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§1. Introduction

The famous example of Plis ([11] Theorem 4) has shown us that the unique-
ness in the Cauchy problem for four-fold characteristics does not hold in general
even in smooth coefficients and two independent variables. Similar but more
general examples of two independent variables have been constructed by Nakane
[7]. But when we consider triple characteristics case the results are not ap-
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plicable and we have few of information. There exists only a counter ex-

ample with non-smooth coefficients. (See [3]).
In this paper we shall give a positive result for the uniqueness in case of

equations with smooth coefficients of two independent variables and with triple
characteristics, in spite of the existence of such a counterexample. This result

will show us the uniqueness almost always holds in such a case.
In two dimensional case, there is an effective reduction technique to a

simple case that the set, on which the multiplicity of characteristic roots vary

coincides with the initial surface. This will work well in our proof. (See [13],
[14], [15] for other related results.) Our main result is the following.

Theorem. Let P be a linear elliptic operator of order m (m>l) with C°°
coefficients in an open neighbourhood o) of the origin in R2. Under the follow-

ing assumptions (a), (b) one can find an open neighbourhood o>'Co> of the origin
such that every u^C°°(co) satisfying Pu=Q and u\ t<,o=Q vanishes in CD'.

Assumptions. We denote by Pm(t, x, r, £ ) the principal symbol.

(a) pm(t,x,T,t) = JlLiWi=*Pij(t,x,'r,tl where fc, ̂ 0, />„ (f, .x, r, f) =(r-
% O'+Stt <*iji(t, x) f '-'(r-fl,y O'for j 4=0, andpn=l,

with distinct non real constants afj and aiit e C°°(</>) satisfying %/(0, 0)^0.

(b) Let JfV(f, jc), / 4= l,j 4=0 (resp. 4 j ( t , x)9j=tQ) is the discriminant of
pij(t,x,T,l) (resp. drp3i(t,x,r, 1)) as a polynomial in T. We assume that

Aij(t, x) (resp. d'j(t, xj) has a finite order zero at (0, 0) unless 4^ = 0 (resp. 4} = 0)
in o), where we say that g e C°°(cy) has a finite order zero at (0, 0) when g(0, 0)=0
and d"iX g(0, Q)3=Qfor some a.

We shall mention the organization of this paper. In section two we carry
out a reduction as above and the proof of the main theorem is reduced to that of
Proposition 2.3. We devote ourselves to prove this from section three to section
ten. The essential part of proof is section three and section eight. The idea of
proof is a factorization of the symbol of the operator modulo terms of order
less than its order minus one, which is the same as in papers Matsumoto [6],
Okaji [9]. Another sections except for section nine is those for tedious tech-
nicalities. The argument in section nine is routine one.

Remark on notations. The set of all positive integers and all non-negative
integers are denoted by N and Z+ respectively.
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§2. Reduction of the Proof of Theorem

Reduction mentioned above works well also in our case by virtue of Wata-
nabe's theorem in [12].

First of all, it is easy to see that by making a linear change of coordinates
which preserves %-axis one can reduce (b) to a special case that J,;-(f, 0) (resp.
Aft, 0)) has a finite order zero at t=Q (namely, J,7(0, 0)=0 and (Sty A{j) (0, 0)
=1=0 for some kis for example) unless Afj = 0 (resp. Jy = 0) in o>, since (b) is in-
variant under such change of coordinates. Indeed, we note that for a(t,
near the origin in Rz and

dl(a(t, x+ct)) | (o,o) = S (£) (9f~* &* a) (0, 0) ck .

By the change of coordinates (t, x)->(t', x')=(t, x—ct\ the principal symbol
3 *«•

of P is transformed to II II Pa where &•,•=/*/,•(*', x'+ct\ r'+cf ', £') so that

(a) clearly holds for p{j and the discriminant ofpffo, x, T', 1) and dr p3j(t, x, T', 1)
are Afj(t'9 x'+ct') and A'j(t'9 x'+ct') respectively. Therefore the above special
case of (b) holds for a suitable choise of c by virtue of (b). So we may assume
this instead of (b). Set A = {(/, j) ; A{j EJE 0} U {/; A'j * 0} . A =<f> means that the
number of distinct characteristic roots is constant in co and at most three. So
our theorem immediately follows from Watanabe's theorem in [9] when A=<f>.
Thus we may assume A^<f>. We will prove Theorem by contradiction when
A=£<f>. Suppose that the assertion of Theorem is not true. By Malgrange's
preperation theorem one can find T>0, X>0 such that &!==(— T, T)x(—X9 X)
dco, and that for (t,

Ais(t, x) = b^t, x) r,y(f , x), (i, j} e A ,

A'fa jc) = b'j(t, x) r'j(t, x), J&A,

A(t, x) = UttjteA Aa(t> x) Tij^A *'j(t, x) = b(t, x) r(t, x) ,

where bij9 b'h b<EC°°(a)^ dijh djh d^C^-X, X)) satisfying that bu(t9
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, b(t, *)=i=0 for any (t, x)(=Q)l9 and that rff-y/(0)=0, (0)^
and fc,-y, &y, fc are positive integers. We may assume that r(z, *)=i=0 when
[ z | > T/2, since 4(0) -0. We set

/, = {*€=(-*, X); #({ze£7; r(z, *) - 0})>/}, / = 1, -, fc;

where cl (/,) denotes the closure of /2- in (-X, X). Then /£ are open in (—X, X),

U i /£ is dense in (— X, X), and $ ({z^C; rO, ^)=0})^^" for xe/f. Next we
set

J/
itj=Jiij\cl(Jij+l)9j=Q, •••, /—I , where cl(/£>y+1) is the closure of /,-,/+1 in

(-X, Z). Then /;>y are open in (—X9 X), U f- U y /-,y is dense in -(r, Z)3 and
%({z^C\R;r(z.>x)=Q})=j for *e/f'fy. By the assumption one can find
weC°°(o)) satisfying Pu=Q in cy, u\tg0=Q, and that supp wn®i=l=# . So there
exists J'ij and an open interval / such that /C/^y and ((— r,r)xJ)D
supp w=t=0. Since both of the numbers of distinct roots and distinct non real
roots of the equation in a, r(t, x)=0, are constant when x^I, it follows that

for i>7, there exists ^/eC^T), 7=1, • • - , i— / with —T/2<0l(x) <— <^-yW
<T/2? positive integers r/, 7=1, •-, /, and 5eC°°((— T9 T)x/) with 6(r,

!'i
for all (t, x) such that J(r, x)=b(t, x) H (f—O^xffi, and that if 7 =7, J(r,

/ = !

for all (r, jc)e(— r, r) x/. We set ̂  = 1—7, 00=-T, 0h+1=T, and A,={(t, x)G

[-T, T]xJ; 0j(*)<*<0m(x)}, 7=0, — , fp We can take ^ = inf{i';^n
supp w4=0} and two cases arise, in one supp wfl {t=QiQ(x)}=<l>, in the other

In the former case we take (*0, x0) e ^4/0 n supp w and s> 0 so that
[x0—e9x0+s]c:I. Consider paraboles 3?c: T/rc = t+£-2(x—Xo)2 (c+T)—c = Q.

We can take e so small that

[-7; T] x/; ̂ 0 - 0, r =

We can take

c0 = inf {c; supp wR ̂ =4=0} (t0>cQ>Q) and

(rlf xje supp w

Then ^(^, x^^O implies that the multiplicities of roots of the equation

Pm(t> x, T, 1)=0 are constant near the point (tl9 x^. Since in this case by virtue
of the fact that the dimension is twos the multiplicities of roots of the charac-
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teristic equation of P in a defined for 37, N&R\(Q) with (N. ??>=0, where
< , > is the standard inner product in R2, pm(t,x,aN+7j)=Q, are constant
when N, y are fixed and (t, x) is close to (tl9 x^) and since u(t,x)=Q when
T/rCQ(t, x)<Q, after the suitable linear change of coordinates at (tl9 x^ by an or-
thogonal matrix Watanabe's theorem can be applied to conclude that (tl9xj$.
supp u which is contradiction.

In the latter case there exists (tl9 xj^supp wfl {f=0,-0(*)}- Since the
number of distinct roots of the equation r(t, jc)=0 in t is constant in xe/, any
of AiS and A'j is of the form (t—0iQ(x)Y c(t, x) with a positive integer r and a
smooth c satisfying c(tl9 xJ3=Q9 unless it is identically zero or does not vanish
at (t19 %). We need a lemma.

Lemma 2.1. Suppose that the discriminant of a polynomial in a,

q(a, s, y) = a1 +0^5, y) a1'1-] ----- \-a,(s9 y) ,

is equal to sn D(s,y) with a positive integer n and D^C°°(U) satisfying inf
jr

| D(s, y) | >0. Then the roots of the equation in G, q(a, s, y)=Q, is expressed by

/ continuous functions &j(s, y),j=l, • •• , I for (s, y)& [0, Si)x(— Y, Y) with a
5^(0, min (S, 1)), satisfying there exists a positive integer h such that t*j(sh,y)
belongs to C°°([0, SJx(-Y, Y))for allj.

Proof. Set

y, w) = Sy<iyyir1 zjW «*) (0, y)+((N-i) i)-1 ̂  w,, / = i, ..-, / for
7, and

= f
Jo

Since ai(s9y)—a'i(s9y9w)=sN(ai(s9y)—wi)l(N—-l)\9 for any JV>« there exists
S'e(0, min(l, S)) such that when |z| <5", |w| <M = max sup(|c,| +1), the

f O-

discriminant of polynomial in a is equal to znD'(z, y, w) where D' is a poly-
nomial in (z, w) with coefficients in C°°([— Y, Y]) satisfying inf {\D'(z9y9 w)\ ;
\z\<S', \y\<Y, |w|<M}>0. We set

r=rafb = {(z,y,w)i \z\<S', \y\<Y, |
Q<r<Sf, a<0<b} } for a, b^R such that b-

Since F is simply connected, the implicit function theorem and the monodromy
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theorem give ^^(z, y, w)eC°°(r), j= 1, • • - , / which are holomorphic in

(z, w) and satisfy q'(j*jtr(z,y9 w), z, j;, w)=0 and /^rO> J, w)=M/fr(
z> J, w) if

14=7, for all (z, j9w)er. Set 0r = {^-,r; 7 = 1, ••• , /}, R = {(z? j, w);
0<|z| <S"5 | j| <7, M <M}5

 cU = {ray, a, A}. Let j?* be the set whose
points are determined by a pair (p, <p),,p^R, <p^®r such that p&T, Te^U

and two pairs (/?1? 9^), (/?2, 0>2)
 are identified if and only if Pi=p2 and ^=92 i*1 a

neighbourhood of/> l t We define the topology of R* so that the fundamental
neighbourhood system of (pQ, <pQ)^R* with pQ^T and #?0G0r is a family of
sets {(p, <p);p^V} such that there exists /1

1e
cU such that Kcr

and such that <p=<pQ in a neighbourhood of /?„ and F is a open set with
This definition is well defined. We define a mapping n: R*-*R by x(p*)=p
ifp*=(p, <p). Then a pair (R*, n) is a covering space of R, (For the defini-
tion of the covering space we refer L. S. Pontryagin: Topological Groups. See
also Ahlfors Sario Riemann Surfaces.) Since R is arcwise connected5 each
component of R* with the restriction of n to it is a arcwise connected covering
space of R. It is clear that the set F$>={(p, <p);p^r} is connected for any
Te^U and 9e0r. Let/z f-e,Zbe the number of sheets of a covering space
(Rf 9 TU I £*) of R where i?f is the component of R* containing VfiF with

<r=<r_,e/4f</4, <p=Vi,r- We can construct in the same way as above a covering

space (jRfi, rcf-) of J? for any /=! , • •• , / by the family of functions /*,-,/,r(z» J? w)

=Vj,ri(z
hi,y->w)>J==l>'"J where F=rafb^

cU with b—a<7u/hi and 71
|.=

{(z*«, j? w); (z, j, w)eT}. Then since any closed curve in jR is homotopic to
one of curves Q: t-+(S'/2 e

2*^lmt, 0, 0), /e[0, 1]; rae^, for any open inter-
val is simply connected, the number of sheets of a covering space (Rf29 n. \ R*2)

of jR where ̂ f2 is the component of R*i containing a connected subset of {(p9 <p);

<p^r0} with ^o=-^-*/(4*l-),ie/(4*l-)
 and 9=^i,i,r> is one- So, one can find jPfe

C°°(R) which is holomorphic in (z, w) satisfying F{=juititp on r0 and can be
extended to a function F in C°°({(z,j;, w); |z|<S", |j|<T, |w|<Af}) by
Cauchy's integral formula. Therefore, vitr(shi, j, w) is C°° in [0, *S")x(—F5 7)

x{|w|<M} for r=r_</4f1t/4. We will take A=II{-i A,-> Si=S', and with
r=r^^u, ^(s, y) = tiitr(s, y, (*&, j))) when (s, y)e(0, 5i)x(-F, F),
=F(0, j, (5,-(0, j))) when s=Q and je(—7, 7). Then, these have required pro-
perties,, The proof is complete.

We need a definition.

Definition 2.2. Let Utttb=[Q, a]tx[—by b]x for a>0, b>0, and h be a posi-
tive integer. We set



ON THE UNIQUENESS FOR THE CAUCHY PROBLEM 191

Let <pt=C°°([—b, b]) be a non negative function with <p1/h^C°°([-b, b}). We
set

Fhi(p(Uatb} (or simply Fht<p if not confused)

= {g;geCT(C/.i») with g-0, org = (t<p)e g,eh<=Z,e>Q ,

t/M) with inf |# |>0},

We say for a function g defined in a neighbourhood of (0, 0) in [0, oo)txRx

that g is CjT (resp. Fhi99 FftV) near (0, 0) if g is defined in Utttb for some a, 6 and

D..,) (resp. Fw(0..,), Ft.9(U..J).

We set ?lV(f, x, rHft/f+flfcOc+X!), *+*i, r, 1),
), and Jj-(f, x)=4}(r+^f.0(x+x1), AI+X!), for xe(— e0, e0) with a small e0.

We will factorize q^ when (r, ^c) close to (0, 0) so that for some h=hij9

0,/f , x, T) = E (T -Vuk(t9 x))9 vijk e Cr near the origin, and

if

It is clear that q2i will cause no problem because of the remark above Lemma 1.
We want to consider q3j. When 23j(Q, 0)^=0, there is also no problem. When

IJ(0,0)=f=Oand2TjXO,0)=0,

q3j(t, x, r) == n Qj(t9 ^, r) when (t, x) is close to (0, 0)

so that q^ is a polynomial in r of degree k with C°° coefficients and the resul-
tant of qW(Q9 0, r) and qf\Q9 0, r) is not zero. So if we let 4'/(t, x) be the
discriminant of qf\t, x, r) as a polynomial in r, 4J'eFlfl near the origin which
means an above factorization of qsj is possible. Let us consider the case that
J3;-(0, 0) =0=2^(0, 0). We first note that it is always true in this case that when
(t, x) is close to (0, 0),

dr q3j(t, x, r) = 3 H (T -ti'ik(t9 x)\ #'jk <E C2°° and jst'ji -t*k
k=i

near (0, 0),

q$j\t) X9 T) ^=- \T /y>jk\ty %)) v^" ^jk\ly ^)~T~\ •*•/ ̂ j\~) ^))~i^jk\^9 '

where
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Cj(t, x) = 3/2<X-2(r, *)-X-ifc x))9 djk(t, x) = q3j(t, x9 jx'-k(t9 x)) .

We also note that the well known relation between the discriminant of q3j and

9Tftythat

(2j) 1/27 23j = n n <#*-4,yi) = n ?.,(*, *, /*}*) = n ^ .
For this relation we refer B.L. van der Waerden: Algebra I. Clearly /^eC°°

near (05 0) when !3/ = 0 and !<==0, and then qBJ(t, x, r)=(r— /«}i(f, x))3. When

J3/ = 0 and 1'EfEO, H <*/*(*, *)=0 for all (r, x)e(0, ej x(— elf e^ with a small er

Since both of two sets {(t9 x)&(03 £1)x(—£19 e2); dy*(f, x)=0}? fc=l? 2 are open

in (0, e^ x(— el9 e^ if e1 is sufficiently small, for JyeFf ti? one of them is empty.

Thus by the above remark a desired factorization of q3j is possible and by a

change of numbering if neccessary, we have d^=0 and dj2(t, x)=—4/27 Cj(t, x)3

which means dj2^Ffti. When 23-^Q9 by Lemma 1 one can find a positive
3

integer h and ju3Jk^C% near (0,0) such that q3j(t, x9 T)= fL (T~ P*jk(t9 *))•

Note that 28J(t, x) =I[ /G<<v*(f, x)-ttyv(t9 x))2 = 21 U djk(t, x), and that

&3jk(t
2k, x) is C°° in a neighbourhood of the origin in R2. Since 23j-^Ffti near

(0, 0), 2"3y(r, jc)=?s ^3j(t9 x) in a neighbourhood of (0, 0) in R2 for some positive

integer s and C°° function 4y with J3y(0, 0)4=0. So for all Ar^A:7, V3jk(t
2h

5 x)

—ju3jk'(t
2b5 x) has a finite order zero at (0, 0), and by Margrange's preperation

theorem, in a neighbourhood of (0, 0) in R2

k, x) = /*,„/(*, x

for some positive integer jy^/ and C°° functions j2yM/, Cy^/ with J2yftjk/(0, 0)=j=0.

Compairing orders of zeros at (0, 0) in the above equality, we see hs= S •?,-**',
" *>&/

so we must have CyM/=0 in a neighbourhood of the origin, since 2"3y(^ x)=O(ts)

for all ^c close to 0. This means P3jk—t*3jk'^F$k,i near (05 0) for all fc^fc'.
Similar argument shows that djk^Ffhii near (0, 0) for all k. Therefore a de-

sired factorization of q3j is possible. When the multiplicity of juijk(t9 x) is con-

stant in (t9 x) near (09 0) for some (i,j, k)9 juijk(t9 x) is C°° in (t, x) from the above

argument.

In the latter case we perform following changes of coordinates with some

<5>0 succesively,

|^| <2d;

*' =l*f(x), *'=*, \t\<2d, \x\<2d9
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where f&C%(R) defined by

(2.2) /G) = expC-O?2-*2)-1) when \s\ <d, = 0 when \s\ >d .

From now on, d denotes a fixed positive real number and /GO always
denotes this function in this paper. We shall introduce some notation.

(2.3) BT = {a(t, *)e C°°([0, T] x JK); Derivatives of a of all orders are

bounded} ,

(2.4) Bh>T = {a(t, *)e=C([0, T]xR); a(t\ *)c=JBj/*} ,

(2.5) £4§r - {aft x)eBA§r; a=0, or aft x) - (f /(*))' aft *),

Then by denoting new variables (?, x) by ft x) anew and by a simple exten-
tion argument by the substitution into the variable x of real valued ^eC°°(J2)
such that | <p(s) \ =3d/2 when 1 s \ > 70/4, 3d/2 > \ pG) I > 5^/4 when 7d/4 >\s\>
5d/4, <p(s)=s when | s \ <5d/4, in the latter case our proof of Theorem is reduced
to the following Proposition.

Proposition 2.3. Let £&BTQ be real valued, h an integer >1, and

pm (t, x, r, £ ) a homogeneous polynomial in (r, f ) o/ degree m>\ with BTQ coef-

ficients such that

3 i

pm(t, x, T, S) = E n

(2.6) w/z^r^ /?i0 = 1, and for j =£ 1, /?^- w a homogeneous polynomial in (r,

of degree i with BTQ coefficients,

for wihch we suppose that

Pij(t, x, T, f ) = H (r-jM0.ftft x) f)* ft ^ T*

-«iyi ̂  J?A>ro, ^.A e BhfTQ for i 4= 1 , satisfying that

(2.7) inf | Im ̂ yftft jc) | >0 for all (i,j, k) ,
t,x

inf | fiijk(tf x)— Vi'j'k'(t, x) | >0 if i =}= r ,
/,*

and that

(2.8) ^-^/e^To for all (ij, k\ (i,j, kr) .

suppose that for j =j= 1,

(2.9) 0T A/ft ^, r, f) = 3 (r-/i}*ft x) f), ft *, r, f)e[0, T0] X R XR2
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with

h,T0> k = 19 2 satisfying that

inf | Im fj.'jk(ty x) | >0 for all k, pfa — /^2 e ^ Tn,
CO ' U

o for all k.

Then ifQ is a differential operator with the symbol Q(t, x, r, £)=Q(t, x, r,f(x) £

Q(t, x, r, f) =pm(t, x, r, C(t, x) r+^+^xf* p.^t, x, r, £)+r(f, x, T, f) ,

where pm~i and r are respectively a homogeneous polynomial in (r, £ ) o/ degree
m—l with BTo coefficients and a polynomial in (r, <?) of degree<m — 1 wiYA J?TO

coefficients, where we suppose r=0 if m=l, there exists Jie(0, T0) ,swc/z r/zaf
everj weC°°([03 ro]xJ^) w/z/c/z w^af ow /=0,=0 w/z^w |x| >fl, aw^f satisfies
Qu=Q vanishes when t<Tlf

Proposition 2.3 follows from a Carleman estimate: there exists C>0 such
that for large n>Q and small T>03

(2.10) C\\Qu\\w>\\u\\M,utE<ST, where

(2.11) ^T = {«eEC~((0, r)x^);sup(l+|^|)*r*(r-0~A |5j^w |<oo

for all non negative integers i,j, k} ,

(2.12) ||«||w - ||r- «||L«((o.r)x«, «>1, ̂ ^cSr .

To deduce (2.10) we shall prove that when under the assumption and
notation of Proposition 2.3 with m<3,km = l, r=Q, there exists C>0 such that
for large n and small T,

(2.13.W) C\\Qu\\^>\\u\\y for u^ST ,

(2.14.W) C(||fitt||^-v^)+/i-^||eii||W)^I3,vl+,H_J|fiv^

where

(2.15) |M|LB) - Sy+«2. /i-*-"*-* |My/2 /)* ii||(-+«-^-« ,

(2.16) ^

that is,

^s u(t, x) = 1/27C j J **

(2.17) Q^ = [(t <^+J/(io*)yf >

{/!«(/, x, 1, f (/, x))"^?^ fi) (/, *, rf/(jc) f)}] (r, ̂ 5 Dt9 Dx) .



ON THE UNIQUENESS FOR THE CAUCHY PROBLEM 195

Our main task is to prove (2.13.3) which we will devote, and when m4=3,
(2.13. m) seems already known. Once (2.13) and (2.14) is established, one can
easily pass to (2.10) using standard partial fraction decomposition.

§ 3. Factorization of Some Third Degree Polynomial

Definition 3.0. Let n(=N, T>0. We define

,85.:= {x = (*19 "-, *„)€=«"; ^e(0, T)} .

Let p3(t, x, T, f) and p2(t, x, T, £), (*, x, r, £)^Rr, be elements in C?(/Z4)
being homogeneous polynomials in (r, £ ) respectively of degrees 3 and 2 with
coefficients in BT in (r, x). Let h&N. We suppose that

(3.1) dr p3(t, *, r, £) = 3 II fr -*i(' , *) 0, */ e BU.T with inf | Im /i, | >0 ,
/=!

c:= 3/2(v2-v1)<=EhiT, di: = p£t, x, ̂ (t, x), l)^EhtT .

Then we have

(3.2) pj(t, x, T, f ) - (r-^/, x) f)2 (r-/if(f, x) e+(-l)1 c(/,

Let C(t, x)^BT be real valued and put

(3.3) Lf - r-^(/f x) (C (/, x) r+0, / = 1, 2 .

Then we can express uniquely

(3.4) P2 = fiailL
i
le'i9ailGBk9T9

i = 0

(3.5) Cr+e =f l / L / +6/ f , a/, b^BkT with inf I^
#,*

since C is real and inf | Im juf \ >0. We set

(3.6) ? = p3(t, x, r, C(f, x) r+£)+f(x)Wp2(t, X, r, f) ,

(3.7) ft

(3.8) G;

where /is the function defined by (2.2) and <z>=(l+|z|2)1/2. Then a direct
computation shows

(3.9) q = L?(L,+(-l)' c6, f)+g,+^oi i?+* S 4i i{ f'

«,-^U2-'',
?-' for /
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Definition 3.1. Let re(0, 1) and h^N. We say a(t, x, <f) e C"(/Z?-) be-
longs to Sd

f=Sd
f(T, h) for pe[0, 1/2] and d=(d» dz, d3) with d^O, if a satisfies

| 9* a(t, x, f) | ̂  C,, ̂ r-i • ̂ -"2 • T^J*» for all a

where 0- = 6>?i 8ji Sfs,

(3.10) ^ = * <

Note that

(3.11) ab<=2d
p+

e if

Let A(t, x) and ^(f, jc) be respectively the discriminants of p3(t, x, r, 1) and
9Tp3(t, x, r, 1) as polynomials in r. Then similarly as (2.1),

(3.12) A = 27 H rf, , 4, = 4/9c2 .
/ = !

Since c, d^E^^ the possible cases are the followings.

(3.13) (1) J E J E O . (2) 4 = 0,^*0. (3) 4 = 0,^ = 0.

