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^-Modules on Analytic Spaces

By

Morihiko SAITO*

Introduction

in this note, we give a formalism of '^-Modules' on complex analytic
spaces, generalizing some results in the theory of ̂ -Modules on complex mani-
folds to the singular case. Our definition of ^-Modules, which is inspired by
that of mixed Hodge Modules on singular varieties [15], uses the local embed-
dings of analytic spaces into complex manifolds, see 1.5, where the well-defined-
ness follows from Kashiwara's equivalence [6]. The advantage of this definition
is that locally we can apply immediately the theory of ^-Modules on complex
manifolds, and we get some global results, e.g. (5.8.2)(6.1.2-3), etc., once the
functors and the canonical morphisms are defined globally. Using these, we
can prove, for example, the base change property 4.8, the adjunction formula
4.9, the duality for proper niorphism 5.7, and the Riemann-Hilbert corre-
spondence 6.2 in the singular case.

We define the direct image/j, the de Rham functor DRfsee 3.1) and the
V

dual D (see 5.2) using the Cech covering and reducing essentially to the smooth
case by an argument similar to the case of mixed Hodge Modules [15]. For
the pull-back/1 we use the theory of algebraic local cohomology [6] in the closed
embedding case (see §2) and the Riemann-Hilbert correspondence [7] [10] in
the projection case (see 4.2). For the proof of the duality theorem for direct
image by a proper morphism, we extend the notion of induced ^-Module and
good coherent ^-Module to the singular case, see 3.5, and relate the analytic
dualizing complex in [11] [12] [13] with the dualizing complex for ^-Modules
in the singular case, see 5.3. We also introduce the notion of inductively good
which is stable by the pull-back, see 4.11. The proof of adjunction formula
4.9 is essentially the same as [15] and uses Kashiwara's diagram (4.9.2). Using
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these we can generalize some results in [19] [20], see 4.15. The proof of the
Riemann-Hilbert correspondence is a natural generalization of the proof in
[16, §4] to the singular case using the diagonal pairing, see 6.2.

This paper is a natural continuation of [16]. I would like to thank
Professors A. Borel, P. Deligne, M. Kashiwara and B. Malgrange for good
suggestions and useful discussions.

§1. Definition

In this note the analytic spaces are always assumed separated, paracompact,
and globally finite dimensional (i.e. the diemension is globally bounded). We
use mainly right .2)-Modules on complex manifolds to simplify the definition
of direct image and dual.

1.1. We first review the definition of direct image of ^-Modules with
proper support for a morphism of complex manifolds. For a complex mani-
fold X we denote by M(3)x} (resp. M(OX)) the abelian category of (right) 3)x-
Modules (resp. C^-Modules), and D*(<DX) (resp. Db(Ox)) its bounded derived
category [17].

Let /: X~* Y be a morphism of complex manifolds, and M^Db(S)x}.
The direct image with proper support of M is defined by

0.1.1) f\M = RKM®^®^)^^^)

where Rf\ is the sheaf theoretic direct image with proper support defined by

taking a canonical c-soft resolution, and 3)x^Y
==Ox®f-loYf''1^Y' If / is

proper, we denote/, by/*.

1.2. Let X be a complex manifold, Z a closed analytic subvariety of X.
We define

(1.2.1) FlzlM = lim ~#»*oj&x\3, M) , PLxlzJM = Im

for an OjrModule M, where 3 runs over coherent Ideals of Ox such that
supp OxfJd \Z\ with \Z\ the underlying set of Z, cf. [6] [7] [10], etc. For a
coherent Ideal 3 such that supp Qxl3= | Z | , r^M has an exhaustive filtration
defined by ^omOz(OxlS\ M) (i.e. the subsheaf of M annihilated 3n\ Al-
though the filtration depends on 3, they are all cofinal. By definition we have
natural morphisms FizjM->M and M-»r[Z|Z]M. The cohomology sheaves
of the derived functors RFlz^M, Rr[X\z-$M (defined by taking an infective
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resolution of M) are denoted by Si[z^M and M[x\z-\M. Then we have a long
exact sequence :

(1 .2.2) -» «#foM -> «#;Af -> c^fr, z]M -> MffiM -»

for M&Db(Ox)- Note that they have natural structures of 5)-Modules if M is
a jS-Module (or a complex of jg)-Modules), cf. [loc. cit.]. We denote by
Mz(j3)x) the full subcategory of M(<3)x) defined by the condition

(1.2.3) r m M~Af.

This is equivalent to the condition that for any local section m of M, there exists
locally a coherent Ideal S of Ox such that supp OX\SC- |Z | and mJ=Q.
In particular

(1-2.4) Afz(^z)cAM^)

for | Z | C | Z ' | . Note that Fm : Af (5)*) -> Mz(.2)z) is a right adjoint functor
of the natural functor MZ(3)^)-^M(3)^), i.e. we have a canonical isomor-
phism

(1.2.5) Hom^M, N) =

for M e Mz(3)x)9 N e Af (5)T) .

In particular we get

(1.2.6) AZ]M is injective in Mz(.2)z) if Af is an injective .2^-Module.

