R=D%+ i} Op b, D% with b,cX~@ 0020 Then, we
k=0

have the followings.
(1) Let Ac X}, with k>1 and let >0. Then, one can find A'€2, , such
that for small T and n>2,

| M,(f*Au—A"f"u)| < C (™" ||Op 7q ul| -+ Rul|* +[[ull &) -

(2) Letk, A, ¢ be as in (1). Then, one can find A'€2, , such that for small
Tand n>2,

[ M (Af “u—f"A4'u)| <C (™ ||Op *q u||™+|[Rul |+ [ulls ™) -
(3) Assume in addition that there exists §= >} @;; t' &',8,;E By, 1y, Ao=1 such
i+7<3
that the assumption on «, q, ¢ in Lemma 6.6~(ii) holds for =, §, ¢ here. Then, for

any kE N there exists €N such that for any A€, , one can find A;€X;_,,
i=1, «+, [ such that for small T and n>>2-1/(20h),

1
110p G, AVl € { 33 (Ma-syimny (A: F4® -+ M (A, )
7 [|Op 7 [+ | Rul|*/4-[a|)-

Proof. We shall prove (1) first. Successive appliaction of Lemma 4.18—(4)
shows that one can find 4'€23,, with f*4—A'f*3®%9  Then, using
Lemmas 7.3—(1) and 6.11 with L, ; for L} and with L;, R given here for L;, R
respectively, and applying Lemma 7.1-(3) and —(4) we obtain that for small T’
and n>1,

M(f*A—A'f*) )< C(n™2 Mo, ,(u)+||Rull™) .

Now, (1) follows from Lemma 7.4—(1). (2) is proved in the same way using
Lemma 4.18-(4)'. We pass to (3). From Corollary 6.20 and Lemma 7.2—(2)
and —(3) one can find /EN for any k€N such that for any A€, , one can
find 4;, .-+, 4,€2,_, o such that for small T and n>2,
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7
I[Op fq’ Alul|" < C{ E (Mn-ll(zoh) (fll(m) A4; u)_]_n—lﬂ M,(4; u)
o )

Now, the desired inequality is clear in view of (1), Lemma 7.4—(1), and (4.55).
This completes the proof.

Corollary 7.7. Let ¢,q, L;, © be as in Lemma 7.6 and assume that the as-
sumption on ©, q, ¢ in Lemma 6.6—(ii) holds for =, ¢, q here. Let k, k'EN.
Then, one can find IEN such that for any AE 3y, e, one can find A;;EZy o,
i=0, o=+, k', j=1, +=, ] such that for small T and n>k-3,

k 4 . )
M, (Au)< C(||Op Fq u||™+ E’ le} AN AL oy (Ay; SO )
L ull o+ 2l |G )

Before the proof we prepare a lemma.

Lemma 7.8. Let q be as in Lemma 7.4 and let «>>0. Then, for small T
and n>2,

0P 7q, £*1 ull® < C(n™2||0p /q ull ™ +1lullfE5™) .

Proof. By the assumption on g, one can apply Lemma 6.10-(4) to Q=0p
fq, and @. Then, using Lemmas 7.1-(4) and —(5) shows that the left hand side
of the desired inequality can be dominated by n™2 M, ,(u)+|[ull¢,p+1y When T is
small and n>1. Now, the desired inequality is clear from Lemmas 7.4—(1) and
7.1-(6). The proof is complete.

Proof of Corollary 7.7. We claim that for any /&N with />2 there exists
sEN such that for any A€, , one can find 4,€2,_, 4, j=1, ---, s satisfying
that with the notation Q=0Op fq, for small T and n>4,

(7.2) M (Au)+||QAul|™ < C {]] Qul % |u] | 57/ 04>
33 (1AQ; ™ ul[ == {2 || Q.4 ][
ji=1
+ M, 11000 (Ajfll(m) u)—l-n'lﬂ Mn(Aj w)i .

Proof of (1.2). LetlEN. Writing A=A'-4" with A'€3,,, 4"€X,_,,
and applying Lemma 7.3—(1), —(2) to M,(4u) in this order shows that M,(4u)
is dominated by the expression made from the right hand side of Lemma 7.3—
(2) substituting A”’u for u when T is small and n>2. Then applying Lemma

7.6—(1) to the first term of this expression and Lemma 4.21-(2) to the last term
of it, one finds that there exists B, B,&2,_, , such that for small 7 and n>3,
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(73) My < C(IQuI - ful 50w
+ 33 (1QB; ull+Mysyom (B; £ 1)+n™14 M, (B, w) .

Lemma 7.6—(3) shows that when />2, thee there exists s'€N and Bj€X,_, ,,
By eX;_ 4, j=1, -+, s’ satisfying that for small 7 and n>2,

2 s’
(7.4) llQ4ul|™+ 12=1 10B; ul|"<C [ ’Eﬂ M-y pony (B S 1)
+ M,y jeony (B 4 u)+-n~*(M (B} u)+ M, (B u))}
Q-+l 7= |
(7.2) follows by first applying (7.3), (7.4) in this order to the left hand side of
(7.2), and again to terms involving B;, B, and finally using Lemmas 7.6-(2), 7.8,
4.21-(2) for estimating a term of the form M, _qo(BfY%P u) with BEX,_,,

by a term of the form M, yn(B’ [ u)-+||Qull™+[lullg /™ with
B'eX, ,, This proves (7.2).

Using (7.2) iteratively with the aid of Lemmas 7.8 and 4.21-(2) we get that
for any k, k' €N there exists s €N satisfying that for small 7 and n>k-3,
(7.5) M, (Au) < C(|| Qul | - [u] | G/ «*oM

+ 3 S ity A, fB=DIE) 4| tn=em il @)
i=0 j=1
My e-rjaom (A fEDIEW )
On the other hand for any A2, ,, I>>1, it follows from Lemmas 7.4-(2),

7.1-(6) and —(7), and 4.21-(2) that one can find 4'€2%,_, , satisfying that for
small T and n>2,

10 4ul|™ < C(1QA" ull™ +Ilull &= +lull4,m) -

So, iteration of this process yields that for any A%, ,, />1 we have that for
small T and n>2,

(7.6) 14Qu|® < C(UIQull ™ + [l 557+ [l g, ) -

Applying this and Lemma 7.8 to terms in the summation in (7.5) we get that

S

ni—/2 ||QA,-,- f(k—i)/(zoh) u”(n—(k-i)/(20h))
ji=1

k . . — —
Scl( % n—zIZ(HQf(k-t)/(ZOh) u”(n (k=£)/(20h))

‘}‘”f(k_i)/(mh) u||(4,n—(k—i)/(20h))+”umZ)_l/(zom)
< G| Qul|™ -l | G5 O || S Y|y hpaony) -
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This proves Corollary 7.7.

Throughout the following discussions in this section we assume the nota-
tions and the assumptions in §3 and that p, there satisfies the assumption for
g; in Lemma 7.4. Thus, py(t, x, 1, { (¢, x))™* ¢ with in (3.6) also satisfies the
same assumption, and we assume the notation (7.1) with it. We fix some
T,<(0, 1) as in Lemma 3.2 and we remark that the symbols of operators always
are in Pr, and u always €Sy, TE(0, Ty).