So from the definition of EhtT,

(3.14) the only one of d± and d2 is identically zero in case (2), and we have

(3.15) 4=0 for any / and ̂  = ju2 in case (3)

so that

(3.16) we delete sub-1 from all above notations in case (3)? since in fact they
do not depend on / in this case, namely we denote /*, by & and Lt by L for ex-
ample.

Since c, dt^EhtT it follows from (3.9)

(3.17) 2> | l+Aol\ >l/2 when t<T for some T (=(0, T).

The aim of this section is to prove the following lemma.

Lemma 3.2. Let T be as in (3.17). For each cases in (3.13) the following
facts holds for some T0e(0, T').
Case (1). There exists a finite partitions of unity o

(3.18)
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(3.19) \g

where

* = 3/2-l/(3A);

(3.20) C<<f>^~2ll/3 on supp ft o«rf on supp d<pM; for every i&I there exists

/ = /(z)e{l,2} such that

(3.21) ?

C I ft I > * "<£ >3/2 o« supp

(3.22)

where by definition for a topological space X

for a^C(X) and Ec.C(X} .

Case (2). There exists a finite partitions of unity of RTO, Siel

such that (3.18)^(3.20) hold, and such that /^U/z with / jn/2=0 so that for

every i^^ (3.21) holds for some l=l(i) and

(3.23) ^e-Tf^0'-1'1' satisfying (3.22)

and for every i^I2 there exists l=l(i)& {1,2} and a{j satisfying (3.23) such that

(3.24) 9 - (1+Ai) (£/-<?! f-^0 H (L,-au) if (t, x,
j=2

where

(3.25) c, = (-ly+'a+^o/r1 *i c •
Moreover the following facts hold.

(3-26) |g«,-)|<C<O2 on supp ft,

I c ] < C<f >"V3 on supp ft, is/!,

(3). There exists a finite partitions of unity of RTO, Sie/ ft+9'o=l
(3.18)-~(3.19) replaced^, by <pa hold and (3.21) hold for some

(3.27)

(3.22)' Bjy
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9t a^t1'™-1 ^°-°-1), 8, a,j

Furthermore there exists pf G.%1 -SMC/!

(3.28) (pf = 1 on supp 9?,- ;

on supp <p f i f j
s

Proof. We may assume T'< 1. For 5^(0, T') and «e(0, 1) we set

(3.29) r,(S) = {(t, x, £ ) s*J ; f ' <?,> <O3/2} ,

'(O n ̂ ' ,
for 7=1, 2, r=l, 2, 3 where

(3.30) £>?>

gyp = {-L- H,< G,<— H,},3)1 = {G,/>10-1 G,} with 74= /' .
10 e

Then,

(3.31) 2-J< | cb, S | /JT1'2^ 1 on r'>\S, e) U r'*(S, e) if «S">20 ,

2-1<|s,|G71<lon/'/(S) if S->2,

F'-\S, e) = r'-s(S, e) = 0 if «5-«>10 and c = 0 ;

and there exist constant C>0 and S^eCO, 7") such that

(3.32) max (2, C-1 r2"/3) <<f> on ̂ (S) for
5ma(l/i.2^) CG2/3 > | rf| | ̂ >2 on r/(5) for

Indeed, H,>eS-K/lO on r'-'̂ S1, e) for i=l, 3 and G^S1'" on r,(S) which
means (3.31), since <^z>>2, zeC implies |z|^l. To see (3.32) we set for

[0,S]X«

It suffices to prove separately for each of (3.32) the existence of C and S0. Since

d,^Et,T,d,=^kd, for some d,<=BhiT so that |ft| <S^| 4|0,s|6|o./<O3+
I «« 1 o,s<O2 by using 0</<1. Thus there exists Q>0 such that Ci t*<e>3>
<f>3/2 on P,^) for any 51 which shows the first one of (3.32) and there exists C2

such that \g,\ <C2 5-tatVi.W) <f>s on r((5) for any 5. On the other hand

IS, l>IM 3kM£| 3- |«o,! | f | 2sothat

| b, | )3 | d, | | f | 3- 1 «„ 1 0,s<O

on
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in view of the definition of P,(S). This shows the second one of (3.32) in view
of inf | b, \ >0 and the first one of that.

Putting L,=H}/3a or L,=G}/3a in (3.9) we get

(3.33) q(H\'3 a, •) = (1 +Aol) H, r,(a, z", w'1) ,

q(G}'3 a, • ) = (l+Aol) G, r2(a, z12, W<2) ,

q(HY3a,-)=H,r3(a,zl3,w13),

where q(a, t, x. f ) is the polynomial in defined by putting L1=o in (3.9),

(3.34) fl(a, z, w) = o3+(Wl+w2 z) a2+w3 z
2 <J + w, z3, (z, w)eC xC4 ,

r2(a, z, w) = 03+W! a2+w2 a+z, (z, w)eC xC2 ,

r3(a, z, w) = (1+Wj) o3+(w2-z1) a
2+w3 a+z2, (z, vc)eC2 xC3 ;

(3.35) z'1 = GJ* H}'\ w11 = (1 +AQlT
l(-cl tHj^, GTV3 v2, G^ v,, g, G

z12 = (l+A0,r g, GT1, w'2 = (i+A0,r\-e, t C?FV3+G71/3 vto

z'3 = (S, ?HT1/3, g, HT1), w13 = (Aol, HJV3 v2, HT2/3 vj ,
v,. = </, 4, f»-'+/W flj/ ft-*, c~; = (_!)'-« ci| .

Lemma 3.3. Set for ^e(0, 1),

(3.36) ATlf, = [0 ,^x{wSC 4 ; r<k; l<10 for 7 = 1, 4, max| Wy| <!} ,
10 .7=2.3

^< |z2| <^, max| Wy|

,
500

D3(z, w) denotes the discriminant of r3 as a polynomial in a. Then there
exists 2?0e(0, 1) such that one can find for any ^<^0 finite open coverings Uii of
Xityj as a subset ofC xC4, C xC2, C2 xC3 respectively for i, holomorphic functions

lijk on Uij9 k = l,2, 3 for /4=1, C°° functions *ljk(t,w) on 17^0(0, +00) xC4

(3.37) (7iy - 5((0, w(y)), *0, wiy)=l=0, J/<1 w/rer^ 5(*, v) denotes the Euclidean
open ball with the center * and the radius v,

rfc, t, w) - nc^-^a w», a *oe uiy n (o,
r1-',

for
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(3.38) ra(a, .) = E (o-^4) on U2j ,

*s(ff5 o = o+wi) n (*--*3#) 0* &3
^nk^^ijk' everywhere on Uti i f i ^ p l

on U

(3.39)

(3.40) Sy 9?lV = 1 on a neighbourhood ofX^ and <pfj = I on supp

e constants Cses, C can be chosen independently of rj, but it is not im-
portant in our argument.

Proof of Lemma 3.3. We first consider the case i=l. From the implicit
function theorem, for any w°e£74 with wj =1=0 for j=l, 4 one can write near (03 w°)
ri=(a+fy (°r2+^i(7+^2) where ^ ^f- are holomorphic and ^(03 w) = — wl3 because
T^OJ, 05 w)=(?3+M;

1 a
2. Since w4 ̂ =^(0, z, w)=^^2 and w3 z

2=5<P ̂ (0, z, w)=^2

+U19 and since wj=t=0 and ^(05 w°)=f=05 near (0, w°), ̂ =O(z2) as z->0 and one
can write ^f— 4^2=z3 ^3 where /13 is holomorphic with ^3(0., H^)=t=0. So the fac-
torization as in (3.37) is possible near (03 w

0), and for /=! Lemma 3.3 follows

now by a standard argument by using the compactness of {w^C*; - < | Wj\

<10 for 7=1, 4, max | w,| <!}. When f=2, for any z°eC\{0} one can fao-
y=2 fa

torize r2(o, •) near (z°, 0) so that (3.38), (3.39) hold, since r2(a, z, 0)=a3+zs and

Lemma 3.3 for i=2 follows from the compactness of {zeC7; - < |z| <10}.

The case that i=3 also follows similarly, since D3=|=0 on X3>7, and X^ is com-
pact. The proof is complete.

Lemma 3048 There exists eQ, ^£(0, 1) with ^<^0 and N^
satisfies the condition for the 3?0 /« the statement of Lemma 3.3,

^oro<*S'0 wA^r^ S0 is the constant in (3.32), and such that for the sets

(3.41) f'-'W - {(zw(rf ^, <?), wfla x, f)); (fc x,

we have for any

(3.42)

Proof of Lemma 3.4. From (3.32) and the definition of rt(S) there exists
Q'such that



ON THE UNIQUENESS FOR THE CAUCHY PROBLEM 201

(3.43) \Vi\GT^w^C^S^WnjnW'w^onrs(S) for Se(0, SQ), i = 1, 2

where S0 is the constant in (3.32). Using the fact that c, di^Eh>T we see as in
the proof of (3.32) that there exists C2 such that

(3.44) l^lo^QS^Se^r].

Using (3.17), (3.31), (3.42), (3.44) one can find 5^(0, 50) and C3 such that for
any e with eS~K>2Q,

(3.45) 0<z/1<C3e
1/3, !/4<|wP|<2 for i = 1, 4, max| w«n |

< C3 S
1/6 »*0/*.**> 5 on r'-HS, e) ;

| z'2 1 < 2, | wP | < C3(e
1/3+S1/6 «^0/*^»)) ,

1 < C3 5
1/3 ***MM*\ on rf-2(S, e) ;

3 |3 1 < 10/e, | w{3 1 < C3 S
1'* ,

i)/3 for f = j, 3, on r^GS, e) .

We take Ar
0=(6degD,+20)/min (l/h, 2x/3) so that e~l smi^1

if S=eNo9 where Z>3 is as in Lemma 3.3 and deg D3 is the degree of a polynomial

D3. One can choose e0e(0, 1) such that £cXSi-4~~JV°'c> 20, and satisfies the
condition for ??0 in the statement of Lemma 3.3, since N0> 1 and K>\. Then it
follows from (3.45) that for any e G(0, %),

(3.46) 0<^<C3 e1/3, l/4< | w}1 1 <2

for i = 1, 4, max | w}1 1 < C3 e, on r'-1^^,
« = 2,3

| Z/2 1 <2, | w/2 1 <2C3 61/3, on r'-*(e»*9 e) ;

< | z{3 1 < 1, e/20< | zi3 1 < 10/e, | w/3 1 < C3 «3^^B+3), on

where | w| = max \wA if w = (

So the first one of (3.42) is now clear, and we can choose e(1)e(0, e0) such
that this holds for any s e (0, e(1)). We have to estimate | D3(z, w) | from below
on rl'3(eNo, e) to see the second one of (3.42).

By Taylor expansion at w=0 of D3 and (3.46) one can find C4 such that
for any ee(0, £0)

(3.47) | £3(z
/3, w/3) | > | D3(z

13, 0) | -C4(l +6-^^3-1 e«tagi>8+3 on r

We see as in (2 1),

D3(z, 0) = 27r3(0, z, 0) r3(2z1/3, z, 0) = (27z2-4z?) z2
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so that

(3.48) | D,(z» Q)\=27\gl\HT1\gl—^- (ct £)3 1 HT1 .

4To compute gt -- (c/f)3 we first note that from the imiquness of the expres-

sion in (3.4) and (3.5) and L,~L2=— (

(3.49) %-%?, b1-

for indeed, from (3.4) for 1=1, (3.5) for 1=2, and the above equality we have

P2==^=o(aji+c®j) Li£2~~j for some dj^BhtT and the uniqueness implies a^+
caj=aj2, and the latter follows similarly. Next we verify that

From this equality and (3.49) we obtain by noting inf | bl \ >0
t,x

for some 6///, 1)u/&BhtT if /^/'. Therefore by using (3.31) and noting |g/| >
1/2^^ on rl-3(e\ e) for ee(0, e0) which follows from G//>l/10G/>e"JVlco/10>2
on /^(^o,*) for

on

By (3.32) and the definition of NQ there exists C4 such that for any e e(0? ^0) the
right hand side is estimated from below by e/200— C4 52(de^>3+

3> on r*'3(eNo9 e)

so that one can find e(2)e(03e0) such that |g/— — (^/f^lffr^^lO on

, e) for ee(0,e(2))3 and consequently by this estimate, (3.48), (3,30),
(3.31), and (3.47) we can conclude that

(3.50)

on T1'3^^ e) for

Hence one can find £(3)e(0, e(2)) such that fl-3(s)c:X3>e for ee(0, e(3)) in view
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of (3.46) and the definition of XZtZ. Finally we take e^min (e(1), e(3)), and N0,
e09 and el in the proof have the desired properties for N09 £0, and e1 in the
statement. This completes the proof of Lemma 3.4.

Set with the notations in Lemma 3.4,

r0 = (ei/2)*., r, = r,(T0), /"•< = r'.'(r0, *,/2) .

Let *(,s)e C°°(^2) with x=l when ,?> 1, *=0 when s< 1/2, 0<^r<l when l/2<
s<l, and define the functions on R\t by

(3.51) 9u=9l'XH.t,jt>rt=tf'XH^ for i = 1, 2 ,

9*

9i = (1-^) (160-1 /« G;<O"3/2), / = 1, 2

where 93;=®;,/.8o> 9>f =®/.2/.« with

(3.52) <Z>;,e>Je = ^(eG/; GF1)'^'1 'K G,<O~3/2), /=+=! ' , ce«, and

/„.. = X(eH, GT1), *n.e = *(eG, Hjl) ,

*a.. = x(e~l HT1 Gl)-X(e~l H, GT1

Then we have

(3.53) supp 9* cr'-', 9^ - 1 on supp 9",

We shall explain (3.53). The second one would be easily observed. <ph <pf,

and 9/ are as in the following:

(3.54) 9, = 1 when ?K G/<80<e>3/2, and supp 9/

9X - 1 when rK G1>80<e>3/2 and G2>G1? and

9? c {** G^M <e>3/2> n a)1 ;
= 1 when *K G2>80<03/2 and G2<2G, and supp 9

So, supp 9f c/1/ n ^J1 and 5ji(9/+9/)> 1 from which the rest of (3.53) follows,
because supp Xlit9ld3)y\€j2) for z=l, 2 and supp X ̂ ^€13)^(6^2), and be-
cause S,- */,-,e>l- From the property of £0 in Lemma 3.4 we can choose C/lV,

^»y*' ^//» ̂  as ^n Lemma 3.3 for ?7=£0 when /=!, 2 and for 37=^/2 when /=3.
We define

1-'^ = {(/, x, Oer'-'; (zw, w") (t, x,
(z«, w'O (r, x,
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We regard rl'l'j and fuj as subsets of R3
TQ. Then,

(3.55) r1-* = r'-'-' u f'•'•>, R*TO = r'-< u (supp ̂ ')c,
r'M and r''ij are open in BTO -

Now we define the functions on J?r0, 9/,-y, ^f/y, a/f.yA, fc=l, 2, 3 by the following:

(3.56) 9/fy, Pf,y, alijk = 0 on (r^^Y ,

and on r'-'^',

l
fw

11) for

Then <pnj,<pfij, olijke.C°°(R3
TJ by (3.55), because they are C°° in rl-ij, f '••'••',

and (supp 9>i')Cj an^ we see from (3.53) and (3.40),

(3.58) <pf{j = 1 on supp <pnj .

From (3.37), (3.38), (3.58), and (3.33) we obtain

(3.59) q(a, .) = (1+^) (a-c, £-a,iyi) (o-any*)
ft=2

if (*,*,£) e supply

where c, == (i+^-^-iy+i C6| as in (3.25), and

(3.60) $(*,•)= (1+4)/) ft (^-^/^) if (^ ̂  Oesupp 9^ for i = 2, 3 .*=i

From (3.40) and (3.42) 2y fty(z"» ̂ 0 = 1 on plli so that 2y 9Wy=9K by (3.57),
since supp (2/P/i/)c Uy supp ^7|.yC.r/if', and since supp (plic:rlti by (3.53).
Thus in view of the last of (3.53),

(3.61) SC2

We shall consider the estimates of derivatives of the functions constructed
above. To do so we prove the basic estimates first. We remark that since
^o~JV°K>20, ScX^o, No> 1» K> 1 with the notation in the statement of Lemma 3.4,
el~NK>2Q and ejvo<50 for any 5<E(0, e0) so that from (3.31) and (3.32),

(3.62) 2-1< | <*f e | HT1/3< 1 on J11-1 U rl>3 ,
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2-1<k,|G71<l onT, ,
r/,l==r/,3 = 0, if c = 0.

there exists a constant C>0 such that

(3.63) max (2, CT1 r21"3) «£> on 71, ,

CG2'3>I4KO2 on F,.

We also note that

(3.64) ^--/(x) = (S2 -^)-2* A(JC)/(X), | * |< * where ft is a
£fa*

polynomial,

and that

(3.65) i

*) = r-i-^-x2)-2-*-^ /M*) M'» *» «('> *X 1*1 <5

with a finite number of aajGBhrT and polynomials /8-y.

Lemma 3.5. We denote 3*=9?i 9?« 9|3/or ae-Zi. T/ze« we /zave f/ze fal-
lowings.

(3.66) |8-a|^C-f
v*- |l*n(1'->)-<'i,f4:0

(3.67) 1 9"g, | < C-/
1/(10») r -Xf >"•» ' ̂ i I

(3.68) 5T, = ^»*><f > G71/3 .

(3.69) 1 9| ft | < C,<f >'* I ft I o» ^i «*«« <4 = 0 .

(3.70)
3-Gp-°/3 on J1, /or j = l,2.

(3.71)

We remark that from (3.62), |x|<5 on F7, since g;=0 when \x\ ^d.

Proof of Lemma 3.5. (3.65) is easy. We show (3.67). By (3.64), (3.65),
and that d,

(3.72) a* gl = rMS2-*2r2"
xf~*3 if \x\<d and

with finite number of a^ baj^BhfT and polynomials of x9 P^, r«j*
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From (3.72),

(3.73) |^gl|<Qr--(^2-^r2*2|f|-a}3-(i^il+/1/2IfI2) if \x\<*
and £ 4 = 0 .

On the other hand,

(3.74) l^-^l^lft l^^Q/vcw^Vwif | + |f |^ if 1*1 <* ;

(3.75) C-1V!<(tl'™\t\ + \S\2/3)G7l/3+\£\2GT1+l<C¥l on r, .

In fact, (3.74) follows easily from that d^EktT9 and the second inequality of
(3.75) follows from the inequalities <O~1/3<C*2K/9<Q1/W on rt and <£> G72/3

<Q2K/3<a1/(6A) on rh both of which are consequences of (3.63) and that
2*/9 > 1/(6A), and from which Gp < (1 + | g, \ )1/3 < Qv w<f >. The first one of
(3.75) is trivial. (3.67) is proved by combining (3.73)^(3.75) and using the
second fact of (3.62). (3.69) is trivially from that | £ | > 1 on 71, by (3.63). We
pass to (3.70). By (3.65) and the remark before proof,

\d*(dle-i)\£Ct.t-*i-\d2-tf\-**.\di\\e\*-i-i'* on r,

from which (3.70) for a2>3— / immediately follows, and when a2<3— /,

<c(\d2-x2\ -2*2 • 1 d, | *2/2) | ̂ <e>2 1 ̂ -^£>"-« on rf

from which (3.70) for a2<3—i follows immediately by using (3.63). (3.71) can
be proved similarly as (3.70) by using that c^EhtT. The proof of Lemma 3.5
is complete.

Lemma 3.6. Let U and V be open sets of R™ and Rn
x respectively, let

FeC00(l7), and let F=(Flf • • - , Fn) be C°° mapping from V into U, We assume

that there exist positive functions Z(y), Nj(y) on U, ./=!, •••, m, and MJjc) on
V,a^Zn

+ satisfying M€t+ft=M^Mft such that

sup 1 6>* F(y) \Z(y)~l N(y)<& < oo for all a<=Zn+
y&a

where N=(N19 —,Nm) and N06 = f[ Nfj, and such that
y=i

sup 1 8* Fj(x) | MJfr)-1 Nj^x))-^™ far all

Then, sup | d«(F°F) (x) \ Z(F(xJ)~l MJ(x)-1 < oo far all
xE=V

This lemma is a simple consequence of the chain rule. We omit the details.
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Definition 3.7. Let U be an open set of R", and Z(x); Ma(x), a^Zn+ be
positive functions on U satisfying Ma+^=Mc6"M^. Then we say that <zG C°°(U)
belongs to the set 3(U, Z, Ma) if

sup 1 9*a(x) | MJixY1 Z(jt)-1 < oo for all a e Z J .
*ezr

Lemma 3.8. Ler £/ be an open set of Rn. Then we have the fallowings.
1. Ifa^B(U, Z,, AfJ, i = l, 2, then a, a2^3(U, Z^Z2, M J.

2. S(Z7, Z, MJcS(J7, Z, MJ z/Z<Z a«d M^M^for alll a.
3. Le£ fl=(«i, • • • , flw) &£ C°° mapping from U into Rm (resp. (0, + 00)^) with
a{^3(U, 1, MJ (rejp. a{^S(Ur a{, M^)), and let F be a C°° function on an open
set of Rm (resp. (0, +oo)w) containing the image of a of U such that FeE
3(V, Z, 1) (resp. 3(Vt Z, C/)"1). Then, Foat=3(U, Z<>a, AfJ.

4. Le£ «=(«!, "•> ««!» ^WI+P '"> am)> m=ml
jrm2, mf>l be C°° mapping from U

into (0, +oo)wi xRmz with a^B(U, aif M^for i = l, --, /Wj anda^3(Uf 1, AfJ
/or /=/«!+!, • • • , m, and F be a C°° function on an open set V 0/(0, +oo)wi x Rm*
containing the image of a of U such that F^3(V, Z, (y'*')~l) where yf=(yv • •• ,
ymi)for y<=Rm. Then, Foa<=B(U, Z°a, MJ.
5. Let aE^C°°(U), be positive, and ^3(U,a,MJ. Then, asE(U,Z,M«} =
5(U, asZ, Ma)for all sSER.

Proof of Lemma 3.8. 1 follows from Leibniz rule, and 2 is trivial. The
former (resp. latter) of 3 of the case that in Lemma 3.6, V=U9 U=V9 Z=Z,
F=a, Nj = l (resp. N~y3)9 F=F where the right hand side denotes the notations
in 3. 4 is similar to 3. To see 5 we take F=ts, *e(0, -r°o)? s&R in the latter
of 3. Then, as<=3(U, as, AfJ which implies from 1 that a*5(U,Z9MJc:
B(U, a*Z, M«) and a~sB(U, a*Z, Ma)c:3(U, Z, MJ as desired. The proof is
complete.

Remark on notations. We denote a statement * in a statement ** by
#*— #. For example, 1 in Lemma 3.8 is denoted by Lemma 3.8 — 1.

We set for 7=1, 2, pe[0, 1], an open set U of RTO, and a positive func-
tion Z on U,

(3.77) S'p(U9 Z) (or simply, Sl
p(Z) when U=R$0) = S(U9 Z, M^p) where

We also define

(3.78) pl = I when ̂ ^0 ,^=0 when d, = Q9 for / = 1, 2, and
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0o = max (pl5 p2) .

Fact 3.9. i. \d*x>y<zy\<cos<zys-w,z
2. |(d/rff)*9(OI^Q<f>"* if <P^C°°(R) and being constant if |e|>£ for
some
3.
4. 1 9? d^iyi+ wj (f, w) | < Csrf r

1-' on tfiy n (0, «>) xC4.
5. | Q\ d*w *1Jk(t, w) I < CM t3'2-* on £/„ n (0, oo) XC4 for fc=N 1.
6. I S?. . *ijk(z, w) | < Q on £/„ for / =|= 1 .

Fact 3B108 1. aeS'o(l) if a&BktT, where we regard a as a constant func-
tion in f . With similar convention,
2. a6E^«0m) if a(x,

In view of Lemma 3.5 and that Wt> Q>0 on T^ ((3.75)),

(3.79) giE-sltr,, c,)9

for / = 1, 2 .

By noting Facts 3.11 — 1 and 3.9 — 1 an application of Lemma 3.8 — 1 to cbf
and that of Lemma 3.6 with F=<z> and (3.79) give

(3.80) G^3it(rl9 Gf),

In the similar way, applications of Lemma 3.9—1 to the last of (3.79), the
former of (3.80), Fact 3.10-1, and those to Fact 3.10-1, 3.10—2, the former
of (3.80) show that

(3.81) GTV-W-

and by (3.80), (3.81), Lemma 3.8-2,

(3.82) HT^Wov^S^r'^Vr1-3, (G,

(3.71) shows that \ff*(ce)\£C1tt
l/vk)-*l.f/M<t>i-*9 On F, when «2>09 and

that 1 6>*(cf ) | < Q Af i-° - H Y3 on r, when a2 =0. So, from that Mj*>p is increas-
ing respectively on a2 and p, from (3.80), and from the definition of Wh Leibniz
rule gives

(3.83) ct*GT1/3^3l
Pl(r

l'2,l).