Let Z15 Z2 be closed subvarieties of X. Then

(1 .2.7) /\Z2]M is r[Zl]-acyclic if M is injective

by the theory of local cohomology on Spec(0^fJ, cf. [3] (in fact Mx and

(Az2]^)« correspond to flasque sheaves on Spec(O^J, because injective .2)-
Modules are injective 0-Modules, and the injectivity is stable by restriction to
open subsets). This implies

(1.2.8) RrlZln2jM = RrizjRrizjM for

as in [6]. Let Z,- be divisors on X for 1 </" </?, and Z— fl ,-Z,-. Then

(1 .2.9) RF^M = Rrizj - - - «r[Zl]Af with

for M^Db(3)x), where [M-*rlx]ZilM] is a double complex such that the

bidegrees of Af'', ̂ uiz,-]^' are (0, ./) (1, ;)- Here /^uiZ|.] is the localization by
a defining equation of Zi9 and is an exact functor, so that rixlz.jM is well-
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defined. This means that RF^M is represented by a double complex whose
(p, q) component is

(1-2.10)

where Zr= U f-e/Zf- and Fixl0j=id, As a corollary we get

(1.2.11) RFlzJM^M for

We denote by D*(Mz(<Dxy) the bounded derived category of the abelian category
Mz(3)x\ and D*Z(<DX) the full subcategory of D*(<DX) defined by the cohomo-
logical condition: MJM^MZ(^DX). Then the natural functor Db(Mz(^)xJ)->
Db

z(3)x) is an equivalence of categories with quasi-inverse RF\_z-\ by (1.2.11).

1.3. Let /: X-+ Y be a morphism of complex manifolds, and Z5 Z' closed
subvarieties of X, Y such that Z'Z>/(Z). Then the direct image in (1.1.1)
induces an functor of derived categories

(1.3.1) /, : D*(Mr(j2k)) - Db(Mz,($y)) .

In fact, using the graph of/j we can leduce to the case / projection., where the
direct impge is defined by the relative de Rham functor, cf. (3.1.2) below. Then
we can use the filtration of FIZ-\M in the remark after (1.2.1). More precisely,
we replace DR^ xr/F(M) by the inductive limit of (canonical) c-soft resolution
of its subsheaves annihilated by coherent Ideals of OY whose quotients are
supported in Z', cf. also 3.2. Note that the inductive limit commutes with the
direct image with proper support so that c-soft sheaves are stable by inductive
limit.

Assume Z smooth, and let /: Z— >X be the natural inclusion. Then
Kashiwara showed the equivalence of categories (cf. [loc. cit.j):

(1.3.2) i*iM(£)z)?iMz(£)x)

In fact the assertion is local and we may assume Z is a hypersurface defined
by a coordinate function x. Then M^Mz(3)x) has the decomposition M=
©^0Afe- with Mi=KQT(xdx—f: M-*M)9 and M=i*M0. This equivalence is
generalized to

(1.3.3) /i: MZ(3)X)^MZ,(3)Y)

for any morphism of complex manifolds with closed subspaces /: (J5f, Z)->
(7, Z') inducing an isomorphism Zred->Z^ed. In fact, we may assume that



^-MODULES ON ANALYTIC SPACES 295

Z, Z' are reduced by definition, and Z-> Y is a minimal embedding locally
(i.e. the dimension of Y is equal to the dimension of the Zariski tangent space
of Z at a gvien point of Z) by replacing X, Y with their closed submanifolds
using (1.3.2), because the assertion is local on Y. Then /has locally a section,
and the assertion follows from (1.3.2). Here note that the functor / depends
only on the restriction of /to Z. In fact we have more generally

(1.3.4) /,=*,: DbMz(^x) -> DbMz^Y)

if/ g: (X, Z)->(Y, Z') coincide on Z. Using the natural factorization of / g
the assertion is reduced to the case of closed embeddings //9 ig : X-* X x Y

defined by the graph of/ g, where Z is replaced by if(Z)=ig(Z). Then the
assertion follows from (1.3.3) applied to prx: Xx Y-*X, because the com-
positions prjf, prjg are the identity on X.

1.4. Let X be a complex analytic space. We consider the category C(X)

whose objects are the closed embeddings U-*V such that U are open subsets of
X and V are smooth, where the morphisms are the morphisms of V such that
their restrictions to U are the canonical open embeddings as open subsets of X.

Note that we have a canonical morphism

(1.4.1)

by assigning the composition UTed-*U-^V to U->V, where J7red, XIed denote
the associated reduced spaces.

Let W—iU^Vf} (i=l, 2) be objects of C(X\ and /: F1->F2 be a mor-
phism of C(X). Put Z=U2\f(UJ, V'2 = V2\Z, and V{=f-\Vft. Then Z is a
closed subset of F2 and F/ is an open subset of Vi (/=!, 2). We have a
canonical f actor ization/l^^/', where /': F(-> F2 is the restriction of/ and
J2 : F2->F2 is the natural inclusion. Note that/' induces the identity on Ul9

and C/j is a closed subvariety of F2 by/'.
let MeAf^(5)7l), cf. (1.2.3). Then/M (cf. 1.1) is the zero extension of

/'(M | jrj), and is a ^)F2-Module. In fact the first assertion is clear by definition
of direct image, and the second is reduced to the case Ul = U2 and follows from

(1.3.3). By (1.3.4) we have

(1.4.2) f\M depends only on M, Wl3 W2, and is independent of/

1.5. With the above notation we define M(X, 3J) the category of '3)~>

Modules' on X as follows: The objects of M(X, SJ) are {M
where Mw^Mu(S)^) with W={U->V}} and Mw are given morphisms
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(1.5.1) Uw&i-f\Mwi -* Mw2

inducing isomorphisms on F2\(£/2\t/1) f°
r anv morphism/: W^W2 in C(X)9

cf. (1.4.2), which satisfy the relation

(1-5.2) tiw&Wl = uWsW2° gi(uWzWl) : (gf)\MWl -> MWz

for any W19 W2, W3<=C(X), where g is any morphism of W2 to W3. The
morphisms of Mp", 3J) are morphisms of Mr compatible with the morphisms
(1.5.1). We call Mw the representative of M on FT.