Note that

(1.7 (I— O (+4y) =p;(t, x,1,0).
We set noting (3.17)
(7.8) L=0p((1—1,0)717Ly),
Li = Li+0p (14+40) (142, O (1Y cby+dy Ay) £€) -
Recall three cases (1)~(3) in (3.13). Using Lemma 3.2 and the notation in it
we set in case (1),

(7.9) L; = Ly—Op’s;,icl,
where
(7.10) 3 =0—mp )ty

In case (2) we set that

(7.11) L;; =L,;,—O0p’s,; for i€l, or i€l, and j+1, and that
Ly =I:1(i)—(1“ﬂt(i) ) e fD,—Op faij for i€,

where &;; are defined by (7.10). Here, we note that ¢;=(1+4y) ™" (—1)"** ¢;.
See (3.59). In case (3) we set

(7.12) L;=L-0p’s,; for icl,
where &;; are defined by (7.10) and L are done, noting L, =L, in case (3), by
(7.13) L=1,.
Note that
Im (/(1—; O)) = Tm /| 1—C 1y |?
so that L;, L{, L;; are operators as in (5.3). We set

(7.149) oy =21¢, for [=1,2 in case (3),
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and we also set for N& N with N>2,

(7.15) on = (Zel+ e,
Pin = P:"Pn> Poan = Por"Pw -

Then, ¢,y, 9oy €21, in cases (1) and (2), €237 in case (3), by Lemma 3.8-(3),
and
(7.16) S ow'+ Seur = 1.

Lemma 7.9. We assume the above notations and assumptions. Let Qu., be
as in (2.17) with q in (3.6) for Q Then, for small T and n>2,
10wl < CCS B @i )+ 33 lor,u @ur® ™ 1)

17 [|0p g [+l e

o<V + <2

where

(7.17) @,y = Op’p;n, Doy = Op ‘pyiw »
Mi.n(') = Mn(" Lii)’ MOI,n(') = Mn(" L=L,= I‘I! L3 = L;) >
M*,n = M*,n—ll(zoh)+n_1/z My, n2>1-+1/(20h) .

Proof. By Lemma 3.2,
inf £¢>>0 on U supp ¢, U ,Gl supp | doy |-
H= =

So, since 0<2£/3<e,, it follows from Lemmas 6.24, 6.28, Corollary 6.27, and
Lemma 7.2—(1) and —(3) that for small T and n>2,

(7.18) 31 |1Qu ull W< CHZ; M,,(;" " 1)

o<IBlFIVI<2
o<IVI+Il"|52||QI‘-v Do ””(")‘i'”—m Mo,n(uH‘”u”Eg)—II(ZOh))} .

To handle the second summation we set
g = (1—Ca)™ LYL,+(14+Ao) " (—1Y cby+d; 4y) €) .
Then,
q =pst, x, 1, C(t, %) gV +d; Ay Ly &+ g+ (p,—ay £7) .

If we extend the definition of g,. in Definition 6.21 for g of the form with in it
with a ;;E B, 1, and agx=const. by the same equality,

QM = Op(q(l)fw‘*‘(Ps(t, X, la C(ts x))_l
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X(dy Ay Ly E4-g,+f V2 py—ag €9))) wy) -
By Lemma 6.4,
(7.19)  0p(g¥V%u,) OunEC(L, = L, = L;, Ly = L)+C,, 0<| 2| +|v| <2.

Noting that {z &> 2 <{E><1 when 1 €(0, 1), (6.17), (3.65), and the fact that
d,E E, 1, we see that when 1< [v]| 4+ || <2,

(plt, x, 1, C(t, X)) dy Ay Ly EDuy = di(a TLi+a)

with
aIEt—l./Z—l/(ZOh) fZg/Z(0,0,l)’ aZEt_llz_ll(ZOh) fzg/2(0,0,1)+t—1 fz‘(()o,—lﬂ) ,
and
(7.20) (st %, 1, £ (t, )7 fY(py—a0y E)mn EE .
Using the equality

di(ay 'Ly +a)o oy y
= di((a,(1—x, C))oth¢OlN)+dl((al(1 — 4 C))°f¢om) v
—d((a, 4 1 &)o’ pun)+di(@0 oy) 5

the fact that (3.19) holds, Lemmas 6.31-(1), 6.33, 6.34, and Corollary 4.12—(i)
with o=1/4, we see by asymptotic expansion that

(7.21) dia, ' Li+a)o oy yEE .

Similarly, using (3.19), Lemma 6.33, and Leibniz rule we see g;&t™* J3505-9

so that Lemma 6.31—(1) and Leibniz rule show that /2.9, ,”(9%2 g,)='g}" with
gt et Y05 20" for v, ueZ%. So, (6.17) and Leibniz rule show

that (g)u, €17 /330057, Thus, since by (6.17) and Lemma 6.31<(2) (g))u,
=78, with |8°g;| <C.LED* "%, we have (g)uyo @oy St ™"/ IH2O"20 4 f32 30 by
Lemmas 6.30, 6.31. Since ¢ ~V2+ /@M N2 < 1= 1% £ 342 when ¢ < 1, by Lemmas

3.8-2, 3.8-5, and (6.21) we have ¢~ £ 3%/20.-2.0) — B3/2:3/2:32 Hence,

(7.22) (8)mo’PunEE .

Therefore, by (7.19)~(7.22), Lemmas 6.13, and 7.1-(1) and —(3) it follows that
for small T, n>2,

(7.23) 1sw§m<z“Qw Oy Vuul | < C(My, (D™ 'u)+n712 M, (v
+lua] | Gy EOR0)
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Substituting (7.23) into (7.18), estimating n~2 M, ,(u) by Lemma 7.4(1), and
using (4.55) we get the desired inequality. The proof is complete.

§8. The Derivation of (2.13) and (2.14)
§81. The Derivation of (2.13-1) and (2.14-1)

(2.13-1) is nothing but Proposition 5.1. On the other hand, noting that
EEY E>L 1 for t€(0, 1), and (6.17), we see that

QuyE0p 7100 when |v|+|u| =1.
Thus, (2.14-1) follows from Lemma 4.21 and Proposition 5.1.
§82. The Derivation of (2.13-2) and (2.14-2)

From the assumption of Proposition 2.3,

p; = 1l (r—4;€) with 4, EB,, 7, satisfying inf [Im 4,[>0.

i=1

(2.13-2) is an immediate consequence of Corollary 5.2 and Lemma 6.10-(1), and
similarly as §§1,

Oy = 3 Op(a;(e—(1—2;8)™ 2, f€)) mod Op /3100
with ¢;€/249 when |u|+|v] =1.

(2.14-2) is an easy consequence of Lemmas 4.18-(3), 4.21—(1), and Corollary
5.2-(i).

§83. The Derivation of (2.13-3) and (2.14-3)

ps and p, in Proposition 2.3 satisfy the assumptions for those in §3. So,
identifying the latters with formers respectively, we use the notations, the as-
sumptions, the conventions, and the results in §3 and in §7 after Corollary 7.7.

Here, again, we remark that all symbols of operators are in %y, where
T,=(0, 1) is as in Lemma 3.2, that u denotes an element in S, with T (0, Ty).

The proof of (2.13) and (2.14) is devided into three cases (1)~(3) in (3.13).
These cases are considered in order from (1).

Remark on notation. In §8, §9, the constants denoted by C or C; in the
estimates are always independet of T, n, uSy as in §7.