Using (3.84), (3.79)^(3.80), Fact 3.10-1, and Lemma 3.8-1,2 it is easy to
see that

(3.84) z«, wli^El
Pi(r

l-\ 1), zll
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Applications of Lemma 3.8—4 with (3.84) and Fact 3.9— 4,5, that of the former
of Lemma 3.8-3 with (3.84) and Fact 3.9-6, and those of the former of Lemma
3.8-3 with (3.84) and that <pij9 p?/eCiT(l7,/) give

(3.85) (*,,i+w) (zl\ w«)(EB<Pi(ri-\ z") ,

*-\(2Pf* for

1', w"), 9?/(z"",

Lemma 3.11. Let U and V be open sets of R" with UdV, and let Z, Z, Ma

with a^Zn+ be positive functions on V satisfying Ma+^=Met-M^. Then we
have the fallowings.

2. Let aeC°°(F) and assume that supp da c U, that a\v^3(U, Z\v, AfJ^),
a«J r/zar | G | < CZ/or 5-ome constant C. Then a^3(V, Z, MJ.
3. L^^ c, Z?e C°°(F) and assume that a^B(V, Z, MJ, ^/za^ supp « n supp db C

C7, r/2fl? b\u(=3(U,z\u,Me6\u), and that \b\< CZ~for some constant C. Then

1 and 2 are obvious. 3 is a simple consequence of Leibniz rule. We omit the
details.

Lemma 3.12. Let /4=/', and define functions on RTO by

a, = Gj/.GT1, «2 = f G,<£>~3f2, a3 = G, iTr1 -

Let Xj(s)^C°°(R) supported in [1/2, oo) and =1 on [1, <x>), and set

t>0 = x1(ea1)-X1(R'la2), b, = zfcaj1), b2 = x&a3} ,

b3 = ^(e-'flj) • ̂ iC^'X) for e € (0, 5), ^ e (20, oo), « e [fJ4, * J

vv/zere £! M ?Ae constant in (3.51).
J//en we have that

(3.86) supp

6-4,6^^(1) if beS'fu(l) with supp bcr,n2)1, i = 1,2, 3 .

Proof of Lemma 3.12. We note that

(3.87) 0,6*^ n T2 n 5)', o,), a2e Sj/r,, a2), a,e SJX/"-1 n r'-3, c3) .

Indeed, the latter two are clear from (3.80) and the first one follows from (3.80),
Lemma 3.8-1, the fact that
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which follows from Lemma 3.8-1, the fact that Wlf<l^Wt on Sf which

implies Aff >p/< CaMi>\ ^G^f >"^> 10 and Gy > G//10 by the definition of
X1 and the range of e, R, which implies the first one of (3.86). So, the former
two of (3.87) and an application of the latter of Lemma 3.8-3 with F(y)=
xi(eyd*Xi(R~ly£ yields b^Bl^(rl[\r2[\3f9 1) so that consequently the first
one of (3.86) and Lemma 3.11-2 shows 60e«£?p0(l). To see the last one, we
observe from (3.30), the range of e, and the definition of %3 that

(3.88) 3)'nr,n supp <a,c/"-3, / = i, 2, 3 .

In fact,

supp db.d {(t, x, <f)eJ40; a,(t9 x,

supp d&2c {03e[l/(2*), I/*]}, supp Z?3C {fl3e[s/2, 2/f]} ,

so that Ug- supp^-C <D^(eJ2) which implies (3.88). Since the latter of
Lemma 3.8-3 yields b^S^r1'3, 1) from the last one of (3.86) and the defini-
tion of if-, an application of Lemma 3.11-3 with U=rl'39 V=R^Q9 b=bi9 a=b,

where the notations in the proof are on the right, gives the last one of (3.86) in
view of supp bar^S)1. The proof is complete.

Lemma 3.12 yields from the definitions (3.51), (3.52),

(3.89) ^Pi'es^l),

and similarly an application of the latter of Lemma 3.8-3 with F=% in (3.51),
U=rh a=a2 in Lemma 3.12 gives from (3.86) and Fact 3.9-2 that ̂ ^Sl

Pi(rh 1)
so that from the fact that J^Cl1/ which follows from the definition of ^/ and
that dz=Q on (—00, 1/2], Lemma 3.11-2 and the boundedness of ft yield that

(3.90) ^eS^(l) and supp d

From the definition (3.57), and (3.85), (3.80), (3.89), Lemma 3.11-2 yield by
taking U=r'^'9

(3.91) 9n

(3.92) a^e^GPX^.^E^GK2^?176) for

To define pf as in (3.28) later, in the similar way as (3.51), (3.52), (3.57) we
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set with the notations in Lemma 3.12,

(3.93) pfy - T <pf-<?f(z12, w12) on

L o on
where <pf=Z(2lal)'X(4Q~1a2)'X(ela3) with X^C°°(R) supported in [2/3, oo) and
= 1 on [3/4, oo ), and <pf&C%(U2j) such that <pf =1 on supp <p2j and inf ?>fy>0.

supp <P*j

The existence of such <pf is assured by the fact that 9*y=l on supp <p2j.
Since for the X in (3.51) we have that inf *>0, and since the function

supp X

x(2s) equals to 1 on supp X, we see from (3.93), (3.51), (3.52), (3.57) that

(3.94) ^fy = 1 on supp <pl2j, and there exists C>0 such that

On SUpp pfy .

As the derivation of (3.89) Lemma 3.8-3, (3.84), Lemma 3.12, and Lemma
3. 11-2 show that

(3.95)

Now the defintion of Ft gives with the notations in Lemma 3.1

Wl ^/W^G^ on PI

This easily implies that

ri<yi/(in») rr><2^r1 on r,

so that

Mi'p<2*i^p/2>05 on rf, where ̂ p^-^r'-^r2-^^"*3-

Thus, since Wt>C>^ on J1, means G}/3^C-1 /1/(6A)<e> on T/5 since the defini-
tion of 717'* and (3.92) imply olijk^3l

pQ(G}/3), and since supp a^^, supp9wy,
supp yfij, supp 9?fy. supp d<pl are all contained in Fh we have from (3.90)^
(3.92), (3.95), Lemma 3.8-2, Lemma 3.11-2 that p/lV, 9?fg-y, 9?fy, y^3(R^ 1,
^Po/2,J and allVAeS(fi?.of ^1/W<O? ̂ Po/2, J- By the latter of this, Lemma
3.8-5, Fact 3.9-3, we obtain olijk<=tlfw 3(R3

TQ, <O^P0/2,J. Therefore, not-
ing that

(3.96)

we obtain with T=T0 and the given h

(3.97) *;,-
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Similarly from Lemmas 3.11-1, 3.8-2 and that

we have

(3.98)

If dh = Q which implies G7l^C<£>2, and if /2=M19 the definitions of ^2 and J17'1'
show that G/2<C'<O2 on U ? = i J1'.'' and ^<C'<e>2 for J"'2U/V3 for any /.
Thus, since ff/^GSp^G}'3) for any 7, we have that

(3.99) ^e^3<°>-V> ,

(3.100) |g,|<C<O2 on ULi/11'1',

k|<c<O"1/3 on u^r^ur*'3),

if either ^ or d2 is identically zero.

Moreover,, since (3.79), (3.92), Lemma 3.8-1 imply that c£*anjk^Bl^(rl'l9
G}/z H1/6) for k* 1, and since G}f2 HY6< C<O3/2 on Fl>1 if ^ 4=0, by Lemmas
3.11-3, 3.8-2 we have that

(3.101) cf-allJkGSy$*--p*1> for

From (3.62) we have that

(3.102) v>Hj = 0 for / = 1, 3 if c = 0 .

From the fact that supp <pfijC:rltitJ
9 (3.44), (3.39), and the definition of aliik9

(3.103) C | Gujk-aw \ >max | al2js \ +G}/3 on supp ^ if

End of the proof of Lemma 3.2. We may assume that the set of suffixes of
{U{j} j is {1, • • - , J(i)} for some J(i)^N. We numberize the elements of the set

A = i(l,i,j); 7=1, 2, j = l, 2, 3,7=1, -,/(/)} so that ^ = fr(j); J=l, -, jj,
Jo^C^X and denote p/f.y by ^v(s), cy/f.yA by av(s)j/& if K^)=tt ',7")- We define

Then since 0<=SQ
pQ/2, ®>l, we have that 0^3 (R$0, ®, ^Po/2,J so that

^~1^S20/2 by Lemma 3.8-3. We shall define 9?^ aij9 <poh <pQ in the statement,
Case (1). Set /={!, • • • , SQ} and ^i=9i ®~l for 7=1, 2, 9s=<
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Case(2). Set / = {!, -, SQ}, A, ={(/, iJ)^A9 i =!=!}, A2 = A\A19 7, =
v(s)^Ai}. The definitions of <pi9 atj, <pQl are the same as in case (1).
Case (3). Taking account of (3.102), (3.15) we set A3 = {(1, i,j)&A; i=2} (=1=0).
With a numbering A3 = {v'(s)m

9 s=l9 • • - , 5-3} and the definition /={!, •• - , jg} we

set 9,=0V(,) 0'1, 9?=9?y, where i/Cs)=(/, 2,7), and ffs* = <Vw* for se/, 90 =
(PI+&) 0"1- Note that Ss 9S+90> 1 from (3.102).

Then the conclusion of Lemma 3.2 follows from (3.14), (3.15), (3.29), (3.51),
(3.56), (3.59), (3.60), (3.62), (3.63), (3.78), (3.93), (3.94), (3.97)^(3.101), (3.103).
The proof is complete.

§4. Pseudodifferential Operators Used in the Proof of Proposition 2.3

Let Sfi9(R), 1>P>0>0, 0<1 be the usual symbol class i.e. the set of all
a(x, £)^C°°(R2) satisfying for any a, p

I <*$(x, £ ) | < C-p<f >*+a*"pp with some constant C^

where a(Sj=^f d*x a which is a Frechet space with the topology defined by semi-
norms

| a | im) = max sup |

We recall the definition (2.2) of the function/. We define fa^.C°°(R2) for
a<=C°°(R2)by

(4.1) /fl(^0 = flfe/WO.

We denote L2(R) norm by || || and the symbol in SfflR) of a(x, D) b(x, D)
for a, bGS*i9(R) with some p, 0, m by floZ?. Then we prove an interpolation
lemma.

Lemma 4.1. (1) Suppose m'>m and let B be a bounded set of SfiQ(R)
and b GE S^(R) with \b\> C0<f >w/ when \£\>Rfor some C0 > 0, R > 0. Then
there exists C>0 such that

\\fa(x, D) u\\<C(e^--\\ fb(x, D) W||+^max0jl'0) (Ml) ,
for atEB, u<=S(R), ee(0, 1] .

(2) Le/ m', m, b as in (1) and a<=S?i0(R) with 6>Q. Then there exists C>0
such that
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for u&S (R\ s e (0, 1], where

£) for

Proof. (1) Let %t= C°°(R) with 2=1 on [2R, oo) and %=Q -on (-00, jg.
For ae£ and 6 we set b9=e»r~* bz9c9=e-m<m'°> b/\b\ Z9aL=a*Z(2~1 •),

flb=a-fl1,ji=fl1/98 for | f |>2JR and =0 for |£|<2£ where 9B=e*/-«6+

e-mtt(«.o) £/| fo | for |f | >£. Then {a£aes, {aQ}aeB are bounded in Sf.Q and

jSj.o respectively, and emax^>0> cg is bounded in 5jpo in e by the assumption on
b. From the assumption on b it is easy to see that there exists C^X) for any
a, ft such that

(42) \sl^\<C^<p7l<Om~^ for |f| >^ and any
for

which imply that ew"w/ ie is bounded in £f,o in e and that s9 is bounded in 5?i0

in e from the inequality <£>* < C | <p^(xs f ) | when |£|>.K. We note that
a=ss bs+ss Ce+aQ. Then we need the followings:

(4.3) There exists Ca? for any ^e(0, 1) such that for any

(4.4) ForanyeeEC°°(.R2)?

(feMx> 0 =

where ^^ = {(05', ^^Z\\ a>a', j3f>/3, a'+j3'-/3<a9 j3">min (I, a-a')}
and ^v,p/ are polynomials depending only on a, ft, a', p',f such that ifrlt^^ = l

when a=a' (which implies fi=fif).

(4.4) is proved by induction on a and (4.3) is a simple consequence of chain
rule and inequality that

w o
Taking Q=2~l in (4.3) we see that

with r^Sitiiz bounded in e and a^B in 5 fi,i / 2 .

From (4.4) each term in the summation can be written as sm~m/ faStCC where

** ^ 6«-9| ^ with &/.P/G C7(/Z) depending only on a? ̂ 3 a',= g«',t''
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y#',/so that afi<3t is bounded in Sf,^a in e and a^B in view of (4.2).
Now we have

(4.5) fa - ««'-"• fsrfb-WQ -*))-S /fl..--«"/""1 r.+'O.
0^0

Since the case m<0 is trivial from (4.3), one can prove (1) by induction on
[m] using (4.3) and applying induction hypothesis to the summation in (4.5).
This completes the proof of (1).
(2) It is easy to check that

(4.6) there exists CtfjM for any 0^(0, 1) such that for any e^Skit6 with

Suppose that m>0. Set a0=/"X/O~<B- Then,

= S 9| flb «

Using (4.3) and Leibniz rule it is easy to see that for a =1=0

Now when m>0.

fma = fl

and when m<0, (2) is trivial so that one can show (2) by induction on
[m/(l— 6)]. Indeed, when m>0, we only have to estimate the first and last
term on the right of the above equality by using the boundedness of a0 and r
on L2 and (1) and apply the induction hypothesis to the summation by noting
[{m-(l -0) a} 1(1 -0)} = [m/(l -0)}-a and max (m-(l -6) a, 0) < m. The
proof is complete.

The next lemma is one on the commutation.

Lemma 4.2. (1) Let af e S7.0(#) with s > 0. Then there exists C> 0 such
that

(4.7) ||[̂ (*,£),/>||<C(s||̂

(2) Let atGSf*0, i = l, 2. r/zew r/zere exij^ C>0 such that with the motation

(4.8) \\(f(a, a j - f a j o f a j (x, D) u\\<C(e\\Am «||

for u<=<5, *e(0, 1].
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Corollary 4.38 (1) Let b^SfiQ(R) and assume b satisfies the assumption
for b in Lemma 4.1-(1). Then there exists C>0 such that

(4.9) C-^dir 'b(x, D) u\\ + \\u\\)/(\\fb°fs(x, D) t/|

(2) Let a^S^K) and assume that ai satisfies the assumption for b in Lemma
4.1-(l)/0r any i. Then there exists C>0 such that

(4.10) C-^dl'fa a2) (x, D) nll + IND/dlVW^ D) «|| + |M|)

Corollary 4.3 follows from Lemma 4.2.

Proof of Lemma 4.2. (1) We prove (1) by induction on [m]. It is trivial
if m<0 and we assume ra>0. From (3.64),

(4.11) for any positive k, e9 an

/"' (~)J (/*) = *..,../* for some *t

From (4.3),

W = S'^f *)/* W5)/«!+/- with .
aZlm]

From (4.11) and induction hypothesis, for a>0,

|| ['(91 a)f D«(f)] (x, D) u^CJ&A^f «||+«— ««"-1-»||«||) ,

the right hand side of which is estimated by that of (4.7) from Lemma 4.1-
(1). This proves (1).

(2) is proved in the similar way by using the fact that from (4.4),
/* D*(fa2)=

fa2>0& for some a^eSf*,. The details are omitted.

Definition 4.4. Let h^N, Te(0, 1) be given. Assume the notations in
Definition 3.1 and set I^l=t^r2. Let d&R3 with ^<0. Then we say that
a(t, x, e)eC°°(^|) belongs to 2d=S*(T, h) if for any a

\ d* a(t, x, f) | < C* ft i-i«f X

with some constant

We write 2 = 2(T, h) =
d P

Definition 4.5. We set for p e [0, 1/2] and d e R3

(4.12) /ip(<o = -(M.+2-1 4), X<0 = -2- Vi+4,),
"p(<0 = <4+max(0, tt^d)-2-1 d,\ a(d) = v
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Then,

(4.13)

(4.14) {r*i c^ OKe=co,r) is bounded in STlM/2 for

and in 5T^.i/2 for

A linear mapping on R3,

is one to one so that for any d<=R3 there exist Jf(d), J(d), gf(d),
respectively determined uniquely such that

(4. 1 5) A (Jp(«0) = (4, /«p(rf) -4/2, </3) ,

p(<0) = (4. max (0, th(d)-dJ2), max (0, 4,)) ,

= (4, max (0, ̂ (d)), max (0, i/(

We set for aeC"(123r) and £cC"(«3r),

/«(/, x, f) = a(/, *,

Fact 4.6. 1. abe2d+e if
2. If ae^ and e>0,/e9a!/a = ^a-it with aa

3. If aeJ1* and e>0,/8 9"/ a = 'a,., with a^.
4. l^c^'pW.

5. «f>'I/2)/(''-^3/w' =^-«f>-J/*)'«^3i'« and ^ =
6.
7.

5 follows from (4.13) and 2,3,6,7 follow from the formula which follows
from (4.4):

(4.16) er(?a

where the summation is taken over all the set {P=(<Xi,l,a3+j);
+j >min (a2—l, 1)} and r? is a polynomial depending only on «, /9,/such that
rp=l for /?=«.
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We need Lemma 2 in [1] in this section and its easy extention in the next
one. We recall the definition of a pair of weight functions in [1]. We say a
pair of positive functions 0, <p on Rn

x X J£g form a pair of weight functions if it
satisfies the folio wings :

(4.17) there exist positive constants C, c, s such that (i) c<®(x, <?)<
liW^

whenever | f | ~ | rj \ , where A~B means that | AjB \ and | B/A \ are
bounded; (iv) C'1 0(y^)<0(x^)<C0(y9?jl C~l

) for all

Then we have the following.

Lemma 4.1. Let C>1, C0>1, c>09 e>Q, let k, I&N, and let (Mlt — ,
Mk+i, mlf ••- , mk+l) be a permutation of2(k+l) real numbers. Let B be a set of
pairs of weight functions (0, <p) satisfying (4.17) with the C, c, e given above and

that sup i ^ . ; \ S \ < 4 a n d |?| <4, or 4"^ < |

according to (in). Then, there exists constant C">0 and L^N having the fol-
lowing property: Suppose that b(x, y, 5, 77), (x, y, f, 7})&R2nxl$2n is a smooth
function in (y, 77) for each fixed (x, £) and assume that for some (0,

(4.18) supDjDSA-C^'^r^^f^Xoo for any a,
x,y,j:,-n

where

sup ((D^-y (0 9-

x
j = k +

where K is the covex hull of (xt £), (x, 37), (>>, f ), ( y, rj).

Then,

a(x, f ) - 05- jj ^^ b(x9 y+x, e, 37+0

where OS— II e"^"7 dydri denotes the oscillatory integral and the above one is

well-defined by (4.17)-(z"), satisfies the estimate

(4.19) \a(x, £)\<C'\b\*L-«(®™J-<p^j) (x, £) ,

where \b\*-* = max sup |D*Df
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Proof of Lemma 4.7 is parallel to that of Lemma 2 in [1], but we will give
a brief discription of proof in the appendix.

Fact 48. Set 0t(x, £)=^i.iyafc 0, 9>(x &=<£>-**,& (x, £)<=R xR. It
is easy to check that for any t e (0, T), (®t, cp) is a pair of weight functions on
RxxRj: with C=10, c=l/10, « = l/2, and that {(^,9); fe(0, T)} is a set of
weight functions on Rx x J2g as B in Lemma 4.7.

Lemma 4.9. Let a^ 2d, a2 e 1" on rf jef /or JV e 2V,

(4.20) r „ fo, flj = P r, fe, oj (1 -Oy-* dd
Jo

where

a,(t, x+y, f)

Lemma 4.10. Let at=Sd and g(0, x, j)<E C°°([0, 1] X/22) with sup | a* ,
o for all a. We set

(4.21) r,(/, ̂  f) - OS- j J <r'>* g(^, jc, j) fl(r,

2)"'2+of2 +i.V2-*****< ™ for any a .
0,t,x,l:

Remark 4.11. Let ae(r, x, y, 5, TJ) e C°°([0, 1]0 x JZj*y.«.fl) satisfying that with
S<E[09l)andAf>0

l^^^a|^^5^^e,77)|<cwvax,e)(i+|j
where Cf.tf/5yv is assumed to be locally bounded in (r, x, f ) and to be independent
of ^. Then

(1) for any compact KdR2n, OS— \\ e~iyty} aB(t, x, y, f , ??) rfyrf^ is continuous

(2) one can differentiate the above oscillatory integral in (r, x, £ ) by differenti-

ation under integral sign any times. These are easily verified from the defini-
tion of the oscillatory integral.

Proof of Lemma 4.9. We assume the notations in Fact 4.8. From Re-
mark 4. 11

(4.22) d« rN [al9 a2] = S Q rN [&*-* a,, d? a2] .
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Setting bp0(t, x, y, f , ?/)=(^"p a^ (r, *, £+0?) (d*3 02) (/, x+y, £), we have in
view of Fact 4.6-5 that there exists Ctj such that for any

(4.23) WQkbvfrXty-x^ti-ew^Ctjt'^-'i sup
X SUp

where f 37 is the segment joining £ to rj and

9 m{ = J(e-ft)39 m'2 = J(e-{

By virtue of Fact 4.8 we get from (4.23) and Lemma 4.7 that there exists
such that for any /

(4.24) \re[d«-f*a1, d? a2]\

for ^e[0, 1].

(4.22) and (4.24) prove Lemma 4.9.

Lemma 4.10 is proved in the similar way. The proof is omitted.

Corollary 4.12. In the following, for (ii) and (iv) we suppose that
b^Ie with v(d)>0, jLi(d)>Q, and for the others we supose that
with 4>0, ^P(J)>0.

Then we have
(0 rN [d% fa, b] e fNP ^/p^

(IK) r^ [8$ fa, DN
X b]

(i v) r^ [5>f fa, DN
X b]

(v) ri [6>f Z)^ ^]
where by definition,

(4.25) r\t [c] = f1 rj[c] (1 -fl)"-1

Jo
where

r}[c] =

Proof, (i) f2*CLSJfw from Fact 4.6-4 and 7, the assumption on d, and
the definition £, Jf, and we have

(4.26) 8?'a=/*paw with

a .

Using (4.3) and (4,6), and noting <O(1"P)jV df a^2Jf>(d) we see that
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j£/pw+Mrco.i-P.o)B since ie-S', Lemma 4.1 implies (i), (ii) is similarly proved.

(iii), (iv) are particular cases of (i), (ii) respectively. Next we consider (v).
Using (4.26) and Leibniz rule we see that Df d? fa=f2NP/3 aN for some aN<=

p,o) so that

(4.27)

= (2*)-1 ^(l-0)M-l(OS-((e-iy"If2NP/\x+ey)

•aN(t, x+6y, £+6ri) dyd-n) dO .

Using Taylor expansion at x of order JVj. and integrating by parts in 37 we
see that the right hand side of (4.27) equals to, with some
C°°([0, 1] xR2) satisfying sup | Q$tyg\ <CNtNl>p for any a,

0,x,y

dx

X \ 02i(l-e)M-l(OS-\\e~^ Dl aN(t, x+6y, £+0rj) dydrj) dO

^ Df i &N(t, x+6y, S+Orj) g(6, x, y) dydrj) dO} .

By Lemma 4.10 the integral in each term of the summation belong to

.Z/p«+wi-ip.o> and the iast term does to 2s with d=Jp(d)+N(0, I -2p, 0)

—(0, 0, TVj). Since A^ is an arbitrary positive integer, we have proved (v) in
view of (3.64) and Lemma 3.8-5. The proof is complete.

We define a,eC~((0, T); C~(/e2)) for aeC"(fl3
r) by «,(•)=«(*, •)• Then

taking account of (4.14),

(4.28) at°bt = S 9f a, - DS bjal+r* [d? a, D» b]/(N- 1) ! ,
<*<N

«*/ = S

for a,b&2 where in general we denote by cs the symbol in S™e of formally
adjoint of the operator c(x, D), c^S™e(R) on S(R).

We also define a°b^29 a^C°°(R3
T) for a, Z?e^ by

(4.29) (aob)t = atobt, <ft=a*.

Lemma 4.13. a°b<=Sd+e ifa(=Sd, b(=Se.

This is an immediate consequence o/(4.28), Lemma 4.9, and Fact 4.6-1.

Lemma 4.14. (1) Let a&2d
p and suppose that v(d)>§. Then there exists



222 SHIN-ICHI FUJII

OQsuch that

Wat(x, D) u\\^Ct'i(tVW-W»\\f-<>i'™ AfpW u\\

+<v'wIM»pW«,«ll + IM< .« l l+IMI) for

(2) Let a^.Sd and suppose that ju(d)>0. Then there exists C>0 such that

\\fat(x, D) u\\<Ct\te^\\Aa(d) u\\ + \\AvW «||+||M||) for u^<S, t e(0, T) .

(3) Let a&2* and suppose that tt(d)>0, then there exists C>0 such that

\\at(x, D) Hll^O^^lltCw+IMU+NI) for uG<S, ts(0, T)
where ||«||f = ||</>>' «|| .

(4) Let a^Hd and suppose that ju(d)>Q. Then there exists a constant C>0
such that

for

Fact 4.15. Setr
0. Then for any e>0?