By definition M(X, 3J) is an abelian category. We denoted by Db(X, SS)
the bounded derived category D\M(X9 3))) (cf. [17]) of M(X9 SI) (same for
D(X9 3)\ D+(X, £f)9 etc.). We say that M= {M }̂ e M(X, .2)) is coferewf
(resp. holonomic, resp. regular holonomic) if so are M^ for any WeC^Y), and

9 3J) is coherent (resp. holonomic. resp. regular holonomic) if so are
for any 7, where c#y: D(Jf, ^})->M(Jr, ^)) is the natural cohomology

functor. We denote by Db
coh(X, 3)) (resp. D*hol(X, 3)\ resp. D*rk(X, 3J] the full

subcategory of Db(X, <D) consisting of such objects.
If X is globally embedded into a complex manifold V, W == {X-* V'}

belongs to C(X)9 and we get a natural functor M(X, <3J)->MX(3)V'). We can
check that this functor induces an equivalence of categories

(1.5.3) M(X, 3)) ̂  Afz(flV)

In fact we can construct a 5)F-Module Mw for any W={U->V} ^C(X) by
applying (1.3.3) to the projections of Fx V to F, F'8

Remark. Our ^-Module on analytic spaces is not a sheaf in the classical
sense or that of Grothendieck (although its definition in this paper is largely
influenced by the definition of Crystalline cohomology). In fact, it is a 'sheaf
like a perveise sheaf, i.e., to each {£/->F} ̂ C(X), we associate an abelian
category instead of an abelian group (or an object of a category), and for gluing
we need a theory of direct image/; for a morphism /of C(X).

1.6. Let W={Wf}ieA be a family of Wi={Ui-> Vt} &C(X) indexed by A.
We say that IF is a covering of C(X) if \JiUi=X. For a covering W9 put
Ur= n ,-e/ C//, Fj^Hzej F,- so that we have a natural closed embedding UI-*VI

and ^^{C/r-^F,} belongs to C(Jf) (and also to C(Z7,) for / e/). By (1.5.3)
Mt^Mn.(3)Vt} determines an object of M(Ui9 £D\ and we denote its representa-
tive on Wr by MitI^MUj:(S)Vl) for / e/. Then by the same argument as above
the category M(X, SJ) is equivalent to the category M(W, SJ) defined as
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follows: The objects of M(W9 Sf) are {Mt} with Mi^MUi(S)u^ such that they
are given isomorphisms

(1.6.1) %: Afy§{|.fyj ~ M t ) [ i i j }

satisfying the gluing condition

(1-6.2) uik - Uij°ujk: Mkf{ijtk} ~ M i i { i j f k }

where u{j denotes also the induced isomorphism MJ-t{ifjik}->Mi>(i>J-ik}.

We can also show that M(W9 Si) is equivalent to M(W9 3))' defined as
follows: Let pr//: F/->F7 be the natural projection for JZ)J. The objects of
M(W, Si)' are {Mf}IcA with M/eM^CS)^), and they are given morphisms of
,2)Fj-Modules

(1.6.3) v//: (wu^Mj-^M;

inducing an isomorphism on the complement of Ur\UJ} and satisfying

(1.6.4) VIK = Vfjo(pTfj)iVjK on the complement of U\UK .

As a corollary, we get an equivalent of categories

(1.6.5) M(Xred, Si) ~ M(X, S)} (same for D\X9 S)\ D*coh(X, Si), etc.)

induced by (1.4.1). In fact the inverse functor is constructed by using the
above definitions of M(X, Si). So we can assume that the analytic spaces are
reduced in most cases, except for the case we consider induced ^-Modules
which depend on the non reduced structure of X, cf. 3.5.

Remark. The second definition in 1.6 is essentially the same as that in the
filtered case in [14, 2.1.20]. The arguments in 1.5-6 can be applied to the case
of filtered ^-Module and mixed Hodge Module.

1.7. Let Y be a complex analytic space, and X an open subset with
j: X-> Y the natural inclusion. Then we have the canonical pull-back functor
j-1: M(Y9 Sf)-*M(X, SJ) by definition. The left adjoint functor

(1.7.1) 7,: M(X93J)-*M(Y,gj)

of j"1 is given by the usual zero extension. Here we use the fact that for W=

{U-*V} eC(r), W'\ = {U\Z-* V\Z} belongs to C(X), where Z=Y\X. The
existence of the right adjoint functor

(1.7.2) 7* : M(X, 3J) -> M(Y, 3)}
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is less trivial. For W, U, V, Z as above we denote by jw: F\Z-»Fthe natural

inclusion. Then for M^C(X) the representative of j*M on W is defined by
rlu](iw)*MW'> where Mw* is the representative of M on W and (jw)* denotes
the sheaf theoretic direct image. We check that Atf]GV)*^jr' is essentially
independent of V under the equivalence (1.3.3) by reducing to the closed embed-
ding case (1.3.2) as in the proof of (1.3.3), and the well-definedness follows.
Note that

(1.7.3) j*M is injective in M(Y, 3)) if M is injective in M(X9 £f)

by adjunction. Then we have

(1.7.4) The abelian category M(X, SS) has enough injectives.

In fact the assertion is reduced to the case X is a closed subvariety of a com-
plex manifold by (1.7.3), and follows from (1.2.6).