Proposition 8.1. Assume that (1) of (3.13) holds. Then, there exists r,,
ny&N with ny>ry,-+1 such that for small 7 and n>n,,
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L0 ullts,nr + 1| B < ClIQul|
[|Quy ]| < C(l| Qul |~V p~2 || Qu]| ) when 1< |v|+|n]| <2.
From the assumptions (2.7), (2.8), in all cases (1)~(3),
(81) pS(t’ X, T, C(t’ x) T+5) =p3(ts X, 1, C(t, x)) ﬁ (T—xi (t9 x) E) WIth
i=1
A;E By 1, satisfying that

8.2) inf [Im 2;|>0 and ,—4;€E, ;, foranyi .

i,x

Proof of Proposition 8.1. It suffices to prove that two inequalities in the
statement replacing Q on the right hand side by p,(z, x, 1, { (¢, x))~! Op /q with
g in (3.6). In the following we denote this operator by Q. In case (1),

A —2,€E, 1 \{O} if i,
So, from Lemma 6.10-(3) one can find r,& N such that
(8.3) for any 0<i<2 there exist ¢, ¢;E By, 7, 0<k<3, 1<I<3 satisfying

to.fi DL D37 fTo = %} et Lo,y Lop+ é e Lo p+cp .
So, by Lemma 7.1-(4), for small T and n>r,+1,
3111 D D 7o ull 70 < Cy n™2 My (),
where by our convention in the beginning of §§3 we set
Mo.»(') = M,(-, Lo,i), Ly; = D,—4,/D, .

Thus, from Lemma 7.1-(8), for small T and n>r,+1,

@4 S ullun-rg < Con™ Mo () < Cyrn™2 || Qul| ™+ |ullE50)
where the right inequality follows from Lemma 7.4—(1). Next, from (3.20),
Corollary 6.27, Lemma 4.21, (4.55), Lemma 7.1-(3) we have that for small T
and n>2,
B9 MBS CLD Mia@in Y00+ 33 Moy u @ ")+ T [1ull3)
where @,y = Op ‘@, 4, Poyw = Op ‘@0 -
We set
Ny = 20h(2ry+-4) .
Lemma 8.2. Let N;EN, j=1, 2 with N;=2N,+1>2N,+1, and let O
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X g for il Set J=J(u)=M,; ,(®P"1u) for ucSy;. Then, for small T and
n>N,+3,

T < CUIQull™ 41l &5 11 170 |4, mry-20) -

Proof. We apply Corollary 7.7 for J taking k=N, and k'=1 to obtain
that there exist &N and B;EZX, 4, j=1, -+, [; such that for small T and
n>N,+3,

NZ ’0
(8.6) T<CGAIQu™+ 3 3 n VD M v roon (B S u)
A0 Ul n-arg-0 Nl G

From (3.21), (3.22), (3.24) of Lemma 3.2, L;; can be expressed as L,;=Op
(r—7%,;;) with some #;;&€X{)5 " satisfying the condition for #; of Lemma 6.4

with e=1/(6h) and that g= 1:3[ (z—7%;;(¢, x,€)) for (¢, x, §)Esupp ¢;. So, it
follows from Lemma 6.6, (5.1)1,—iemma 4.18-(1) by setting #) == f{ (r—7%;;) for
each i/ that a
8.7) Op »"-B,—B, 0— ,,Z:‘; 4 DG,
with some A, ;, € AY>YE3, 4, € AL IS,

Ay jg € AP L3 L 323

By Lemmas 7.2—(3) and 7.4-(1), for any RE(, there exists C>0 such that for
small T and n>2,

(8.8) (| Rul| < C(n2 || Qu) | ™ + ||| 55 0y .

The summation in (8.7) can be setimated by using Lemma 4.2—(1), —(2), and
(4.55) as

(89 3y Dl < C 33 11454 D ull #4911 D} u +3-9)
for small T and n>2.
From (8.7)~(8.9) we get that for small T and n>2,
(8.10)  |I(Op =+ B;—B; Q) ull™ < Cy(n™* || Qul| ™+ u]|§&5 /W
33 (| s DY ul| #4124 || DY | 745-m))

Since for 0<r<N, and n>N,+3,
n—r/(20h) > N,+3—N,/(20h) > (20h—1) 2ry-+4)+3,
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we have that for 0<r<N,, small T, and n>N,-+3,
(8.11) [10p =9 B; u]|™) < Cl| Qul| 417" || Qul| "+ ||u] | G5+
2
+ 23 (452 Df u]|®r 18 || D} uf|»r+3-0))

with the notation that
n, =n—r[(20h) for reZ, and n>1+r/(20h).
Applying Lemma 7.3—(1) to M;, (B;f®") in (8.6), using (8.11), and estimat-

ing ||Q f7/®™ u||*" by Lemma 7.8 and || f7/®" 4||(js+? by Lemma 4.21-(2) one
obtain that

(B12) My, (B /"™ )< ClIQul| ™+ |l 5+
- 33 (1 dgp-s DA F/E w40 [ D} 80 i or+3-0)
for 0<r<N,, small T, n=>N,+3.

We use the inequalities that

(8.13) | 452wl S C(|| Ay 1275 DE7* al| 4| [u]|2)
for 0<k<2,n>1,
and that
(3.14 “/11/zfz—k D™t D} f" ul|nmro < CMy,y1p2 (W)
|| D fTo u”(”_'°)SCMo,n—1 (w),
for 0<k<2, small, T, n>r,+1,
where (8.13) follows from Corollary 4.13—(ii) and (8.14) is shown by using
(8.3), Lemmas 7.1-(3) and —(4), 4.18, 4.21-(1), and (4.55).

When N,>r>N,—2, we have r/(20h)>2r,+3 and we can apply (8.13),
(8.14), and Lemma 7.1-(3) to get that

(8.15) M, 0, (B, 71 1)< Cy([|Qut |40+ 55+
+ Mo, n 42 (f @R =r0 y))
for N,>r>N,—2, small T, n>N,+3.
By Lemmas 7.4—(2), 7.8, 4.21—(1), the last term on the right can be dominated
by [1Qull ™+ |lullGs* o~ +-[ful[g5* "+ f7®P 0 ]|, 45  Thus, noting
r/(20h)>2ry,+3 in (8.15) and using Lemma 4.21—(4) to estimate || f7/@®M-7o
It 420 OY 1LF70 Ulls,n-ry-5) We get from (8.15) that

(8.16) M, (B, f"® w)< CA|Qul| "o~ +{|ullhy "o~ + || fo lls,n-ro-20)
for N,>r>N,—2, small T, n>N,+3.
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On the other hand, when 0<r<N,—3, we have applying Lemmas 4.21-
(2), 7.1-(3), (4.55), and Lemma 7.4—(1) to (8.12) that for small T and n>N,+-3,

n-(Np=nl2 Mi.”’( B,- fr/(ZOh) W< G n-32 M'_m( B,- frI(ZDh) w< Cg(n—SIZ
X[1Qul[ ) +n~ [[ul {557 072 [[u]|B) < Cron™ || Qul |
+n73 My, -1120m) @) +n" Mo, ()< Cu(n™2 1Qu] |+ |ul |70

So,

(8.17) n WD M, (B; fOR w) < Cy(n || Qul | 4-HullE )
for 0<r<N,-3, small T, and n>>N,+3.

Now, the desired inequality follows from (8.6), (8.16), (8.17), (4.55), and Lemma
4.21-(4).

By Lemma 8.2 it follows that the term involving @, in (8.5) can be estimat-
ed for large odd N, and to estimate the term involving @,y we need the follow-
ing two lemmas.