Proof of Lemma 4.14. (1) Set

(4.31) y = ^i(/VpW<f

Then it is easy to see using Fact 4.15 and Lemma 3.8-3 that

(4.32) for any £>03 aeZi, | d" W \ < C

Using (4.32) and (4.16) it is easy to check that d*V&r*iSd* with d*=d+a3

(0,2p, — l)+5a2(0, — 250) for any e>0 and ae^i, and that the estimate
| a* fW | < C-e r -*i <e>8052-*3 /y holds for any e > 0 and a^Z\. In particular,

(4.33) /8 d* fW Gf £<+*tw--W9 d
k
x

for any

Setting b=a¥~\ and using (4.28), (4.32), (4.33), and Corollary 4.12-(i) we see
that

(4.34) b&2*9 W e^5
 fb°f¥ = /a+/a1+

/a2 for some
/
5 a2 e r Ji J0 with rf' satisfying
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oP(d')<op(d)-l/4, jap(d
f) = ti,(d), d[ = d, .

If we denote by Sd(u) the expression defined by deleting C from the right hand
side of the inequality in (1), we have that

(4.35) Sd,(u)<CSd(u) and \\fVt(x, D) u\\<CSd(u) ,

with C independent of re(0, 1],

Indeed, the latter is clear and the former is easily shown by the properties of
d', Corollary 4.3-(l), and Lemma 4.1-(1).

Now, since (1) is clear for d with a9(d)<§, in particular with [4op(d)]<

— 1, (1) can be shown by induction in [4ap(dJ\ in view of (4.34), (4.35), (4.14),

and Fact 4.6.
(2) and (3). They can be proved similarly by induction on [2a(d)] by set-

ting W =tdi(tWW <OW + 1) <OVW instead of the W in the proof of (1) and by
using for (3) the standard interpolation in the Sobolev spaces instead of Lemma
4.1-(1). We omit the proofs.

(4) is clear when [2o(d')]< — 1, and we prove it by induction on [2a(d)].
Assume o(d)>0 and (4) is true for d' with [2o(dfy\<[2a(d)]-l. It is easy to

see that

(4.36) [at(x, />),/*<"] =/«W'-co,o.i>>.o> %fc D)+a2(x, D)

for some

Let Sd(u) be the expression defined by removing the right of the inequality of
(4). Then,

(4.37) 5^(0.0.1) (u)<CSd(u) and \\at(x, D)/™ u\\ < CSd(u) with C

independent of ?e(0, 1], we<5 .

In fact, the former follows from Lemma 4.1-(1) and the latter does from Lem-
ma 4.1-(1) and the inequality

(4.38) If s'>s>0, \\fs'u\\s<Css,(\\4su\\

which can be shown by expanding the symbol <OS°/S/ and using Lemma
4.1-(2), —(1) in this order. (4.36), (4.37), and the induction hypothesis show
(4). The proof is complete.

Remark on notations. The letters T and h in the definitions of J?, BhtT

are in common for all notations if we do not write these letters.

Recall the definition of £r((2.11)). If a<=S(T, h) and u^ST, at(x9 D) ut
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as a function of (t, x)e(0, T)xE also belongs to <5r and 9t(at(x9D)ut)=
(dt a)t(x, D) ut+at(x, D) (dt u)t.

Definition 4.16. For a^S(T, h) and, we define the linear operator on ST,
which we denote by Op a or a(t, x, D), by assigning u to the function (t, #)-*•
(at(x9 D) ut) (x). Furthermore, let ST be the set of all q(t, x9 T, <f)eC%Rr)
being a polynomial in r with coefficients in 2(T09 h) in (t, x9 <?). With the
unique expression q(t, x, r, £)= 2 ok(t9 x, f) rk we define the operator on <Sr,

k^m

denoted by Op q or q(t, x, D), sending u to 2 ^(^ *<> ^0 Dkt u.

q is determined by Op q in the above. Indeed, (Op q) u=0 for any u
means q= 05 since for w— ̂ (r; ^(r— ^o)*vW where k<m, ^eCr((0, r)) with
JT=1 near r0e(05 J), and ve^S and q as above, «GcSr and (Op q)u(tQ, •)=
/"* fc! a^(f0, ^, D) v. We call q the symbol of Op q.

For qjG&T,j=l9 2 with 0y= 2] fly* r*, a3-k^2, we define ^o^2 by
k^m.

(4.39)

Then,

(4.40)

ftoft = 2 /!"'( S !̂-1 9| 9i ft-i)J ̂ J ^2

Vw-l)!-1^^^^,^^^] for any

where, by definition,

^[?i» 9J = 2 r^a^, a2j] rk+* .

Actually these are true when qi are monomials in r so that they are true in
general, since all terms are bilinear in ql and q2.

For Ed2(T9 h), we set
Op £"==the set of all operators with the symbol in E.

Definition 4.17. For real numbers fc>0, />0, N>k we define ^4*'*
Bk>l>N)=t\iQ set of all symbols being a finite sums of symbols of the form:

a+fNb; a<=f2d
l/2 (resp. '2*)9 b^Se with

rfe J*-', ee^pl (resp. d9

where
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(d) = k}

with the notation

and we set

jp.f.* (resp< ̂ u,*) = £p A*-I-N (resp.

Ak-N (resp. ^*'N) = ^•°'JV (resp.

JI*^ (resp. ̂ *^) - cJ*'0'^ (resp.

From Fact 4.6-4

and clearly,

A**'1!'*! (resp. ^i-'i^

if k^k^l^

In general, for a ring jR and Z^-CUR, a^jR, i e finite set /, the set 2] «»• E;
iei

is defined by {S «,- ^»; eg-e £",-}. We use this notation for the ring of symbols
iSJ

with the product as functions and the one of their defining operators on ST in
Definition 4.16.

Lemma 4.18.

(1) Al 4j(=oJ*i+Vi+'2." (resp.
if A^JLki'li'N (resp. ^k^-
(2) If b <E C°°(R3

T) satisfies with d e ^1§0,

(4.41) | d*b(t, x,t)\<

Op (a°fb-afb\

(3) Suppose that fleJEfyr1'1' satisfies

(4.42)

we teve the fallowings;
(i) Op(faob-fa-b), Op^a-b^d)^Jl^^1^ (resp. ^+l^-N) if
(resp. Bk>l>N) with N>l/2+k.
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(ii) Op fa-(Opfa)*<=Jllf*>N+Op S^w for any t and N^l, where for

q = ̂ kakrk^^T we denote by (OP q)* the operator with the symbol q® =

S*S*-o(5)l>J-/<i!r> so that

((Op q) u, v) = (u, (Op q)* v) for u,v^ST,

where ( , ) denotes the inner product ifL2((Q, T)xR).
(in) If b satisfies (4.41), [Opfa, Op fb]£LOp '2d+fN Op 2<f>-N>°> for any

(iv) If b satisfies (4.42), Op (fa° fb -f(ab)) e JLl-N for any N > 1 .
(4) For any a^2d

p (resp. Sd), s& [0, <x>), and N^N, there exists
-(o.o.D) such that

supp icsupp a, f»fa-(fa

(4)' For any a^2d
p (resp. 2d), ̂ e[0? oo), and N<=N, there exists

(resp. Sd~v>°>») such that

supp

(5) For owj/ ae^rf, 5-e(0, oo)9 a«rf ^e(0, j), a«^ N^N there exists

Proof. (1) Let us prove the former case. We may assume

A{ = Op(fai+fN hi), with

Now,

CoI+/" 61)o(/fl2+/^ 62) =

and the first term e^i+Vi^.* from (4.28), Fact 4.6-2 and -4, and Corollary
4.12-(iii), and for the third one this is also clearly true in view of Fact 4.6-4.
Since for a> 0

Leibniz rule shows

&t fa, - Di(fN b2) e f* 2/1/2 «+• for any a ,

which would show that the second term also ^Ak^k^+l^N in view of Corollary
4.12-(iii). This proves the former one, and the latter is similary proved by
using Fact 4.6-3 and -7, and Corollary 4.12-(iii) and (iv).
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(2) We first note that

(4.43) b e n P Z? with dp satisfying Jp(d
p) = d ,

and that for fee N we have

(4.44) /« d*(fb)Gf£d for
8>0

n f

(4.43) follows from (4.15), (4.41), and that 4=0 which follows from

The first one of (4.44) are easy consequences of (4.41) and (4.16) which imply

that

(4.45) 1 0* f

for all a and ee(0, 1) ,

(4.46) a| fb =/X£>-*+i (/<O/</Or8

for ee[0, 1) and

The second one follows from (4.45), since d^Ah^ implies that

^(^)>0, 4-0. The last one follows from (4.46), (4.41), (4.3), (4.6), Fact

4.6-7, and that d^^htQ as in the proof of Corollary 4.12-(i).

We may assume that a=fal+fN bj with al9 ^ in 2V0'-2'0), for proof of (2),

because <^O<<O and 4=0. (4.41), (4.44), Fact 4.6-2, and Leibniz rule
show that for all k e N

(4.47) 9j

a{ fb-Dk
x
 fal9 d\ fa^

An application of Corollary 4.12-(i) with p = l/4 and of Corollary 4.12-(ii) and

-(iv) respectively show that the reminder term rM in the asymptotic expansion

(4.18) with N=M of fboa and a°fb belong to £0>N for any large M, in view of

(4.43) and the second one of (4.44). So (4.47) shows (2).

(3) We first note that from (4.42) and (4.16),

(4.48) d

for any e>0 and

To simplify the notation we set
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IN[a, b] = lf 9| a • Dl b/k !, for a, b e £ .
* = 1

(i) To show the former one we may assume b=fa1+fN bl9

d^AkJ, e^.Akil. The second one of (4.48) and Fact 4.6-2 and -3 show that

(4.49) IM[fa, 'flje' -W--1-0', IM[faJN b^f

for any M>0,

and using the first and third one of (4.48) we see that

(4.50) JM[^13 ̂ leE'^2'0--1-1', IM[bl9

for any Af .

This shows the former of (i). The latter is shown in the similar way.
(ii) The second of (4.42), Fact 4.6-2, and Leibniz rule show that

and that

DN
X
 fa] = dfaf-1 D^'1 d% Ds

from (4.48), Corollary 4.12-(v). This proves (ii).
(iii) (4.42)^(4.44) and (4.48) show that

N['a, fb] e /^+1)/2 zd+«>,N-i-*,o) for any

as in the proof of (2). So (iii) is proved.
(iv) From (4.42) and the last one of (4.48)

r1-1) for any

From (4.42) and the first one of (4.48)

This proves (iv).
(4) Let us define inductively aj e fj/2 S*~ &•*•>> for j e Z+ so that
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^ =/>/* a'j for some a] in J?'-<w>.»

with supp a'j c supp a .

Assume ai9 0<i<j has been chosen. Since a~fl/2 a'j with ^e^p"(0'°'y)
5 and

since

fc!-1/* Dk
x(f

s) = gkf
s+1/2 with g^eCrt/Z) for any k(=N ,

setting

a}+i = -Sft8|«} and fl/+1*=i

where

AT = 4(^+||rf|| + l) with ||rf|| =S?-i

we obtain

0-°-''+1> with supp fl}+1c supp a

so that (*)y holds in view of Corollary 4.12-(ii) and the fact that
td, 2i\d\\(Q,-2,0) which follows from Lemma 3.8-2 and 5. Since /"4=

(f<OKfO)Ji4<fOj7\ and since <£?'* S'-v*-»CLS*9 we have

in view of (4.3), (4.6), Fact 4.6-6. Now by setting i=27-i fly an^ ^y using

(*)/,

which proves the former of (4) in view of

The latter is similar.
(4)' By the asymptotic expansion, for any ae^f/2 (resp. 2d) and ^>

fa°fs = 2 ^ a)f'Di(f)lJ l+M r1

The summation can be written ^fs(fa+fb) with fee^0-0-^ (resp
satisfying supp icsupp a as in the proof of (4). Since J?i/2



230 SmN-icffl FUJH

)9 the last term is in

by Corollary 4.12-(ii). By Lemma 3.8-2 and -5 for any N there exists
such that the last term is in

This completes the proof.
(5) The proof is similar to that of (4). One can define inductively a j 9 j = l9 ...5
N=N+3(\\d\\ + l)+l, in Id~^0^ so that

00= a,

fsj Op aj-(0p aj)fsi-fsj+i Op aj+l(=tdi Op ^°'N'°\

where Sj = s—je/(N+l) .
N-l

Then setting b = — S a^fr*** we have

fs Op a-(0p a)f+(0p b)fs~*-fs% Op a%^tdi Op ̂ °-N^

which show the assertion. The proof is complete.

Lemma 4.19. ,
(1) Let a<=2d

1/2(T, h) with ol/2(d)=k, ^ = -21, J>03 and v1/2(d)>®. Then,
there exists C>0 such that for any

\\((0p fd) u\\

(2) Let a^Sd(T,h) with a(d)=k9d1 = -2lJ>Q9 and £(W)>0. Let s>0.
Then, there exists C>0 such that for any

a) u}t\\<Cr»(t<»<\\Akf ut\\+\\Ak.t tf(||+||«,||) ,

(3) Let aeSd(T, h) and s>:Q be as in (2). Then there exists C>0 such that

for any u^<ST,

\\f((0p fa) u^ll

Prao/. (1) Since /i1/2(cf)+d3=k-l and A1

<f>*"' so that flS^7|'.«.»)+(*-')(«.->.«. So, by applying Lemma 4.13-(1) with
Ms for u and with (-27, 0, G)+(k-l) (0, —1, 1) for d and by estimating the term
||y'/<i<»>) ^ M<|| ̂  Corollary 4.3-(l) one obtain the desired inequality.
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(2) From Lemma 4.13-(4) and Corollary 4.3-(l) one can easily see that for A e
ymaxa.o) Qp ^(-2/.-2(*-/).o) and s' >s>^ there exists C>0 such that for w<E<Sr,

(4.51) \\(Afs/ u)t\\<cr2\t*»l\\Akf
s ut\\+\\Ak_t Kf l l+ lk l l ) , /e(0, r) .

As in the proof of (1) we have a^2^21''2^'1^ from £(d)>0 and k-l=&(d)
+*>(d). When s=0, (4.51) with s'=s=Q implies (2). When s>0, from Lemma
4.18-(5) and the uniqueness of the symbol,

(4.52) for ee(0,j) there exists ie-T'-^0-1', rer2'^-1-0' satisfying

fsa-aofs-bofs~* = r.

We consider separately two subcases: (i) max(fc, 0)<l/2, (ii) max (A:, 0)>l/2.
In (i), we have b^t~21 2Q so that from (4.52) one can derive (2) by using (4.51)
with s'=s and with /max(*'0) Op a for A. In (ii), again Lemma 4.18-(5) implies
that

(4.53) for ff(=(0, 1/2) there exists ̂ e^-(0'°'2> and

satisfying /1/2 b-

Take e and £1 in (4.52) and (4.53) as e+e^l/2 so that setting e' = l/2—£ and
6ff = l/2—s—el9 we have

fk+s a-fk

Since b, jie^<-2'.-2(*-v*-/).o) from ^(^)>o, one would obtain (2) by applying

(4.51) with Op fka, Op fk~1/2 b, and Op fk~1/2 ^ respectively for A and using
Lemma 4.1-(1) to estimate the terms \\Ak_l/2f

s ut\\ and \\Ak_1j2_l ut\\. This
completes the proof of (2).
(3) The proof is similar to that of (2). From Lemma 4.18-(4), there exists
je^-<WM> and rGE^(o,i,o) such thztfsfa-

faofs-fbofs=r2lr. From J5(rf)

>0 and k-l=Ji(d)+v(d) we have that a,b^I(-2l'-2(k'1^^. Then, Lemma
4.13-(2) and Corollary 4.13-(1) shows (3). The proof is complete.

Now we recall the definition of a norm || • ||(w) on <5r.

Definition 4.20. For £=0, • • - , 6 and n> 1 we define norms on <ST:

\\u\\® = 2 ^-''2-i\\Ai!2D{u\\^-"^,
i+2j£s

INk.)= 2

It is easy to see that
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(4-54)

(4.55)

Lemma 4.21. (1) Let Ae. <&•'•". Then there exists C>0 such that

(2) Let A^<Bk-l-N with s/2+k<N. Then there exists C>0 such that

\\Au\\<&<c(\\Ah H||&,+'<

(3) Let a^R. Then there exists C>0 such that for «>max (09

(4) Let a^BT. Then there exists C>0 such that

Proof. (1) We may assume that A=Op (fa+fN b\ a^Sd, b<=2e with

d, et£Aktl. Since a(d)=k-l, £(J)>0, t~\te* e>1/2><O1/2
9 and Jx> -27 when

rfe^.i, we see ̂ i^eX^+^^^^CrX^f)^^^"1- So a, 6e
^(-2/f-2c*-/).o)B Thus (j) is an inunediate consequence of Lemma 4.19-(2)9 -(3).

(2) We may assume A=Op(fa+fN b) with a, ieJ(0'"2*'0) from the proof of
(1). We set

(4.56) A™ = Op(Dl
t d)ifA = Op a, by definition.

Then by using Lemma 4.18-(1),

^,72 DlA = 2 ^,/2 ̂
(^-) D?, and

Now by using this, (1), and Lemma 4.2-(2)9 (2) is proved in a straightforward
way.
(3) A simple consequence of Leibniz rule and (1). This completes the proof.

Lemma 4.22. Let A<=Jlk>l>N (resp. $k>l>N). Then if N> k+j/2,

* (resp. &+"*.*+'*•»). In particular [Dt, A](EjLk+l/2>l+1/2-N (resp.
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This lemma is easy.

Let r(0)e(0, l),ae£*,r(0), and der1^-1'1^^, A) with «e(0, 1) satis-

fying

§5. The Basic Estimates

(5.1) ds 3sEfSl/2, dx aer^/r1'1', at

(5.2) inf | Im0|>0,

and set

(5.3) L = Dt-0p(qfe+a), a ='5.

Then the following proposition is fundamental for the proof of Proposition 2.3.

Proposition 5.1. There exists C>0 and TQ<T(0) such that for Te(05 T0)

Proof. Let Te(0, T(0)) and we<5r, and set

(5.4) A, = Op (Re (a/f+a)), A2 = Op (Im (fl

Then, since t~n Lu=L1 v—iL2 v, setting v=t~n u, n>l we have

where | |- | l=lhllL8((o,T)xji) and (,)=(, )L2((0>r)xfi). Let us show that

(5.5) there exists roe(0, r(0>) such that for any r<E(0, T0), «> 1, ve.Sr ,

/(v)>rc/2 Hr1 v||2-l/5 (HA v||2+||L2 v||2) .

To do so we first note that

(5.6) 2i ImCA v, L2 v) = (v, [L15 LJ v)+((L1-Lf) v, L2 v)+((Lf-I2) v, L, v) .

Next noting

Lf -A - ^-^f , Lf -L2 - ^-^2 ,
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and using Lemma 4.18-(ii) and -(iv) and (5.1) we see, in view of se(0, 1),

(5.7) L* -Li e JLl/2'1/2+Op I\ [L13 L2] -inr2 Gt9"1 JP-1 .

From the latter of (5.7),

(5.8) Sn = i (2 \m(L, vy L2 v)-n \\rl v||2)

- (f •-' v, Av)+((Ll-Lf) v, L2 v)+((Lf-L2) v, L, v)

for some A^Jll>l.

So, estimating \\Av\\, ||(Lf.— Lf) v|| by (5.7) and Lemma 4.29-(l), -(2), and using
^-1 v|| we see that there exists C2>0 such that for Te(0, r(0)), n>l,

(5.9) |S. | ̂ QdM, v|| Ik8-1 v|| + p1/2 v||2+||v|| H^-1 v||)+ ||L, v||2/10 .

On the other hand, (5.2) and Lemma 4.1-(i) show that there exist C29 C3>0
such that for Te(0, T®), vE±<ST, /e(0, T),

||Im ^, -)/^ v(r, *)llo>C2 HA, v(t, Ollo-Q ||v(/, Olio

where ||-||0 = II°IL2(^) •

Thus, since dGt9!^"1^ with £>0 from Lemma 4.29-(l), there exists Ti
(0, r(00 and C4>0 such that for re(0, rj, v<E£r, /e(0, T),

v(r, Ollo-Ollvfc Olio

which means that there exists C5>0 such that

(5.10) for re(0,Ti),ve£ r,fe(0,:r),

Since p1/2 v||2-(^1/2* Al/2 v, v), and since by noting </e>1/2eSi{0
2(^) from (4.3),

the asymptotic expansion the symbol of Al/2* shows by breaking off after 2
terms, that

AUt* = M*> ®)+b(x, D) with a^S\(l and ieST/i^ ,

one can obtain using Lemma 4.2-(ii) and 4.1-(i) that there exists C6>0 such
that

(5.H)

From (5.9)^(5.11) it follows by using H v H ^ H f 8 " 1 v|| that there exists C7>0
such that for re(0, T& v^ST, f e(0, T), n> 1,
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\s.\-fl \\L, v||/io<c7 T*(\\A2 v|| ||r' vll+Hr1 v||2) .

Now using this and

(5.12) \\A2V\\<\\L2v\[+n\\r1v\\,ve<ST,

we obtain that there exists r0e(0, 7^) such that for Te(0, r0), vS<Sr,

(5.13) \S

This shows (5.5) which implies that for re(0, r0), u^ST, n> I,

(5.14) (\\Lu\W>n Hr1 v||2/2+4 ||L, v||2/5 .
» = 1

Finally we observe that there exists C8>0 such that for r<E(0, r(0)),

(5.15) HA Hll^HA v|| + C8 |K v\\+n Hr1 v|| .

(5.10), (5.12), (5.14), (5.15) show the desired inequlity. This completes the
proof.

Let Li=Dt—Op(aif?+oi), i=l, 2, 3 be three operators as in (5.3) for
fixed e. We define

(5.16) Mi(u) = Mn(u, LJ =

Jlf.(fi) - M.(ii, L,) = S HL^o L,(2)

for we^Sr, «>1 where @3 denotes the symmetric group of degree 3.

Corollary 5.2. There exists C>0 and roe(0, T(0)) ^MC/I that for n>l,

(i) «||w||^2>+«-1/2 2 (||A A- «llw+IMi i, w||(w))+«-1 53
f= l

(ii) «3/2 1|«||(»+3)+«-^ 2 (HA i, iy "ll
3 2 (*J' 3

+«-' S 23 IM» ̂ >f-* 4- M||w+«'2/3 23 I
,• = 1 ft = Q k=0

Proof. For the sake of simplicity we denote by C or Cz- a constant in-
dentdepen of T, n, u^ST. We only prove that Proposition 5.1 and (i) imply (ii).
the similar way one can prove (i) assuming Proposition 5. 1 . Exept the inequality

(5.17) 5 = n-W ± \\A3_k D
k
t u\\^<
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the validity of the others immediately follows from the assumption. So5 it
suffices to prove only (5.17) assuming all other inequalities in (ii), and those
in (i), Proposition 5.19 for any jTG(0, Ji) with uniform constant C with some
2^(0, T(0)). Using the assumption and applying Corollary 4.3-(2) to A2 A1

we see that

(5.18) S<n-^{ \\A2_k D}^ u\\

<C2{n-l'\M'n(Dtu)+M'n(A,u})+Ma(u)} for T<T1.

We note that from Lemma 4.18-(3)-(iv) and (5.1)

and that from Lemmas 4.18-(3)-(i) and 4.22,

[L,, [Lj, Dt]

[L,, [Lj, A,}

Therefore, since

[L, Ls, Dt] = [Lt, [Lit Dt}}+\Llt Dt] L,+[Llt Dt] L, ,

[L, Ly, A,] = [L,, [Lj, At]]+[Lj, A,] L,+[Llt A,] L, ,

we see by Lemma 4.21-(1),

(5.19) ]|L1.L,.A"ll

+ 2 ( IMxL/^ l
l£(i.i}

for T<Tlt

(5.20) ||L,Ly^1ii||<"^C

+ 2 (11^, £,«||
'e [i,y)

for r<r1.

Applying Lemma 4.1-(1) with e=tn~l and using the assumption we see that

(5.21) \\Ato ull^'^ + HA, M||(»+2-s) + ||M||(»+2-e)

<CtT
s(n-3f2\\A3u\\W+Mn(u)) for T<Tl.

(5.18)~(5.21) and the assumption imply that if T<Tlt

This proves (5.17) for sufficiently small T. The proof is complete.
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§ 6. Lemmas on the Commutation

We first study commutations involving in operators as in (5.3). We pre-
pare three lemmas.

Lemma 6.1. Let a^ C°°(/Z,x/Z,), z'=l, 2, 3 such that for some M>0 and

*y 96 a,0>, V) I < Q,<^>M+S|rt| /or «// a, ft .

Then, we have the fallowings.

(i) Ifa2 is constant in 27,

, a2) (Oy) dO) dydrj .

(ii) I f a 1 and a2 are constant in y,

°S~\\ ^ ai(^ a^ a*(y> ̂  dyd71

, a3(y,

1=1 o

This is an immediate consequence of the integration by parts. We omit the
proof.

Lemma 6.2. For d1, • • • , dk^R3 with d{<0 for any j, we denote by S

(d\~-,dk) the set all families 3={3^}a^z\0^Z\ of subsets EFa? = {bf
(t, x, y, f, rj}^C"(R*T),j=l, --, n(a, p)} U {X'j^Z\, tf-'^Zl, i = l, .», k,

j=l,---,n(a,p)i£*iJ=a9jlljt
i>J=p} where n(a, p)^N such that for any1=1 1=1

there exists Capv>0 such that for j—l, •••, n(a, ft)

(6.1) \

{ SUp
O

x

where ®t, <p are functions in Fact 4.8.