1.8. Let X, Y be complex analytic spaces, and put Z—Xx Y. Then we
have a bifunctor

(1.8.1) g]: M(X, Sf)xM(Y< 3)} -> M(Z, SO) .

In fact it is well-known if X, Y are smooth [7], [10] (cf. also [16, §4]), where
M^N is defined by

(1.8.2) 0 ^ x r ® r _ 1 0 r

The general case is reduced to this case by 1.6. The functor £<] is exact for
both factors, cf. [ioc. cit.]. This implies a canonical isomorphism

(1.8.3) M\M K|tf )=® ,-+/-« M1M^M}N

for complexes M, N, which is induced by Ker d* g] Ker dj -> Ker(rf' g] W-f (- I)1'
/W|^|rfJ')' (IJi fact this morphism implies also the degeneration of the spectral
sequence associated with a double complex.) If Me M(X9 3)) and N^M(Y, Si)
have filiations F, G such that FZ-M=0, GjN=-0 for i, 7 <0, we define the filtra-
tion H=F^G by Hk(M^N)=-^]i+j=:k FtM^GjNso that

(1.8.4) Grf (A/^TV) - 0w.ft Grf M^Grf tf .

In the case X, Y smooth, the external product [X] commutes with algebraic local
cohomology, i.e. for a closed subspace Z of X, we have a canonical isomorphism

(1.8.5)
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using free resolutions of Oxl<3 for coherent Ideals S in (1.2.1).

§2. Local Cohomology

2.1. Let /: X-^>Ybe a closed embedding of analytic spaces. We have a
natural functor C(Y)->C(X) by assigning {URX-+V} to {U-*V}<=C(Y\
and this implies the direct image functor

(2.1.1) /* : M(X9 SI) -> M(Y, Si) ,

because M^nx^F^M^CSV), cf. (1.2.4). By definition z* is exact and fully
faithful, and the essential image is MX(Y, 3J) defined by the condition:

(2.1.2) MwGMunz(V, Si) for any W = {U-+ V} <=C(Y) ,

where Mw is the representative of M^M(Y, Si) on W. By exactness i%
induces

(2.1.3) /* : Db(X, SI) -> Db(Y, SI) .

We define a full subcategory Db
x(Y, SI) of Db(Y, SI) by the condition:

(2.1.4) M*M^Mx(Y,gj) for any ./.

For M={MW}<=M(Y, S)\ we define rixJM={(rLx2M)w}^Mx(Y, SI) with a
natural morphism P^M -> Af by

(2.1.5) (Arf^V := rWHrtMw -> Mw for ^ = {

cf. (1.2.1). This is well-defined, because we can check that
is independent of V under the equivalence of categories (1.3.3) by reducing to
the closed embedding case (1.3.2) as in the proof of (1.3.3). We denote by
RFiX]M the derived functor defined by taking an injective resolution, cf. (1.7.4),
and Si[x-\M its cohomology sheaves. We have a canonical morphism

(2.1.6)

by definition. Note that

(2.1.7)

by (1.2.6), and MJ
IX-^M=^ for j>0, because V is smooth. We have

, because P^X^M is left exact, and

(2.1.8) RrunM^M for M<=MX(Y,$)),

i.e. <%J
mM=Q fory>0 by (1.2.11).
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By definition Sl[x-\M belongs to the essential image of /# in (2.1.1), and we
define MjilM^M(X, SS) by Mj

mM = i*3ijvM. More generally we have a
pull-back functor

(2.1.9) r : Db(Y, SJ) -> Db(X, SS)

by taking injective resolution (cf. (1.7.4)) and then applying M°il. Note that

(2.1.10)

by definition. In the definition of (2.1.9) we used also the equivalence of
categories

(2.1.11) D\X, SJ) ~ D+(X, $)}* ,

where the right is the full subcategory of D+(X, SJ) whose objects have bounded
cohomolcgies, and (2.1.11) follows from the existence of canonical filtration
r9 cf. [17]. We have the adjoint relation

(2.1.12) H o m p A f , ilN) ~ Hom^ y ( / *M, N)

for M^Db(X, £)), N^Db(Y, S)\ induced by the canonical morphism i#/!JV->
N, cf. (2.1.6) (2.1.10). In fact (2.1.12) holds for M<=M(X, SJ), N<=M(Y, SJ)
when N is injective by (1.2.5), and this shows the stability of injective objects by
the functor r. Then (2.1.12) is clear.

2,2a Proposition,, We have an equivalence of categories

(2.2.1) /*: D\X9 SJ) -> Db
x(Y, 3))

with quasi-inverse il.

Proof. It is enough to show the quasi-isomorphism

(2.2.2) MFlxjM~M for MeDb
x(Y9&).

But it is clear by (2.1.8), because we may assume M&MX(Y, 3)).

2.3e With the notation of 2.1, we define PlYlxiM= {(riY\xiM)w} e
M(Y, SJ) with a natural morphism M

(2.3.1) (rlY]x^M)w := Mw -> rlvlunxiMw for W - {U -* V}

where M={Mr}. This is also essentially independent of V under (1.3.3), and
well-defined. Let JR/Vi^Af be the derived functor defined by taking injective
resolution. Then we have a distinguished triangle
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(2.3.2) -> RFlxlM -> M -> tf/V ,z] M -> .

In fact we have a short exact sequence

(2.3.3) 0 -> TmM-> M-> r[rU]M-> 0

if M is an injective object, because the injectivity is preserved by restriction to
open subsets by (1.7.1), and (2.3.2) is true for M^3)v) by (1.2.6).

