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9D-Modules on Analytic Spaces

By

Morihiko SArro*

Introduction

In this note, we give a formalism of ‘9-Modules’ on complex analytic
spaces, generalizing some results in the theory of 9)-Modules on complex mani-
folds to the singular case. Our definition of 4g)-Modules, which is inspired by
that of mixed Hodge Modules on singular varieties [15], uses the local embed-
dings of analytic spaces into complex manifolds, see 1.5, where the well-defined-
ness follows from Kashiwara’s equivalence [6]. The advantage of this definition
is that locally we can apply immediately the theory of &-Modules on complex
manifolds, and we get some global results, e.g. (5.8.2)(6.1.2-3), etc., once the
functors and the canonical morphisms are defined globally. Using these, we
can prove, for example, the base change property 4.8, the adjurction formula
4.9, the duality for proper morphism 5.7, and the Riemann-Hilbert corre-
spondence 6.2 in the singular case.

We define the direct image f;, the de Rham functor DR (see 3.1) and the
dual D (see 5.2) using the Cech covering and reducing essentially to the smooth
case by an argument similar to the case of mixed Hodge Modules [15]. For
the pull-back f' we use the theory of algebraic local cohomology [6] in the closed
embedding case (see §2) and the Riemann-Hilbert correspondence [7] [10] in
the projection case (see 4.2). For the proof of the duality theorem for direct
image by a proper morphism, we extend the notion of induced 9-Module and
good coherent 9-Module to the singular case, see 3.5, and relate the analytic
dualizing complex in [11] [12] [13] with the dualizing complex for 9-Modules
in the singular case, sez 5.3. We also introduce the notion of inductively good
which is stable by the pull-back, see 4.11. The proof of adjunction formula
4.9 is essentially the same as |15] and uses Kashiwara’s diagram (4.9.2). Using
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these we can generalize some results in [19] [20], see 4.15. The proof of the
Riemann-Hilbert correspondence is a natural generalization of the proof in
[16, §4] to the singular case using the diagonal pairing, see 6.2.

This paper is a natural continuation of [16]. I would like to thank
Professors A. Borel, P. Deligne, M. Kashiwara and B. Malgrange for good
suggestions and useful discussions.

§1. Definition

In this note the analytic spaces are always assumed separated, paracompact,
and globally finite dimensional (i.e. the diemension is globally bounded). We
use mainly right 9-Modules on complex manifolds to simplify the definition
of direct image and dual.

1.1. We first review the definition of direct image of 9)-Modules with
proper support for a morphism of complex manifolds. For a complex mani-
fold X we denote by M(Dy) (resp. M(Oy)) the abelian category of (right) D-
Modules (resp. Ox-Modules), and D*(9;) (resp. D*(Oy)) its bounded derived
category [17].

Let f: X— Y be a morphism of complex manifolds, and M & D¥(Dy).
The direct image with proper support of M is defined by

(1.1.1) M = RAM S 9 D)€ DNDy)

where Rf, is the sheaf theoretic direct image with proper support defined by
taking a canonical c-soft resolution, and Dy y=0x@f-10,/'Dy. If f is
proper, we denote f; by f.

1.2. Let X be a complex manifold, Z a closed analytic subvariety of X.
We define

(1.2.1) TI'gaM = 15_13 Home(OxlI, M), TrxigM = li_r)n Homg (I, M)
g g

for an ©@y-Module M, where 9 runs over coherent Ideals of @y such that
supp Ox/dC | Z]| with | Z| the underlying set of Z, cf. [6] [7] [10]. etc. For a
coherent Ideal J such that supp Ox/I=|Z |, I't;M has an exhaustive filtration
defined by Homp (Ox/I", M) (i.e. the subsheaf of M annihilated J"). Al-
though the filtration depends on J, they are all cofinal. By definition we have
natural morphisms I'r;;M —M and M —I';yz ;M. The cohomology sheaves
of the derived functors RI'1; )M, RI'ty 1M (defined by taking an injective
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resolution of M) are denoted by Hf;;M and Hfx,z;M. Then we have a long
exact sequence:

(122) —> Jlfz]M —> ﬂ"M - ‘_%I{'X‘Z]Mé ﬂfz]lM g

for MeD¥0Oy). Note that they have natural structures of 9-Modules if M is
a 9-Module (or a complex of 9-Modules), cf. {loc. cit.]. We denote by
M (D) the full subcategory of M(9y) defined by the condition

(1.2.3) I'iuyM S M.

This is equivalent to the condition that for any local section m of M, there exists
locally a coherent Ideal J of Oy such that supp Oy/9C|Z| and mI=0.
In particular

(1.2.4) M(Dx)CMzA(Dx)

for |Z|C|Z'|. Note that I';1: M(Dy)— M ,(Dy) is a right adjoint functor
of the natural functor M,(Dy)— M(Dy), i.e. we have a canonical isomor-
phism

(1.2.5) Homg (M, N) = Homg_ (M, T'tzN)
for MEMADy), NEMDy).

In particular we get

(1.2.6) I't;1M is injective in M,(Dy) if M is an injective 9 x-Module.
Let Z,, Z, be closed subvarieties of X. Then

(1.2.7)  I'tzaM is I'tyy-acyclic if M is injective

by the theory of local cohomology on Spec(Oy,,), cf. [3] (in fact M, and
(I'gz;1 M), correspond to flasque sheaves on Spec(Oy,,), because injective 9)-
Modules are injective (-Modules, and the injectivity is stable by restriction to
open subsets). This implies

(1.2.8) RF[Zlnzle = RF[ZZ]RI‘[A]M for M ED"(@X)
asin [6]. Let Z; be divisors on X for 1<i<n, and Z=MN;Z;. Then
(1.29) RI'tyM = RI‘[Z,,] RF[ZJM with RI’[Z',]M =[M — F[X!Z;]M]

for M&D9Dy), where [M—>TI'tx,1M] is a double complex such that the
bidegrees of M7, I'tx;;aM’ are (0, j) (1, j). Here I'ty)z; is the localization by
a defining equation of Z;, and is an exact functor, so that I'tyx;aM is well-
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defined. This means that RI't;1M is represented by a double complex whose
(p, q) component is

(1.2.10) @iri=p LixizaM*
where Z;= U ;c; Z; and 'ty p1=id. As a corollary we get
1.2.11) R M S M for MeMiy(9Dy).

We denote by D*(M (D)) the bounded derived category of the abelian category
M,(Dy), and Dy(Dy) the full subcategory of D*(Jy) defined by the cohomo-
logical condition: A/ M & M,(9x). Then the natural functor D¥(M,(Dy))—
D%(Dy) is an equivalence of categories with quasi-inverse BI'r by (1.2.11).

1.3. Let f: X— Y be a morphism of complex manifolds, and Z, Z’ closed
subvarieties of X, Y such that Z'D> f(Z). Then the direct image in (1.1.1)
induces an functor of derived categories

(1.3.1) fit DY(M(Dy)) — DY (M ADy)) .

In fact, using the graph of f, we can 1educe to the case f projection, where the
direct imege is defined by the relative de Rham functor, cf. (3.1.2) below. Then
we can use the filtration of I't,3M in the remark after (1.2.1). More precisely,
we replace DR y,y (M) by the inductive limit of (canonical) c-soft resolution
of its subsheaves annihilated by coherent Ideals of @, whose quotients are
supported in Z’, cf. also 3.2. Note that the inductive limit commutes with the
direct image with proper support so that c-soft sheaves are stable by inductive
limit.

Assume Z smooth, and let i: Z— X be the natural inclusion. Then
Kashiwara showed the equivalence of categories (cf. [loc. cit.]):

(1.3.2) iv: M(Dz) S MA(Dy)

In fact the assertion is local and we may assume Z is a hypersurface defined
by a coordinate function x. Then M & M,(9y) has the decomposition M=
D> M; with M;=Ker (x0,—i: M— M), and M=i.M, This equivalence is
generalized to

(1.3.3) fii Mz D) S MADy)

for any morphism of complex manifolds with closed subspaces f: (X, Z)—
(Y, Z’) inducing an isomorphism Z 4—Z;,. In fact, we may assume that
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Z, Z' are reduced by definition, and Z— Y is a minimal ¢mbedding locally
(i.e. the dimension of Y is equal to the dimension of the Zariski tangent space
of Z at a gvien point of Z) by replacing X, Y with their closed submanifolds
using (1.3.2), because the assertion is local on Y. Then f has locally a section,
and the assertion follows from (1.3.2). Here note that the functor f; depends
only on the restriction of f'to Z. In fact we have more generally

(1.3.4) fr =g D’My(Dx) — DM (D)

if f, g: (X, Z)—(Y, Z') coincide on Z. Ulsing the natural factorization of f, g
the assertion is reduced to the case of closed embeddings if, 7,: X—>X XY
defined by the graph of f, g, where Z is replaced by i[(Z)=i,(Z). Then the
assertion follows from (1.3.3) applied to pr;: XX Y— X, because the com-
positions pr,i,, pr,i, are the identity on X.

1.4. Let X be a complex analytic space. We consider the category C(X)
whose objects are the closed embeddings U—V such that U are open subsets of
X and V are smooth, where the morphisms are the morphisms of ¥V such that
their restrictions to U are the canonical open embeddings as open subsets of X.
Note that we have a canonical morphisim

(14.1) C(X) = C(Xrea)

by assigning the composition U, —=>U—V to U—V, where U,.4, X,.q denote
the associated reduced spaces.

Let W;={U,—~V;} (i=1, 2) be objects of C(X), and f: V,—V, be a mor-
phism of C(X). Put Z=U\f(U,), V5=V,\Z, and V{=f"Y(V4%). Then Z is a
closed subset of V, and ¥/ is an open subset of ¥V; (i=1, 2). We have a
canonical factorization f|,=j,f’, where f': ¥{— V'} is the restriction of f, and
J2: V43—V, is the natural inclusion. Note that f’ induces the identity on U,
and U, is a closed subvariety of V5 by f".

Let M e My (Dy), cf. (1.2.3). Then fiM (cf. 1.1) is the zero extension of
F{(M]y), and is a 9y,-Module. 1In fact the first assertion is clear by definition
of direct image, and the second is reduced to the case U;=U, and follows from
(1.3.3). By (1.3.4) we have

(1.4.2) £iM depends only on M, W,, W,, and is independent of f.

1.5. With the above notation we define M(X, 9) the category of ‘D-
Modules’ on X as follows: The objects of M(X, ) are {Mw}WEC’(X)’
where My € My(9y) with W={U—V}, and My are given morphisms
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1.5.1) Uiyt iMy, = My,

inducing isomorphisms on ¥,\(U,\U,) for any morphism f: W,—W, in C(X),
cf. (1.4.2), which satisfy the relation

(1‘5'2) uW3W1 = uWano g!(uW2W1): (gf)'MW1 g MW3

for any W,, W,, Wy (C(X), where g is any morphism of W, to W,. The
morphisms of M(X, 9) are morphisms of My, compatible with the morphisms
(1.5.1). We call My the representative of M on W.