We denote by \3(a, p)\y the infimum of constants Ca^ satisfying (6.1) for 3=
{3*^}. We denote by F(dl, • •• , dk)for dl,~-,dk as above the set of all b(t, x, y,
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f , 3?)eC°°(Jir) such that there exists 3^S(dl, °°°,dk) satisfying with the nota-
tions as above

(6.2) 6>? ̂  8£, 6(f, x, j, f , 7) - ifr x, y, £,

we /zave the fallowings.

(1) Le/ b1^F(d\ —, </*), b2<=F(e\ — , e1), flwrf ,w?f b=b^b2. Let
(d1, •••, rf*), 9"(2) e 5(e:, 9 e a

3 e
7) be families for blf bz as above respectively. Then

1
f **»,dk,el, ° ° ° , e') 0«rf owe can find a family 3 for b as above such that

sup

(2) Ler d1, "«,dk as above be given. Then there exist QX) and La^N for
any a&Z\ such that ifbs=F(d\ — , dk}, if3^S(d\ — , rf*) w a family for b as
above, and if

b0(t, x, f) = OS-\ I e-«»-«)f-«) b(t, x, y, f, ij) dydr, ,

we have

(6.3) \9'W,x.€)\<.CjL sup ^.

(JC, f).(9»2f.1/(^+/(-a)2) (x, f)

/or

Indeed, (1) is a simple concequence of Leibniz rule and (2) follows by noting

a* 40(f, *, 0=2 f ?) os-(( c-'^-^^-^
A+CO,W = o}\^ / J J

x0Jf,§€ a?,, 6(^, jc, j, f, 7) dyrf?? ,

by using (6.2) ,and by applying Lemma 4.7 with B in Fact 4.8 and l=k.

Let us define the topology in Sd by the semi-norms

| a | S° = sup 1 8* a | ̂ +0X<f >-1/2)-^+*2 . V^3 1/2-^^3 for
*.*.*

Then ^^ becomes a Frechet space.

Lemma 6.3. Let a^S^a^S*, and T^I^'2^, i=l, 2 satisfying
5^ fff=r-r f̂ ^, 0 <w<//0r ^e[05 1],

A.« = ^fe- flJ = 05- j J e-w ^ x, £+67}} Xl(t, x, T, e+^^7) a2(tf x+y, 0
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,* = ftlf*[ai> flj = OS- J J «-•>* aJit, x, £+0?) fa n2) (t, x, T,

Xa2(t, x+y,£}dydri ,

e = n*\*i, flj = os~\\ e~iy71 *>(*•
2 , , .

Then, for i=l or 3 there exists bJtB(t, x, £)eC°°([0, l]flX-Br),y=l, 2 such that
ibj,e}e and {b2fQ}e are bounded in Zd+e and j£*+«-«u.o> respectively and satisfy-

ing Ii,9=bltQ nl+b2t9, and for i=2 there exist bjt9(tt x, f)eC°°([0, l]ex/2r),7=l,
••• ,4 ji/cA ^r {*i,0}fl, {*2>0}flU {^3,0}0, a«J {£4,0b are bounded in £d+e,
S'+'-vw, and ^+--(o.z.o> respectively and satisfying

^2,6 = bij ^i *2+2y-i ^i+/,e nj+bi,e •

Proof. Applying Lemma 6.1— (ii) for /=!, 2 and — (i) for f=3 we obtain

7]>fl - 05-J J g-"' ^ x, f+^?7) fa(t, x, r, f) ̂ (r, x+y, 0

-f^, r, ̂ c, £, 37) ^ a2(?, x+j, f))

I2tQ = OS-^ e~iy* atf, x, S+Orj) (fa n2) (t, x, r, f) a2(t, x+y, f)

~ k 2 1 2 ?»(^, t, x, f , 37) TT .(r, x, r, f ) D^ a2(f, x+ y, f )

+ft ^2) (0, ̂  £, 77) DJ ajf, x+y, f )) 4v^ ,

/3,e = OS- j J e-"' (aft, x, f +0?) ^(/, jcf r, e)-

0

where, by definition, for

8(0, t f x f £ 9 i j ) = 0\1 di a(t, x, Z+OSTJ) ds} &(t, x,y,f) = dx a(t, x+sy, f ) ds .
Jo

Now the desired results follow from Lemma 6.2 in view of the assumption on

*»•» **•

For q(t, x, T, £)e C°°(/2^) we deifiine ^e C°°(jR^) by

Now, we are ready to prove the following two commutation lemmas.

Lemma 6.4. Let Li=Op n., i=l9 2, 3 with n~T—Tit ri=
fTif f^

satisfying with ee(0, 1),

(6.4)
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Then, for A=Opa,
(i) ALi-Op(aiCi)<= I JLl'K if a = Op r} for some j,N>\,

'.» if A^JLk-'-N and N^k+l/2,

ifAe&.i.ir and N>k+l/2,

(ii) LtLj-Opfaxde-t'-iJP-" for N>1,
(iii) LiA-Op(axi)e/Jl*+W->+W-N if AeJL*-'-" and N^k+l/2,

(iv) A OP(K. ici)—Op(epci w;-) = Ai L{+Af Lj+A^- with
(1) At, A,<=f* J[»+iA.i.w-w AueJl^1'1-" if AGJL"-1-N, N>k+3/2,
(2) A,, Aj^go+V2-'-", Aii^^+1-'-tl if A<=$k-'-N, N>k+l,

(3) A,, Aj e /1/2 oJ1- ". AH S .JP'*'* if A=0p r, /or some /, tf > 3/2,
(v) ^4L,. Li—Op(a^i itj) = A{ Lf+Aj Lj+A^ with
(1) 4, ^.e/1^ JP+W.IT-V*, Auet-1 JL*+1-'-N if

A<=JLk-'-N,N>k+3/2,
(2) ^Mye^+^-'^.^e*1-1^**1-1'* if Jl<= $*•'•», N>k+l,

(vi) L, Ly L»-0/» n = SLi ^! A+^«*
wAere ?r=n?=i T,, vwrt ^/e?8'1 JL1-3 and A^et^1 Jl^2-1'2-3.

To state the next lemma we make a definition.

Definition 6.5. Let £,-, z=l, 2, 3, be three operators as in Lemma 6.4. We
define

C=C(L,): =the set of all operators on iST of the form:

S 4, i, £/+ S ^,- i, with AtJeOp rSW-»+f» Jl1'2'1"-3 ,
• =

F:=F(L,.)=the set of all symbols q with Op
£':=the set of symbols of the form

S*-o ak r*

minC2,/) 3 3-/

2] S ]>J
k=Q l=Q j=Q

Lemma 6.6. Let Lif rit rif TE,, i = l, 2, 3 be as in Lemma 6.4 and set

(i) 7uof<p—

(ii) Let q(t, x, r, £ ) = 2 aw(f, A:) f; r*, akl^Bh T, a3Q = 1. Assume that x
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(t, x, r, £) = fq(t, x, r, <f) when (t, x, <f)e supp f<p. Then it follows that

Before the proof of these lemmas we note

Fact 6.7. (1) 7ffle-£?/2(resp.^) with ^1/2(W)>0 and 4>0(resp.
X<0>0 and K<0>0), d^a^f'1* SJwW+™-*> (resp. d( fa<=f/2 ^+(».^)).
This follows from Fact 4.6-4 and -7, (4.3), and (4.6). (See the proof of
Corollary 4.12-(i).)
(2) Let a&Ak'l'N (resp. Bk>ltN). Then 0$'a is a sum of the symbols of the
form : a, +fNa2 ; a, e= fj/2 ^1/2 w+(o.y.o) n /> /jf-c°A/> (resp /y/2 ^+«u,o) n fjf

j'-«w.'>), ^e JH-(O.,.O) with rfeJ*-' (resp. JAfl), ce^f/.

(3) Let rt be symbols in Lemma 6.4. Then from the proof of Corollary 4.
12-©,

5>| rf.e/(j'+1)/2 i7'0''-1'0' n /y ^i/j^^-0'15 n /y /2r(

for j 4=0. r,- as well as ff. also satisfies (6.4), and

for y 4= 0, 0> 0. This follows from (4. 1 6).

Proof of Lemma 6.4. (i) follows from Lemma 4.18— (3)— (i) and — (iv).

(ii) follows from (i) and the assumption on rf.. (iii) follows from Lemmas 4.18 —

(3)— (i) and 4.22. Let us show (1) of (iv). We have

(6.5) flofa Tu^-aTu. TU . = 1/!-1 8| a(r, *, f ) />i(irf TT-) (r. x. T, f)

, r, f)

From Fact 6.7— (2) and —(3) the summation in (6.5) takes the form:

(6.6) b, xt+bj TUj+btj with bi9 b^flf2 jp+w^-w, b^JL^1-* .

Since bi=fl/z C; for some cfe«Lj?*+1/2'/>jV"1/2, the summation defines the operator

in the desired form by (i). The oscillatory integrals in the integral terms are

sums of terms with the notation in Lemma 6.3:

r,[9?fl, Dl
x r, D^ ry], 1</<M; /5fa[8f a, Df rj, {^, /} ={1,7} .

Thus from Lemma 4.9 and 6.3, the integral term takes the form (6.6) when
M>2N so that this term defines the operator in the desired form (/). (2) and
(3) can be shown in the similar way.
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In view of the equality

AL; Ll—Op(a7ci Xj) = A(Li Lj—Op(ni ^j

(v) follows immediately from (ii), (iv), Lemma 4.18— (1), and the fact that
AkJ>N dBk>l>N in general.

To see (iv) we note that

L, Lj Lk-0p K = (Lj Lk-0p(nj *,)) L,+[L,, L, Lk-Op(xj *,

+ [Dt, Op(nj *k)]—(Op r

The first and last terms have the desired forms respectively from (ii) and (iv).
From (i) and (ii) we see

(6.7) [LifA]Gjl*+u*-'+v*.* if A&Jlk-l-N and N>k+l/2 .

So the second term has the desired form in view of (ii) and that in general

(6.8) r1 JL>.'.*C:JI*+W+V*.» if N>k+l/2 .

Finally, the symbol of the third term equals to — Dt r^nk-—Dt Tk*nja Hence,
one can easily see, from the fact that dt r^e?8"1 Jll>N for TV > 1 and (i), that this
term the desired form. This completes the proof.

Remark 6.8* The presence of the factor /1/2 for Ai in (v)— (i) in Lemma
6.4 is important.

Proof 'of 'Lemma 6.6. (i) We have

(6.9) n*f<p = I] sr1 Syr1 dr'd^Dt'Ds
J f<p(t, x, r, f)

s=o y=o

8" n(t, x, r,
s=0 Jo JJ

XD,SDS
N '<p(t, x+y, f) dydri) dO .

Since f*Dt
sDx

j 'pe-^fr?'-''0' for any -l>0 from Fact 4.6-2, in view of Fact
6.7— (3) the first summation minus n-f<p takes the form

(6.10) S AH **«/+2 &*«»+*•>
*:£! k = l

with bu&SWM+f* n ^•w,A»e^i7l'0-0)+/-w n X1'^-* for /t=t=0,

The symbols of the form (6.10) are in F+£ in view of Lemma 6.4— (i) and
— (v). On the other hand, the oscillatory integrals in the integral terms are
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sums of terms with notations in Lemma 6.3 respectively in s as in the following.

5 = 0: /f*,[8f-* r, 8J rr> £>? /?], {/,, <jr, r} = {1, 2, 3},

/!»*« [9f *„ 0? '?>], {P. 9, r> = {1, 2, 3} ;

r.i n 9f'i r,, a* '?], iu = #.;,->o .
i=l 1=1

••[sf '* ̂  9I *<, A

Thus, by Lemmas 6.3 and 4.9 the summation of the integral terms takes the
form

(6.11) S <*/ *k »/+ 2 CA ^+^0
ft^i ft=i

with c,/e/^+1^^(0--1'0>,^e/^+1>/2^(-1'-1'°> for

From Lemma 6.4 — (i) and (v) the symbols of the form (6.11) are in F+E when
N>6. This proves (i).
(ii) We have that

fq

Since of f<p<EfN/2 2®>N>*\ the second summation e£ for N>6 in view of the
definition of E. On the other hand ,from the assumption, for 7 =1=0.

di '<p.di fq = s n *,-( s c/f/ ̂ i ̂ - n ^^
jc {i AS, «e/

c

y .
ft el

where H ^i means 1 when Ic=$.
it=ic

Since a| V II dj
x*rk^fj~l/2 f2®>-*>(1^\ this is the symbol of the from (6.10)

AeJ

so that it is in F+E from the proof of (i). This completes the proof.

Lemma 6.9. Let r, e /^0-°'2), i = 1, 2, 3
1=1

99 e I'0 and let q(t, x,r,£)= 2 akl(t, x) £l rk, akl G Bh T. Assume that n(t, x, r, f )
& + /^3

=/^(r, jc, r, ^) when (t, x, <?)esupp f<p. Then,

Proof. We have
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(6.12) «o/P

From (4.3) and (4.6), it follows that if r,='f, with

? r,8? r =

for k^N, <*eJ£, l</l<fc. This implies particularly

U'0), 9? ryey-S4'0'1-0' n /3/2 ^3(0'

Using this and Lemma 4.3, one can easily see that the second summaiton in

(6.12) takes the form

with

which is in F+E. On the other hand, from the assumption

Di Dl n-dl dk
x

 f<p = Di Dl fq°dl 8* '?

so that the first summation is equals to fq°f<p. This completes the proof.

Lemma 6.10. Let L~Dt-a{(t, x)f(x) Dx, a^B^, i=l9 2, 3.

(1) L! L2=Op( n (r-a|./f))+^//*"1 */2>* /^ ^^ *^ J?A r.1=1
(2) Assume that a1—a2^EhiT\{Q}. Then there exists r^N such that any dif-

ferential operator of the form L=b1fDx+b2Dt,bi^ffrBhiT can be expressed

as L=cl Z>i+c2 L2, cf^BhiT.

(3) Assume that ^ — a;- e Eht T\ {0} for any distinct i, j. Then there exists r^N

such that any differential operator of the form R = ^] bi , f'D^Di, b, , e trf Bh T
0<i + j£2

can be expressed as R= 2 cfj L{ LJ+ 5] ci Lit cijf c^Bh T.
3 **j

(4) Set Q = Op(Ii (r— af./f ))• Then for any a > 0, [g,/*J is expressed as
1=1

S bi, L, L,+S A, A+f^"1 q/^+Co w//A 60., ft,., c.-S^.r.

(5) Lef ^1= S a^fDiD',, an^.E^T, m>l, and let a^BT. Then, [R, a] can
i + j^m

be written in the form ^

(1) is trivial, (2) and (3) is a simple consequence of Lagrange's interpolation

formula and (1), and (4) is that of Leibniz rule and (1). (5) is proved by a direct

calculation. The details are omitted.
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Lemma 6.11. Let Lj=Dt-Aj, L'j=Dt-Aj, with Aj and A'j in 2(Q'-2-°\

j-1,2,3, and letR=D3
t+J£BjD

i
g,Bj<=Op2-2(0>3-i'°\ Then if B&Op £(0'6>°\

j = Q

LiLzL^B—BR can be expressed as 2 B'^ r L\ L'j + 2 B'i L\ + B'Q with #£/<=
••=w

rlOpS°, B'iE^t"2 Op 2* for z^O, B'Q<=rzOpSQ.

Lemma 6.11 is proved in a straightforward way by using Lemma 4.13 and the
fact that [LtAl^OpS^1'-1'^* if L = Dt-A1 with A^Op S(0'-2'°\ and if

Lemma 6.12. Let ̂ e^0 W q= S a,-,/' r1' £', au<=Bh T. Then

Proof. Set bf= 2] a{iS
J so that #= S fb{ r

1. Since 6,- satisfies (4.41) in
3<,2-i i<2

Lemma 4.18— (2), we have po/i,-— 9?-/^, ^b^^—^b^E^2-'1^ for z<2 and any
N.b2=a2Q and 90^-^.^^ ^°'°'-1)+/3/2^0'1'0>, since 9?9 e /ft/2 JS«o.i.o> R

/* ^(°'0'~*>. Thus, we have proved the second statement and first one is also
clear, since moreover, fbi^(riQ<p~Ti <p)^.E for i 4=0 in view of Lemma 4.18— (1).

Lemma 6.13. Let <p^f2Q and q&E. Then q°<p, <

Proof. Let q= S a, r< e £. By virtue of the fact that
i<2

, one can show in the same way as in the proof of Corollary 4.12— (i) that

It follows from Lemma 4.18— (1) that 2 9°flrr% S aioq>'Ti^E9 and also
»<i «^i

/ 4=0 by Leibniz rule. These facts prove the result.

Definition 6.14. Let 9eJ£?/2 (71, A). Then we define the set J?£, d<=R3

with 4 <0 by

2, supp

Definition 6.15. Let <p^2\/2 and ^=
i+y^3

a30=l be given. We define

ai+a2-i/29 V1/2(d)>0} for

+\ Fi = the set of all finite sums of symbols in

{/«--!>* fl/ 5* ?; ae^{, c/e^,., 0< | a \ <i} for

i<=N, where 5* - SJi 9fi a*s .
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We also define

q^ = /(«•--!>/* ̂ *ai f~d«q for i e 2V and a e Zi with 0 < | a | < i ,

2o,o = fq, and

^ = fa-.* ; 0< H < *} for f e JV, where

4.i=(-«i,0,0)+(«1/2+a2-i/2)(0,-l,l) for aeZj and ie=Z+ ,

^ = /^ 5^=^i^2^/3 for

Fact 6.16. (1) /e a05 /i e -O^ 72* for any b e 21 /2 and e > 0.
(2) I d« $d | < C^ r-i«f V1*10*) f

(3) /E052 a* ̂  e r*i fS{jf^'1^ for
(4) If ^=ar!' £'' with a^BktT, i+j<3, and a=l when /=3 and 7=0, we have

with al+j+/<35;e^+, /<25 and b(=Z°Q satisfying | STb\ <€« r* <£>"*«.

. (1) Nothing but Fact 4.6—2. (2) A result of the estimates that

vf e ) | < cxr-/f/ O «^

for e>05 5>0, 5'>03 and Lemma 3.8— 3,
(3) A simple consequence of (4.16) and (2).
(4) This is shown by a direct calculation,,

Lemma 6.17. (1) Let q=ark with a<=fZd+f3/2 Sd, o(d)+k<3/2,

k<3, k<2, J3(rf)=jtt((0, d2, 4))>0- Then,
(2) F j C 2 E i f j > 3 .

(3) ^e^^c-Tft1 /or
(4) a&-ds=2°1/2 if
(5) aqe&ii^Fi for
(6) awj #^^- ca/i 6e expressed in the form of a sum of symbols of the form
aq^ with a^I^ andO< \a\<i.

Proof. (1) follows from the inequality that

(2) follows from Fact 4. 16 -(4) and (1). (3) is clear from the definition. (4)
follows from Fact 4. 16 -(2). (5) follows from (3) and the definition. (6) fol-
lows from (3)? (4), and the definition of JFJ.

Lemma 6.180 Let 9 and q as in Definition 6.15 be given and suppose that
i<2andaSES°. Then,
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Proof. In view of Fact 6.16—(4) and —(2) for i^N one can express q^ as

*i^2 fbi TI where bl =0 if cK1+/>3 and where bt

2

1 = 0

satisfies \d* bt\ <C^^T^<O3~l"ai/2~i/2~^+^2^-^ for e>0. Thus we have
in view of Corollary 4.12— (i) and Lemma 6.17— (1),

a*q..i- 2 Dl a-dk
x qati/kl, qa>i°a- ± 2 (*! ^O'1 ̂  ^ *..,' 9? ̂  «^£

A=0 s=0 £=0

for sufficiently large AT (in fact N>5). So, in view of Lemma 6.17— (2); it
suffices to show that

(6.13) Dla-ds
xqati^Fi+s,D

k
TDlqe6>i.d

k
td

s
xa^Fi+s+k for

To do so we note that a=fa with some aeJ?i;2 satisfying supp aCsupp 9,
from the assumption. Then

(6.14) Dla-ds
xqoti= 2 e^

'

where <^eC^(J2) with e{;j=0 if \a\ =i=Q, and

(6.15) Z);/)|&i,.8jSJfl=

By Fact 6. 16 -(3), fD'€ afki4 dk
x ̂ V</f)p«e^«+P.«>- so that D| a-d*x

for when |a| =/=0, ^4=0 for non trivial terms in the summation of (6.14).
Similarly by Fact 4.16-(1) and-(2),/s/2 6>J ds

x a-fd\-**$d*.n=2d
9*+fi.'+i'+* so

that in view of the fact that when \a\ =i=Q, 02<s implies that 9|"pa^-.<=0
in the summation of (6.15), we obtain the latter of (6.13). This completes the
proof,

Lemma 6.19. Let p and q as in Definition 6.15 be given. Set
4 = {(a,i)tEZ3+xZ+;a=Q and i=0f or 0<|a| </<2}, J'=J\{(0, 0)},

flflrf Q^=Op q^ for X=(a, i)^.A, Then for any s^N there exists l^N such

that for any #eJ and At, ~>, As^Op2$ one can find A^jkt Z&d',j=I, •••, /s,
k=I, ••- , 5-, ^Op2y such that

[fin, 4-41-2A., 6x A^.-A
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Proof. Set q^=q&ii for Z= (a, i)^d. Let ae-££ and ju = (a,i). By
Lemma 6.18, aoqp.—qy.oa&.Si<j<i2Fj+E, By Lemma 6.18 and 6.17— (6), for
any q&Fj withj <2 one can find a^%% for all ^e Jy= {^e J; ^ = («, /) with
j<i<2} such that q—^x^^^^a^E. These two facts shows the Lemma for
5=1. Next we assume that s> 1 and that the Lemma is true for 1, ••• , s—l so
that lg-e JV, 1 <i<s— I as in the statement exist. Then for any V&L A there exist

Aljk9*e=A'9j=l9—,tf-l9k=l9—,s-l, eE0/?J£ such that [evMr"4-il-
^a^-^^e^ and there exist A^^OpSl9X^A'j=l,^Jl such
that [&, As]-I^j Qi AXj^CQ. Since [&, A^-A^ = [Qp, A^A,.^ A,+A^
A8-i[Qii,9 As]9 the Lemma also holds for s in view of Lemma 6.13.

Next corollary is important for estimation of commutators in §7.

Corollary 6e200 Let ri9 rif ni} Lif for /=!, 2, 3 be as in Lemma 6.4. Let <p
3

and q be as in Definition 6.15. Suppose that q(t, x, ?,£)= Tl (T—?i(t, x, f)),
1=1

(t, x, f)^supp <p. Then one can find 1S&N for any s^N with s>2 such that
for any Ah —9A9GiOpS$ there exist A^OpI^ and Ql^C(Li\l=l, — , ls,
j=l, ••-, 5—1, such that

Proof. Assume the notations A'9 q^ in the statement and the proof of
Lemma 6.19. By Lemma 6.19 one can find /seJV such that for any A^Op
2$9j=l9

mmm
9s9 there exist AXjk=Op a^Jk with a^k^I^ for ^eJ'5 j=l, •••, 1S9

k=l5 -•-, 59 such that

[Op 'q, AfAA-S

Since q^oa^-^Fi+Fz+E by Lemma 6.185 it turns out in view of Lemma 6.13
that the proof is complete if we show that

(6.16)

To see this we may assume that p=f<i-*J/2 afd*q with a=fa,a&2d
1/2 with

rfe^tfff- and supp a c supp <p, O < ] C K | </<2. We devide the argument into
two cases: (1) az+a3>Q (2) a2=a3=0. First we consider (1). From the

assumption on q, d*q*d is a sum of the following form:

£ II (*-*/); 0<^(/)<3? 5-a° n ^ ^ ?y with 74= 0 ,
y&r yei J

/n/ = 0,»(/UJ r)=3-a / f23^y /=a l + 1 , |Ay l>0 for Pj=(PJ1,PJJ.
yei

From the definition of <4,* and the assumption on ry, 6eJ?i/2 with e=(— «35
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0, 0)+$(/)/2 (0, — 1, 1). Thus, in view of i>al9 p can be written in the form:

S bkl *k *,+ £ bk *ft; 6i|€=/
*=i

which belongs to jF+£ by Lemma 6.4— (i), (v). Next we pass to (2). p=a*

2 (3-S(/))! II ** and fle^^-0^. So, Lemma 6.4-(i) and (v) imply
fCD=3-*1 iei

that p^F+E. Tms completes the proof.

Next we shall study the localization of the operator 2/*v in (2.17).