§3. Direct Image

3.1. Let X, Y be complex analytic spaces. If X, Y are smooth, the rela-

tive de Rhani functor DRZxr/r is defined by

(3.1.1) [M®AdimX9x-*.~-*M] for M<=M(£)XXY),

where Ox is the sheaf of holomorphic vector fields on X, and M is put in degree
zero. Here the sheaf theoretic pull-backs by the first projection are omitted to
simplify the notation. By choosing a local coordinate system (xl9 • • • , xj of Jf?

(3.1.1) is identified with the Koszul complex K(M; d^ •",<)„) shifted to the
left by n=dimX, where Ox is trivialized by the vector fields d—d/dxf, cf. [7]
for intrinsic definition of the differential of (3.1.1). By definition, cf. [loc. cit.],
we have

(3.1.2) PlM = RPlVRXxY/Y(M) ,

where p=prz the second projection, and Rp\ is the sheaf theoretic direct image
with proper support defined by taking some canonical osoft resolution.

In general, we take a covering family W={Wf}iGA of C(X) in 1.6 such that
W is locally finite, i.e. {£/,-} is a locally finite covering of X. For any W' =

{£/'-> V'} ̂ C(Y\ we define a covering family W =W X W = {Wft ^A of X X U1

by Wl = WixW'={VixVr-+VixV'}*=C(XxU'\ where W—^^V,}. For
M^M(Xx Y, £j), we have natural morphisms

(3.1.3) (pTIJ)lMj-*MI

inducing isomorphisms on the complement of Ux X U'\Uj X Ur by (1.6.3),
where M7 is the representative of M on Wi = Wfx W, and WI={UI-> Vx} is as
in 1.6. By definition of direct image (pr,/),, cf. (3.1.2)5 they induce morphisms
of complexes of pri^^-Modules on Xx V'\

(3.1.4)

inducing quasi-isomorphisms on Uj X F', where jr: UrxVf->XxVf is the
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natural inclusion., and DRFjXy'/F'(.Mj) are viewed as complexes of p~l3)vr-
Modules on Ux X V , By the compatibility condition of the morphisms (3.L3)?

cf. 1.6, the morphisms (3. 1.4) are compatible with composition for /C/C^
and we get a co-Cech complex DRW(M)W' by the double complex whose
(/>, ^-component is

(3-1.5) ei/i-i-

This construction is compatible with the morphisms of M^M(Xx Y, 3)) and
the morphisms of Wr^C(Y), and independent of the choice of W up to quasi-
isomorphism, i.e. for two locally finite coverings Wa = {Wi}ieAa (a=l> 2) such
that AlaA2, the natural morphisms of complexes of /rlS

(3.1.6)

is a quasi-isomorphism (this can be checked by reducing to the case | A2\Al \ =1).
If Y=pt9 we define

(3.1.7)

for M^Db(X, S)\ where pt = {pt-»pt} ^C(pt).

In general, we define p{ : D
b(Xx Y, g))-*Db(Y, SJ) by

(3.1.8) piW)*' = Rpi®Rw(M)w, for W

where p{(M)W' is the representative ofp,(M) on W9 and Rp\ is defined by taking
some canonical c-soft resolution, and we can use the lemma below in this case.
Here the cohomological dimension of X is finite by assumption on X, and we
can truncate the resolution, or use (2.1.11) after taking the direct image.

By definition we have a canonical isomorphism

(3.1.9) DRrfoAO - RPlDRx*Y(M) ,

because W X W is a covering family of C(Xx Y) if W is that of C(Y). Here
is the sheaf theoretic direct image with proper supports.

3.2. Lemmae Let X be an analytic space, and M^M(X, SJ). Then there

exists canonically M'^M(X, £D) with injection M->M' such that M'w®o L is

c-softfor any W={U-*V} <=C(X) and locally free OyModule L.

Proof. Let Nj be the subsheaf of Mw annihilated by a coherent Ideal S

of Ov such that supp 0F/Jc U9 and Nj be the sheaf of discontinuous sections
of Nj. The functor Nj ->Nj is exact and commutes with the tensor product of

locally free sheaves. Then MW is obtained by the inductive limit of Nj. This



^-MODULES ON ANALYHC SPACES 303

construction is compatible with the morphisms of C(X)9 because it is true in
the closed embedding case. So we get M' with the injection M-^M'.

3.3. Let f: X-* Y be a morphism of analytic spaces, if: X-+XxY the
embedding by graph, and p=prz: Xx Y-+Y the second projection. We define

(3.3.1) /i =/>i(//)*,

cf. (2.1.3) (3.1 .8). If/ is proper, we define /*=/,. We can check

(3.3.2) feDi

for/: X-* Y9 g: 7— >Z, using the diagram

XxZ
/ X

X-^XxY-^
(3.3.3) j | \

7 -*• YxZ XxZ

Z

because the sheaf theoretic direct image with proper support commutes with
inductive limit. We have also

(3.3.4) DRr(/!M)=/Z/,DRz(M)

by (3.1.9), because the closed embedding case follows from the well-definedness
ofDR*.