By definition M(X, 9) is an abelian category. We denoted by D¥(X, 9)
the bounded derived category DY(M(X, D)) (cf. [17]) of M (X, D) (same for
D(X, 9), D* (X, D), etc.). We say that M = {My} € M(X, 9) is coherent
(resp. holonomic, resp. regular holonomic) if so are My, for any W e((X), and
MeD¥X, D) is coherent (resp. holonomic. resp. regular holonomic) if so are
J'M for any j, where H’: D(X, 9)—M (X, D) is the natural cohomology
functor. We denote by D’ (X, D) (tesp. Di(X, D), resp. Diy(X, D) the full
subcategory of D¥X, 9)) consisting of such objects.

If X is globally embedded into a complex manifold V', W' ={X—V'}
belongs to C(X), and we get a natural functor M(X, 9)— Mx(Dy-). We can
check that this functor induces an equivalence of categories

(1.5.3) MX, D)5 My(Dyr)

In fact we can construct a 9y-Module My, for any W={U—V}&((X) by
applying (1.3.3) to the projections of VXV to V, V".

Remark. Our 9-Module on analytic spaces is not a sheaf in the classical
sense or that of Grothendieck (although its definition in this paper is largely
influenced by the definition of Crystalline cohomology). ln fact, it is a ‘sheaf’
like a perveise sheaf, i.e., to each {U—V}&((X), we associate an abelian
category instead of an abelian group (or an object of a category), and for gluing
we need a theory of direct image f; for a morphism f of C(X).

1.6. Let W={Wj} ., be a family of W;={U;— V,;} €C(X) indexed by 4.
We say that W is a covering of C(X) if U,;U;=X. For a covering W, put
U;=N;er Uy, V;=11,c; V; so that we have a natural closed embedding U,—V;
and W,={U,—V,;} belongs to C(X) (and also to C(U;) for iI). By (1.5.3)
M, e My (9Dy,) determines an object of M(U;, 9), and we denote its representa-
tive on W; by M; ;€ My (Dy,) fori€l. Then by the same argument as above
the category M(X, &) is equivalent to the category M (W, 9)) defined as
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follows: The objects of M(W, Q) are {M,} with M;E My(9Dy,) such that they
are given isomorphisms

(1.6.1) it M= M,

ij* J
satisfying the gluing condition
(1.6.2) Uy = U;;ou: My .0 = M, G50
where u;; denotes also the induced isomorphism M; (;, j,k}:;M,-,(,-, o
We can also show that M(W, 9) is equivalent to M (W, 9))’ defined as
follows: Let pr;;: V;—V; be the natural projection for J DI The objects of

MW, )" are {M} ;4 wWith M; € My (9Dy,), and they are given morphisms of
Dy -Modules

(1.6.3) vir: (prynMy — M,

inducing an isomorphism on the complement of U,\Uj, and satisfying
(1.6.4) Vg = Vrro(pri)hvyx on the complement of U,\ Uy .

As a corollary, we get an equivalent of categories

(1.6.5)  MX, 0, )= M(X, D) (same for DX, D), DL(X, D), etc.)

induced by (1.4.1). In fact the inverse functor is constructed by using the
above definitions of M(X, 9). So we can assume that the analytic spaces are
reduced in most cases, except for the case we consider induced 9-Modules
which depend on the non reduced structure of X, cf. 3.5.

Remark. The second definition in 1.6 is essentially the same as that in the
filtered case in [14, 2.1.20]. The arguments in 1.5-6 can be applied to the case
of filtered 9-Module and mixed Hodge Module.

1.7. Let Y be a complex analytic space, and X an open subset with
j: X— Y the natural inclusion. Then we have the cancnical pull-back functor
Jj7h M(Y, D)— M(X, D) by definition. The left adjoint functor

(1.7.1) Jii M(X, D) - MY, D)

of j 71 is given by the usual zero extension. Here we use the fact that for W=
{U—=V}el(Y), W:={U\Z— V\Z} belongs to C(X), where Z=Y\X. The
existence of the right adjoint functor

(1.7.2) Jx: MX, D) — MY, 9)
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is less trivial. For W, U, V, Z as above we denote by jy: V\Z—V the natural
inclusion. Then for M €C(X) the representative of juM on W is defined by
I'iy1(jw)x My, where My is the representative of M on W’ and (j)s denotes
the sheaf theoretic direct image. We check that I'yyy(jp)«My- is essentially
independent of ¥ under the equivalence (1.3.3) by reducing to the closed embed-
ding case (1.3.2) as in the proof of (1.3.3), and the well-definedness follows.
Note that

(1.7.3) jxM is injective in M(Y, Q) if M is injective in M(X, D)
by adjunction. Then we have
(1.7.4) The abelian category M(X, 9)) has enough injectives.

In fact the assertion is reduced to the case X is a closed subvariety of a com-
plex manifold by (1.7.3), and follows from (1.2.5).

1.8. Let X, Y be complex analytic spaces, and put Z=XXxY. Then we
have a bifunctor

(1.8.1) X: M(X, DyxM(Y, D)— M(Z, D).
In fact it is well-known if X, Y arc smooth [7], [10] (cf. alsc [16, §4]), where
M[XIN is defined by
(182) 0xxy®(prl_ IOX®CDI'IOy)(pr1—1M® cpré‘lN)
— (@Xxy@l)rl—lgxpr TlM)@prg‘prrz_lN .
The general case is reduced to this case by 1.6. The functor is exact for
both factors, cf. [loc. cit.]. This implies a canonical isomorphism
(1.8.3) HMXINY=B 4 j—y I MXH' N

for complexes M, N, which is induced by Ker d?[X]Ker d’ — Ker(d![Xid-+ (- 1)}
id[Xld?). (In fact, this morphism implies also the degeneration of the spectral
sequence associated with a double complex.) If M & M(X, D) and Ne M(Y, D)
have filtrations F, G such that F;M=0, G;N==0 for i, j €0, we define the filtra-
tion H=F[X|G by H(MXN)=33;; ;- FM[X|G; N so that

(1.8.4) Gri{(MXIN) = @44 Grf M[XGr§ N .

In the case X, Y smooth, the external product [X] commutes with algebraic local
cohomology, i.e. for a clesed subspace Z of X, we have a canonical isomorphism

(1.8.5) (BItaM)KIN = Rl z(MXIN),
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using free resolutions of O/ for coherent Ideals J in (1.2.1).

§2. Local Cohomology

2.1. Let i: X—Y be a closed embedding of analytic spaces. We have a
natural functor C(Y)—C(X) by assigning {UNX—V} to {U—-V}EC(Y),
and this implies the direct image functor

(2.1.1) iy: M(X, 9)— M(Y, D),

because My x(Dy) T My(Dy), cf. (1.2.4). By definition iy is exact and fully
faithful, and the essential image is M (Y, 9) defined by the condition:

2.1.2) My Myax(V, D) forany W ={U—->V}€l(Y),

where My is the representative of M eM(Y, &) on W. By exactness iy
induces

(2.1.3) ix: DNX, 9)— D¥Y, D).
We define a full subcategory D%(Y, 9) of D¥Y, 9) by the condition:
2.1.4) HMEML(Y,d)  forany j.

For M={My} eM(Y, D), we define I'ixyiyM={T"txaM)p} € M4(Y, D) with a
natural morphism I'ty;M — M by

(2.1.5) IxaM)y 1= INyoxiMy — My, for W={U-V},

cf. (1.2.1). This is well-defined, because we can check that I'yy,x1My — My
is independent of ¥ under the equivalence of categories (1.3.3) by reducing to
the closed embedding case (1.3.2) as in the proof of (1.3.3). We denote by
RI'tx3M the derived functor defined by taking an injective resolution, cf. (1.7.4),
and H{x1M its cohomology sheaves. We have a canonical morphism

by definition. Note that
2.1.7) (HixM)y = Hiy o 1My

by (1.2.6), and Hfx;M=0 for j >0, because V is smooth. We have H{xM=
I'tx1M, because I'tx1M is left exact, and

(2.1.8) RIpaMS M for MeMy(Y, D),
i.e. HixyM=0 for j=0 by (1.2.11).
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By definition J{fx;M belongs to the essential image of iy in (2.1.1), and we
define H'i'M eM(X, D) by HixiM =i Hi'M. More generally we have a
pull-back functor

2.1.9) i': DY(Y, 9)— D¥X, D)
by taking injective resolution (cf. (1.7.4)) and then applying 4%'. Note that
(2.1.10) RIpaM = iyi'M

by definition. In the definition of (2.1.9) we used also the equivalence of
categories

(2.1.11) DX, D)= D*(X, D),

where the right is the full subcategory of D*(X, 4) whose objects have bounded
cohomologies, and (2.1.11) follows from the existence of canonical filtration
7, cf. [17]. We have the adjoint relation

(2.1.12) Home(X’ Q)(M, I'N) = Home(Y, g))(i*M, N)

for MeD¥X, 9). N €D¥Y, 9), induced by the canonical morphism ixi'N—>
N, cf. (2.1.6) (2.1.10). In fact (2.1.12) holds for M e M(X, 9), NeM(Y, D)
when N is injective by (1.2.5), and this shows the stability of injective objects by
the functor i*. Then (2.1.12) is clear.

2.2, Proposition. We huve an equivalence of categories
2.2.1) ix: DYX, D) — D%(Y, D)
with quasi-inverse i'.
Proof. It is enough to show the quasi-isomorphism
(2.2.2) RIyyyM S M for MeDYY, D).
But it is clear by (2.1.8), because we may assume M €M (Y, D).

2.3. With the notation of 2.1, we define I'ty\ M = {(I'y1aM )y} E
M(Y, 9) with a natural morphism M — Ity x1M by

(23.1) (I'yyaM)y := My — T'yipa My for W={U—-V}el(Y),

where M={My}. This is also essentially independert of ¥ under (1.3.3), and
well-defined. Let RI'fy x1M be the derived functor defined by taking injective
resolution. Then we have a distinguished triangle
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(2.3.2) — RI'tyiM - M — RI'yy 1M — .
In fact we have a short exact sequence
(2.33) 0— I'paM — M — I'iyj;iM — 0

if M is an injective object, because the injectivity is preserved by restriction to
open subsets by (1.7.1), and (2.3.2) is true for My(9),) by (1.2.6).

§3. Direct Image

3.1. Let X, Y be complex analytic spaces. If X, Y are smooth, the rela-
tive de Rham functor DRy y is defined by

3.1.1) [MQAY™EXOy — - — M) for MeM@Dxxy),

where O is the sheaf of holomorphic vector fields on X, and M is put in degree
zero. Here the sheaf theoretic pull-backs by the first projection are omitted to
simplify the notation. By choosing a local coordinate system (x,, -+, x,) of X,
(3.1.1) is identified with the Koszul complex K(Af; 0, ---, d,) shifted to the
left by n=dim X, where Oy is trivialized by the vector fields 8,=8/0x;, cf. [7]
for intrinsic definition of the differential of (3.1.1). By definition, cf. [loc. cit.],
we have

(3.1.2) M = Rp DR yxy (M),

where p=pr, the second projection, and R p, is the sheaf theoretic direct image
with proper support defined by taking some canonical c-soft resolution.