Lemma 8.3. Let m&N with m>2. Then, one can find s&N such that
for any A€Z,, o, there exists A;€2,_,q,,j=1, ++, s satsifying that for small
T and n>3,

Mo o(A0)< C{ 3} (Mo, osyaom (A3 /P w)4-n7% My o(A; )
HIQull ™+l )
Proof. By Lemma 7.3 we have that for small 7and n>1,
B18) My (A< GUII0p ™, Alul[-+]|4-0p 7g® ul|®)
We set
(819) R =0p {ps(t, x, 1,{(t, X)) /(d; Ay L; -+ p—aq fV* £9)}

so that

(8.20) Q = 0p’q"+R+0p (ps(t, x, 1, £ (1, )™ /g) .
Noting (3.19), we have for any o35 that

(8.21) oo (ps(t, x,1, £ (8, X)) g)EE from Lemma 6.38,
[Op ¢, Rl€C, from Lemmas 6.35, 40—(3), and (6.24),
Op 9-REC+C, with L, =L, =L;, Ly = L}
from Lemmas 6.35, 40-(1), and (6.24) .
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Writing 4==A4®-.- 4™ with AV, , , we have from (8.20) that
(8.22) A-0p’q¥ = A(Q—R—0p (ps(t, x, 1, £ (1, ) 7gy))
AR = AD RAD.c. A 1 A® 3V A@ ... [AD R]re AM
i=z

Thus, noting (8.21), (8.22), Lemma 6.13, and using Lemma 7.2—(2) and —(3) we
obiain setting 4,=A4®-.. 4™ that for small T, n>>2,
(8.23) l4-0p 7q® u“(”)SCZ(I|Qu||(”)+Mol,n—1/(20h) (frem )
+n7V2 Mo () ||| B OW)
From Lemma 7.6(1) there exists 4,E2,_, o, such that for small T, n>3,

Mot,n—ll(zoh) (f y(2ok) A1 “)SMol,n—ll(zoh) (Azf 1ok “)
+ Gl Qul | [ g5 25

Substituting this into (8.23) and estimating the forth term in (8.23) by Lemma
7.4-(1) we see that

(8.24) l|4-0p 7q® u”(”)gCa(”Qu“(”)+Mot,n—1/(20h) (A S )
+17 My (Ay 1)+ ||ul| G EOP)

Now, applying Lemma 7.6~(3) to ||[[Op q", A} u||™ taking §=¢” and R=Q,
and using (8.18) and (8.24) we see that the desired conclusion holds. This
completes the proof of Lemma 8.3.

Lemma 8.4. Let mEN withm>2 and A€ 2, . Then, for small T and
n>m-t1,
My, o(A) < C (|| Qul ™ - ||u] | &1/

SR |y w3208 -

Proof. Successive use of Lemmas 8.2, 7.8, 4.21-(2) shows that there exist
sEN and 4,, -+, 4,E%, o, such that for small T'and n>m+-1,
(8.25) My, (Auw)

<C(3Y S I My s (A, 129 1)
i=1 j=0
Qa0+ 574

From Lemma 6.39-(2), and (6.24) there exist B;€ Op 723~V for i=1, ---, s
such that

(8.26) Op (pst, x, 1, £ (2, )7 di(f€)))- A; =B, €C, .
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On the other hand, since we can write Op(“L,(f&))=(1—x, {) f2 D?-L,+
gak f* Dt with @, E B, 1, it follows from (3.19), Lemmas 6.40—(2), 6.39—(2),
and (6.24) that there exist B/ Op 25D, i=1, ---, s such that
8.27) Op(py(t, x,1,{(t, x)) 1 d, Ay, TL(f€)))-A4,—B! L,eC, .

Thus, since
(8.28) ps(t, x, 1, (1, X)) Tq3="qV +py(t, x, 1, £ (¢, X)) (d)(fE)?
+dy Ay TLI(f€)),

it follows from (8.26), (8.27), Lemmas 7.3—(1), 7.2-(3), 7.4—(1), 4.21-(1), 4.18-
(i) that for small T and n>m+-1,

Moy, - ;760m (4; ) < C; ||Op 7" A; u]| =30
< C(llps(t, x, 1, £ (2, X))~ Op *q; ul|=3Z0m)
V2 My, aony (@) || 570+ DICO || B, |-k
+||BI(L;—D,) u]|»~@m) 1| B D, ul|tn=i@h)
SC4(”Qu|l("_”(mh))“*'”u“%-(j“”(%h»-l—||u||(4_,,_j,(20h») '

Combining this and (8.25) and using Lemmas 4.21-(2), 7.8, (4.55), and Lemma
7.1-(6) we have that for small 7, n>m-1,
My, (Ar) < Cs{ S n-m=i-12(|| @ fil@h) y||n=il@oh2)
W - =

L ] G5 || D )
1l 1l e}

m—1 . :
<G(x n= =T || £ ) ooy 11 Qul |9 4 | 5 0P

S CGF @D ull g, - immvrseonn +11Qul |7+ [ul | E0P)

This completes the proof of Lemma 8.4.

Remark 8.5. In the proof of Lemmas 8.3 and 8.4 we do not use (1) of
(3.13). So these two lemmas hold in all cases of (3.13).

Taking N=2N,+1 in (8.5) and estimating the first (resp. second) sum-
mation by Lemma 8.2 (resp. 8.5) we obtain that for small 7 and n>2N,+2,

18 < C(1Qull™ 4l 85 M 41| £70 ull 4, vy )
e L VRCARCR | P N

Since N,/(10k)=2(2r,+4)>r,+3, the last term on the right can be dominated
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by ||/ ull,s-r,-s in view of Lemma 4.21-(4) and (4.55). So combining this
inequality and (8.4), and using (4.55) we get that for small 7 and n> N,+3,
(8:29) el |11 el 4,y < Cs 11 Q]| .

Taking N=2N,+2 in the inequality of Lemma 7.9 we see by the similar argu-
ment that for small T and n>2N,+3,

(8.30) 3 11Quy ull™ < Co(I1Qul =@M -1~ 32 || Qu |
1< M)+ V<2
HullE P 170 ulla,nmrg-3) -
Applying (8.29) to the latter two terms on the right we get the second desired
pplymng g g

inequality. The proof is complete.
Next we consider the case (2).

Proposition 8.6. Assume that (2) of (3.13) holds. Then there exists r,,
ny €N with ny>ry+1 such that for small T and n>n,,

(170 ullts,n-rpp H 1B < CNQul ™,

Qs ull™ < CIQul| YD -2 || Qul|™) when 1<|u|+|v|<2.

Proof. As in the proof of Proposition 8.1 we may assume Q=p, (¢, x, 1, {
(t,x)0p’q. Set O,y =0p7 ¢y, Pyy =0p ‘pyy for N>2. Then using
Corollary 6.27, Lemma 4.18—(4) and (5), Lemmas 4.21, 7.2-(3), and the fact that

VA4, Di 2 ASC, for ASOp ZOMO 4,&0p FZMO20 =0, 1,2 with
i=0

M, M'>0and M’'—2"! M < —1 which can be shown by using Fact 4.6-7, (4.3),
(4.6), and Corollary 4.12—(iv) as in the proof of Corollary 4.12-(i), it is not
hard to see that for r &N we have that

831 Lf" ulltg,u-n < Co(n™2 || Qu |7 =241
2
Flull === E L ST Ol -+ 237 Pounull,n-n)
for small T and n>2x/3+r+2.

In the same way as in the proof of Proposition 8.1 we have from Corollary
6.27, Lemma 4.21, (4.55),

2
(8.32) < G S 100 ullB+ 33 100 ull)
for small T and n>2x/3+1.