3.4. Proposition. If /: X-> Y is a finite morphism, the direct image
/*: M(X, ^))->M(F, 3J) is faithful and exact.

Proof. The assertion is local on Y. We may assume Y smooth and X is
a closed subspace Z of the product of Y with a complex manifold which will
be denoted by X. Then the assertion is reduced to the exactness and faithful-
ness of the functor

(3A1) /: Mz(jSW)->M(3W,

where /=pr2, and Z is finite over Y. Taking factorization of/, we may assume
dimA^-1. Let x be a local coordinate of X, and y=(yl9 • • - , ym) a local
coordinate system of Y. Then for

(3.4.2) DRXxy/y(M) - Cone^,: M -> Af ) .
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For the exactness of/,. It is enough to show the injectivity of dx. Let
such that mdx=Q. By definition, cf. (1.2.3), we have a holomorphic function
g such that mg=0:> where we may assume g is a Weierstrass polynomial P(x, y)
of x with coefficient in holomorphic functions of j. Let d be the degree of
P(x, y). Since the coefficient of xd is 1, mds=Q and mP(x, y)dd

x=® imply m=0.
For the proof of faithfulness, it is enough to show /,M=0 iff M=0, because
the functor commutes with Im by exactness. The assertion is stalkwise3 and
we may assume the stalk of M at x^Xx Y is finitely generated, and M is
coherent (by restricting X, and replacing M by a coherent Module with same
stalk at x), because the inductive limit of an injectlve system whose morphisms
are injective and non zero, is not zero. Then the assertion is checked by re-
stricting to a subsapce of Y on which supp M is locally biholomorphic. because
/,Mis coherent.

3.5. Let X be a complex analytic space, and L an C^-Module. With the
notation of 1.5, we define M={MW} ^M(X, 3)) by

f 3.5.1) Mw =L\u®OY3)v for W={U-»V}(

where the moiphisms uWlW2 In (1.5.1) are naturally defined by the compatibility
of the passage to the associated Induced Modules with direct Images, cf. [16,
3.3]. We call M the ^-Module induced by L, and denote it by L®OZ 3), A
^-Module which is Isomorphic to a ^-Module Induced by an 0z-Module is
called an induced ^-Module. Let Mf(X9 3)) be the full subcategory of M(X9 3))
consisting of induced ^-Modules. For M5 L as aboves we tave

(3.5.2) M Is coherent, iff L is a coherent (5z-Module.

In fact, if M is coherent, L\u is a subsheaf of a quasi-coherent 0F-Module M9

and it is enough to show that L is locally finitely generated. Let Sivi^r #*,-, v®^v

(1 </ <fc) be local generators of Mw over 3)v, where we take a local coordinate
system (x19 ° - e , xm) and put ^v=IIj ̂ yy with dj=d/dxj. Then w,-jV®l generate
M over ^)F. This Implies that mitV generate L over Ov, because 3)v is faithful-
ly flat over Gv.

We say that M^M(X, 3)) is a quotient coherent induced ^-Module, If M is
coherent and there is a surjective morphism of a coherent induced £)-Module
M' onto M. We say that a ^-Module M on X Is goorf coherent, If for any
relatively compact open subset X' of JT, there exists a finite filtration G of M \ xr
such that GrfM | X' are quotient coherent induced. We say that a ^-Module
Is inductively n-good, if for any relatively compact open subset X' of X, there
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exist increasing exhaustive nitrations Gk of G r f - ' - G r r f ^ M |x/ for i^N and
inductively such that G° is a finite filtration, Gk are bounded below,

i.e. GkiGrf*:* — Grf°M\Z'=Q for z<0, and Gr^ — Grf0°M |z/ are quotient
coherent induced. In particular, M is inductively 0-good iff it is good
coherent. By definition, M is inductively ft-good, iff M \ x* has a finite filtration
G and each GrfM | x

f nas an increasing exhaustive filtration G' such that
Gr^GrfM are inductively (n— l)-good, and zero for j<0. We say that M
is inductively good if it is inductively n-good for some n. Then

(3.5.3) a .S)~Module is good coherent, if it is coherent and inductively good,

by the noetherian property of ^-Module, cf. [7]:

(3.5.4) an increasing sequence of coherent sub-Modules of a coherent 3)-
Module is locally stationary.

We say that a complex of ^-Modules is good coherent (resp. inductively n-

good, resp. inductively good) if so are its cohomologies. We denoted by
MgtCoh(X9 3)} (resp. Mig(X, 3J)} the full subcategory of M(X, 3)) consisting of
good coherent (resp, inductively good) 5)-Modules, and by DgtCoh(X, 3)) the
full subcategory of Db(X, 3)) consisting of good coherent bounded complexes
(same for D*ig(X9 3))). By (1.8.3-4) we have

(3.5.5) inductively n-good bounded complexes are stable by external product

m.
In fact, it is enough to show that the coherent induced Modules are stable by
the external product. But it is clear.

Assume X smooth, and let U be a relatively compact open polydisc in X

with U its closure. Then, for M^Mig(X, 3)) (dM(3)x}\ we have

(3.5.6) H*(U9 M) = 0 for />0 ,

In fact, r(U, *) and H*(U, *) commute with inductive limit and are the induc-
tive limit cf r(U'9 *) and Hl(U'9 *) for U'^U. Then the assertion is reduced
to the case of quotient coherent induced ^-Modules, and we can proceed by
decreasing induction on / using 3.6 below, because the assertion follows from
Cartan's theorem B in the case of coherent induced Modules, and H*(U9 M)=0
for i>0. We have also