In general, we take a covering family W={W},c, of C(X) in 1.6 such that
W is locally finite, i.e. {U;} is a locally finite covering of X. For any W’'=
{U'—=V'} €C(Y), we define a covering family W'=W X W' ={Wi},e, of XX U’
by Wi=W,x W' ={U,xU -V, xV'} €C(X xU"), where W,={U,—~V;}. For
MeM(X XY, 9), we have natural morphisms

(3.1.3) (PrhM; — M;

inducing isomorphisms on the complement of U; X U\U; x U’ by (1.6.3),
where M, is the representative of M on Wi=W;x W', and W,={U,—~V,} isas
in 1.6. By definition of direct image (pr;;),, cf. (3.1.2), they induce morphisms
of complexes of pry'9,-Modules on X x V':

(3.1.4) (jf)!DRV,,xV’/V’(M ]) g (.if)!DRV,x V’/V’(M )

inducing quasi-isomorphisms on U; X V', where j;: U;XV'—=X X V' is the
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natural inclusion, and DRy xy/y/(M;) are viewed as complexes of Dy
Modules on U; x V’. By the compatibility condition of the morphisms (3.1.3),
cf. 1.6, the morphisms (3.1.4) are compatible with composition for /C JCXK,
and we get a co-Cech complex DRy(M),- by the double complex whose
(». g)-component is

(3-1-5) @lIl=1-p(j1)!DRV1xV’/V’(M1)q

This construction is compatible with the morphisms of M e M(X x Y, &) and
the morphisms of W’ &((Y), and independent of the choice of W up to quasi-
isomorphism, i.e. for two locally finite coverings W,={W} 4, (=1, 2) such
that 4, C 4,, the natural morphisms of complexes of p~'9),-Modules

(3.1.6) DR (M) — DRy (M)ys

is a quasi-isomorphism (this can be checked by reducing to the case | 4,\ 4,]| =1).
If Y=pt, we define

(3.1.7) DR (M) = DR{(M) = DR (M ),:ED¥Cx)

for M € DX, 9), where pt={pt— pt} =C(pt).
In general, we define p,: D(X x Y, 9)—D*Y, 9) by

(3.1.8) p(M)y = RpDRy(M),,  for W'eC(Y),

where p,(M )y is the representative of p)(M) on W', and Rp, is defined by taking
some canonical c-soft resolution, and we can use the lemma below in this case.
Here the cohomological dimension of X is finite by assumption on X, and we
can truncate the resolution, or use (2.1.11) after taking the direct image.

By definition we have a canonical isomorphism

(3.1.9) DRy(pM) = Rp DR y.y(M) ,

because W x W' is a covering family of C(X X Y) if W is that of C(Y). Here
Rp, is the sheaf theoretic direct image with proper supports.

3.2. Lemma. Let X be an analytic space, and M € M(X, 9). Then there
exists canonically M' € M(X, &) with injection M —M' such that M {7®0V Lis
c-soft for any W={U—V} €C(X) and locally free Oy-Module L.

Proof. Let N 4 be the subsheaf of My, annihilated by a coherent 1deal J
of Oy such that supp Oy/J C U, and Nj be the sheaf of discontinuous sections
of N4 The functor N g —N ¢is exact and commutes with the tensor product of
locally free sheaves. Then My is obtained by the inductive limit of Nj. This
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construction is compatible with the morphisms of C(X), because it is true in
the closed embedding case. So we get M’ with the injection M — M'.

33. Letf: X—Y be a morphism of analytic spaces, i;: X—XXY the
embedding by graph, and p=pr,: XX Y—Y the second projection. We define
fit DNX, D)—>D"(Y, ) by

(3.3.1) Jr=pligs,
cf. (2.1.3) (3.1.8). If fis proper, we define fi=f,. We can check
(3.3.2) & =g/
for f: X—Y, g: Y—Z, using the diagram
XxXZ
/N
X > XXY>XXYXZ
(3.3.3) ! v
Y — YXZ XXZ
v
VA

because the sheaf theoretic direct image with proper support commutes with
inductive limit. We have also

(3.34) DRy(fiM)=Rf,DRx(M)

by (3.1.9), because the closed embedding case follows from the well-definedness
of DRy.

3.4. Proposition. If f: X—Y is a finite morphism, the direct image
fe: M(X, D)—>M(Y, D) is faithful and exact.

Proof. The assertion is local on Y. We may assume Y smooth and X is
a closed subspace Z of the product of Y with a complex manifold which will
be denoted by X. Then the assertion is reduced to the exactness and faithful-
ness of the functor

(34.1) fii My Dxxy) = M(Dy),

where f=pr,, and Z is finite over Y. Taking factorization of f, we may assume
dim X=1. Let x be a local coordinate of X, and y=(y,, ---,y,) a local
coordinate system of Y. Then for M € M (D y)

(3.4.2) DR gy (M) = Cone(d,: M — M).
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For the exactness of f,. it is enough to show the injectivity of 9,. Let meM
such that md,=0. By definition, cf. (1.2.3), we have a holomorphic function
g such that mg =0, where we may assume g is a Weierstrass polynomial P(x, y)
of x with coefficient in holomorphic functions of y. Let d be the degree of
P(x,y). Since the coefficient of x? is 1, md,=0 and mP(x, y)82=0 imply m=0.
For the proof of faithfulness, it is enough to show f,M/ =0 iff M=0, because
the functor commutes with Im by exactness. The assertion is stalkwise, and
we may assume the stalk of M at x&X X Y is finitely generated, and M is
coherent (by restricting X, and replacing M by a coherent Module with same
stalk at x), because the inductive limit of an injective system whose morphisms
are injective and non zero, is not zero. Then the assertion is checked by re-
stricting to a subsapce of Y on which supp M is locally biholomorphic, because
fiM is coherent.

3.5. Let X be a complex analytic space, and L an Ox-Module. With the
notation of 1.5, we define M= {My} € M(X, D) by

(3.5.1) My =L|y®p, Dy for W={U—V}eCX),

where the moiphisms w5, in (1.5.1) are naturally defined by the compatibility
of the passage to the associated induced Modules with direct images, cf. [16,
3.3]. We call M the 9-Module induced by L, and denote it by L®0x 9D. A
9-Module which is isomorphic to a 9-Module induced by an Ox-Module is
called an induced 9-Module. Let M/(X, 9) be the full subcategory of M(X, D)
consisting of induced 9-Modules. For M, L as above, we Lave

(3.5.2) M is coherent, iff L is a coherent O x-Module.

In fact, if M is coherent, L|; is a subsheaf of a quasi-coherent O,-Module M,
and it is enough to show that L is locally finitely generated. Let 33,<,m;,®0"
(1<i <k) be local generators of My over 9y, where we take a local coordinate
system (xy, --+, x,,) and put 8" =[] ; 8} with 8;=08/0x;. Then m,;,®1 generate
M over 9),. This implies that m, , generate L over Oy, because 9y is faithful-
ly flat over O,.

We say that M € M(X, 9) is a quotient coherent induced 9-Module, if M is
coherent and there is a surjective morphism of a coherent induced 9)-Module
M’ onto M. We say that a 9)-Module M on X is good coherent, if for any
relatively compact open subset X’ of X, there exists a finite filtration G of M | 4
such that Grf M | x- are quotient coherent induced. We say that a 9)-Module
is inductively n-good, if for any relatively compact open subset X' of X, there
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exist increasing exhaustive filtrations G* of Grfk":ll---GrfooM | for i;EN and
0<k<n inductively such ihat G° is a finite filtration, G* are bounded below,
ie. G?Gr?:_":---Gr?:M | x»=0 for {0, and Gr,-cn"---Gr?:M | x» are quotient
coherent induced. In particular, M is inductively 0-good iff it is good
coherent. By definition, M is inductively n-good, iff M | 5- has a finite filtration
G and each Gr{M |5 has an increasing exhaustive filtration G’ such that
Gr§'Gré M are inductively (n—1)-good, and zero for j<0. We say that M

is inductively good if it is inductively n-good for some n. Then
(3.5.3) a 9-Module is good coherent, if it is coherent and inductively good,

by the noetherian property of 9-Module, cf. [7]:

(3.5.4) an increasing sequence of coherent sub-Modules of a coherent 9-
Module is locally stationary.

We say that a complex of 9)-Modules is good coherent (resp. inductively n-
good, resp. inductively good) if so are its cohomologies. We denoted by
M, (X, D) (resp. M, (X, D)) the full subcategory of M(X, 9) consisting of
good coherent (resp. inductively good) 9-Modules, and by D} (X, D) the
full subcategory of D*(X, D) consisting of good coherent bounded complexes
(same for Di(X, 9)). By (1.8.3-4) we have

(3.5.5) inductively n-good bounded complexes are stable by external product
X.

In fact, it is enough to show that the coherent induced Modules are stable by
the external product. But it is clear.

Assume X smooth, and let U be a relatively compact open polydisc in X
with U its closure. Then, for M e M, (X, 9) (C M(Dy)), we have

(3.5.6) HiU M)y=0  for i>0.

In fact, I'(U, *) and H'(U, *) commute with inductive limit and are the induc-
tive limit of I'(U’, %) and H*(U’, %) for U'DU. Then the assertion is reduced
to the case of quotient coherent induced 9-Modules, and we can proceed by
decreasing induction on i using 3.6 below, because the assertion follows from
Cartan’s theorem B in the case of coherent induced Modules, and H (U, M)=0
for i 3>0. We have also

(3.5.7) M|z is generated by I'(U, M) over Dy, if MeM,(X, D)
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by Cartan’s theorem A and (3.5.6).

We say that a 9 y-Module (or an O;-Module) is quasi-coherent, if it is
locally isomorphic to the cokernel of a morphism of free Modules (of infinite
rank in general). Here quasi-coherence over 9 implies that over O, because
Dy is locally free over Ox. A quasi-coherent Module M is locally the
union of its coherent g x-sub-Modules (or O x-sub-Modules). In fact, if M=
Coker(L'— L) with L', L free, consider the intersections of a finite free sub-
Module of L with the images of finite free sub-Modules of L‘, which are
coherent, and use the Noetherian property. In particular, the image of a
morphism of a locally finitely generated Module to a quasi-coherent Module
is coherent. On the other hand, if M is the union of its coherent € x-sub-
Modules, M |, is generated by global sections over 9Dy (or Ox) by Cartan’s
theorem A, and we get a surjection M'— M |, with M’ a free Module. Then
M’ is the union of its coherent sub-Modules, and so is the kernel of the surjec-
tion, because the image of a coherent sub-Module of M’ is locally contained in
a coherent sub Module of M. Therefore we get

(3.5.8) M s quasi-coherent iff it is locally the union of its coherent sub-Modules.

Actually we showed that quasi-coherence over 9y is equivalent to that over Oy,
because we used only coherent Ox-sub-Modules (and the locally freeness of
Dy over Oy) for the construction of presentation of M as the cokernel of a
morphism of free Modules. By a similar argument, we get

(3.5.9) Ker(M'—M) is locally a quotient of free Module, and Im(M'—M)
is quasi-coherent, if M’ is locally a quotient of free Module and M
is quasi-coherent,

because the assertion is reduced to the case M’ free by taking a surjection of a
free Module to M’. Note that (3.5.6-7) hold for quasi-coherent Modules, if U
is sufficiently small so that we have a presentation of M as the cokernel as
above on a neighborhood of U.