Definition 6.21. Let q= 2 <**,• r' f^ with aii^Bk T and %,=!. We define
••+y^s

for v = (>!, 1/2), UL = (jeij,

Lemma 6.22. </O~1/2^e£ w/zew /eZ+, /+M + |jci| >3,
1 + | # | > 0. Before the proof we note that

(6.17) for es=R,a(=Z3
+, \ 8\t* f> | < CrfS <fs

Proof of Lemma 6,22. If q=ari£j. i<29 a^BkiT, and if ^ <(/,/), we have

(6.18) 0v|fc = 2 ^v/ ̂  a1, a-c/'
l̂ 2̂

xrvi+lW-vi with

(6.19) gvffc —0 when v2+|jtt|>0, and

- - - T 3 " V l when ^

Thus using the fact that 6>?i ^ a^tlti=tmln(^Mh'bl for some b^£ktT9 the ine-
qualities that min (^1? 1)/A— ^/(20A)>0 for 2>^>0 and that *XO^O'*£X
and (6.17) we see that when I&Z+, \v\ + |/«|>0, and /«1<2J </f>"//z ^ is a
sum of symbols of the form:

(6.20) '*r*; fc<2, J/x +^2+^:^3, ^er^/2 Jrf with

4 - -*i, *(rf) = 3-fc-(| v| + | ju | +/)/2, (/3 = 0 ,

and a satisfies the estimate that

In view of the definition of E the symbols in (6.20) are in E when /+ | v \ + | P> \
> 3. So the proof is complete.
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We define a similar set of operators as C.

Definition 6.23. Let Li9 /=!, 2, 3 as in Lemma 6.4. We define C'=C'(L^
=the set of all operators on <5r of the form:

with Ai^®*M-\Ai^&M for

F'=F(L,.)=the set of a11 symbols q with Op
We shall show an analogous result of (6.16).

Lemma 6.24. Let <p^I°, and let q be as in Definition 6.21. Let nit T{, rif Lis

(0, 1), and n== Jl nl be as in Lemma 6.4. We suppose that e>l/(10/z), and

q(t, x, r, f) = E[ (r-f.(?, %, f))f (f, ^

that

Then, q^yeF'^+E ifO< \v\ + \ft\<3.

For the proof of the lemma we make a definition.

Definition 6.25. We recall Definitions 3.7 and 6.15. With U=R3
T, and

M^^-", MW=ir"a, for «eZ3
+ where \f-"=#'<£>~'*'V3.i/*'B for

by definition, we set for a positive function Z on [/,

Clearly,

(6.21) Sh

so that

(6.22)

Indeed, using ^d=tdi(t~di ird)<tdi ^°-di+d2-ds) and Lemma 3.8-5 and 2 we have
'r'8)) which implies (6.22). We also

have

(6.23) /t<zy+<w>.i)C-jw+<-M.o) when

(6.24) ^-iy»fl*./.wCjB».i+V».» if k^l+l/2 and

Indeed, /V3,1/2=^<?e*O"1/2<O^'s"e*/2<O"1/2<?~1<?e*O1/2 when e^
So (6.23) holds by (6.21), Lemma 3.8—5 and 2. And if rfe^,, with fc, / as in
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*"' from the in-

equalities di>-2l and H(d)>Q, so that f?-1/2^"/<^r2'<O*~'"1/2 r1/2+1(2M)

<Ol/z<$Tz'~l<£>k~l~iJ2 from s>l/(20/z). Thus, f5-1/2 ̂  c J" with e =
(—21— !,—(£— 7—1/2), 0)e4&,/+1/2, which shows (6.24) in view of the definition
of £*•'•".

Proof of Lemma 6.24. We have

(6.25) q^9 = S / 1'1 { fly I'1 9; 9> qw.D\ D'x '<p
»=o y=o *

We assume that 0<H + M<3. Since from (6.20), gvl^=^ fak-c
k with ak

k = Q

(t, x, e)eC°°(l?^) satisfying 1 6>" ak | <Crf r
 (3"*-<*i) <e>5/2"fe"ajs which implies by

Lemma 3.8—5 that the notation in Definition 3.7, akGr(3~k)3(R3
T, <05/2~*, MJ

with Af-=r"fl*i<f>"*3j tne terms rjv+1[«] in (6.25) are in £ for large N, for in-

deed, by Corollary 4. 12— (/) with p = l/4 they can be written in the form 2 ^r*
Jb=0

with 6Aer(3-*)/3I'0 for AT>12, and r2/3^°C r1^2-1/2-3,
A direct calculation shows that

(6.26) a; 9^ ,„,.

with aeC°°(J?r) satisfying

By (6.26) one can easily see that

(6.27) 8J 8{ flfv|i./){ Di /9 - ^ ^(v1+l,v2+/)(^^2-w) with

another a/wle2?(j"/+IM)(0'1'0) such that fl0m^0 if #2>0 and w^O, and such that

For non trivial terms in the summation in (6.27), 1 0^-fr', ̂ 2+0+(^i, ^2~~w) I
>0, since when ^2>0, fl/w4=0 implies that #2— m+/>0. So noting that

and #e,E implies aq^E, the fact that by /*!<2, Lemma 6.22, and that
°, we have only to show that

(6.28) faqv^Ff if a^I° with supp a C supp 9?, and if 0< | */1 + | p.\ <3 .

Since f^-d** f(dv
Ti d^ dfi q) - S ^ /(5J!i 5>^+* 9?i 6>i q) (/f)* with ert e

B°°(RX), and since supp a C supp 9, ^^ with 0<|^[ + |^|<3 can be expressed
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as a sum of the following symbols :
(1) Thecase

'A- H (r-rf); 0<0(/) <3, b=a1a2H WT, with
sel *ej

0, / n / = 0, #(/ U /) = 3-j/i, 2 rs = (/«,, i, v2+K) with
JST

-v> with ge5"(JZJ, a2 = #X£><W/» f* .

(2) The case v 2 =l - M l =°- ("i = M + H>0 then.)

We consider the case (1) first. We set ^=a2 H &** *s and b2= H 62s with
s&r sej"

ffi'T,. From (6.17) we have <f e* f>"vj/2 <f >^-^)/2 e
i,i) So if we set jr1 = {,e/; r?>o> and /,=/Vi, *i.erf

J^0-^ for *e/, and ̂ eM/f1'1^ for JSJ2 in view of (6.22) and LemmaS.
8-2. Hence, by (6.23) and Lemma 3.8-2, ^eJ^1-0^ for any s(EJ which
implies ^el^'X-1-0-0'. Since a2=ba bz with ^0=e*<O"*<O('+*"fl2)/2e^°, we
have fl2<E2W-1'°'0), and therefore z,e£<3-t(/))(-i,o,o} We have shown that

faqvv. takes the following form in the case (1):

(6.29) S fcw ̂  ^,+ 2] bk nk- bHGf2<-1-™, ^e^(-2-0-0' .
fezpl fe = l

It is clear from (6.17) that in the case (2), faq^ also takes the form (6,29).
Now, by Lemma 6.4— (i) and (v), faq^ with 0<|j/| + \fi\ <3 defines an oper-
ator of the form of the right hand side of (v) in the same lemma with
fc=/=l/2 and N=3, and from (6.24), t*~l ^3/2,1/2,3 c ^3/2,3/2,3 which compietes

the proof.

We shall use for proof of Proposition 2.3 the localization operator of the
form ®n, n^N with ®=Op <p, <p^2°i/29 and <pn being an element of partitions of
unity of JR? which is contained in J?i;2 and any element ^ of which satisfies
supp d^rCl {t*<^y>c} for some c>0 and Q<s<eh. Such partitions of unities
have been constructed in Lemma 3.2. So, we need to know that ®n—Op <pn is
small in norm.

Lemma 6.26. Let Q<s<eh and c>0. Let a,b^Si/2(T,h) whose gradi-

ents supported in DE=E {^<O>^}- Then, if T is small, Op(fa°fb)—Op(fa«fb)
er5 JP-N for any N>0.

Proof. Since <Je* £>< Ct e<f> in DgJ for ^^^1/2 supported in
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(6.30) |8- 9* d^

If T is small, |f |>1 on De so that using (4.16) and Lemma 3.8—5 one can
show that for a as above,

f d* fa e f 8<V-*3>/2 /^1(--i.o,o)+(-a-«8)/2(pf-iii) for

and that 7a also satisfies (6.30) if &+/>0, which imply that dk
x
fa-

t*fZi/2 for k>0 and that r^cf 'a, rml2 D* fb](=fN/22° in view of Lemma
3.8—5 and Corollary 4.12— (i). This completes the proof.

CoroEary 6.27. Let a be as in the above lemma. Then, if T is small, for
any n>2we have

(Opfa)n-Op((fd)n)sEt*JL°'N for JV>0 .

Next lemma is the one to handle the reminder term in Corollary 6.27 when the
localization of q^ is carried out.

Lemma 6.28. Let q be as in Definition 6.21. There exists NQ>Q such that
if 0< | v | + | PL | <3, for any a^f Jl"-N with N> N0 and £> 0, we have

with a^Gt* £°.

Proof. Let a e t\fI\/2 +fN S°) with e> 0 and let i/, v e Zz+ with 0 < | v \ +
| jj, | <3. Using (6.26), the fact that d06 b e t e l'^-05 (resp. /8/ d*bE±t* fl{^
for e'>0) if 6 e*8^ (resp. b(=t* f2i/2) which foUow from (6.21), Lemma
3.8-5, and (4.16), and the one that /'<*'*£>' <*VO~s^?/2 for j>0, we

have that when iJ^Z+ and

(6.31) ^ af ̂  S{ d*a =

with 6/Mle

such that 6^ = 0 if ju2>Q and ju2>m .

We note that from the fact that

if a(=Bk>l>N and b^Bk/'l/>N with N>k+k', ab^Bk+k'*l+l'>"

which follows from the fact that £M-e^4fe+ft',/+/' if d^Akjl and e^Atfj. that
g(d)=d if rfeJA§/, and Fact 4.6-7, and we also note that flf2 a<=S^1^ if
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f0iiows from (4.3) and (4.6). Using these facts we see

(6.32) if a<=B°-2 and q<=E, aq(=E .

Thus, noting that </f>-/> * e '' ^°>JV for oe ^I'0-1--1^/"^0-*-0' and
a>0, and that A*-" dSP-" , and using (6.32) and Lemma 6.22 we see that

(6.33) aq^E for fle/I'$(0-1--1)+/2^(0>''0> with jeZ+ and

v./ceZi with H + M>(W+H + M>3, and ^2.

Since it follows from (6.20) that for v, u.<=Z\ with 0<|»/| + |#| <3, q^ =

2'fliT* with flj(f, x, f) e C"(/23
T) satisfying 19%! < C. /-»-*'--! <f>^-*--i

* = 0

which implies by (4.16) that | d* fak\<Cs r^^X/O^XO"*3***2 for any
eG(0, 1), there exists M^N such that for any M>Ml and i<2,

(6.34) rM[Sf a, Df ^], rM[0{ Sf ?v|i, />{

by using the fact that D? ak&

Corollary 4.12— (i), and Lemma 4.19 for the former, and by using the fact
that ^er(3-*)Iff$'-1/2'1) and Corollary 4.12-(i) for the latter. In (6.31)

we have that i+j+ \v\ -j- \#\ =V2— m+l+ |(^ + /5 v2+j — O + C^/w)!, that
|(^1+/>2+/-/)+(AlJm)|>0 if 6|W4=0, and that ^<2. So, from (6.33) we

have in (6.31) that 0; 5>i ̂ -0} 0i a^E if i+7+ H + M >3 and

Thus, for ae?E ^f0'^ with e>0 it follows that

(6.35)

if 0<H + M<3 and

Now we claim that for any d,e^R3 with d1=e1=Q, <7i/2(^)<0, a(e)<Q, there
exists NQ>O such that

(6.36) for ¥> N0, a^fSd
l/2+fN Se, and a, /9e Z\ with 0< | a | + | ft | <3 ,

there exist a^^S for pairs (^, r)^^+ X-Z+ with ^>a, r>/^ and with r\=P\
and U| + |r]<3, such that ^e^i^^1-1

/^/2 ^g for (^, r)=Ka, y^), satisfying that

It is not difficult to show Lemma 6.28 using (6.31), (6.33), (6.35), (6.36). The
details are omitted and we shall prove (6.36).

Since for any e>0 and any 6eC"(/?r) satisfying with d<=R3 that Id06 b
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(t, x, «?) | < €„ r*i<£ y~*3-ir'd for any aeZi (see Definition 6, 25 for the defini-

tion of ^-"0,we have by (4.16) that/* 9*/6=/6- with &*(?, jr,£)^Cloo(JZi.) satisfy-

ing l^ft^l^Cp^i-^KO"*8^8'^ and since
by (6.17), for any /<E 2V

(6.37) /' 0' ^

with 6, e C"(^) satisfying [ d" b,(t, x,£)\<Cat -*i <f >'/2'«3. We may assume

that a=fa1+fN a, with ^eJf/a, a^Ie for rf, e as in (6.36). Since 9^
<fy/2e^-i/2(.--0(o,-i,D and 9^2<f>'/2e^-(.'-0(o,-i,o) for ,-,/e^ with />/,

we have by (6.37) that when N>Ml and z'e^V with i<Ml where Mj is the one

in (6.34),

(6.38) <?<f l0i q^ = 2 ^+co,» b, for some
"

We take N0=2M,+2 so that N-i>N/2>2 if ^>JV0. From (6.33) and the

assumption on d, e, we have that

(6.39) if |a| + |

And we also have in (6.38) that

(6.40) Z>0GE fSi

(6.41) bt^fSi/2-\-f
N/2 2* for all / .

In view of (6.34), (6.38)^(6.41) prove (6.36) with NQ as in the above by the

asymptotic expansion of the symbol aoq^ with breaking off it after Ml terms.

Next we shall study effects of localization by the partitions of unities in

Lemma 3.2.

Definition 6.29. Let X be a subset of JB^ and let a^.1. We say a be-

longs to 2d
PtX, dSER3 with ^<0, p(E[0, 1/2] (resp. Sd

X9 d^R3 with d^Q) if

a satisfies

sup 1 6>* a | i^
a.^.^ex
(resp. sup

a

It is clear that
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(6.42) a&2d
tX (resp. Sd

x) and supp adX implies a^Sd (resp. S*) ,

iZ (resp. Jl) implies a05 aelfc? (resp. ̂ i"05)

J-j (resp. Sd
tX) and ieJ?Jf * (resp. -2J) implies

(resp. JSi+0 ,
d
tX (resp. 2£) implies a+b^2d

sX (resp. ^1)

We set

J?x= U
p

Lemma 6.30. Let aeC"%Rr) satisfying with some k, l>0
|6>*a(^ *, 0 1 ^ C,, r*-*i ̂ y-'s /w ««7 aeZi, and let
Then, for any N^N there exists M^N such that

Proof. Since 3d
 /2 d2J^d\ it suffices to consider the latter case that b&Sd.

Since a^rk S[(^"l/2'l\ Fact 4.6-7 and Corollary 4.2— (i) show the first
one. Next5 from (4.16)? we have for any e>0 that \ST fa(t, x, f) |<
C-tr*-X£>/-*«+f''i so that DFaGit-k2«+W'-*M. Thus, CoroUary 4.12-(ii)
shows the second one. The proof is complete.

The following lemma is an easy consequence of (4J6).

Lemma 6.31. (1) Let a<=2d
>x (resp, 2d

x), Then, for any s>0 and
l, there exists aaz<=Sd~g (resp. 2d

x~
a) such that f***d*fa=fa(&z with supp

a.
(2) Let ae C°°(R'r) satisfying the estimates of the a in Lemma 6.30. Then, for
any e>0 and a<=Z3+, there exists aM e C~(RT) such that f****d*fa=faM with
the estimates that \ d*aM(t, x, f ) | <C^ fk'^'^ <f X"*3"^

Lemma 69320 Let Dt—Opfa with aeC°°(JSr) satisfying the estimates for a
in Lemma 6.30. Let b<=Sd

l/2(resp. £d). Then, for any N^N there exists
cer^f/^-1^^-1'1^^-1'0^ (resp. r-*^+c
supp ccsupp b such that [L, Op fb]-Op fc^fN td^k

Proof. This follows from Lemma 6.30 and 6.31 in view of the equality,
[L, Op fb]=Op Dt 'b-[Op fa, Op fb],

Lemma 633. Let g(t, x, £)=d£3+fl/2 at2 with d^EksT and a£EBhtT. Let
X be a subset of RT and assume that \g\ <Ct~K <<?>3/2 w/YA *=3/2— 1/(3A) (resp.
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nX. Then,

I d" g\ <ca rK~*i <£>v*-«a.<f •*/!/(«>*> omin(|flf|'1)/2 on x
(resp. | ff*g\ <Ca r*i <f>2+nun(i,*2)-*3 on x)

Proof. We only prove the former case and the latter one is proved similar-
ly. When <<? ><2, the inequality clearly holds. To consider the opposite case,
we note that

(6.43)

When <O>2, using dS3=g-f1/2 aS\ \g\^<C(\tf\l^\^\+fl^\\ and the
assumption, we see for a^O and (t, x, <f)e X that

t, *, 0 I

Using K/3+l/(3h)>eh/2 and (6.43) show that the first term in the parenthesis
on the right can be estimated by fVM-vwv^fVw*) eyt*9 and using

2/c/3>eh/2 and (6.43) show that the second one and the last one are estimated
respectively by /tfr-voa*) <f V/(M*> f)1/6 and /VS-i/W) <^*/V(w*) f >V*. Thus,

we get the desired inequality for a 4=0 and for a=0 nothing but the assump-
tion. The proof is complete.

Lemma 6.34. Let g and X be as in Lemma 6.33 and let b^2i/2tx (resp.

Se
x). Then, dbs=rK j?r/3^0i"1>1)+'+/1/* ZTJS;!1'1*** (resp.

Proof. Let *(£) e C°°(/2) with z = 1 when | f | > 1 and ̂  -0 when | f | < 1/2.
Break up J5 as xdb + (I —x) db. The second term e r*i ̂ f^'"15 (resp.
rei 2:$^.°)) for any JVeAVand expressing the first term as r* bXg-f1'2 abrlx,

and using the fact that g-er*^?^-1-1' (resp. I'l^-2-0)) by Lemma 6.33,
we have in view of (6.34) that *d&erBJ^2^

*) This completes the proof.

Lemma 6.35. Let Li=Dt—ai(tfx)f(x)Ds with a^EhiT, /=!, 2, 3,
i/2, and let with cif c{j

+ S cft x) L, L

Then,

[Op b, R]^CQy Op
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Proof. It is easy to see that bof^2^f1/2^°1/2+fN2^1^ for all N<= N.

So, the second one follows from Lemma 4.18— (1). Next, we set B—Op b, C~

f» cJD; for i =f=0, C,.,.=/1/2 ct], C,=r1/*-1 Co/^D,. Then,

(6.44) [B, R]= ([B, CJ L,+C,[H LJ)+ S ([5, C,y] L, Ly+C,,[*, JLJ L,
i=l i^=y

+ C,V[L,, [B, L,T\+CI}[B, Ly] L,)+[5, CJ ,

(6.45) [5, C,]e 0 Jl1/2-N for i = f = 0 and [5, L,-]e n JP^-^-w

JV>l/2 JV^l/2

by Lemmas 4.18-(3)-(i) and 4.22,

[B9CiJ]^OpfS]f/l^
l^+fNOp2^N^ for 7V>0

by Lemma 4. 18— (4),

[Lg,[^L;.]]e n Jl1'1-"
JT>I

by Lemmas 4.18— (3) —(i) and 4.22,

[^CJe n tlfh~l Jllf2>N

by Lemma 4.18— (1).
Thus, from Lemma 4.18— (1) and that JLk'l*N £:<&•* •* 9 all terms are in (6.44)
except the first ones in the each one of the second summation. Next, we note

(6.46) L, Lj = Dt+dAt, x)f(x) Dx Dt+d2(t, x)f(xf D2
X

and we let aeC°°(JSr) satisfying the estimate for a in Lemma 6.30. From
Lemmas 6.30 and 6.31, for b^Slft*-1-1* we have b^a^rk f^~^^-^ +

fM t~k ̂ co.M.o) for any M^Nf so, (6.45) and (6.46) show that [b, Ci}] L, Lye

CQ. This completes the proof.

Lemma 6.36. Let b^Hd
1/2 (resp. Id) and let a<=C°°(R3

T) satisfying \d*a\

^Cj-*i-k <£y~*'- Then> there exists ci>C2, belonging to rk Sifi-W-1^
(resp. r*^+(/-1/2)(0'-2'0)) with supp ci C supp a n supp b satisfying faofb —

°fa-f(a*b)-fc2 are infN
 t

d^kS^N^.

This is an immediate consequence of Lemma 6.30 and 6.32.

Lemma 6.37. Let b=fb with b<=2°1/2. Let L=Dt—f(x)a(t,x)Ds with

ktT. Then,

[L, Opb}^Op(Sl'Q^ + 2lJ2(Q'-l^+fN S^N'^) for
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Lemma 6.38. Let g=d£3+f1/2 a? with d<=EhtT and a^Bh>T> and let

2- Assume that |g| <Cf~K<O3/2 on SUPP 9 with K in Lemma 6.33.
Then, for any bE:BkiT,

Lemma 6.37, 6.38 are immediate consequences of Lemmas 6.30, 6.31, 6.33.

Lemma 6.39. Let g=d^+fl/2 a£2 with d(=Eh>T and a<=BhjT, and let
<p e 2{ /2 (resp. 2e). Assume that \ g \ < Ct ~K <<?>3/2 (resp. \g\< C<£ >2) on supp
<p. Then,

(1) d(fF?
(resp.

(2) d(f£)l

(resp. W-w-W) for any le=Z+9

(3) VCMC/OO-WC/O'-^er* /^/F2)(o,-i,i)+,+/i/2

(4)

Proof. (1) and (2) follow from Lemmas 6.30, 31-(1), 34. (3) and (4) follow
from Lemmas 6.30, 31, 34, and that d^Eh}T. Indeed, for any e>0 and/e^V
we have for some bjstEBktT that/8 di(W(/£)')=*/e d(ff)'. This completes the
proof.

Lemma 6.40. Let g=dF+fl/2 a? with d^Eh>T and a^BhtT, let <p^S\/2,
and let L=Dt—f(x) I(t9 x) Dx with A<^BhiT. Assume that \g\ <CrK<O3/2 on
snpp <p.
(1) For any b^BhiT and any l^.Z+, there exists c belonging to

r* f^r2Z/2^'il'l}+flt2 fS[l,2lw--l-»+f» 2«>'N'V such that
Opf<p-bdflDl

x'L=Op c-L.
(2) For any l^Z+ and any N^N, there exist cv c2 belonging respectively to

+f» 2V>N>v such that

dflDl
x-L-Op f<p = Op c^L+Op c2 .

(3) For any b^BhfT, any l^Z+, and any N^N, there exist clf c2 being res-
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pectively in r* WjW.-W+fV* /j?('-30>(o.-w>+/*

//IiXO.-i.i)^^ ^(0,^,0

[bdflDl
x»L9 Op f<p] = Op c^L+Op c2 .

Proof. (1) follows from Lemma 6.39-(4). Next, as for (2) and (3), setting
A=dflDl

X9 B=Op f<p we have

ALB = A [L9 B]+ABL and b[AL, B] = bA [L, B\+[bA, B] L ,

So, (2) and (3) follow from Lemmas 6.36, 37, 39-(l)— (3), and the fact that if

rej<o,*,o) with N^NJldl
x(f

Nr)^fN Z^-1'^ for any l^N. This com-

pletes the proof.

§?„ Lemmas on the Estimates

Remark on notations. Constants denoted by C or Q in the inequalities
involving the norms || \\(n\ \\ ||(B>S), || |$ are always independent of n, T, u
We also remark that u always denotes an element of <ST.

Lemma 7*1. (1) For any k, l^N with \<k, /<6, n> 1, Te(05 1),

(2) HA u\\W>2l/2n\\u\\^+v for n>l, Te(0, 1).
(3) Let L{,i=l,293 be three operators as in Corollary 5.2. Then for small

T,n>ls

(4) Let Li be as in (3). Then, for small T, n> 1,

s is*(l

Vs iji
(5) Le£ 2 6e an operator on STo with TQ in the statement of Corollary 5.29 and
Li as in (3) of the form,

g = 2 ^4 L, L,+ 2 A- L.-+A wiYA

f0r /^o ,

2

Then, for small T, n> 2,
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(6) «3/2-/2 ||ii||&..>£||«||8)-
3+'"

(7) 2WS. H/^i ̂  «IIW<CN|(2S>II), s = 1, 2, 3.

(8) INIa...)^CS H/'-'^;-' 0{ «llw, s = 1, 2, 3.

Proof. To see (1) one only have to apply Lemma 4.1-(i) with e=tn~l.
(2) is a direct consequence of a simple integration by parts. (3) and (4) im-
mediately follow from Corollary 5.2 and (1), (2) in this lemma. (5) is proved by
straightforward but tedious applications of Lemmas 4.21-(1) and -(3), 7.1-(4),
and 4.18-(1). We omit the details. (6) follows from (4.55) and the definition.
(7) follows from Lemma 4.1-(1). (8) follows from Lemma 4.1-(1), and (2) in
this lemma.