(3.5.7) M | u is generated by r(£7, M) over 3)X9 if Me Mig(X9 3))
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by Cartan's theorem A and (3.5.6).
We say that a ^)z-Module (or an (5z-Module) is quasi-coherent, if it is

locally isomorphic to the cokernel of a morphism of free Modules (of infinite
rank in general). Here quasi-coherence over 3)x implies that over Ox, because
3)x is locally free over Ox. A quasi-coherent Module M is locally the
union of its coherent .2)z-sub-Modules (or 0^-sub-Modules). In fact, if M=
Coker(Z/-»L) with L\ L free5 consider the intersections of a finite free sub-
Module of L with the images of finite free sub-Modules of L', which are
coherent, and use the Noetherian property. In particular, the image of a
morphism of a locally finitely generated Module to a quasi-coherent Module
is coherent. On the other hand, if M is the union of its coherent Ojr-sub-
Modules, M \ v is generated by global sections over 3)x (or Ox) by Cartan's
theorem A, and we get a surjection M'—> M \ v with M' a free Module. Then
M' is the union of its coherent sub-Modules3 and so is the kernel of the surjec-
tion, because the image of a coherent sub-Module of M' is locally contained in
a coherent sub Module of M, Therefore we get

(3.5.8) Mis quasi-coherent iff it is locally the union of its coherent sub-Modules.

Actually we showed that quasi-coherence over 3)x is equivalent to that over Qx,

because we used only coherent C^-sub-Modules (and the locally freeness of
3)x over Ox) f°r the construction of presentation of M as the cokernel of a
morphism of free Modules. By a similar argument, we get

(3.5.9) Ker(M'->M) is locally a quotient of free Module, and Im(Af'->M)
is quasi-coherent, if M' is locally a quotient of free Module and M
is quasi-coherent,

because the assertion is reduced to the case M' free by taking a surjection of a
free Module to M'. Note that (3.5.6-7) hold for quasi-coherent Modules, if U
is sufficiently small so that we have a presentation of M as the cokernel as
above on a neighborhood of 0".

Let 0->Af'-»M->Af "-»0 be a short exact sequence. Then we have

(3.5.10) if two of M', M, M" are quasi-coherent, so is the remaining one.

In fact the case M quasi-coherent follows from (3.5.8). In the remaining case

we can lift locally the presentations of M', M" to that of M using the assertion
in the other cases and (3.5.6) in the quasi-coherent case, cf. the remark after
(3.5.9). By (3.5.9) (3.5.10) we have
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(3.5.11) quasi-coherent Modules are stable by Ker, Coker, Im.

Using (3.5.7) (3.5.8) we get

(3.5.12) inductively good ^-Modules are quasi-coherent.

In fact, we have a canonical surjective morphism P(U, M^^c^-^Mly for an
inductively good ^-Module M, and its kernel is a union of coherent (3-Module,
because the image of a morphism of a finite free 0-Module L to an inductively
good ^-Module M is a coherent 0-Module. In fact, consider the image of
the induced morphism L—>Grf*'"Grf°M for f;->0 defined on a compact subset
of X and replace L by its keinel so that ij decreases inductively. By the same
argument we can show that an inductive limit of inductively good ^-Module
is quasi-coherent.

3.6. Lemma. Let

(3.6.1) 0 -* M' -* M -> M" -> 0

be a short exact sequence of quasi-coherent 3)-Modules on X. Then M is in-

ductively n-good iff Mf, M" are inductively n-good. In particular, M' is good
coherent, if M is coherent induced.

Proof. The assertion is clear if M', M" are inductively n-good. Assume

M is inductively «-good. Then, restricting X to a relatively compact open
subset, we have inductively defined filtrations whose successive graduations are
quotient coherent induced by definition. We take inductively the graduations
of induced and quotient filtrations on M', M", and the assertion is reduced to
the case M is a quotient coherent induced ^-Module, and M', M" are coherent.
Then the assertion on M" is trivial. For M' we have to use essentially the
filtered theory, cf. [14, §2]. Assume first M is induced by L. We define a
filtration F on Mw for W={U-*V} ^C(X) by

(3.6.2) FPMW = L®FP3)V .

Then Gr^M^ is an C^-Module, F is compatible with the morphisms of
W^C(X\ and {(Mw, F}} defines an object of MF(Z, 3J) (denoted by MFCS*)
in [loc. cit.]). We define F on M', M" by induced and quotient filtrations.

Then {(M'w, F)}, {(Mtf, F)} eMF(Z, Sf). Let p (Mf) = min {p : FpM^Q for
some W} (>0). Then Fp(M^Mw are compatible with the morphisms of W, and

defines globally a coherent 0^-Module Z^(Mo- Let M£(M/) be the ^-Module
induced by Lp. Then we have a morphism MP^M^->M' induced by the natural
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inclusion Fp(M')Mw-*Mw> Let Gp(M^M' be its image. Since p(M'IGp(M^M')>
p(M'\ we can proceed by induction, and get a filtration G of M1 such that
GrfM' are quotient coherent induced.

We now show the case M quotient coherent induced. Let N be a coherent
induced .S-Module with a surjection N-*M. Let N', N" be the kernel of
N->M and N-*M ". Then TV', N" are good coherent by the above argument.
We have a short exact sequence Q-*N'->N" -*Mf -»0 by snake lemma, and
the assertion follows.

Remark. The above argument shows that the underlying .2)-Module of a
coherent filtered ^-Module in the sense of [14, 2.1.15 and 2.1.20] is good
coherent. In the case X smooth, this implies that a coherent .2^-Module M

having a good filtration F (i.e. Gr^Mis coherent over GrF S)x} is good coherent.
In particular

(3.6.3) a coherent ^-Module is locally good coherent.

307«, Theorem, Let f: X-* Y be a proper morphism of complex analytic
spaces. Then /#: Db(X. 3))->Db(Y, Si} preserves inductively n-good bounded

complexes, and induces

(3.7.1) /* : DLohPC 3)) -> Dlcoh(Y, ®\ etc .