In case (2) of (3.13) we have
CEE],.TO\{O} .
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So setting, keeping (7.11) and a remark just after it in mind, that

~

(8.33) Ly:=L,—1—u, ) e, fD,

= L—(1+4e) (=) (1 =2, ) by /D,
and using Lemma 6.10~(2), and Lemmas 4.21, 7.1-(8), one can show that there
exists ;€N such that for any r>r, r€N we have that ¢ f” D, and " fr D,

can be expressed as a linear combinations of L, and Z, with coefficients in By, z,,
and that

(8.34) A Q)iNNu”(g_,n—r)S Cs(llf ™ Ly D" ull g, n-r4rp)
+”f'_’1 Ll(i) m:NNulI(Z,n—r+r;)_f_nm1/2 ”u”Eg)—l)) s
(8.35) f" Porn™ u”(4—r)£ G(l|fr f‘l @OINNu”(Z,n-r+rl)

Hf7771 Ly @y ull,megrr+17 2 lIED) 5

for n>r+41, where I(i),iI is as in Lemma 3.2. (3.26) and the fact that
CEE,, 1, shows

£, for iel.
So from (8.33), Lemmas 6.30, 6.31-(1), and (6.42)

(8.36) Loy Oin—Lysy € Op F S30-20)
Using (8.34), (8.36), Lemmas 4.18, 4.21, and the inequality that

(837) ”Aw u”(s,n)g-C”u”(s+[2u]+1,n)
for seN with 0<s<5 and >0 with s+2a¢<6, 2¢aEN ,

we have for any r € N with r >r, that for n>r+1 and i1,

(8.38) lf @iNNu||(4,n—r)£ C(lfrn Zl(i) ;5" u”(z.n—r+r1)
g 771 O™ o, mm eyl )

Similarly using the fact that by (7.11) and (3.23),
(8.39) Lyy—Ln &€ Op FZ3C10,
we have for any r €N with r>r, that for n>r+1 and i€,

(8.40) f" Dy Nu”(4,n-r)£ Gl f zq(i) Dy N“”(Z,n—r—{-rl)
Hf771 Ly @y Yulll e ey 1 E70)

Noting (7.11) and applying the similar argument as above to the first terms on
the right of (8.38) and (8.40) we obtain for any r &€ N with r >r, that for n>r-1
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and i1,

2
(8.41) f" o~ u”(4,n-r)—<-C6(§ [lfrm Lij o 5" u”(z,n—r+r;)
_“”/12/3.]“‘--’:l @ENN-I u”(z,ﬂ—r+rl)+”u”g;U) .

Since by using Lemmas 7.1-(8), 4.12—(1), and Cor. 4.3-(ii) the second term on
the right of (8.41) is dominated by || 4y D, /7" @,V 2 u|[®~+70 4[| Ay 7771
D, O, N ul|mrtr) 42 [|y)|57P, repeating the similar argument as above
once again we get for any r €N with r >2r, that for n>r+1 and i€,

(8.42) 177 @ slltn-n < Co( 33 iy Do wllnriry
1Ay Li; @™~ ]| #7420 | Ju |77+ 227 0)
On the other hand, using the fact that from (3.19) and Lemma 6.39-(2),
(8.43) d, fD,-Op pt™ J* for o&ly ,
in the similar way as above we have for r &N, r>r, that for n>r+1

(8.44) f" Oorn™ “||(4,n-r)$ Gl f it Do u“(z,n—r+11)
Hf771 L Ogn® tllmepirp 07 |7 7142)

Therefore, taking
(8.45) F=ry: = r+max(r, £)+1,
and Lemma 7.1-(1) and Corollary 5.2 we obtain from (8.42) and (8.44) that
(8:46) |10 ullts,n-ry < Co {n™2 || Qul| =707 +||ul| G5
+ 3 (Mo @i )+ My s (@i ™ )+ 33 (Morus@orn 1)

+ Mot -3 P )},
for small T and n>ry+3 .

Estimating the right of (8.32) by Lemma 7.1-(3) we have for small 7 and n>2,

(3.47) [[ul|B<Cier M; ,(@; 5" u)+33 -1 My, (@™ u)) .
We set
(8.48) Ny: = 208 Q2rg+1) .

Lemma 8.7. Let N,, N,EN with N,>N, and Ny=2N,+3. Let AE3y 4,
A, €2y 0, for i€l Then for small T and n> N,+-3,
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2
2 M (4;y)<C CQull™ - 1ul 85O ] £ 7041 wl [t - ry) -

Proof. Using Corollary 7.7 with k=N, and k'=3 to M; ,(4, u), and next
estimating the terms of the form n~Mz™"2 M, . _ oo (Af7® u), A€ X, ,,
0<r<N, on the 1itht of the resulting inequality by using (7.3), (7.6), Lemmas
7.8,4.21-(1), 7.1~(6) we get for some By, -+, B2, that for small 7 and
n=>N,+3,

(3.49) Mi.nstilu)SQ(”Qu”(”)
+ io} 21 n-Watt=nlz pp im-r/on) (B; [ @8 y)
=0 j=

YR Ul - wpsaomn+ |l G5

Using Corollary 7.7 with k=N, and k’=2 we have for some By, **, B1s €25 0,
that for small T and n>N,+3,

(8.50) M; (4, w) < Cy(|| Qul|™
+ 22 ‘23 n= N M reony (B ST 1)

r=0 j=s+1

LSV g caomnF- 1l EOP)
Let us estimate terms involving B; in (8.49) and (8.50). To do so we let
0E,,, and we write =0, @, 0,3, ,. From Lemma 6.6, Op u-®,—®, Q
€C+C, with L;=L,; and = there. So using (3.23) and the last fact of (3.26)
we have
8.51) Op 7-0,—00— 3 4, Ly eC,
k=0
with 4,€ V223, 4, & JH3
A‘;)eJ3/2,3/2,3+J2,1,3+t—1+1/(6h) JS/Z,IIZ,S .
Then for any @>0 we have that for small T and n>3,
(8.52) M; (®f* )<C!{||Opz-®f* ul|™ (Lemma 7.3~(1))
2 ~
<CL(10P, /% ull®+ 25 1| 4e Liy Do f* ul |42 || Qu| |
+|[u]| S Eom)y - ((8.51), Lemmas 6.13, 7.2-(3), 7.4-(1), 4.21-2))

< CHIQUIID 4 Moy, (@, 1* )+ 11 ll g rr-aom+ | 57/
432 iy @, f % u|| w200/ - ((7.6), Lemmas
7.8, 4.18<(1), 4.21(1) and (2)).

By Corollary 4.3 we have that for small T and n>2,
(8.53) ”Aalz ‘Z‘l(i) O, f% ul| W< Cf ("_1/2 Mol(i),n—l(quf“ u)
412 /D, Liy @, % ul| ™).
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It is not hard to check using Lemma 4.18—(4) that for any r €N,

(8.54) /D, Ly [0y, f'] =f" B, D,4f" B,
with B,& Y23, B, Ju=3 4 Jpves

From (3.26) and Lemma 6.39-(2)
(8.55) iy fE)epE’D’ for oeX,, .