Let 0—M’'—>M—>M"—0 be a short exact sequence. Then we have

(3.5.10) if two of M’, M, M" are quasi-coherent, so is the remaining one.

In fact the case M quasi-coherent {ollows from (3.5.8). In the remaining case
we can lift locally the presentations of M’, M’ to that of M using the assertion
in the other cases and (3.5.6) in the quasi-coherent case, cf. the remark after
(3.5.9). By (3.5.9) (3.5.10) we have
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(3.5.11) quasi-coherent Modules are stable by Ker, Coker, Im.
Using (3.5.7) (3.5.8) we get
(3.5.12) inductively good 9-Modules are quasi-coherent.

In fact, we have a canonical surjective morphism I'(U, M)Q ¢ Dy—>M |, for an
inductively good 9-Module M, and its kernel is a union of coherent O-Module,
because the image of a morphism of a finite free @-Module L to an inductively
good 9-Module M is a coherent O-Module. In fact, consider the image of
the induced morphism L—>Gr?:---Gr,-G°°M for ;>0 defined on a compact subset
of X and replace L by its keinel so that i; decreases inductively. By the same
argument we can show that an inductive limit of inductively good 9-Module
is quasi-coherent.

3.6. Lemma. Let
(3.6.1) O-M —->M-—M'—-0

be a short exact sequence of quasi-coherent )-Modules on X. Then M is in-
ductively n-good iff M', M" are inductively n-good. In particular, M’ is good
coherent, if M is coherent induced.

Proof. The assertion is clear if M’, M” are inductively n-good. Assume
M is inductively n-good. Then, restricting X to a relatively compact open
subset, we have inductively defined filtrations whose successive graduations are
quotient coherent induced by definition. We take inductively the graduations
of induced and quotient filtrations on M’, M”, and the assertion is reduced to
the case M is a quotient coherent induced 9-Module, and M’, M’ are coherent.
Then the assertion on M” is trivial. For M’ we have to use essentially the
filtered theory, cf. [14, §2]. Assume first M is induced by L. We define a
filtration F on My, for W={U—V} &(C(X) by

(3.6.2) F,My = LQF,D, .

Then Grj My is an Oy-Module, F is compatible with the morphisms of
WeClC(X), and {(My, F)} defines an object of MF(X, 9) (denoted by MF(Dx)
in [loc. cit.]). We define F on M’, M” by induced and quotient filtrations.
Then {(M#, F)}, {(M¥, F)} EMF(X, 9). Let p(M")=min{p: F,M{=0 for
some W} (=0). Then Fj) My are compatible with the morphisms of W, and
defines globally a coherent Ox-Module L,. Let M/} be the 9-Module
induced by L,. Then we have a morphism M },,—>M’ induced by the natural
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inclusion F,yMy—>My. Let Gy M’ be its image. Since p(M'/GyyM')>
p(M"), we can proceed by induction, and get a filtration G of M’ such that
Gr§ M’ are quotient coherent induced.

We now show the case M quotient coherent induced. Let N be a coherent
induced 9-Module with a surjection N—M. Let N’, N” be the kernel of
N—M and N—>M"". Then N', N” are good coherent by the above argument.
We have a short exact sequence 0— N'— N” — M’ —0 by snake lemma, and
the assertion follows.

Remark. The above argument shows that the underlying 9-Module of a
coherent filtered 9)-Module in the sense of [14, 2.1.15 and 2.1.20] is good
coherent. In the case X smooth, this implies that a coherent 9 y-Module M
having a good filtration F (i.e. Gr¥ M is coherent over Gr¥ 9)y) is good coherent.
In particular

(3.6.3) a coherent 9-Module is locally good coherent.

3.7. Theorem. Let f: X—Y be a proper morphism of complex analytic
spaces. Then fy: DYX. D)— D¥Y, 9)) preserves inductively n-good bounded
complexes, and induces

(371) f*: Dz‘,coh(X’ Q) g DZ’,coh(Ya Q)) etc.

Proof. Let p: XxY—Y be the second projection. Using 3.6 and the
spectral sequence whose E,-term is ’p,(H’M), it is enough to show

(3.7.2) Hip(M) is good coherent (resp. inductively n-good)

for M e M(X x Y, 9) such that M is good coherent (resp. inductively n-good)
and supp M is proper over Y, because the direct image by closed embedding
is an exact functor and preserves coherent induced 9)-Modules. If M is
induced by an Oxxy-Module L, we have a natural quasi-isomorphism as com-
plexes of p~'9,~Modules:

(3.71.3) DRp(M )y = L®p—10V,P_IQV'
for W'={U'—V'} €(C(Y) compatible with the morphisms of W’. This implies
(3.7.4) (pM)y: = RpL®p, Dy

and the assertion follows from Grauert’s coherence theorem for @-Modules.
In general, we may assume M good coherent, by using inductively the
spectral sequences
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(375) E;:'j = ﬂ""’jp,Grf;M% j{i—” !M

associated with the filtrations G in the definition of inductively good. Here the
differential d:+/ is zero for r>» —i, and the kernel of the projection Ei/—E%L/
(r > —i) is quasi-coherent by (3.5.11-12) and 3.6, because the kernel is in-
ductively n-good by the structure of spectral sequence and 3.6 if Ei/ are
inductively (n-1)-good. For i e Z, a similar argument shows

(3.7.6) Hp,M are locally finitely generated and H'p,M (j>i) are good
coherent for good coherent 9-Modules M if this holds for quotient
coherent induced 9)-Modules,

where we use (3.5.9) in the coherent case (i.e. the kernel of a morphism of a
locally finitely generated Module to a coherent Module is locally finitely gen-
erated) and the fact that {’p,M is locally finitely generated if so are Gry.p,M.

We show the assumption of (3.7.6) for i-1 follows from its assertion for
i, so that we can proceed by induction, where 4’p,M=0 for i >0, because the
cohomological dimension of X is bounded by hypothesis. We consider a
short exact sequence

(3.7.7) 0> M —>M-—>M"'—>0

with M coherent induced and M” quotient coherent induced so that M’ is
good coherent by 3.6. We have the associated long exact sequence

(378 —=>JIHpM — HpM— Iip M’ — Hp M — Hit'pM—

where 4{’p,M are coherent induced for any i by (3.7.4). Assume the conclusion
of (3.7.6) for i. Then Y’p,M" is good coherent by 3.6, and Hi"p,M" is
locally finitely generated using (3.5.9) in the coherent case. So the hypothesis
of (3.7.6) is proved for i-1.

3.8. Proposition. Let f: X—Y be asin 3.7, and Z be a complex analytic
space. Then for M&D} (X, 9) and NED"(Z, 9), we have a canonical
isomorphism

(3.8.1) (f« M)XIN S (fxid)«(MXIN)  in DNYXZ, D).

Proof. By definition of direct image and external product, we have a
canonical morphism (3.8.1), and the assertion is local and stalkwise on Y X Z,
because the stalks of (3.8.1) depends only on M and the stalks of N In partic-
ular we may assume Y, Z smooth and N a 9,-Module. Here we use only
the @,-Module structure of N in the definition of (3.8.1). Since the two functors
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commute with inductive limit, we may assume N is a coherent ©,-Module by
taking coherent extension of finitely generated @, ,-submodules of N, for zEZ,
and then N is a free Oz-Module by taking resolution.

Therefore the assertion is reduced to the case Z smooth and N=w,. Here
we may assume dim Z=1 by factorizing the projection YXxZ—Y. For z€Z,
let i,: Y=Y X {z}— Y XZ be the natural inclusion. By 3.10 below, i; of
(3.8.1) is a quasi-isomorphism for any z. Taking the mapping cone, the as-
sertion is reduced to

(3.8.2) MeED:  (Dyxy) is zero, if i:M=0 for any z.
The hypothesis is equivalent to the quasi-isomorphism
(3.8.3) M — Iy zipxan M,

and we may assume Me& M_,(Dyx;) by taking cohomology, because
Tty y z17x (21 1S exact. Then the assertion is further reduced to

(3.8.4) MeM_ (D, is zero, if i:M=0 for any x€X ,

where X denotes the above Y XZ, and i,: {x}— X is the natural inclusion.
Restricting X to a smooth Zariski-open subset of supp M, we may assume
X=supp M. Let F be a good filtration of M. If Ch(M)=£T*X, take a generic
smooth hypersurface i: Y—X such that T#X is not contained in Ch(M) and
the local equation ¢ of Y is a non zero divisor of Gr¥M (by restricting X to a
Zariski-open subset if necessary). Then i'M=0 iff M=0 on a neighborhood
of Y, and we may replace M by H'i'M (=M/Mt locally). So the assertion
is reduced to the case of CH(M)=T*X. Let u, --+,u, be local generators of
M, and M; the 9y-sub-Module generated by u;. Then Ch(M;)=T*X for
some j, and this means M;=9y. Applying the same to M/M; inductively,
we get locally an injective morphism of a finite free 9 x-Module M’ into M
whose cokernel M” has smaller characteristic variety. Consider a long exact
sequerce

= HYiIM — APV M — MY — M — M — A MY —
where n=dim X. Since H"i:M’=+0 for any xE X, the assertion is reduced to
(3.8.5) {xeX: J"ti)M=0} is dense in X for M € M_ (D).

which we apply to M. For the proof of (3.8.5), we may assume also
Ch(M)==T*X by the same argument as above. Then the assertion follows
from the long exact sequence using induction on dim Ch(M), because
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YD ) =0.

3.9. Corollary. Let f: X—Y and f': X'—Y' be proper morphisms of
complex analytic spaces. Then we have a canonical isomorphism

(3.9.1) (X VMM = fM X feM'
for M €D} . w(X, D), M'ED}, (X', D).
Proof. This follows from 3.8 and (fXf")sx=(f¥id)x(id X[ )x, cf. (3.3.2).

3.10. Proposition. Let 2 X— Y be a morphism of complex analytic
spaces, and Z be a closed subspace of Y. Put Z'=f"(Z). Then, for
MeD¥X, D), we have canonical isomorphisms
(3.10.1) RI'tpn fIM = fARI ;nM
(3-10-2) RP[YIz]flM = /iRy 127M .

Proof. It is enough to show the acyclicity of RI'(,1/,RI'txznM and
RI'ty 1 f\RI;4M by the commutative diagram

y J ¥
— RI't;1f{RT;nM S RIpufiM — RI,fiRTix;nM —
= {

(3103) —  fiR[z;nM  — M = fiRIy;aM —

V i’ y =
— Ry 1 iR ;nM — Ry 50/ M S Ry 11/, R 1x121M —

In particular the assertion is local on Y, and we may assume Y smooth. By
(1.2.9-10) it is enough to show that the direct image commutes with the locali-
zation by a function on Y. But it is clear by definition, because inductive
limit commutes with the sheaf theoretic direct image with proper support.