Lemma 7.2. Let Lf be three operators as in Corollary 5.2.
(1) Let Q<=C'(Lt). Then, for small T,n> 2,

\\Qu\\™ <C(Mn_1/(20h,

(2) LetQ<=C (L{). Then, for small T, n > 2,

(3) Let q<=CQ Then, for small T,n>2,

Proof. (1) is easily proved by Lemmas 4.21, and 7.1-(3), -(4). (2) is proved
by Lemmas 4.19, 7.1-(3) and -(4) for the estimation, and by Lemmas 4.18-(3),
4.22 for the commutation involving/17 (2o;° and L,-. Next, to see (3) we let Q=Op

2

q with q=^^akr
k with ak^2 satisfying the condition for ak in the definition

ft = 0

of E. Then, it is easy to see using Lemma 4.18-(1) and -(3)-(iv), and Lemma
4.22 that Q—Op a2>L1 L2 is an operator as in Lemma 7.1-(5) which proves (3)
in view of Lemma 7.1-(4). This completes the proof.

3

Lemma 7.3. Let L-t be three operators as in Corollary 5.2. Set n= H (j— #,-
1=1

(t, x)f(x) g—afa, x, £)) with the notations just above (5.16). Then we have the
followings.
(1) For small T9 n>l,

C'1 MM<\\Op K u\
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(2) Let <p, q be as in Lemma 6.6 with T=TQ being as in Lemma 7.1-(5) and

we assume that the assumption in (ii) of that Lemma holds for n, <p, q here. Then
for small T, n> 2,

\\0p n*f9 u\\^<C(Mn_1/(M (f^ u}+n-U2 Mn(u)+\\0p fq u\\™

Proof. (1) is proved by Lemmas 6.4-(vi)5 4.22-(l), and 7. l-(4). Next, from

(5.1) and that a^B^, ai £ +5. being in -Ei/r1'1^, *) satisfies (6-4)- Thus>
by the assumption one can apply Lemma 6.6-(ii). Now, the desired inequality
follows from Lemmas 7.2-(2), -(3), 4.21-(1). This completes the proof.

Lemma 7A Let <p elri/2(r0, h),q= S <*„(*, x) rf' gj with a30=l and a{j^

BhtTQ> and q3 be the homogeneous part of q of degree 3 in (r, f). Suppose that
3

#3= HO"—^-0 vwf/r ^jGBhtTo satisfying inf |Im^-|>0. JAe/i, w^ tev^ rte

fallowings.

(1) For j/waff Tand n>2,

n~1/2 MQtn(u)<C(n-112 \\Op-

where by definition,

(7.1) ^o,»(°) = Mn(*9 LQ>i), L0ii = Dt—^(t9.

(2) For small T and n>2,

M,,n(Opf<pu)<C(\\Opfqu\

Proof. (1) We just have to apply Lemmas 7.3-(l)5 7.1-(7) and -(6) in
this order to the left hand side in view of the assumption on q3.
(2) Noting the assumption on q3 we apply Lemma 7.3-(2) for <p with <p here
and/1/(20*} to get that

\\0p fq*°f9 u\

^ M0tn(u)+\\0p

The desired inequality can be obtained by estimating the left hand side from
below by Lemma 7.3, the term involving q3 on the right by Lemma 7.1-(7), and
the second term on the right by (1). The proof is complete.

Delnition 7.5. We define for 9>eJ£?/2(r, A),
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2k,v: = {Op<p\ <p — <Pi°~-°<Pk for some 9, eJ?J, i = 1, •••,&} for

20,v : = {identity on ST} ,

where we define <pi0'"0^>k
=<Pi0(l?)20'"09k) f°r k>2 inductively.

Lemma 7.6. Let <p&Z°1/2(T0, h) and q=^ a{j r' &, a{j^BhtT^ a3Q=l.
»+y<3

Let Lt, TC be as in Lemma 7.3 and let Mn(')=Mn(', L,-). We suppose that the
assumption on q in Lemma 7.4 holds for q here, and we let M0jn(-) be defined by

(7.1). Finally we let R=D3
t+ 2 Op bk D] with ^e^3"™0'2'0'. Then, we

* = 0

have the fallowings.
(1) Let A^2kt<p with k>l and let a>Q. Then, one can find A'^2kf(p such
that for small T and n>2,

\Mn(f«Au-A'f*u)\<C(n-«2 \\Op fq u\\^ + \\Ru\\^ + \\u\\^) .

(2) Let k, A, <p be as in (1). Then, one can find A'^2kiff> such that for small
Tandn>2,

(3) Assume in addition that there exists q= 2 «f. r* f ;', a tj^BktT , am=l such
i + j<3

that the assumption on K, q, <p in Lemma 6.6-(ii) holds for K, q, <p here. Then, for
any k^N there exists l^N such that for any A^2kf(p one can find A
i = l, — , I such that for small T and n>2J

rl/(20h),

/
\\[0p % A] u\\™<C{ 2 (MK_1/to) (A, f^W u)+n-W Mn(A, u}}

\\0p ^qu\\^ + \\Ru\\(n-1/(2Qh^ + \\u\^

Proof. We shall prove (1) first. Successive appliaction of Lemma 4.18-(4)
shows that one can find A'G2kt9 with f*A—Aff*(=S(Q'lo>Q\ Then, using
Lemmas 7.3-(l) and 6.11 with L0ii for L\ and with Li9 R given here for Li9 R
respectively, and applying Lemma 7.1-(3) and -(4) we obtain that for small T
and n>l,

Mn((f*A-A'D u)<C(n~^ M0>n(u)+\\Ru\\^) .

Now, (1) follows from Lemma 7.4-(l). (2) is proved in the same way using
Lemma 4.18-(4)'. We pass to (3). From Corollary 6.20 and Lemma 7.2-(2)
and -(3) one can find l^N for any k^N such that for any A^2kt(f> one can
find Ah ••• , A!&2!k_ltV such that for small T and «>2,
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\\[0p fq, A] u\\^<C{ (MB_1/(204) (/V<») A,

Now, the desired inequality is clear in view of (1), Lemma 7.4-(l), and (4,55).
This completes the proof.

Corollary 7«,70 Let <p, q, Lit TU be as in Lemma 7.6 and assume that the as-
sumption on n, q, <p in Lemma 6.6-(ii) holds for n, <p, q here. Let k,

Then, one can find l€=N such that for any A£=.H2k+k/,q» one can find A
i=Qf ,..f k',j=l, — , / such that for small T and n>k+3,

Mn(Au)<C(\\Op fq n||<"> + 2 2 /T(*-0/> Mn_i/(2Qk} (A^f*"™ u)

Before the proof we prepare a lemma.

Lemma 7o8. Let q be as in Lemma 7 A and let a>Q. Then, for small T
and n>2,

Proof. By the assumption on q3 one can apply Lemma 6.10-(4) to Q=Op
fq3 and a. Then, using Lemmas 7.1-(4) and -(5) shows that the left hand side

of the desired inequality can be dominated by ri~l/2 Af0jM(w)+IMI(2,»+D when T is
small and n> 1. Now, the desired inequality is clear from Lemmas 7.4-(l) and
7.1-(6). The proof is complete.

Proof of Corollary 7.7. We claim that for any l^N with />2 there exists
such that for any A^S!f<p one can find Ai^Sl,2t9J=\9 °">, s satisfying

that with the notation Q=Op fq, for small T and n>4,

(7.2) M.(Au)+\\QAu\\V£Ci\\Qu\\^

2

Proof of (7.2). Let / <E 2V. Writing A=A'* A" with A ' e Slt99 A" e 2^lt9

and applying Lemma 7.3-(l), -(2) to Mn(Au) in this order shows that Mn(Au}
is dominated by the expression made from the right hand side of Lemma 7.3-
(2) substituting A/fu for u when Tis small and n>2. Then applying Lemma
7.6-(l) to the first term of this expression and Lemma 4.21-(2) to the last term
of it, one finds that there exists Bl9 B2^S^l>9 such that for small T and n>3,
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(7.3) Mfl(

+ 2 (\\QBt w||
y=i

Lemma 7.6-(3) shows that when />2, thee there exists -s-'eAT and ^
B'/&2i_2tV,j=l9 ••- , j' satisfying that for small Tand «>2,

(7.4) ||fi^«||W+ 2 lie*,- «||W < cf 2 { .̂-,A*H (B'jfW 11)

_fl

(7.2) follows by first applying (7.3), (7.4) in this order to the left hand side of
(7.2), and again to terms involving BJ9 Bj, and finally using Lemmas 7.6-(2), 7.8,
4.21-(2) for estimating a term of the form Mn^l/(l^(Bflt(m^ u) with B^SMt9

by a term of the form Mn_l/(2Qh)(B'fl/(2^ u)+\\Qu\\^ + \\u\\{n^1/(20h^ with
B'^S^v. This proves (7.2).

Using (7.2) iteratively with the aid of Lemmas 7.8 and 4.21-(2) we get that
for any k, k'&N there exists s^N satisfying that for small Tand n>k-\-3,

(7.5) Mn(;

23 2
»=o y=i

On the other hand for any A^2lttp, />!, it follows from Lemmas 7.4-(2),
7.1-(6) and -(7), and 4.21-(2) that one can find ArG2j,lt9 satisfying that for
small Tand n>2,

\\QAu\\^<C(\\QA' i^llw + IMIgr^^ + IMIu..,) -

So, iteration of this process yields that for any A^Slt<f, />! we have that for
small Tand n>2,

(7.6) \\AQu\\^<C(\\Qu\\^ + \\u^

Applying this and Lemma 7.8 to terms in the summation in (7.5) we get that

2 2 n'-'2 ||fi^»/('"')/(20*)
 M||(»-(*-O/W)

1=0 ;=1

u||<»-(*-o/czo*))

/(m)))
M||(4>B_W{2M))) .
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This proves Corollary 7.7.

Throughout the following discussions in this section we assume the nota-
tions and the assumptions in § 3 and that p3 there satisfies the assumption for
q3 in Lemma 7.4. Thus, p3(t, x, 1, C(f, X))"1 q with in (3.6) also satisfies the
same assumption, and we assume the notation (7.1) with it. We fix some
r0e(0, 1) as in Lemma 3.2 and we remark that the symbols of operators always

are in £PTo and u always ^ST, Te(0, T0).
Note that

(7.7) (1 -/i, C)3 (1 +Ai) - p3 (t, x, 1, C) .

We set noting (3. 17)

(7.8) Li^OpUl-^Q^'Li),

L\ = lt+0p ((l+^ni+A, C)-1 ((-I)' c

Recall three cases (1)^(3) in (3.13). Using Lemma 3.2 and the notation in it
we set in case (1),

(7.9) L{ j=Ll(i,-Opf *;;,!<= I,

where

(7-10) 5,. = (1 -*,(,) O'1**.

In case (2) we set that

(7.11) L|V = Ll(i}— Opfaij for je/i, or /e/2 and 7=1=1, and that

)"1 cJDx-Op fo{j for

where ff,y are defined by (7.10). Here, we note that Cl=(l+AQiYl (-1)/+1 ct.
See (3.59). In case (3) we set

(7. 12) L,y =L-Op fo^ for i e / ,

where 5^- are defined by (7.10) and L are done, noting Ll=L2 in case (3), by

(7.13) 1=1,.

Note that

Im (/!,/(! -^ C)) - Im /i,/ 1 1 -O*, | 2

so that LI, L'i, Lu are operators as in (5.3). We set

(7.14) pol - 2-1 <pQ for / - 1, 2 in case (3) ,
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and we also set for N&N with N>2,

(7.15) 9*=(2pT

Then, q>iN9 <pofN^2i/2 in cases (1) and (2), eJ?o in case (3), by Lemma 3.8-(3),
and

(7.16) 29,^+2*™" = !.«ei /=i

Lemma 7.9. FFe assume the above notations and assumptions. Let

as in (2.17) with q in (3.6) for Q. Then, for small T and n>2,

fv w||(B)<C( s ,̂,( V1 *)+ 2 #01.. (^o/^"1 «)

(7.17) 0iN = Op f<piN, 00!N = Op f<pQlN ,

M,,n(.) = M.(-, Liy), M0/,M(.) =

Proof. By Lemma 3.2,

inf P/3<f>>0 on U supp ^ U U supp \<fyol\.

So, since 0<2/c/3<^^, it follows from Lemmas 6.24, 6.28, Corollary 6.27, and
Lemma 7.2-(l) and -(3) that for small T and n>2,

(7.18) S lie^v
0<|M-| + |V|^2

+ s
To handle the second summation we set

Then,

9 =Aft x, 1, Cft x)) qW+d, Au LI e+gl+f^(p2-aQl f2) .

If we extend the definition of q^ in Definition 6.21 for q of the form with in it
with a ij^BhtT^ and a30=const. by the same equality,
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x(d, Au L, e+gl+fM(p2-a

By Lemma 6.4,

(7.19) 0/K?(/W dWetfCA - L2 = L/? L3 - Lj)+£0, 0<|/i| + M <2 .

Noting that <r^O~' ̂ <O<1 when f e(0, 1), (6.17)? (3.65), and the fact that

ktT9 we see that when 1 < | v \ + | ju \ <2,

(p3(t, x, 1, f (f, Jt))-1 dt A1X Lt <?%v - d, (a, fLt+a2)

with

and

(7.20) (p3(t, x, 1,

Using the equality

the fact that (3.19) holds, Lemmas 6.31-(1), 6.33? 6.34, and Corollary 4.12-(i)
with p = l/4, we see by asymptotic expansion that

(7.21) dfa'Lt+aJo'vwGE.

Similarly, using (3. 19), Lemma 6.33, and Leibniz rule we see
so that Lemma 6.31-(1) and Leibniz rule show ihaifv^dv

it/(d^gl)=
fgfv with

g?verKJ3/2(o^2.o)-(vlsv2^2) for y9fl€=zl. So, (6.17) and Leibniz rule show

that (gi)^r*f2l£g.-*-*\ Thus, since by (6.17) and Lemma 6.31-(2) (g^

='gt with l^g/KCXO3^3, we havefeUo/^^er^^3^0'-2'0^/372^0 by
Lemmas 6.30, 6.31. Since t-

lf2+l^k^yl/2<r\te^yl/2 when t < 1, by Lemmas
3.8-2, 3.8-5, and (6.21) we have r* fS*w-*M c:B3M2^2. Hence,

(7.22) (gl^of9olN£EE .

Therefore, by (7.19)^(7.22), Lemmas 6.13, and 7.1-(1) and -(3) it follows that
for small T,n>2,

(7.23)
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Substituting (7.23) into (7.18), estimating n~l/2 MQ>tt(u) by Lemma 7.4-(l), and
using (4.55) we get the desired inequality. The proof is complete.

§ 8. The Derivation of (2.13) and (2.14)

§§ 1, The Derivation of (2.13-1) and (2.14-1)

(2.13-1) is nothing but Proposition 5.1. On the other hand, noting that

OVX1 *XO<1 for f e(0, 1), and (6.17), we see that

finveQp^-1-0^ when M + |/*| =1.

Thus, (2.14-1) follows from Lemma 4.21 and Proposition 5.1.

§§ 2. The Derivation of (2.13-2) and (2.14-2)

From the assumption of Proposition 2.3,

Pz = Ii (T— ̂ ,-0 with *i^Bk rn satisfying inf | Im -*,- 1 >0 .
1=1 ' °

(2.13-2) is an immediate consequence of Corollary 5.2 and Lemma 6.10-(1), and
similarly as §§1,

&, = 23 Op(ai(-c-(l-^C)-1 J,/O) mod Op 'J?<-'-'W>

with a^fS(~1^ when |/*| + H =1.

(2.14-2) is an easy consequence of Lemmas 4.18-(3)? 4.21-(1), and Corollary
5.2-(i).

§§ 3. The Derivation of (2.13-3) and (2.14-3)

p3 and p2 in Proposition 2.3 satisfy the assumptions for those in §3. So,
identifying the latters with formers respectively, we use the notations, the as-
sumptions, the conventions, and the results in §3 and in §7 after Corollary 7.7.

Here, again, we remark that all symbols of operators are in S?TQ, where
T0e(0, 1) is as in Lemma 3.2, that u denotes an element in ST with Te(0, T0).

The proof of (2.13) and (2.14) is devided into three cases (1)^(3) in (3.13).
These cases are considered in order from (1).

Remark on notation. In §8, §9, the constants denoted by C or Q in the
estimates are always independet of T9 n, u^ST as in §7.

Proposition 8.1. Assume that (1) of (3.13) holds. Then, there exists r0,
with nQ>rQ+l such that for small T and n>nQ,
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w ||e«||W) when 1< |v| + |/i| <2 .

From the assumptions (2.7), (2.8), in all cases (1)~(3),

(8.1) p3(t, x, r, C(t, x) r+£) = p3(t, x, 1, C(f, *)) ft (*—*,(*, *) 0 with
i = l

^^BhtTQ satisfying that

(8.2) inf | Im *s \ > 0 and ^ — ̂  e £"*. r for any /, j .
i,x

Proof of Proposition 8.1. It suffices to prove that two inequalities in the
statement replacing Q on the right hand side by p3(t, x, l,£(t, x))'1 Op fq with
q in (3.6). In the following we denote this operator by g. In case (1),

i f i = f = y .

So, from Lemma 6.10-(3) one can find r^N such that

(8.3) f or any 0</<2 there exist ckl9 ck<=BktTQ, 0<fc<3, l</<3 satisfying

/ro-/' Di D2rf» = 2 ckl LOJ LQik+ ± ck LQfk+c0 .
ld£k k = l

So, by Lemma 7.1-(4), for small Tand n>rQ+l,

± ||/< D{
x D

2rf» w|p-o)< Q n~W M0>n(u) ,
« = 0

where by our convention in the beginning of §§ 3 we set

Thus, from Lemma 7.1-(8), for small Tand «>r0+l,

(8.4) [|/ro ull^.

where the right inequality follows from Lemma 7.4-(l). Next, from (3.20),
Corollary 6.27, Lemma 4.21, (4.55), Lemma 7.1-(3) we have that for small T
and w>2,

where G>iN = Op f<pitt, 0<»2v = Op f<p0iN .

We set

N0 = 2M(2r0+4) .

Lemma 8.2. Let Nj(=N,j=l, 2 with N1=2N2+l>2Na+l, and let
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2li<Pifor ie/. Set J=J(u)=Mi>n(®
Niu) for u^ST. Then, for small T and

n>N2+3,

J<C(\\Qu\\^ + \\u\\{^20^

Proof. We apply Corollary 7.7 for / taking k=N2 and k' = l to obtain
that there exist /0e2V and Bj^2liV.,j=l, •••, /0 such that for small T and

(8.6) j<Cl(\\Qu\\W+ S 2 n^-^ M^^Bjf'^ u}

+ ll/2r°+4 w|i(4,«-2r0-4) + llWll(4r1/(20A))) •

From (3.21), (3.22), (3.24) of Lemma 3.2, Lu can be expressed as Lfj=Op
(T— frij) with some r^e^i/iT1'^ satisfying the condition for fy of Lemma 6.4

with e = l/(6h) and that q= H (r-f.;.(r, x, f)) for (f, x, <f)<Esupp ?,.. So, it
J~ 3

follows from Lemma 6.6, (5.1), Lemma 4.18-fl) by setting w(l')= H (T—f?ij) f°r

each /e/that

(8.7) O/? ?r(l'> • Bj —Bj Q — S

with some ^o-2ecJ1/2'1/2'3, ^,

By Lemmas 7.2-(3) and 7.4-(l), for any R^C0 there exists C>0 such that for
small Tand«>2,

/o o\ II D-,||(») << /^r/rM-l/2 ||/l-,,||(w) I I U,ll(»—l/(20/i))\
\"'"/ Il-*^^ll — *^v'* Ili^H ~r| |^ll(4) / •

The summation in (8.7) can be setimated by using Lemma 4.2-(l), -(2), and

(4.55) as

(8.9) SP^^w||(w)<C2(i]|
k=0 ft=0

for small Tand n>2.

From (8.7)^(8.9) we get that for small Jand n>29

3 3
2

-2
k = 0

Since for 0<r^N2 and n>N2+3,

n-r/(2Qh)>N2+3-N2/(2Qh)>(20h-l) (2/-0+4)+3,
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we have that for Q<r<N2, small T, and

(8.11) \\0p *w B, u\\^<C,(\\Qu\\^+n7l \\Qu\\™+\\u\\&+*

S

with the notation that

nr = n-r/(2QK) for r^Z+ and n>l+r/(2Qh) .

Applying Lemma 7.3-(l) to Aff>r(5f/
r/(20*>) in (8.6), using (8.11), and estimat-

ing ||2/r/(m) n||(^ by Lemma 7.8 and ||/*'<W M||[jj+i) by Lemma 4.21-(2) one
obtain that

(8.12)

for 0<r<iV2, small T, n>N2+3 .

We use the inequalities that

(8.13) ll4
for

and that

(8-14) IMi/2/
2^

\\D\f *u\\
for Q<k<2, small, T, 72>r0+l ,

where (8.13) follows from Corollary 4.13-(ii) and (8,14) is shown by using
(8.3), Lemmas 7.1-(3) and -(4), 4.18, 4.21-(1), and (4.55).

When N2>r>N2—2, we have r/(20/z)>2r0+3 and we can apply (8.13),
(8.14), and Lemma 7.1-(3) to get that

(8.15)

for N2>r>N2~29 small T, n>N2+3 .

By Lemmas 7.4-(2), 7.8, 4.21-(1), the last term on the right can be dominated
by ||2M||^+^+||M||^-o-i) + ||M||»3T1-o)+||/^oA)-,OM||(4t^+ro)i Thus> Q0ting

r/(2QK)>;2r0+3 in (8.15) and using Lemma 4.21-(4) to estimate

w||(4.»,+r0)
 by ll/r° «llu..-r,-8) we get from (8.15) that

(8.16) Af,.., (*,/»'<»*> u)<CJ\\Qu\\*-v>>+\\u\\fo'

for N2>r>N2-2, small T, n>N2+3 .
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On the other hand, when 0<r<N2— 3, we have applying Lemmas 4.21-
(2), 7.1-(3X (4.55), and Lemma 7.4-(l) to (8.12) that for small T and n> N2+3,

n-(N2-r)/2 Mitnr(Bjf^20^ u)<C8 n~3/2 M^Bj

X\\Qu\\W+n-3'2 ||i/||gr1/(20*))+n-1/* \\um)<ClQ(n-3'2 \\Qu\\™

+/r3'2 M0in.l/(m) (11)+*-* M0tn(u))<Cn(n-1/2 \\Qu\\™ + \\u\\fcl>) .

So,

(8.17) *-<*.-'* M^Mf™ u)<Cn(n-^ \\Qu\\w + \\u\\fc1>)

for Q<r<N2-3, small T, and n>N2+3 .

Now, the desired inequality follows from (8.6), (8.16), (8.17), (4.55), and Lemma

By Lemma 8.2 it follows that the term involving 0iN in (8.5) can be estimat-
ed for large odd AT, and to estimate the term involving <Z>0/jy we need the follow-
ing two lemmas.

Lemma 8.3. Let m^N with ra>2. Then, one can find s^N such that
for any A^2miVol there exists Aj&2m-ltfQI,j=l, "•,$ satsifying that for small
Tandn>3,

MQlin(Au)<C { ± (MO

Proof. By Lemma 7.3 we have that for small T and n> 1,

(8.18) ' MQltn(Au)<CMOp hq(l\ A]u\

We set

(8.19) R = 0p {p3(t9 x, 1, C(r, x))-1 f(dt Alt Lt

so that

(8.20) fi = Op fq«>+R+Op (p£t, x, 1, C(f, ̂ ))-1 f
gl) .

Noting (3.19), we have for any peJ£J0/ that

(8.21) <P°f(p3(t, x} 1, C(t, x))~l gi}^E from Lemma 6.38 ,

[Op <p, R]^C0 from Lemmas 6.35, 40-(3), and (6.24) ,

Op <p-R^C+CQ with Ll=L2=- Lh L3 = L\

from Lemmas 6.35, 40-(1), and (6.24) .
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Writing A=A™—A™ with 4(l'>e-£lf,0/, we have from (8.20) that

(8.22) X- Op fqW = A(Q-R-Op (ft(/, *, 1, C(r, x))'

3=

Thus, noting (8,21), (8.22), Lemma 6.13, and using Lemma 7.2-(2) and -(3) we
obiain setting A1=A^—A(m^ that for small T,n>2,

(8.23) \\A-Op V> u||

From Lemma 7.6-(l) there exists ^2eJ?w_ lff0/ such that for small T, «>3,

M0,,B_1/(20« (/I/(20*) ^ «)<M0/>s_lA20i) (^8/V<«) „)

Substituting this into (8.23) and estimating the forth term in (8.23) by Lemma
7.4-(l) we see that

(8.24) \\A-Op V} ^I

Now, applying Lemma 7.6-(3) to \\[Op fq(l\ A] u\\(n} taking q=q(l> and R=Q,
and using (8.18) and (8.24) we see that the desired conclusion holds. This
completes the proof of Lemma 8.3.