Using (8.54), (8.55), (7.8), and noting the manner of choice of r, (cf. (8.34)),
one can show in a straightforward way by taking care of commutation that
for n>r+1

(8.56) [ 412Dy Lygy @o f " ul| =70 < C (| ual eyl 570
Lyt *@2 lla,m Loy Liy @ ulla,m) -
From (8.52), (8.53), (8.56), (4.55), Lemmas 7.1-(4), 4.21-(2) and (4) we have
for any r & N with r > N,—2 which implies r/(20/)>2r,+1,
(8.57) M; s 00 (@ 7P ) < CE (|| Quaf [ -1/
5+ DB D4 Moy, (@ 1)
+Mol(i),n—rl(20h)+r1 (@zf rl@h)=1y u)
+IIrF rf @)=y uiI(4,n+r1-—(r+1)/(20h)+1/2)) .

From (8.52), (4.55), Lemmas 7.1-(4) and (6), 4.21-(2) we have for any r&eN
with 0<r<N,—3 that for small T and n>N,-3,

(8.58) n= MR M peony (@ 7P ) < CF (0™ || Qul|

+n1 ”u||$2)_1/(2°h))_|_n-1 Moiiy.n (q)zfrl(mh) u)) .
Now from (3.26) and Lemma 6.39—(2) for o= 375,
(8.59) (dioy (fEVP+dyiy (FE) Auwy "Lywy)op=b, T+,

with some b,&/30"20 p, e/ FOA0N L FF(-1=20) :

So from (8.59) we have for any A€ 2 o, that for small 7" and n>2,
(8.60) Moy, n (AW) < C (Mo, (Aw) |1l |4, + 11l 1)

(by Lemmas 7.3—(1), 4.21-(1))

< C(11Qull™ el g, 1857 )
(by Lemma 7.4-(2)).

Substituting f* u, >0 for u in (8.60) and using Lemmas 7.8, 4.21 we have for
any A€ X, 4, >0 that for small T and n>2,
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Moyy,n (A" w) S CUQulP 1117 ullcg,my+-ul GG E) .

Applying this inequality to (8.57) and (8.58) we get using Lemmas 4.21-(4)
and 7.1-(6) that when r > N,—2, for small T and n> N, 3,

BN Myaeun (D7 )< C4(|Qull* @ o~
+{(fr0+1'1 u”(4,1z—ro-r1)) ’

and that when 0<r < N,—3, for small 7 and n>N,+3,

(8.62) WM, ey (@ 7O ) < C(n7 || Quil |

o [l )

Applying (8.61) and (8.62) to the terms involving B; in (8.49) and (8.50), noting
N,>2r,+1, and using Lemma 4.21-(4) and (4.55) we get the desired inequality.
The proof of Lemma 8.7 is complete.

We set

(8.63) N; = 2N,+3.
Then by Lemma 8.7 we have that for i1, small T, and 2> N,-+3,

(8.64) M, (P, u)+ My, (D3, M7 1) < Cy (11Qul |+ [l |(g5 10w
+||f’°+r1 u”(«;,n——m—n)) .

By Remark 8.5 we can use Lemma 8.4 to conclude that for any /, small T,
and n>N;+1

(8.65) M, , (@omlN’ u)+My,, (moule"—1 u) < C (1 Qull|™
A o] | 5 ORI || f DD ) vy r20m)

"*‘”f(Nl—z)KZOh) u”(4,11—(N1~Z)/(201t))) .

Since (N;—2)/(20h)>2(2r,+1), the rest of proof of Proposition 8.6 is now
straightforward by using (8.46), (8.47), (8.64), (8.65), and by taking N=4N, in
Lemma 7.9 as in the proof of Proposition 8.1. Q.E.D.

Finally we consider the case (3).

Proposition 8.8. Assume that (3) of (3.13) holds. Set for s=1, 2, n>1,
and ue Sy,

s
Hu[¢m = ?;‘(’1 nkl? l[A(s-k)/z u“(n+(s+k)/2) .

Then there exists ny& N such that for small T and n>n,,
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2 o
llall + 25 IL* ul|C*P < ClIQul| ™,
[1Quy | < C(l|Qul |~ 1™ || Qul|™) .

1< T sz
Proof. Let ¢¥e2), ic] be in Lemma 3.2 and define for s, j, ke {1, 2, 3}
with s =,

b 03/ (0i5—0;) @f on supp ¢f
sk 0 on (supp ¢¥)° .
Then b, ;, satisfies with the notations in Definitions 3.1 and 4.4
(8.66) |8* bl <C, 3‘/};“1'30‘5'”2"5[’3,1/6_”3 .
Proof of (8.66). It suffices to consider this on supp ¢¥. First from (3.28),
(8.67) bl <C.
Next from (3.22)" and (3.28) we have that for @ with ¢,>0
(868) ' % O l < Cu t—1+1/(6h) .s;'l—u1+1 30‘5“2"#3,01"3
g C‘; t—l+1/(6h)+x/3 <E>1/2 ")Z‘l_dl.,-l ,w,-z—uz.wa,o-wa, | gis_aij
SCLPT Y™y ™% 0,,—0y5]
that for e with ¢, =0 and a,>0,
(8.69) 180% 034 | SCy /O dpgoatlopy 1o L CF 1T LDV
XYzt g 7% [0,,—0,; | S Chehrz® ey g % |0;,—0;;],
and that for @ with @;>0 and ¢, =a,=0,
(8.70) [8% 04| < Cora o %< CL K EDE g ™% | 0;5—0;
< Cit E>lls Va0 “3e | O0is—0;j |

(8.67)~(8.70) and Leibniz rule show (8.66).
The fact that ¢F=1 on supp ¢; and Lagrange’s interpolation formula
show

(8.71) Lo, = by (L—045) @iatbyp(L—0,1) iz
L g, = > tbksk bkjk (L—o0y) (L_aij) Piz

k,j,s : distinc
where we adopt the convention (3.16) on L and ¢;, is defined by (7.15). (8.66)
implies

(8.72) b 3.



ON THE UNIQUENESS FOR THE CAUCHY PROBLEM 283

We set
(8.73) B, = Op b, .

Now we recall the definition (7.17) of @;y, @yy. Using for & =0, identities
that

Lin® =[Li, P]+PL;y ,
Ly, L;; o =[Ly, [L;, ON+[L;;, @] L;)+-[L;y, @] Li;+PL; L;;
L*o =|[L,[L, o]]+@I*+2[L, 0] L,

and using (8.71), (8.72), Lemmas 4.18, 4.22, 6.4, and (6.24) show

T 2
(8.74) LO;, = By Ly @ipt Bz Liy it 23 4; Lij+ 4
=
with ;€ B3 for j=0, 4, P13,

(875) 1:2 ¢i2 = 2 Bksk Bkjk Lis Lij+ E st Ll's Lij

k,i,s : distinct
3 ~
+ 30 B, Ly +BL+B,
with B,;€3"3, B, B*V*3 for s+0, Be @223 p = @lis

Using (8.74), (8.75), and using Lemma 4.21-(1), (4.55) show that for n>2,

®76) S0, %u[CFILC (S 3 L, Lij 0 il
k=1 s¥j k=1
+ 33 SILs @ Ful| L0 ] #7005/
s=1 k=1
+n7t [[ulliB) -
o=D;—A with A=0p “a and acZ{% ' satisfying (4.42), Lemmas 4. 18—
If Ly=D,—A with A=0p * d 01D isfying (4.42), L 4. 18
(3)-(i), 4.22, and the fact that ¢! kI C JEHY2IHULN when N >k-+1/2 show
[Ly, BIE t* AFV2IHZN if Be A JbbN with n>k-41/2.
So if Ly;, j=1,2 are such operators as L, and @ &* A™ with 2>0, using
Lemma 4.21—(1), (4.55) show that for n>>2-2,
(8.77)  ||Loy @ul|®” K C(|| Loy ul|®" 0 [[ul | G5 ® =D 4172 |[u] &),
| Loy Loz @ul|®” < C'(|| Lgy Lo 1|~
2
3 (1Ley w4 - 2, [ 5)