3.11. Remark. With the notation of 3.5, let LQ®p, 49 and L’®Ox 9 be
the 9-Modules on X induced by ©@x-Modules L, L’. We define the (filtered)
group of differential morphisms of L to L’ by

(B.11.1)  Homp(L, L) |y = JWQV((LIU)®@U Dy, (L,IU)®0,, Dy)
for W={U—V} €C((X), where it has a filtration F defined by
(3.11.2) FpJWDiff(L’ L)y = J/WOV(L|U, (L,|U)®@UFpQV)

cf. [14, §2] [16]. In fact, it is independent of the closed embeddings of U into
manifolds ¥, and is globally well-defined. Note that this definition coincides
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with Grothendieck’s one [21] by [16], because the latter is also invariant by
closed embeddings. In fact, let i: X—Y be a closed embedding of complex
analytic spaces. With the notation of [loc. cit.] (see also [16, 1.20]) we have

Home (PY Ry ixL, ixL') = Homo (0xQ0, PR 0,0x)R@0,L, L)

with 0x®ey P @0y Ox=0xxx®0yyy P+=P% using the right exactness of
tensor, where X, Y may be singular and nonreduced.
We define the ring of differential operators on X by

(3.11.3) Dy = Homp(Ox, Ox) -

Let W={U—V}e((X), and Dyy=0yQ0,9Dy. Then Dy, has commuting
structures of left 9,-Module and right 9,-Module by definition (3.11.1). Let
M be a (right) 94-Module. We define

(3.11.4) My = (Mll/’)®.@g- Dyosy -

Then M{, are compatible with the morphisms of C(X), and define a 9-Module
on X, which we denote by M ® g, 9 and call the 9-Module on X induced by
a 9x-Module M. So we get a functor ® g, D of M(Dyx) the category of Dy-
Modules to M(X, 9). We say that a Dy-Module M is induced by an Ox-
Module L if M=LQp, Dx. Then (LQp, Dx)Q g, D=LQp, D. For the
moment the relation between M(Dy) and M (X, &) in general is not clear, cf.
[20] for the one dimensional case.

§4. Pull-Backs

4.1. Let f: X— Y be a morphism of complex analytic spaces. We define
the pull-back f': D*(Y, 9)— D*X, 9) by the composition:

4.1.1) fl=itp',

where i, is the embedding by graph of f, and p: XX Y— Y is the second pro-
jection. Here i} is defined in (2.1.12). For p', we will first show in 4.2 the
existence of M €D%y(X, 9) (cf. 1.5) such that

(4.1.2) DRy(M)==akC<EDYCy),

where ay: X—>pt is the natural morphism and a%C is the topological dualizing
complex, cf. [18]. The uniqueness of A with isomorphism (4.1.2) will be
shown in 4.10, and we denote M by ay®,. (This notation must be distin-
guished with the topological dualizing sheaf axC, although w,=~C.) We have
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the trace morphism
(4.1.3) Tr,p: (Gx)185@y — @y

by the topological trace morphism Tr,,: (ax)axC —C, cf. [18], because
(ax)\axw == (ax),axC by (4.1.2). We define

4.1.4) P'N = ayw, XN for NeDY(Y, 9),
cf. 1.8 for [X]. Then we have a canonical isomorphism
4.1.5) Axxy @y = Ay @, XAy @

using the uniqueness of axxy @, and the commutativity of DR with [, cf. [7]
[10][1], etc. (see also the remark after 4.4). Then the functoriality

4.1.6) (/8 =g

can be checked using the diagram (3.3.3). In fact, using the isomorphism (4.7.1)
below, it is enough to show the commutativity of the pull-back by projection
with local cohomology, i.e.

@.1.7) dx @y X RTt ;N = R tyx 1(@k 0 [XIN) ,

and it follows from (1.8.5). This definition of pull-back f* is compatible with
the usual definition

(4.1.8) M =M@ f1 gy Dyesldim X—dim Y]

in the case X, Y smooth, using (2.1.10) in the closed embedding case and
the construction in 4.2 below in the smooth projection case, where Dy x=

©xQ 10, [T (Dy®p,(@y)™), cf. [1][7][10], etc. We have also
4.19) [f'MeD: (X, D) for M eD](Y, D) (same for Di(X, D)) .
by [6] [7] [10].

4.2. Lemma. With the above notation, the dualizing complex ayw,, exists.

Proof. If X is a closed subvariety of a manifold V, the assertion follows
from [7][10] by taking RI't;jo,[dim V], where w, is the analytic dualizing
sheaf (i.e. the top degree differential forms) of V. Moreover axw, with
isomorphism (4.1.2) is unique by the Riemann-Hilbert correspondence in this
case, cf. [loc. cit.]. In the general case this implies the local existence and
uniqueness of ay @, Let W={W} ., be a locally finite covering family of X
such that U; are relatively compact in X, where W;={U,—V;}C(X). We
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may assume X connected, and hence 4 is countable, i.e. A=N. (In fact X is
covered by X;=Uuy,nx;_+0 U; (j>0) with X;={x}.) Then the assertion is
reduced to the following

4.3. Lemma. If X is covered by two open subsets U,, U, such that
Ay @, exists for a=1,2,3 (where U;=U,NU,) and ay,®, with isomorphism

(4.1.2) is unique, then a% ®,, exists.

Proof. Let j,: U,~ X be the natural inclusions. Then we have isomor-
phisms apy, @, |y,==ay, ®, (@=1, 2) by the uniqueness of ay,®,, This induces
morphisms (j3),ay, @ = (jo)i8k, @4 in DX(X, D), and a @, is given by

(4.3.1) Cone((js)xalua @Dy —> (]'1)!'»‘01 Q’pt@(jz)!abza’pt) >
because we have a distinguished triangle
(43.2) - (ja);a!UaC - (j)ay,CB () ay,C — ax C —

4.4. Lemma. With the notation of (3.1.5) (3.1.7) and 1.8, we have natural
quasi-isomorphisms for N € M(Y, 9):

4.4.1) pPri'DR (4% @)@ ¢ prz 'Ny» — DR (a5 @, X| N )y
compatible with the morphisms of W &C(Y) and N e M(Y, D).

Proof. We have the natural morphisms (4.4.1) by definition, cf. 1.8 and
3.1. To show the quasi-isomorphism, we may assume Y is smooth and X is a
closed subspace Z of a complex manifold which will be denoted by X. By
definition we have a canonical morphism

4.4.2) pri' DRy (M)Q®¢ prz* N — DRy .y (M X N)

for a 9y-Module M and an Op-Module N, where only the @p-Module struc-
ture of N is used in (4.4.1). Then it is enough to show that (4.4.2) is a
quasi-isomorphism in the case M holonomic, because BI'r,j@, has holonomic
cohomologies. Since the assertion is stalkwise on X x Y, and compatible with
inductive limit of N, we may assume N coherent, and then free, i.e. N=wy, by
taking a resolution of N. 1In this case the assertion is more or less well-known.
In fact, let xE X, and B, denote the e-ball in X with center x (defined by taking
local coordinates). Then, if ¢ is sufficiently small, the direct image a» 9-Module
(pr)x(M X wy| B, X Y) is independent of ¢, and its cohomology sheaves are
free Op-Modules of finite rank, cf. [4]1[8]. This means that the restriction of
H (DR gy (MKl @y)) to {x} X Y are free Oy-Modules of finite rank. So it is
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enough to show the isomorphism (4.4.2) after taking DRy. Then the assertion
is reduced to the case M=wy, by exchanging X and Y, and we may assume
N=wy by the same argument as above. Then the assertion is clear.

Remark. This argument is essentially same as the proof of the commu-
tativity of the de Rham functor DR with the external product [X. cf. for
example [1].

4.5. Corollary. With the notation of 4.1, we have a canonical isomorphism
4.5.1) (@xhak o, XIN = pip'N .

Proof. This is obtained by taking the direct image of (4.4.1) by Rp,
because Rp, commutes with inductive limits (and hence with tensor product
over C).

4.6. With the notation of 4.1 we get the trace morphism
4.6.1) Tr,: pp'N — N.
by 4.5 and (4.1.3). For the closed embedding i;, we have the trace morphism
(4.6.2) Tr;;: (i)itM = RT'taM — M
by (2.1.6.) (2.1.10), and we get the trace morphism
(4.6.3) Tr,: fif'N =p(ip)ijp'N — p,p'N - N
by (4.6.1-2).

4.7. Lemma. Let i: Y—>XXY be a section of the projection p: XX Y —
Y, i.e. pi=id. Then the composition
4.7.1) i'pPM=pii'p'M — p,p'M - M

is an isomorphism for M € D¥(X, 9), where the morphisms are induced by (3.3.2),
(2.1.6) and (4.6.1) respectively.

Proof. Since the assertion is local, we may assume X, Y are closed sub-
spaces of complex manifolds X, Y, and i is extended to a section i': Y'—
X' xY' of the projection p': X' XY'—Y'. Let Z, Z' be the image of i, i'.
For M € My(Dy)=M(Y, D), we have

(4.7.2) RI'ty.ynp’'M represents p'M on X' X Y,

by (1.8.5) and definition of p"'M, p'M. Since the trace morphism (ay),axC—C
is the composition of the natural morphism
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(4.7.3) (ax)!ajxc = (ax)!RPXa!)[/C b (ax/)! a“xlc

with the trace morphism (ax/),ay'C—C, and RI't;1p'M =RI'1;np"'M for
M e My (Dy/) by (1.2.8)(2.1.8), it is enough to show that the composition

(4.7.4) PIRIznp"M — pip"M — M

is an isomorphism for M € My(9y-), and the assertion is reduced to the case
X, Y smooth. Then we may assume that the section is constant by replacing
the direct decomposition X X ¥, and the assertion is clear.

4.8. Theorem. Let

’

x £ X’
(4.8.1) fl l i
Yy <y
be a cartesian diagram of complex analytic spaces. Then we have a canonical
isomorphism
(4.8.2) g fM=flg"M in D¥Y', 9)

for M €D¥X, 9) in the following cases: i) g is a closed embedding, ii) f is a
finite morphism, iii) M is holonomic, iv) f is proper and M €D}, . (X, D).

Proof. The case f is a closed embedding is clear by definition, and we
may assume f is the second projection XX Y— Y. Since the case i) follows
from 3.10, we may also assume g is the second projection ¥’ X Y—Y, and the
case iv) follows from 3.8. In the remaining cases, we have a canonical mor-
phism
(4.8.3) g'hM —flg"M in DNY', 9)

cf. also (3.8.1). So the assertion is local, and we may assume Y, Y’ smooth
by the case i). In the case iii) the assertion follows from (4.4.2). In the case
ii), i.e. supp M is finite over Y, (4.4.2) is also a quasi-isomorphism. In fact,
we may assume X smooth, and it is enough to show the stalkwise isomorphism

(4.8.4) N®0Y Oyxy’ = N®0xxy OXXYXY’

for N=M @ A '@y, where the sheaf theoretic pull-backs are omitted. Taking
graduation of M@ A‘O@y by the filtration induced by that on M, cf. (1.2.1),
(4.8.4) is reduced to the case N is an ©,-Module with Z=supp M, and then
N coherent, because the assertion is stalkwise and (4.8.4) commutes with
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inductive limit of N. Then it is clear by the base change property of pro-
jective morphism by smooth morphism which can be easily checked using free
resolutions.