Lemma 8.4. Let m^N with m>2 and A^Hm^Ql. Then, for small T and

Proof. Successive use of Lemmas 8.2, 7.8, 4.21-(2) shows that there exist
and Alf •••, As&.£,i<f<)l such that for small Tand n>m+l,

(8.25) MM..(Au)

2 n-

From Lemma 6.39-(2), and (6.24) there exist Bi^OpfS\%-1^ for z=l, —,s
such that

(8.26) Op (Ps(t, x.l.C (t, x))-1 d,(f( )3) • ̂  -5, eC0 •
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On the other hand, since we can write Op(fL,(f^)=(\-u., C)/2 D2
t-L,+

So*/* Dk
x with aAe-BA>3V it follows from (3.19), Lemmas 6.40-(2), 6.39-(2),

and (6.24) that there exist E'^Op f^[%~1-l\ i=l, •••, s such that

(8.27) Op(p3(t, x, 1. C(t, x))-1 d, Au /L,(/£)2M,-#

Thus, since

(8.28) p3(t, x, 1, f ( t , x))-1 'q^fqV+pJt, x, 1, f(f, *)

it follows from (8.26), (8.27), Lemmas 7.3-(l), 7.2-(3), 7.4-(l), 4.21-(1), 4.18-
(i) that for small rand n>m+l,

Mol,n-i/(2M (A, w)<CC2 \\0p fq"

< C3(\\p3(t, x, l,C(t, x))-1 Op

Combining this and (8.25) and using Lemmas 4.21-(2), 7.8, (4.55), and Lemma
7.1-(6) we have that for small T, n>m+l9

c^

)+
This completes the proof of Lemma 8.4.

Remark 8.5. In the proof of Lemmas 8.3 and 8.4 we do not use (1) of
(3.13). So these two lemmas hold in all cases of (3.13).

Taking N=2N0+l in (8.5) and estimating the first (resp. second) sum-
mation by Lemma 8.2 (resp. 8.5) we obtain that for small Tand n>2NQ+29

Since JVo/(10/z)=2(2r0-f 4)>r0+3, the last term on the right can be dominated
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by ||/r°M||(4f«-ro-3
) in view of Lemma 4.21-(4) and (4.55). So combining this

inequality and (8.4), and using (4.55) we get that for small T and n>NQ-{-3,

(8.29) ii«ii$+iir» «ii(4,B-,0)<c5 lie*!!0" .
Taking N=2N0+2 in the inequality of Lemma 7.9 we see by the similar argu-
ment that for small T and n>2N0+3,

™(8.30) 2] HG^ u\\^<C6(\\Qu\\^^+n-^ \\Qu\\

Applying (8.29) to the latter two terms on the right we get the second desired
inequality. The proof is complete.

Next we consider the case (2).

Proposition 806, Assume that (2) of (3.13) holds. Then there exists r0,
with «0>r0+l such that for small T and n>n0,

1/2 ||gifp>) when 1< | n\ + \ v\ <2 .

Proof. As in the proof of Proposition 8.1 we may assume Q=p3 (t, x, 1, <T
(t,x)YlOpfq. Set 3>iN = Opf<piN,<D<>llf = Opf<p<>,ff for N>2. Then using
Corollary 6.27, Lemma 4.18-(4) and (5), Lemmas 4.21, 7.2-(3), and the fact that

23^,/Jj/^^eCo for AeOp 2io-M-°\ A^Op fSM'^-2-°\ i = 0, 1, 2 with
1=0

M, Mf>Q and Mf — 2"1 M< — 1 which can be shown by using Fact 4.6-7, (4.3)3

(4.6), and Corollary 4.12-(iv) as in the proof of Corollary 4.12-(i), it is not
hard to see that for r ̂ N we have that

(8.31) ||/r«||(4,B_

+IMIS-2K/3-'-1/<20*))+ 2 \\f fl>,w
w«llft.._rt+ 2 \\f *o

»el /=i

for small Tand

In the same way as in the proof of Proposition 8.1 we have from Corollary
6.27, Lemma 4.21, (4.55),

(8.32) NI$<C2(S p,/̂ ||$+ £ Po//^ll$)
j'er / = i

for small T and n > 2/c/3 + 1 .

In case (2) of (3.13) we have
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So setting, keeping (7.11) and a remark just after it in mind, that

(8.33) L, : = !,-(! -^ CT1 c, fD,

-i(-i)'«(i_/,J C)-1 cbtfD, ,

and using Lemma 6.10-(2), and Lemmas 4.21, 7.1-(8), one can show that there

exists r^N such that for any r>r±, r^N we have that t"f D, and trfr+1 Dx

can be expressed as a linear combinations of L, and L, with coefficients in BhtTf>,

and that

(8.34) \\f ^iN
Nu\\(,,n_r)<C3(\\f^ LIU)

+ \\f'-r> Ll(a

(8.35) ILT <W «<4

for n>r+l, where /(i), /e/ is as in Lemma 3.2. (3.26) and the fact that

shows

^ACH V2/3fO.-2.0) f .^rCC fc:^rsupp (p. lOr 7 trlj .

So from (8.33), Lemmas 6.30, 6.31-(1), and (6.42)

(8.36) L,(0 ̂ -I/(0 (Z>we 0/7 /^wo.-2.o) .

Using (8.34), (8.36), Lemmas 4.18, 4.21, and the inequality that

(8.37) IM«

for s<=N with 0<s<5 and ooO with ty+2a<6,

we have for any re^V with r>rx that for n>r+l and /e/l9

(8.38) \\f (P,-^«||(4>B_r)<C4

Similarly using the fact that by (7.11) and (3.23),

(8.39) Irto-LnSOp^?^0--1-",

we have for any r^N with r>^ that for «>r+l and *'e/2,

(8.40) ||r fl>w ̂ ||(4,w

Noting (7.11) and applying the similar argument as above to the first terms on

the right of (8.38) and (8.40) we obtain for any r <E N with r >rx that for
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and

(8.41) \\f <DiN» W||(4,B.r)<C6( £ ||y-'i L,., 0lir» M||(2,

+P2/3/'-r> V1 ik-r+^+IMISr1') •
Since by using Lemmas 7.1-(8), 4.12-(1), and Cor. 4.3-(ii) the second term on

the right of (8.41) is dominated by |K/3 A/'"'1 ®iNN~l «ll("'''+''l)+P2/3/r~r'+1

Dx^>iN
N~lu\\^~r+ri)+n~1/z\\u\l{^2\ repeating the similar argument as above

once again we get for any r eJV with r>2r-i that for n^r+1 and z'e/,

(8.42) ||/r ®iN» M||(4,B-r)<C7(

+IM2/3L,y (Z),.^-1 H i i -

On the other hand, using the fact that from (3.19) and Lemma 6.39-(2),

(8.43) dtfDsOpvet-JP-* for 9&S^ 9

in the similar way as above we have for r^N, r>^ that for n>r+l

(8.44) \\f 3>OIN» Hllc^.

Therefore^ taking

(8.45) r - r0: -

and Lemma 7.1-(1) and Corollary 5.2 we obtain from (8.42) and (8.44) that

(8.46) ||/"> «ll(4.»-ro)<C9 {n-V2 ||e«||(»-'o-»+||M||&-2)

+ S (Af,...,^,^ «)+Af(i..,(fl>w*-1 n))+ 2 (AfWi._^ww» «)

for small Tand n>rQ+3 .

Estimating the right of (8.32) by Lemma 7.1-(3) we have for small T and n>29

(8.47) INI$<C(S,.e/ MM(0,^ ii)+2f-i ^oi..(^oi^ «)) •

We set

(8.48) A r
0:=20A(2r0+l).

Lemma 8.7. Lef Nlf N2^N with N2>NQ and N1=2N2+3. Let

iip. for i el. Then for small T and n>N2+3,
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Mt..(4,
Proof. Using Corollary 7.7 with fc=.Mj and k'=3 to M,.,,̂  w), and next

estimating the terms of the form n'(-N^r'>'2 M,-,B_1/(20ft) (Afr/<20h) u), AeS^,.,
0<r<N2 on the titht of the resulting inequality by using (7.3), (7.6), Lemmas
7.8, 4.21-(1), 7.1-(6) we get for some Blt •••, Bs^22iV. that for small T and
n>N2+3,

(8.49) ^

Using Corollary 7.7 with k=N2 and k'=2 we have for some B,+l, •••,
that for small T and n>N2+3,

(8.50) MM(^

+ S

Let us estimate terms involving Bj in (8.49) and (8.50). To do so we let

2i,. and we write 0= Ol <Z>2, <Z>yE^ lf*.. From Lemma 6.6, O/? ju-01—01 Q
with Lj==Lij and w there. So using (3.23) and the last fact of (3.26)

we have

(8-51) Op x.^-QQ-

with 4,

Then for any a>0 we have that for small T and «>3,

(8.52) MM(0/" w)<C{ ||0/> rc-0/* M||W (Lemma 7.3-(l))

<cKiie<z>2r «II(B)+ 23 P~A iltt, <p2/- «nw+«-
A = 0

+ ||M|l8r1/(20*))) ((8.51), Lemmas 6.13, 7.2-(3), 7.4-(l), 4.21-(2))

((7-6)> Lemmas

7.8, 4.18-(1), 4.21-(1) and (2)).

By Corollary 4.3 we have that for small Tand n>2,

(8.53) IMwI,w *,/• «||(">^CJ(«-^ Ma(i>..-l(«>,f' u)
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It is not hard to check using Lemma 4.18-(4) that for any

(8.54) fDx zl(l) i**n =
with B^JL^

From (3.26) and Lemma 6.39-(2)

(8.55) Wco/Oope'JS0 for

Using (8.54), (8.55), (7.8), and noting the manner of choice of ^ (cf. (8.34))5

one can show in a straightforward way by taking care of commutation that
for «>r!+l

(8.56)

From (8.52), (8.53), (8.56), (4.55), Lemmas 7.1-(4), 4.21-(2) and (4) we have
for any r eJV with r^N2—2 which implies r/(20h)>2ra+l,

(8.57) M,..

From (8.52), (4.55), Lemmas 7.1-(4) and (6), 4.21-(2) we have for any
with 0<r ^7V2— 3 that for small T and n> N2+3,

(8.58) «-<».-'>/» M^

Now from (3.26) and Lemma 6.39-(2) for

(8.59) (rfl{l, (/0
3+4(

with some Z> ;<

So from (8.59) we have for any Ae2ltV. that for small r and n>2,

(8.60) MUWin (Au)^C(M,tn (Au)+\\

(by Lemmas 7.3-0), 4.21-(1))

(by Lemma 7.4-(2)).

Substituting/* u, a>0 for u in (8.60) and using Lemmas 7.8, 4.21 we have for
any A&2lt1>l, «>0 that for small T and
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MolM,n (Afa u)<C(\\Qu\\M+\\f« «lk,.)+IMi8

Applying this inequality to (8.57) and (8.58) we get using Lemmas 4.21-(4)
and 7.1-(6) that when r>N2-2, for small Tand n>N2+3,

and that when 0<r <N2— 3, for small T and n>N2+3,

(8.62) „-<",-')/* MM <Z>^°>0 1 00

Applying (8.61) and (8.62) to the terms involving Bj in (8.49) and (8.50), noting
N2>2rQ-Ll, and using Lemma 4.21-(4) and (4.55) we get the desired inequality.
The proof of Lemma 8.7 is complete.

We set

(8.63) Nj = 2N0+3 .

Then by Lemma 8.7 we have that for z'e/, small T, and n>N0+3,

(8.64) Mitn(<l>iNl
Nw)^Min(0iN^

By Remark 8.5 we can use Lemma 8.4 to conclude that for any /, small T,

and «>#!+!

(8.65)

Since (N1— 2)/(20/7)>2(2r0-f-l), the rest of proof of Proposition 8.6 is now
straightforward by using (8.46), (8.47), (8.64), (8.65), and by taking N=N! in

Lemma 7.9 as in the proof of Proposition 8.1. Q.E.D.

Finally we consider the case (3).

Proposition 8.8. Assume that (3) of (3.13) holds. Set for s=l,2,n>l,

Then there exists n^N such that for small T and n>n^
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no* Hiiw<c(iie«ii<"-lA20*))+«-l/2 lie*!!
Proof. Let p?eJ?o, * e/ be in Lemma 3.2 and define for s,j, fce {1, 2, 3}

with J=t=7,

on

on (supp 9?)* .

Then 6,-^ satisfies with the notations in Definitions 3.1 and 4.4

(8.66) | a05 bsjk | < c, ^^-^r«-^s.i>fc'*» -
Proo/ o/ (8.66). It suffices to consider this on supp pf. First from (3.28),

(8.67) IM<C.

Next from (3.22)' and (3.28) we have that for a with o^

(8.68) 1 8- *rt

that for a with a^Q and «2>0,

(8.69) | d* ai

and that for a with a3>0 and 0^=0:2=0,

(8.70) 1 9* a IA |

(8.67)^(8.70) and Leibniz rule show (8.66).
The fact that <pf = \ on supp <pi and Lagrange's interpolation formula

show

(8.71) L<pi2 = bm(L-ai2) <pi

L2 <pi2 = S bksk bkjk (L-ois) (L-O;.) <pi2 ,
k,j,s • distinct ' J

where we adopt the convention (3.16) on L and <pi2 is defined by (7.15). (8.66)

implies

(8.72) b
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We set

(8.73) Btit = 0 p f b t j k .

Now we recall the definition (7.17) of OiN, 0>01N. Using for 0=0,-2 identities
that

Lim 0 = [Lim,

Lu L{J 0 = [Llh [Ltj, <Z>)]+[LIV, <9] Ln+[LH, <Z>] £,„+«£„ Lti ,

Z2 0 = [L, (L, ®]]+<DL*+2[L, <Z>] L ,

and using (8.71), (8.72), Lemmas 4.18, 4.22, 6.4, and (6.24) show

(8.74) Z<Z>,.2 = Bnl Ln ®i2+Bn2 Li2 <Di2+ g A,

with AJG&-* for 7=1=0, A0

(8.75) I2<Z> i 2= S BuBwLkL
k.j.s : distinct

with 5s;.e^°-3, 5se^2-1/2-3 for j 4= 0,

Using (8.74), (8.75), and using Lemma 4.21-(1), (4.55) show that for n>2,

(8.76) SJ|Z*0;2
2«||<3-*-»><q(|] Sili,.^^*"!!^

V ij s iitto»«*«n(2-''+iiifl>n«iit2'--l/(lo*M+ii«ii8r1/(M*))

+«-; INI®) .
If L0=Dt— A with A=Opfa and oe^i/r1-0 satisfying (4.42), Lemmas 4. 18-
(3HO, 4-22, and the fact that r1 ^r*.'^c^?*+1/2''+1/2-Ar when N>k+l/2 show

if B<=tK Jt"-'-N with «>

So if L0j,j—l, 2 are such operators as L0 and «5efx<_^0>3 with ^>0, using
Lemma 4.21-(1), (4.55) show that for n>2+t,

(8.77)

||I,»iI«*H||(1'")^C'(||I«iM«||(1---*)

'/' ||L0. «|

Applying (8.77) to each term with k=2 of summations on the right and to the
third term, and using Lemma 4.21-(2) we obtain
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^8 75A V1 II Tkffi 2,.||(3-JM)<--- /"• / "V II f f tfi * / I I ( l » « )
i o . / O j 2j ll-k ^ z 2 W l l ^^2V2jJ|^,-s^,V ^ f ' 2 WM

*-l 3 s^j

Similarly we have that for n>2,

(8.79) 2 ll# 0o,2 2«ll(3-*-"}<C3( S ||I* <Z>0

and setting ^1=^,2 -Op f(<pi2
2), 0gl=<Z>ol2

2-Op %0;2
2), and noting 0,-, 00/

from (3 20) and Lemma 6.26 we have that

(8.80) 2 (l|£* #,- w||(3-*'K)+i|Z* 00( «II(3~*-"))<C4( 2 III*

Note that by Lemma 4.21, ||0f. K||$ + ||00/ ^||$<C5 IMI8f2*3) for n>2. Now
using (8.78)^(8.80), (4.55), Lemmas 4.21-(1), 7.1-(3) and (4) show that there
exists n^N and 7;e(0, T0) such that for Je(0, rj, /7>/7l5

(8.81) ||«||$+ S 11^* w||(3"&'")<C6(2 pz-2 w||p6)+ S I | < Z > 0 / 2 M I I 8 J
3

2 2 ~& MO-*-) 2

/=! k=l rel 8> l /=!

where we use that L=L0tl for any / from the assumption (3.13)-(3). As in the
proof of Proposition 8.1 we may assume that Q=p3(t, x, 1,C(/, x))"1 Opfq.

3

Let 0e-T1>(?J. and K= JJ (r—j5/f —^of^.) where #(£, x)=/«(^. x)l(l— (C-/i) (^, ;*;))

with the convention (3.16), and note that/?3(f, x, 1, C(t, xj)~l fq=n on supp <p{.
From Lemmas 6.9, 6.12

(8.82) Op 7c-®~Q-®^CQ,

(8.83) [Q3, 0]<EC+£0 with C = C(LX = L2 = L3 = L),

where Qj=p3(t, x, 1, C(/1, ̂ ))-1 O/? 7^y with the homogeneous part #y of degree
7 in (r, f) of q.

Using (8.82), (8.83), Lemmas 7.3-(l), 7.4-(l), 4.21 one can easily deduce
that for small T and /i>2,

(8.84) Mit,(Q
 2



ON THE UNIQUENESS FOR THE CAUCHY PROBLEM 285

Next we let 00^2ltVor In case (3) we have gj=/1/2 aol f
2 so that

2

y=i ;

So from Lemma 6.38,

0 -O — V x< f* with A £=• JK3-/<0/2,3 rnr j^ _ i 7 /f cr^-Q s^2 ' ' ^ "^ W1L1L •'Ifc ^~ <_-/!» 1 \J\. /v 1, Z., -fin d I
*~ A = 0

Using this and (8.83) which holds for ®<=f£0
lf2 we obtain similarly as (8.84)

that for small T and n>2,

2

(8.85) M0>n(00 u)<C9(\\Qu\\^+ 2 (P(3-*)/2 1* w | j C «

Now the rest of proof is straightforward by using (8.81), (8.84), (8.85), and
Lemma 7.9. We omit the details. Propositions 8.1, 8.6, 8.8 mean (2.13), (2.14)
respectively in cases (1), (2), (3).

§ 9. Proof of Proposition 2.3

We just have to (2.10) for proof of Proposition 2.3, because the standard
argument gives the desired concluion. When m=^l, or when m=2 and /c2 = l,
(2.13) contains (2.10). And the remaining cases are contained in the following
Proposotion.

Proposition 9.1. Suppose the assumptions and notations in Proposition 2.3.
Suppose that in (2.6), the number of paires of (i, /) with / =t=0 is greater than or
equal to 2. Set for s=Q, ••• , 2m and n> 1,

Then, there exists C>0, n0>l, and Te(0, T0) such that for Te(0, ro), n>nQ,
and

(9.1)

Proof. We note that m>2 from the assumption. In view of (2.7) the
partial fraction decomposition, or rather the theory of resultants shows that
one can write

'.-i = n n (Av+
i
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with the notation p'm.Jt, x, r, <?)=A»-ifc x, r, -C(r, x)r+£) where p\h qm-2

are in C°°(J2r0) being polynomials in (r, <f ) with their coeficients in BTQ respec-
tively of degrees / — I, m— 2. We may neglect perturbations of terms of
order<ra— 2 in Q for proof of (9.1) in view of (9.1) and Lemma 4.21-(1) so
that we may assume

2 = />„(*, x, 1, f(r, x))-X/

Set for /=|=0,

(9.2) Q{j =PiJ(t9 x, I, C(t, x

Then

(9.3) g(f, ^9 r, f ) - H,§y g,Xrs .xs r, f ) .

Similarly as above we can write for each l<k<m,

(9.4) f*r«-*=Sur l / J f c

where rijk, rk are in COO(RTO) which are polynomials in (r, £) with coeficients in
BTQ such that deg rijk=i, degree in r of rijk=i—l, deg rk=m—1, degree in r of

Using (9.4), (2.13), Lemmas 7.1-(2), 4.21-(1)5 and the inequality \\D7 u\\<*> <,
m m — k

CdlQwII^+S S ll/^*£>5w||(w)), one finds that for small Tand large n,
k=l1=0

Let ^=(1, 0), ^2=(0, l)eJ^2. Then, symbolic calculus shows that by extend-
ing Definition 6.21 to q of the form in it with a30=cosnt.,

(9.6) (6,7)0,*, = S aki ̂  with

(9.7) (e^o
with

~ ~ i + i'-S

^9g^ (Q--) o0(6'/-/)o (2") o*(G /"') == 2 ^£r*
ft = 0
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with bk^Bi+i'-k-2>m;
i+i'-2

(9.9) [OpQw, Op(Qij\ei] = 2 AHD>,

with ^,e
_|_jl/2-l/(20*)_<g.-+i'-y2-*,i

From (9.3), (9.7), (9.8), and the equalities

«).1.o«(c<'A.1» e"''"'" -((ay).,.o- (&' A.,) • fiMt'
= ((ft/).l.o»(ft'A.,-(fty).l.o-(ft'A.,)0fiMi'/y'

where eWl'/y/ = II(i.,)*o.Att/.y/)ftf .

we see that

with aA

This and (2.13) imply that for small T and large n,

By (9.9), (9.6), (2.14), a term in the summation on the right is estimated for
small T and large n by

'\e,°Qii°Qii-i'}'(t, x, D)u\

Therefore we obtain that for small T and large n,

(9.10) 2Jlft,°G"(r, *, Z))M||w<C7(||eM|

The desired conclusion follows from (9.5) and (9.10). Q.E.D.
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§ 10. Appendix. Proof of Lemma 4.7

Our proof is parallel to that of Lemma 2 in [1]. So we make our discrip-
tion brief. We denote the set of all b as in the statement satisfying (4.18) for
(0, 9)e£ by tU0'*, and we set CU= U <U***. We denote a(x, f) as in the

C0.90&B

above defined for b^V by I(b)(x, <?). The important fact is that constants in
proof are uniform on B and V, but we omit to mention this fact for simplicity.

First we assume that the lemma has proved for b^V compactly supported
in (y, rf) for each fixed (jt, <f). Let b^V0'9 and set bm=Xmb for m^N where

xm(x, y, <?, rj}=z(ylm, 7]/m) with %<= C*(R2n) with *(0) = 1. Then

with C-/5 independent of m, and /(^Wl) converges to /(ft) at any point. So the
lemma for general b follows from the above assumed special case by replacing
k by k+l and (Mlf • • - , Mk+h ml9 — , /HA+/) by (0, M1? — ,^+7, 0, ml5 -9mk+l).
Thus, we just have to prove (4.19) with C", L independent of b^V®'* com-
pactly uspported in ( y, 77) for each fixed (x, ( ), and of (0, 9?).

We note that /(6) = ( j e~i(y-x^-^b(x, y, £, rftdydTi then. Let X^C^R)

with xl(z) = \ when |z|<l/3, ^(z)=0 when |z|<l/2, and write b = b1+b2

where ^(x, ^, f, 37)=fi(jf, ^, f, ^i(|?7-f |/(1+ |f I)). Then ft.-e*^ and
I bs | f < Ci,. | * | f so that I(b)=I(bJ+I(bJ. We have

ft1==0 when |e_

Z > 2 - 0 when |f-

The integration by parts gives that /(&2)=/(&2) with b^V0^ given by

*K*,* £, 7) = |7-f l-^C-^Kl+l^-^l'O'Xl+C-^Oy. Taking P>
/7/2 and ^large we get |/(ft2)| < |/(ft0| <C2|ft|f(-?+JV)(2)s^.^;.

Next choose J2eC°°(^) with X2(z) = l when |z| <l/9, ^2(z) = 0 when

|z| >l/2, and write 61=611+612 where bll=bl(x, y,£,riZ2(c~2(<P~2(x, 01 J-^I2+
<^-2(^ f ) | f~^l 2 ) ) . Again &!,€=<?;*•* and |ftHir<C3 / |ft |r so that /(62) =
I(b2i)+I(b22). We have

6 U = 0 when 9"^ 01 J~^l +^"1fe O^-f | >c/2 3

6^=0 when <p-\x, f)| J-^l

Setting 00 =$(*, f ), ^0 =9?(^s f) we have that when (x, y, f , 57) e supp bn,

C-1 < | fl>(0/fl>0 1 < C, C -1 < 1 9(fi)/90 1 < C for 2 e K Then the integration by
parts gives /(*„)=*(#!) with ft^e^ given by Wi=(
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X (1 +<z>r(-4)p) bn, and | I(bn) | = | /(«,) | < C4 1 Z> | f/ <2>? »/ . ̂  by taking
P>«/2. Finally we consider &12. As in the same way of [1] setting 00 =
<Z>(x, £ ), 93,, = <p(x, S ), and R = 0a/<pa we have that for (x, y, <f , ?) e supp Z>12

and eetf, Cif^flCfiy^fiK Q^, «„/<«> (fi)^(CDc-1)I/!'(fl>o^I/!l, ®(0<
l-maxCc"1^, SCf 'OCk— £ I + - R I . V — ̂ D- By using the first inequality the
next two means respectively

Set b'2l(x, y, £, r,)^(?^(-^ + 0^(~^}){b2l(x, y, f,
+®o2N\y-£ \2N)}. Then b^^V0-9 and I(b21)=I(b'2l). Leibniz rule shows
that

\b'n(x,y,e,i,)\

t, y, f . i

We take P >S ( | My | + | my | ) and set Mj =My+P, m—m^+P. Then My>0,

/Mj>0. By virtue of 0<p>c a term of the numerator in / is dominated by

2 0i<" II sup Qsr'j(Q)?sj(Q) n sup

< C8 H (sup 0)^(0/<0) sup (00/®(0)lf31

y=i

Thus I^C10|*|ftf0^"w?V^ // is
dominated by the same expression. Therefore,

This completes the proof.
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