107 [l 5

Applying (8.77) to each term with k=2 of summations on the right and to the
third term, and using Lemma 4.21-(2) we obtain
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2
(8.78) 3V||L* @ ,2u)|®~F" < C,)( ? |Li Ly @y ul| &
k=1 R s~j
+ ||Li3 D, u||(2,n)+l]Lull(Z,;z—l/(zolz))+Hu“Eg;I/(ZOh))_I__n—l Hull&'g) )
s=1

Similarly we have that for n>2,

3 ~ 2 -

BT 3T O 0[50 < €y (35 1T Oyl 0 {50
+n 2 1ullE)
and setting @,=0;,'—0p /(¢;;"), @yy=Py;’ —Op /(¢51,"), and noting D, Oy E
123 %3 from (3.20) and Lemma 6.26 we have that
(8:80) 33 (IIL* @, [ [ @y w[H9) < C, (33 1EF w609
k=1 k=1
+ullg ), n=3 .

Note that by Lemma 4.21, ||9; ul[{8+||Dq; ul|{8 < C; ||u]|$% 2> for n>2. Now
using (8.78)~(8.80), (4.55), Lemmas 4.21-(1), 7.1-(3) and (4) show that there
exists m, €N and T, (0, T,) such that for T (0, Ty), n>n,,

2 ~ 2
@®.81) [l + X3 [1L* ul|~» < Co( 2 10 ullE+ 2 9o, ul |83
3
+ E [|1Lis Li; @z w7+ 32=1 [|1Lis @iy u]|®™
2 2 2

+ E /§1 IL* Do, ul| ) < Co( %Mi,n(wiz u)+ /Z=:1 My, (Dyr, 1))
where we use that L=L, ; for any i from the assumption (3.13)~(3). As in the
proof of Proposition 8.1 we may assume that Q=p,(¢, x, 1, £ (¢, x))™! Op /q.
Let 03, , and == [T (r—AfE—/5,)) where & (t, ¥)—u(t, )/(1—(C- 1) (1, X))

ji=1

with the convention (3.16), and note that p,(z, x, 1, { (¢, x))™* fg== on supp ¢;.
From Lemmas 6.9, 6.12

(8.82) Oprn-®—Q-0&(,,

(8.83) [Qs, D]EC+C,y with C =C(L, =L, = L, = L),
[Q,, 1€,
where Q;=p,(t, x, 1, { (¢, x))™ Op /q; with the homogeneous part g; of degree
jin(z, &) of gq.
Using (8.82), (8.83), Lemmas 7.3-(1), 7.4-(1), 4.21 one can easily deduce
that for small 7 and n>2,

©84) M @) CIQu™+ 33 (1 4gpp Lt ul[ @it
k=1
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‘Hlffk ull(u+3—k))+”u”%-(l/zoh))) .
Next we let 9,2, ,,. In case (3) we have g; =f42 gy &% so that
2 . .
2 py = g+ 21 a; &7 L.
1=

So from Lemma 6.38,

M.

Dy Q, =

Using this and (8.83) which holds for ®=/3},, we obtain similarly as (8.84)
that for small T and n>2,

A, LF with 4, € 623 for k = 1,2, dy&1™ J3.
0

k

Il

2 - . _ _ )
(8.85) M, (Do u)< Co(l|Qul| ™+ k2=1 ([ Ag-pyp L* u | H(@=R2 (=Q/108)
I w0 1)

Now the rest of proof is straightforward by using (8.81), (8.84), (8.85), and
Lemma 7.9. We omit the details. Propositions 8.1, 8.6, 8.8 mean (2.13), (2.14)
respectively in cases (1), (2), (3).

§89. Proof of Proposition 2.3

We just have to (2.10) for proof of Proposition 2.3, because the standard
argument gives the desired concluion. When m=:1, or when m=2 and k,=1,
(2.13) contains (2.10). And the remaining cases are contained in the following
Proposotion.

Proposition 9.1. Suppose the assumptions and notations in Proposition 2.3.
Suppose that in (2.6), the number of paires of (i, j) with j==0 is greater than or
equal to 2. Set for s=0, ---,2m and n>1,

”u“[s,n] — 2 nm—(3/2)—(i/2)~;'lIA”ZD{u“(n-i—m—(j/Z)—j), uEST .

i+j<2s
Then, there exists C>0, ny>1, and T (0, T,) such that for T (0, T,), n>n,,
and ue Sy

o.n [l [P < C | Qul| ™.
Proof. We note that m>2 from the assumption. In view of (2.7) the

partial fraction decomposition, or rather the theory of resultants shows that
one can write

pm_‘—fllzpflﬂ—l = ];II;EF]‘; (pij+f1/2 f.i)—'l_qm—z
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with the notation py_,(t, X, t, &) =pu-.(t, x, 7, —C(t, X)r+&) where plj, Gpn—»
are in C “(R‘;‘po) being polynomials in (z, &) with their coeficients in By, respec-
tively of degrees i—1, m—2. We may neglect perturbations of terms of
order<m—2 in Q for proof of (9.1) in view of (9.1) and Lemma 4.21-(1) so
that we may assume

0 = pult, %, 1, €t X)) NPt Pues— - (t, %, 7, (8, X)e+E) .
Set for j==0,
02 Gy =pult, x, 1, <, ) 0y +/ M P1)E, X, 7, €8, X)T+E)
Qi ="0i;, 07 =Tlawup Q-
Then
9.3) o, x,r, &) =11, ;0,(¢, x, 7, £) .
Similarly as above we can write for each 1<k <m,
9.4) gromk = 3N, 1, 0 4r,

where r; ;, r, are in C*(R?%,) which are polynomials in (z, &) with coeficients in
Bz, such that deg r;;, =i, degree in = of r;;,=i—1, deg r,=m—1, degree in = of
ry=m—2.

Using (9.4), (2.13), Lemmas 7.1—-(2), 4.21—(1), and the inequality ||D7 u||™ <

m m—k
C(I!Qu]]‘”’—%—?‘_, Y || f% Dk Diu||™), one finds that for small T and large n,
=117=0
©93) [IullPmr1—C,n | Qul @< Cy =¥ 33 1 +DE D =" ul| ™l o=251)
k=1
<G (2 11Qi5007(2, x, Dyul| ™ 417 |uf [Pm=2n=1) |
557

Let e,=(1, 0), e,=(0, 1)€R?. Then, symbolic calculus shows that by extend-
ing Definition 6.21 to ¢ of the form in it with @z;=cosnt.,

~ i-1
(9.6) (Qiho,e, = g}) ay v with
akIEtllz_‘/(m)f 2(:‘—1;—1/2)(0,—2,0)’ akzefz’(i_k—llz)(o.—z,o);

O @@ on—@ilus@ridow = 3 @e*

with PR 20<15i+|’—k—2 ¢~ 1H1/2-1/(208) Bi+i’—k—1—1.1/2,m
- - . -/_ —-
—{—t 1/2-1/(20k) Bl+l k=2,m ;

08  G)ac @i oa—Gus Gl = 5 bt
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with b, Bi+i'~k=2m,

~ i+i/-2
.9 [Op Qi’j” OP(Q.'j)o,a,] = E AkID’:
with Ak1620<ssi+i’—k-2 s HY2-1/(208) $i+i’—k—s—1/2.m
+tl/z-l/(zoh)$i+i’—3/2—k,m’ Akze_@iﬁ’-k—s/z,m .