4.9. Theorem. Let f: X—Y be a morphism of complex analytic spaces.
Then we have the adjunction formula
(4.9.1) Homps(x, (M, f'N) = Hompy(y g)(fi M, N)
Jfor MeD¥X, D), N € D*(Y, 9), induced by the trace morphism Tr: f,f' N—N,
cf. (4.6.3), if the assertion of 4.7 holds for M, f and g=pr,: XX Y—Y.

Proof. By (2.1.12) (4.6.3) we may assume f is the second projection
XxY—Y. Consider the commutative diagram

i
XXY I XXX XY — XXY

(492 Al |
vy £ xxy

where ¢, ¢, are induced by the projections to the first and second factors of
XXX, f=p,=p, and qji=q,i=id. We define §: M— f'f,M by

(4.9.3) M =i‘qi M =(q,),ixi'qiM — (g)91M == p3(p) M ,

where the morphism are induced by (4.7.1), (3.3.2), (2.1.6) and 4.8 respectively.
Note that (4.9.3) is defined also for M=f"'N, because (4.8.2) holds for M=f'N

using (q.)19ipiN =(q,)14:p2N and 4.4. Then it is enough to show that the
compositions

(4.9.4) ﬁMLfffM—%M f'N—> fffo — f'N

induced by a:=Tr, and B are isomorphisms. The first is same as (p,), of the
composition

. Tr
(4.9.5) M =(g)ixi' G M — (g iM — M,
because Tr is compatible with direct image, i.e. we have a commutative diagram

(P)((@) )M — (P1) ( M

(4.9.6)
Tr
(P22 P) M —> (p WM
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by definition of Tr, cf. (4.6.1), since the direct image with proper support com-
mutes with inductive limit. Here the first isomorphism of (4.9.5) is induced by
(4.7.1), and hence the composition (4.9.5) is actually the identity. The second
is same as

.y . ] S I N | 1.1 Tr 1
(4.9.7) [N =i' g;p;N =(gp)isi' gsp3 N — (q):420: N — p; N

by the symmetry of the diagram (4.9.2) and the compatibility of Tr with pull-
backs:

o Tr .
((92):92) D2 N — p,N
(4.9.8)

| Nt
p(piP})) N — p,N .

Here we can use either the projection ¢, or g, as we like for the first isomorphism
of (4.9.7) which is induced by (4.7.1), because it is independent of the choice of
the projection by the symmetry of the diagram (4.9.2). Then the composition
(4.9.7) is an isomorphism. This completes the proof of 4.9.

4.10. Proposition. The dualizing complex ak @, in 4.1 is unique up to a
canonical isomorphism.

Proof. This follows from 4.9 by the standard argument on representable
functor, where we can apply 4.9 to M=ak, N=w,, and ay: X— pt, because M
is holonomic.

Remarks. 1) In the proof of 4.9, the functors f* might depend on the
choice of akw,. In the proof of 4.10, we apply 4.9 to the functor ay as-
sociated with any dualizing complex ay @, Note that the global uniqueness
of ay ,, is not used in the previous arguments.

ii) The notation ay w,, is justified also by 4.10, because it is the pull-back
of w,, €D} ,u(pt, D) by ay. In particular we have

(4.10.1) flay ,) = ay o,
for f: X—Y by (4.1.6).

4.11. Theorem. If M & D¥X, 9) has inductively n-good cohomologies,
cf. 3.5, then f'M has inductively (n-+1)-good cohomologies. In particular,

Dz,hol(X: Q)=Dz.coh(Xx -@) n D}bxol(Xa Q): Db,rh(X’ Q)sz,coh(X: Q) n D?h(X: Q)
are stable by f.

Proof. By (3.5.3) (4.1.9) it is enough to show the first assertion. By the
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same argument as (3.7.5), we may assume M quotient coherent induced. If
f is a projection, the assertion follows from (3.5.5) and 4.12 below. So we
may assume f is a closed embedding. If M is coherent induced, the assertion
follows from 4.13 below. We consider a short exact sequence

@.11.1) 0>M —>M—>M'—0

as in (3.7.7), i.e. M is coherent induced, etc. Then the remaining argument is
similar to that after (3.7.6), where 4{’p, is replaced by H‘f*, the locally finitely
generated condition by locally quotient of free Module, coherence by quasi-
coherence, and 0-good (i.e. good coherent) by 1-good. The difference is that
the condition: M is locally isomorphic to a quotient of a free Module, might
be unstable by extension. So we use

(4.11.2) Ker(M'— M) is locally a finite extension of quotients of free
Modules, and Im (M’ — M) is quasi-coherent, if M’ is locally a finite
extension of quotients of free Modules and M is quasi-coherent,

(4.11.3) finite extensions of quotients of free Modules are stable by quotients,

for the assertion corresponding to (3.7.6), where M’ is called a finite extension
of quotients of free Modules, if there is a finite filtration on M’ whose graded
pieces are quotients of free Modules. In fact, (4.11.3) is clear by taking the
quotient filtration on the quotient, and (4.11.2) follows from (3.5.9) by apply-
ing it inductively to a sub-Module of M’ and replacing M’, M by their quotients
inductively. Then we get the assertion as in the proof of 3.7.

4.12. Lemma. With the notation of 4.1 and 4.11, we have
(4.12.1) ay 0, D} (X, D).

Proof. The assertion is clear if X smooth, because ay ,,=wy[dim X] by
definition (using [7] [10]). The general case is reduced to this case by induction
on dim X using Hironaka’s desingularization. Let U be the maximal smooth
open subset of X with pure dimension #, where #n is the (maximal) dimension
of X. Then U is a closed analytic subspace of X. Let z#': X'— U be a resolu-
tion of singularity, and z: X’— X its composition with the natural inclusion
U—X. Then we have a canonical morphism

(4.12.2) Tr: @Gy @, — ax @,

by (4.10.1) and (4.6.3). Let Z=X\U and Z'=="'(Z). We have a distinguished
triangle
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(4.12.3) — RIpa3 0, —> ay @, — Ry 5105 @, —

by (2.3.2). Since RIza% ®,=ajz @, by (4.10.1), it is enough to show
(4.12.9) RI'iy a0, €D} (X, D)

by induction on dim X. By (3.10.2) we have a canonical isomorphism
(4.12.5) Rr[xlzlzza.!x'wpt = n!RF[X’lZ’]aéf’wpt .

This implies a canonical morphism

(4.12.6) 7y Ry ;10 @5 — RI[x17105 @y

by (4.12.2). We show (4.12.6) is an isomorphism. Let M, M’ be the mapping
cone of (4.12.2), (4.12.6) so that M’'=RIt5 ;7M. We have supp HMC Z,
because «= is biholomorphic on U, and M &D%(X, 9), cf. (2.1.4), because
MeD!(X, D). This implies RI't,;M =M by (2.2.2), and M’ =RItx ;1M =0.
Therefore (4.12.4) is reduced to the case X smooth by 3.7 and [7][10], and
follows from the triangle (4.12.3) and the inductive hypothesis, because (4.12.1)
is clear in the smooth case.

4.13. Lemma. With the notation of (3.5.1), let Z be a closed subspace of
X. Then I'tM is induced by I't 1L, und Hiz\M by Hiz L. If L is a coherent
Ox-Module, H}z1L has an increasing exhaustive filtration G such that Grg Hiz L
are coherent O z-Modules (i.e. annihilated by the Ideal of Z) and zero for k<O0.

Proof. Let M’ be the induced 9-Module by I'r;7L. Then we have a
canonical morphism M’'— M, and the first assertion is local, because it is enough
to show that this morphism induces M'==I'r,1M by taking I'r,7. Then we
may assume X smooth, and the assertion follows form the commutativity of
local cohomology with inductive limit (using a resolution of @x/J). The second
assertion follows from the first by taking injective resolution of L, because a
D-Module induced by an injective (O-Module is I'tzr-acyclic by the same
reason as above. For the last assertion, we use the spectral sequence

(4.13.1) El = &5 (Gr5' Oy, L) = JUHH L

induced by the filtration G on @y such that G*Qy=J%, where J, is the Ideal
of Z. In fact we replace L by an injective resolution so that Jlfz;L is the
cohomology of the complex I';;7L. Then G induces an increasing filtration G
of I't;1L which gives (4.13.1), because Grf I'i;1L=Homp (Gré Ox, L) by the
injectivity of L. Since Ei-/ are coherent ©,-Modules, the kernel of the projec-
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tion Ei/— E%7 (r>—i) is a union of coherent sub-Modules and is coherent
by Noetherian property. So Grf H{z;L are coherent ©,-Modules. This com-
pletes the proof of 4.13 and 4.11.

4.14. Theorem. With the notation of 4.11 and the assumption of 3.7,
D! (X, D), D} (X, D) are stable by f, and D}, ,1(X, D)=D}y(X, D).

Proof. We first show the stability by f. It is enough to show the stability
of holonomic and regular holonomic conditions by (3.7.1). Then the assertion
is local on Y, and we may assume Y smooth. The assertion is well-known if
X smooth by [7] [10], and the general case is reduced to this case using desin-
gularization and induction on dim X as in the proof of 4.12. In fact, let
z: X'—X and Z, Z' be as in the proof of 4.12. By induction and using the
triangle (2.3.2), it is enough to show the assertion for RI'(y 1M, where M €
D} va(X, D) or D} ,4(X, D). We have a canonical isomorphism

4.14.1) Tr: 2, Ry zn%' M = Rl M

as in the proof of 4.12 using (3.10.2) (4.6.3), where we have z,RI'(y/ ;' M €
D} (X, D) by [6], because the assertion is local on X. Since RIy/ m'MeE
D} va(X's D) or D (X', D) by 4.11 (using the triangle (2.3.2)), we get the first
assertion by (3.3.2). The proof of the last assertion is similar. If X is smooth,
the assertion follows from the fact that a regular holonomic 9)-Module has a
globally good filtration [7] by Remark after 3.6. (Here the case of regular
meromorphic connection is enough for our argument, if the resolution is taken
appropriately.) Then we have the isomorphism (4.14.1) for M€ D%(X, D),
because z' M is regular holonomic by [7][10], and belongs to D (X', D). So
the last assertion follows from the first assertion (applied to RIfy ' M and
=) using the triangle (2.3.2) and induction.