From (9.3), (9.7), (9.8), and the equalities

(Qij)q,o'(éi’j’)o,q =0, Qij'atQi’j’ s
(Qij)ez.o'(éi'j')o,lg = f(as Qi j)fDin'j’ )
(6102 (@ 190,612 Q77 —((Di epno* Qi 7)o,0) Q7
= ((Qi)61.0° Q' i)0,6,— (i )ern0” (D7 )o,6,)° Q77
F(Di9)e10* (D4 70,6)° Q1+ —((Q;)ep0* (B )ure) Q7

S
where 077" = T, 9+, .67, Qs »

we see that

" 2 ~ ~ e -
Q007 = Q+Z"‘1 236, 4% i(Qi)e,00(Qi7)0,e,0 Q7 T + kg—zak *

W]th dk = 20<s$m-2 (t —s+1/2—1/(20h) Bm —-k—s-1,1/2,m + t —1/2—-1/(20k) Bm —k—Z,m) .
This and (2.13) imply that for small 7" and large n,

33,;11Q:500%(2, x, Dyul|™
<CUIQUIP+3 S [1015(Groe2 Q7 (1, x, DYull®

1=1 G, DFGE 31
=230

By (9.9), (9-6), (2.14), a term in the summation on the right is estimated for
small T and large n by

1151 Do.e,0 Qi@ (2, x, DYl [ [P=5:n-121
< Cs(11(Qs#j7)o,6,° 07 (8, x, Dul| ™ | u|[Pm=3n-1121)
< C(llQi7j70 Q¥ (2, x, D)ul|t-@w

41| Q0 Q7' (t, x, D)ul|™ -+ ||u]|2m=3n-v2)

Therefore we obtain that for small T and large n,
9.10) 35,1140 04(t, x, DYull™ < Co(||Qul|™ - ||l [P =2n-2/20)

The desired conclusion follows from (9.5) and (9.10). Q.E.D.
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§10. Appendix. Proof of Lemma 4.7

Our proof is parallel to that of Lemma 2 in [1]. So we make our discrip-
tion brief. We denote the set of all b as in the statement satisfying (4.18) for
(@, p)EB by U??, and we set U= U U%»*. We denote a(x, £) as in the

@,¢>eB
above defined for b&U by I(b)(x, ). The important fact is that constants in

proof are uniform on B and <U, but we omit to mention this fact for simplicity.

First we assume that the lemma has proved for b& U compactly supported
in (y, 7) for each fixed (x, £). Let b&U?»® and set b,,=x,,b for me N where
Xu(x, v, €, 1)=X(y/m, 7/m) with x € C7(R*) with x(0)=1. Then

| Dy D5 b,(x, ¥, &, 1) | < Cpglb| %fsio1° 23 sup @7X(Q)-alif \g1-,
i< qex

with C,g independent of m, and 1(b,) converges to I(b) at any point. So the
lemma for general b follows from the above assumed special case by replacing
k by k+1 and (My, =+, Myyy, my, =+, M) bY (0, My, ooey My, O, my, ooo, ).
Thus, we just have to prove (4.19) with C’, L independent of b&U?* com-
pactly uspported in (y, 7) for each fixed (x, £), and of (D, ¢).

We note that I(b)=SS "= -Ob(x, y, €, n)dydy then. Let x,& C(R)
with ¥,(z)=1 when |z|<1/3, %,(z)=0 when |z|<1/2, and write b=b,-}b,
where b, (x, y, &, 1) =b(x, y, &, )%, (|2—¢[/(1 + |€])). Then b,€™* and
|b;|%*<Cy;|b|%* so that I(b)=I(b))+1(b,). We have

by =0 when [&—7[=(1+]])/2,
by =0 when [£—7[<(1+]€])/3.

The integration by parts gives that I(b,)=1I(b3) with b5=U?* given by
bi(x, y, &, 1) =|n—&| N (=4 )V [(1+ | x—y|*)" (1+(—4,)") b;]. Taking P>
n/2 and N large we get |I1(b,)| < | 1(b%)| < C,| b 56+ @3 Mi- =),

Next choose ¥, C~(R) with ¥,(z)=1 when |z|<1/9, %,(z)=0 when
|z| >1/2, and write b,=b,,-+b,, where b,;=b,(x, y, &, 1)X,(c" o %(x, )| y—x|2+
07 %(x, €)|E—71%). Again b, eU*® and |b;|7*<C,;|b|%% so that I(b,) =
I(by,)+1(by;). We have

by =0 when o¢7'(x, §)|y—x|[+07(x, &)|1—€|=c/2,
by, =0 when o7 }(x,&)|y—x|+07Xx, &)|n—E€|<Lc/3.
Setting @, =D(x, &), ¢, =¢(x, &) we have that when (x, y, &, 7) € supp by,

CI<|0(Q))D,| <C, C'<|p(Q)/9,] <C for Q=K. Then the integration by
parts gives I(b,)=I(b})) with bj;€U given by bj;=(1+0% |x—y|?)1x
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X(1+0§7(—4,)") by, and [I1(by)| =|1(b11)| < C,|b|%s° OF¥i- g5 by taking
P>n/2. Finally we consider b;,. As in the same way of [1] setting @,=
O(x, &), ¢, =9¢(x, £), and R=00,/p, we have that for (x, y, &, 7) Esupp by,
and Q€ K, Ci'R< 0(Q)/9(Q) < GoR, @y/@(Q) < (Coc )2 (Dyp0)?, @(Q) <
2-max(c'C,, 3Cc™Y) (|7—E&|+R| y—x|). By using the first inequality the
next two means respectively

2o/P(Q) < C(@o20) %, (DL Cy(R7M7—E ]+ | y—x]).

Set bhi(x, ¥, &, 1) = (@™ (—4.)" + e (—4 ) {bu(x, ¥, &, D)/(@a™ | y—x|*" +
+05 | 7—E&|*)}. Then bsyeU?? and I(b,)=I1(b}:). Leibniz rule shows
that

|b£1(x9 Y, E, 77)[
—2 - 2} | DEbu(, 3, €, 1) Dy'®!
<cC 2N ZN{ 18l<en | P 021lF, ) €, 0
WO O Tl y—x| + 05t |7 g [y eNTD
2 \yi<an [ Dy ba(t, x, &, 77)[%'”1 }
(05" | y—x| + 05 |7 —& | PN +EN-19D)
= Coypo N O {I+11}.

k+ ~ ~

We take P> (| M;| +|m;|) and set i;=M;+P, ifi;=m;+P. Then §,>0,
j=1

m;>0. By virtue of ®p>c a term of the numerator in / is dominated by

c~PED | p| 8¢ times

o' 11 sup 0%1Q)™(Q) 11 sup 0%i(Q)¢™(0)

rytee +rk=[ﬁ|
<G, I sup 07(Q)¢™1(0) sup (240 (Q))™

< Cy( @020 (17— +R| y—x[Y¥5+ (R n—n| + | y—x|)*"s.
Thus 1< Cyol b9 O35V o357 (g5 | y — x| + @5t |9 —& | 228 T s
dominated by the same expression. Therefore,
~ - . B+l -
[1(by) | < Cpy| b 83+ QFHitn=N . o3+n=N jf 2N>§1 (M;+m;)+n.

This completes the proof.
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