4.15. Remark. Let f: X—Y be a morphism of complex analytic spaces.
Assume f is bijective. Then f is topologically an isomorphism by Weierstrass
preparation theorem, and we have an equivalence of categories

(4.15.1) fi: DNX, 9) — DXY, D)

with a quasi-inverse f': D*(Y, 9) — D¥(X, 9)). Note that the complexes with
quasi-coherent (resp. holonomic, resp. regular holonomic) cohomologies are
stable by these functors and (4.15.1) induces equivalences of categories for
these complexes, but the stability of coherent complexes by f' is not clear.
For the proof of (4.15.1) we have canonical morphisms
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(4.15.2) M—f'fuM, fof'N—N

for M DX, D), N DY, 9) by 4.9, and it is enough to show that (4.15.2)
are isomorphisms for MeM X, 9), NeM(Y, 9). Here the assertion is
stalkwise, because (4.15.2) is defined stalkwise by construction (in fact direct
image by finite morphism and algebraic local cohomology are defined stalkwise,
and (4.7.1) depends only on stalk of #.) Then we may assume the stalks of
M, N are finite by using the commutativity of the functors f*, fy with inductive
limit. So the assertion is reduced to the case M, N coherent (in fact, quasi-
coherence is enough). Since the assertion is trivial on a Zariski open subset
on which fis biholomorphic, we can proceed by induction on the dimension of
X, Y by using the triangle (2.3.2) and the commutativity 3.10 as in the proof of
4.12 and 4.14, where the pull-back /' commutes with RI't,;, BRIy, by (4.1.6)
and (2.3.2). Here we used the quasi-coherence to show that BRIy, or
RI'ty ;1 of the mapping cone of (4.15.2) is zero, if its restriction to the com-
plement of Z is zero.

In the case X smooth, (4.15.1) was studied by [20] in the one dimensional
case, and by [19] in a more general case (where X admits a stratification by
closed smooth subspaces satisfying some condition, and the above argument
can be used to complete some arguments in [loc. cit.]).

§5. Duality

5.1. Let X be a complex analytic space, and d: X — X X X be the diagonal
embedding. Let M, NeM(X, 9), and K M(X x X, D) such that supp K C
Imd. If Xis smooth, we have a canonical isomorphism

(5.1.1)  Homg (M, Hang (N, 37 K)) = Homg,  (MXN, K),

cf. [16]. Using this we can construct Aem g(N, 6-'K)e M(X, 9) with a mor-
phism e: Hom (N, 07'K)[X] N— K which induces an isomorphism

(5.1.2) Hom g(M, Homg(N, 67K)) S Homg(M XN, K)

for any M by composition, where 4 means the morphisms in M(X, ), etc.
In fact, with the notation of 1.5, we define Ao g(N, 07'K), the representative
of Hemg(N, 67'K) on W={U—V} LX) by

(5.1.3) Homg(N, 87K )y = Homgy (Ny, 0 Ky i)

where WXW={UxU—>VxV}, and ¢ denotes the diagonal embedding for
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any spaces. By (5.1.1) we have a morphism
(5.1.4) Virgwys Sy Homg(N, 07Ky — Homg(N, 07'K)y,
using a commutative diagram

S Hom g (N, 07 K)y XISy Ny, —> (fxf)!lexwl

id@uwzwll
(5.1.5) Sy Homg(N, 07 K)y XINy, —

VW2W1 ldl /

Hom g)(N, B_IK)WZ@NW .

KszWz

Here we have the second horizontal morphism, because gz, is an isomorphism
on V\(U\U)) and f; Hemg(N, 7'K)y,, filNy, are zero on U)\U,. (In fact we
may assume U,=U, by replacing V, with V,\(U,\U,).) We can check the
compatibility condition (1.5.2) using (5.1.5), and this implies the isomorphism of
Virgr, o0 Vo\(U,\U)) using a section as in the proof of (1.3.3), because the
assertion is clear in the closed embedding case. Then the morphism ¢ is well-
defined by (5.1.5). We can check (5.1.2) using (5.1.1) and the morphism of
SiMy X fiNg, — fiMy, X Ny, My, [<X| Ny, to the left column of (5.1.5). Then
we can check that Homg(N, 67'K) is functorial in N and X using (5.1.2) with
the diagrams

JWQ(NZ’ 6_].‘K)Jv]. - ’#WQ(NZ’ 6-1K)NZ
Y !

(5.1.6)
Homg(Ny, 0'K)KIN,  — K
Homg(N, 0 KY)XIN  — K
(5.1.7) } V
Homg(N, S'K)XN  — K,

We have also
(5.1.8) AHomg(N, 67'K) is injective, if K is injective,

by (5.1.2), because [ is exact in both factors, cf. 1.8.
Let NeD¥X, 9), K €D%(X x X, 9), cf. (2.1.4), where X is identified with
the image of 6. We define

(5.1.9) R Homg(N, 6-'K)eD*(X, D)

by taking injective resolution of K, where K is represented by a complex whose
components are supported in Im ¢ by 2.2, and its injective resolution has also
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support in Im & by (1.2.6) (1.7.3). Then R Homg(N, 67'K) is acyclic if N or
K is acyclic, and it is well-defined. 1In fact it is acyclic if K acyclic and injective,
and it is independent of resolution of K. Then, if N is acyclic, the assertion
is reduced to the smooth case in [16] by taking the representative on each W
and using (1.2.6). We have a canonical morphism

(5.1.10) e: R Homg(N, 6 ' K)XIN — K in DY'(XxX, 9),

and this induces an isomorphism

(5.1.11) Hompu(x, g)(M, R Hemg(N, 67'K)) = Hompy(x x x,9)(MXI N, K)
by (5.1.2) (5.1.6-8) (using an injective representative of K as above).

5.2. With the above notation, let M D! (X, 9). We define DM &
DX, D) by

(5.2.1) DM = R Homg(M, 6 0y akw,,) .

Here DM € D! (X, 9) follows from (2.1.11) and the canonical isomorphism
(522) (DM)y = D(My) := R Homg,(My, oyldim V]®o, Dy),

cf. [16], which follows from the definition (5.1.3). In fact, we have

(523) 3704(ak 0,y = (@0, ®0, Dy = RIyiwyldim VIR, Dy ,

and R Homg,(My, RIypoy[dim VIQe, Dy) > R Humg. (My, oy[dim V]
®oy, Dy) by My D" (My(Dy)), cf. (1.2.5). This implies also

(5.2.4) Di (X, D) and D%(X, D) are stable by D.

By definition we have a canonical pairing

(5.2.5) DMK M — dyax o, in DYXxX, D)

inducing the isomorphism

(5.2.6)  Homps(x, g)(N, PM) = Hompux x x, 9) (NXI M, 04 akw,,) .
by composition, cf. (5.1.10-11). We say that a morphism

(5.2.7) NXIM — d4a3 o, in DYXxX, D)

is a perfect pairing of M, N €D}, (X, 9), if the corresponding morphism by
(5.2.6):

(5.2.8) N—DM in DX, 9),
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is an isomorphism. By (5.2.2) we have
(5.2.9) perfect pairings are invariant by closed embeddings,

i.e. for a closed embedding i: X— Y, N[X|M —dyakw,, is a perfect pairing if
and only if so is the composition iy N[X]ixM —> 0y ixay @, —> 0xay @,. Then
we have a canonical isomorphism

(5.2.10) DDM =M,

i.e. the transpose M [X| DM — dxayw,, of DM [X|M — d.ayw,, is a perfect pair-
ing, because the assertion is local, and reduced to the smooth case by (5.2.9).
Let /1 X— Y be a morphism of complex analytic spaces. We define

(5.2.11) f*M = Df'DM  for MeD' (X, D)
using (4.1.9) (5.2.4).

5.3. Let X be a complex analytic space, and W={U—~V}el(X). We
denote by K, the complex of currents on V shifted by 2 dim ¥ to the left, and
Ky, its subcomplex consisting of forms of type (dim V, i) with 0<i <dim V, so
that K, and K, are quasi-isomorphic to C,[2 dim V] and o, [dim V] respec-
tively. By [9] the stalks of the components of K, and K, are injective O ,-
modules. We define

(5.3.1) I?W = F[U]KV » Ky = ”"/"”‘OV(@U, Ky),

so that Ky is a subcomplex of K. Then, for a morphism f: W,;—W, as in
(1.5.1), we have canonical morphisms

(5.3.2) fKy,~ Ky,, fiKy,~ K, »

induced by the push-down of currents f;: f!I?Vl—>IZ'V2, because f3(mf*g)=fi(m)g
for me ﬁI?Vl, g€0y, Here f; denoted the sheaf theoretic direct image with
proper supports, and the second morphism of (5.3.2) is a morphism of com-
plexes of O-Modules. Then they satisfy the condition (1.5.2) by the func-
toriality of push-down of currents. Since I?W and K, are differential complexes
in the sense of [16], we denote by iii“[?w and Bli'lKW the complexes of
9-Modules induced by K;, and K, respectively (i.e. (’D\I’K‘II?W)‘E Kiy @D, etc.),
and they can be also viewed as complexes of g)-Modules on X by zero exten-
sion. Then, for f as above, we have a morphism of complexes of 9-Modules

(53.3) A(DRE,,) = DRY(£,K,,) - DR,
(5.3.4) f(DR"K,,) = DRY(f,Ky,) = DR™'Ky,
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induced by (5.3.2) and they satisfy (1.5.2), where the first £, in (5.3.3-4) denotes
the direct image of 9-Modules with proper supports, and the first isomorphism
is obtained by the same argument as in [16], because f; commutes with inductive
limit. Here 7 in (5.3.3-4) can be omitted if aﬁ“ll?wi and SIE'IKW,. are viewed
as complexes of 9)-Modules on X by zero extension as above, because f, is
essentially the zero extension, cf. 1.4. Although the morphisms in (5.3.2-4)
do not induce isomorphisms of complexes on V,\(U,\U,), they are quasi-iso-
morphisms on V,\(U,\U,), because it is clear in the closed embedding case, and
we can use the section of fas in (1.3.3) in general.

With the notation of 1.6 (e.g. W = { W},EA is a covering of X ), we define
complexes of induced 9-Modules DR'IKW and DR“KW by the co-Cech double

complexes whose (p, g)-components are

(5.3.5) D;-1n1-p(DRK ), By_ini-yDRK; )

respectively, where the co-Cech morphism is induced by (3.5.3-4), and we use
the zero extension of DR‘II?WI, etc. as above. Then we have a natural mor-
phism

(5.3.6) DR-'K,, — DR'%,,

We define similarly a complex of @ y-Modules Ky by the double complex whose
(p, g)-component is

(5.3.7) D1-1r1=p Kir, -

In this case Ky, are complexes of Oy,-Modules and the second f, in (5.3.2) is
really the zero extension. Then Bli“KW is the complex of 9)-Modules induced
by the complex of O@x-Modules Ky, i.e. we have a canonical isomorphism of
complexes

(5.3.8) DR-K;, — K@D .

In the derived category D)X, 9), Bf{"KW and Bl-i'llzw are independent of
the choice of covering W (because (5.3.3-4) induces quasi-isomorphisms on the
complement of U,\U,) and we denote them by DR-K x and BE“I?X respec-
tively. (Similarly for Ky, and Ky € D¥(Oy).)

5.4. Let f: X—Y be a morphism of complex analytic spaces. By the
functoriality of push-down of currents, we have the trace morphisms of 9-
Modules
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(54.1)  Tr,:f,DR"K, — DR"K,, Tr,: f;DR-K; — DR,

compatible with the morphisms Sli“KX»SIE"IIZX, 31’{“KY—>,I-)‘I-£“I?Y in
(5.3.6), where we use WxW'eC(XxY) for Wel(X), W'eCl(Y) as in
(3.1.9). Here the first morphism in (5.4.1) is induced by the trace morphism
of ©-Modules

(5.4.2) Try: fiKx — Ky

using the commutativity of DR~ with direct image. Note that we have a
canonical isomorphism

(5.4.3) DRE, = ay o,

compatible with the trace morphism for ay: X—p¢ by construction of 4.2. We
can also check that K is canonically isomorphic to the dualizing sheaf in [11]
using Théoréme 14 in [12], see Remark below, and in the f proper case, the
trace morphism (5.4.2) induces the duality isomorphisms for the direct images
of coherent complexes of @-Modules by [12] [13].

Remark. Let X be a complex manifold of dimension d, and K’ denote the
dualizing complex of [11]. By definition K'~ is the sheaf associated to the
presheaf which assigns to U the inductive limit of the meromorphic sections of
Ili7{2% with Z running over closed subvarieties of dimension i in U, where
the meromorphic sections are defined by the functor I'f; ;7 in (1.2.1), and the
differential of K’ is induced by a long exact sequence similar to (1.2.2). Here
we may assume Z (and Z’) are complete intersections in U, because we take
inductive limit for U, Z (and Z'). By Théoréme 14 of [12] we have a natural
morphism K'— Ky, where Ky is as in 5.3. This morphism is defined by using
residues and principal values, combined with Koszul comlexes calculating the
higher extensions (whose limit gives the algebraic local cohomology). This
morphism is compatible with closed embedding of complex manifolds and also
with the smooth projection as in (1.6.4) so that we get a quasi-isomorphism of
the dualizing complex of [11] with K in 5.3 in the singular case.

5.5. Proposition. Let M be a coherent induced 9D-Module LQHD), and
DL=R Homp(L, Ky) the dual of L as Ox-Module. We have a pairing

(5.5.1) (DLRD)NK(LRD) > (04K QD = 0:x(KxQ®9D)

—84,DR™Ky =0 ayw,,
induced by (5 3.6)(5.4.3) and the natural pairing DLQ L—>Ky, and it is a perfect
pairing, i.e. we get a canonical isomorphism in D! {X, 9):
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(5.5.2) DLRD = D(LRD)
Proof. The assertion is local, and we may assume X smooth by (5.2.9).

Then the assertion is clear by definition, cf. [16].

5.6. Proposition. The categories D ..n(X, D) and D} 1,1 (X, D) are stable
by D.

Proof. By (5.2.4) it is enough to show the stability of D} . .(X, ). We
have a spectral sequence

(5.6.1) Ei = A DGrf M= Y+ DM
associated with a filtration G on M (by restricting X), and a long exact sequence
(5.6.2) — HADM — Y 'DM’ — Y DM" — H:DM — Y DM’ —

associated with a short exact sequence as (3.7.7), i.e. M is coherent induced,
M" is quotient coherent induced, and M’ is good coherent. Then H’DM are
coherent induced by 5.5, and we can show H'DM’, H'DM” €D} . (X, D) by
increasing induction on 7 using 3.6, because D’ (X, 9) is stable by D.

5.7. Theorem. Let f: X—Y be a proper morphism of complex analytic
spaces. Then for M €D}, ...(X, D), we have a canonical and functorial isomor-
phism in D} (Y, D):

(5.7.1) f«DM S DfM

induced by Tr;: fyayx @, —ay @, in (5.4.1)(5.4.3). If f is a closed embedding,
(5.7.1) holds for M € D! (X, D).

Proof. We have the perfect pairing
(5.72) DM M — 8yay o, in D¥XxX, D)

corresponding to the identity on DM, cf. (5.2.5-6). Taking the direct image
by fXf and composing it with the trace morphism, we get

(5.7.3) foDMX fuM — 04 fyax @, — Syak @, in D(YXY, 9),

and (5.7.1) is obtained as the corresponding morphism by (5.2.6). Here
(f XN)x(DMX M)=f+ DM X f4+M follows from 3.9. So it is enough to show
that (5.7.3) is a perfect pairing. Then the closed embedding case follows form
(5.2.9). In general, we can check (5.7.1) is compatible with morphisms of M
using (5.2.6) with the commutative diagram
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fxDM' X fuM S5«DM' X fxM'
DfsM' X fxM DfM' X feM'
|
f+DM[X f4M > 5*.}(*113( @D pt

DfyMK fuM ‘5*a!¥wp:

for a morphism M—->M’. So we may assume M good coherent, cf. 3.5. If
M is a coherent induced 9)-Module LK), and DL is as in 5.5, we have a com-
mutative diagram

(/+DLX f+L)RD — 3*f*f<X®g) - 5*f*’]i:—lfx

3.K,@9 — 5,DRR,

by (5.4.1), and the assertion follows from the duality for ©-Modules [12][13] by
5.5. Then we can show the injectivity and surjectivity of

(5.7.4) Hifou DM — H:Dfoe M

for good coherent 9)-Modules by increasing induction on i using the long exact
sequences

= Ao DM — H "o DM’ — Hifo DM — 9lif DM — Y'f DM’ —
(5.7.5) V y y y y

> A Df M — H ' Dfe M > H Df M > Dfe M— H:Dfe M’ —
associated with (3.7.7) and the long exact sequences associated with 0— G;_, M’
—G;M'— Grf M'—0, cf. 3.5 for G. For example, the surjectivity of (5.7.4)
for i with M good coherent is reduced to the surjectivity for i with M quotient
coherent induced and the injectivity for 7 with M good coherent, because the
injectivity for i+ 1 with M quotient coherent induced follows from the injectivity
for i with M good coherent.

5.8. Proposition. Let M €D} (X, D). The pairing
(5.8.1) DR(DM)[XDR(M) — DR(5 dk @,;) = 85 C

induced by the canonical perfect pairing (5.2.5) and the de Rham functor is a
perfect pairing, i.e. we get a canonical isomorphism

(5.8.2) DR(DM) = D DR(M)
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where D on the right is the dual functor in D%(C ).

Proof. The de Rham functor commutes with external product, because the
assertion is local and well-known in the smooth case, cf. for example [1] (see
also the remark after 4.4). So we get (5.8.1). Then the assertion is local, and
reduced to the smooth case [5][7] (cf. also [16]), because (5.8.1) is compatible
with the direct image by closed embeddings, cf. (5.7.3).

5.9. Remark. By construction the duality isomorphism of 5.7 in the
good holonomic case is compatible with the duality isomorphism for construc-
tible sheaves by the de Rham functor.

§6. Riemann-Hilbert correspondence

6.1. Let X be a complex analytic space. The de Rham functor DR=
DRy in (3.1.7) induces
(6.1.1) DR: DX, D) — DY(Cy)
by [5]. Let Z be a closed subspace, and i: Z— X, j: X\Z— X the natural
inclusions. Then for M € D:,(X, D), we have canonical isomorphisms
(6.1.2) DR(RI'(;1M) = ii'DR(M)
(6.1.3) DR(RItx12M) = R jsj* DR(M)
In fact the assertion is local by the functoriality of ixi', Rjyj* applied to the
natural morphisms RI'j;yM —M —RI'1x,;1M in (2.3.2). Then we may assume
X smooth, and (6.1.2-3) are well-known in this case by [7][10]. Note that (6.1.2)
implies
6.1.4) DR(i'M) = i'DR(M), DR(i*M) = i*DR(M)
for M D!, (X, 9), where the second follows from the first by definition
(5.2.11) and duality.

6.2. Theorem. The functor (6.1.1) is an equivalence of categories.

Proof. Let M, NeD!(X,9). We have a canonical pairing DM XM
—ayw, in (5.2.5), and the induced pairing DR(DM)[X|DR(M)—>d4axC in
(5.8.1), and they induce a commutative diagram

Homps(x, 9)(N, DM) = Hompyxx x, ) NXI M, 84 a5 @,;)

6.2.1) |
Hompic;)(DR(N), DR(DM)) 5 Homps (czy z) (DR(N)XIDR(M), 54a5C)
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because the composition is compatible with the de Rham functor. So we get
(6.2.2) DR: Di(X, D) — DYCy) is fully faithful,

if the second vertical morphism of (6.2.1) is bijective. We have a canonical
morphism N[X] M — 0,0%(N[X M) which induces an isomorphism

(6.2.3) Hompsx x x, 9)(NXI M, 33050 ,)
< Hompyxx x, ) Ox0*(NX| M), 85a%0,,)

because it is isomorphic to

Hompy(x x x, 9) 0+ Dakw,, D(NIX|M))
< Hompy(x x x, 9) 0xDax®,, 645' D(N[X] M)

(cf. (2.1.12) (2.2.1)) by duality (5.2.10). Since dy, 6% commute with DR by
(3.3.4) (6.1.4), the isomorphism (6.2.3) is compatible with the de Rham functor
(i.e. it gives a commutative diagram), and the assertion (6.2.2) is reduced to
the isomorphism

(6.2.4) Homps(x, 9)(M, ax®,;) = Hompyc,) (DR(M), axC)
for MeDi(X, D)

induced by the de Rham functor, because the functor &4: D*(X, 9)—
D¥(X x X, D) is fully faithful by 2.2, and it is same for 84: D¥(C x) —> D*(C xx x)-
Here M corresponds to the above d*( N[X|M). We take an injective represen-
tative K of ayw,, so that the left hand side is obtained by the hypercohomology
of the sheaf complex Hom g(M, K) on X, where Hom g(M*, K7) is defined by the
presheaf U— Hom g(M*|y, K7|y), and is flasque by the injectivity of K. This
construction is compatible with the de Rham functor, i.e. we have a natural
morphism Hemg(M, K)—> Homeg(DR(M), K') which induces (6.2.4) taking
hypercohomology, where K’ is a resolution of DR(K). So the assertion is
localized, and we may assume X smooth. In fact, for a closed embedding
i: X—Y, the morphism

(625) Home(X, g))(M, aB; Cl)ﬂ) - HOI‘nDb(K g))(i*M, ai, cup,)

induced by the trace morphism ixa% @, — ay @, is an isomorphism by (2.1.12),
because i'ay @,,=ay ®,, and moreover the isomorphism (6.2.5) is compatible
with the de Rham functor (i.e. it gives a commutative diagram). Then (6.2.4)
is well-known in this case [7][10] (see also [16]). So we get (6.2.2). Then by the
standard argument [1][10] we can show
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(6.2.6) DR: D!y(X, 9)— DYCy) is essentially surjective,

i.e. for any FED!(Cy), there exists M €D%y(X, D) such that DR(M)= <.
Here we may assume F=ZRj,L by using triangles and stratification of con-
structible sheaves, where L is a local system on a smooth Zariski open subset
j: U—=X (i.e. X\U is a closed analytic subset). Then we may assume X
smooth and X\U a divisor with normal crossings, using Hironaka’s resolution
and (6.1.3) (3.10.2). The assertion follows from Deligne’s theory of regular
singularity [2] as is well-known.
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