Proof. Let p: XxY->Y be the second projection. Using 3.6 and the
spectral sequence whose J^-term is ^i{pi(J{jM), it is enough to show

(3.7.2) M{p\(M) is good coherent fresp. inductively n-good)

for M^M(Xx Y, 3)) such that M is good coherent (resp. inductively n-good)
and supp M is proper over F, because the direct image by closed embedding
is an exact functor and preserves coherent induced ^-Modules. If M is
induced by an 0ZXr-Module L, we have a natural quasi-isomorphism as com-
plexes of jTl®F/-Modules:

(3.7.3) DIMM V

for W' = {Uf-*V'} e£(7) compatible with the morphisms of W. This implies

(3.7.4)

and the assertion follows from Grauert's coherence theorem for O -Modules.
In general, we may assume M good coherent, by using inductively the

spectral sequences
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(3.7.5) E\>j = Mi+jp^GI^iM^Mi+}plM

associated with the filtrations G in the definition of inductively good. Here the
differential dl

r
tj is zero for r> — /, and the kernel of the projection E^'-^-El:1

( r > — 0 is quasi-coherent by (3.5.11-12) and 3.6, because the kernel is in-
ductively ft-good by the structure of spectral sequence and 3.6 if E[J are
inductively (ra-l)-good. For i^Z, a similar argument shows

(3.7.6) c^f/?,M are locally finitely generated and Mip^M (j>i) are good
coherent for good coherent ^-Modules M if this holds for quotient
coherent induced ^-Modules,

where we use (3.5.9) in the coherent case (i.e. the kernel of a morphism of a
locally finitely generated Module to a coherent Module is locally finitely gen-
erated) and the fact that Si'piM is locally finitely generated if so are Or* Mlp{M.

We show the assumption of (3.7.6) for i-l follows from its assertion for
i, so that we can proceed by induction, where M{piM=Q for i >0, because the
cohomological dimension of X is bounded by hypothesis. We consider a
short exact sequence

(3.7.7) 0 -> M' -> M -> M" -> 0

with M coherent induced and M" quotient coherent induced so that M' is
good coherent by 3.6. We have the associated long exact sequence

(3.7 8)

where £lip^M are coherent induced for any / by (3.7.4). Assume the conclusion
of (3.7.6) for /. Then MlpiM" is good coherent by 3.6, and M^piM" is
locally finitely generated using (3.5.9) in the coherent case. So the hypothesis
of (3.7.6) is proved for i-l,

3.8. Proposition. Let f: X->Y be as in 3.7, and Z be a complex analytic
space. Then for M^DgtCoh(X, SJ) and N^Db(Z,3J), we have a canonical
isomorphism

(3.8.1) (f*M)l%N~(fxid)*(M^N) in Db(YxZ,£)).

Proof. By definition of direct image and external product, we have a
canonical morphism (3.8.1), and the assertion is local and stalkwise on YxZ,
because the stalks of (3.8.1) depends only on M and the stalks of N In partic-
ular we may assume Y, Z smooth and N a .0z-Module. Here we use only
the (5z-Module structure of TV in the definition of (3.8.1). Since the two functors
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commute with inductive limit, we may assume N is a coherent Oz-Module by
taking coherent extension of finitely generated OZsi?-submodules of Ns for zeZ,
and then TV" is a free Oz-Module by taking resolution.

Therefore the assertion is reduced to the case Z smooth and N=o>z<, Here
we may assume dimZ=l by factorizing the projection FxZ— »F. For z£EZ9

let ig: Y=Yx{z}-*YxZ be the natural inclusion. By 3.10 below, /] of
(3.8.1) is a quasi-isomorphism for any z. Taking the mapping cones the as-
sertion is reduced to

(3.8.2) M e J9*oh(j®rxz) is zero, if i]M=0 for any z.

The hypothesis is equivalent to the quasi-isomorphism

(3.8.3) M-

and we may assume Af e Mcoh(J2)rxz) by taking cohomology, because

ArxziyxM] is exact. Then the assertion is further reduced to

(3.8.4) M^Mcoh(^}x) is zero, if zjM=0 for any x<=X ,

where X denotes the above FxZ, and ix: {x}-*X is the natural inclusion.
Restricting X to a smooth Zariski-open subset of supp M, we may assume
Jf-supp M . Let F be a good filtration of M. If Ch(M) * T*X, take a generic
smooth hypersurface /: Y-*X such that T$X is not contained in Ch(M) and
the local equation t of 7 is a non zero divisor of GrFM (by restricting X to a
Zariski-open subset if necessary). Then ilM =0 iff M=0 on a neighborhood
of 75 and we may replace M by MlilM (=M/Mt locally). So the assertion
is reduced to the case of Ch(M)=T*X. Let ul9

 a~,uk be local generators of
M5 and Mj the ^)z-sub-Module generated by i/y. Then Ch(Mj) = T*X for
some 7*5 and this means M~S)X. Applying the same to M/Mj inductively,
we get locally an injective morphism of a finite free .S^-Module M' into M

whose cokernel M" has smaller characteristic variety. Consider a long exact
sequence

where f?=dim X. Since MnilM'^Q for any xeX, the assertion is reduced to

(3.8.5) {x(=X: Mn~liiM=Q} is dense in JT for

which we apply to M". For the proof of (3.8.5), we may assume also
Ch(M)=^T*X by the same argument as above. Then the assertion follows
from the long exact sequence using induction on dimCA(M), because
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3.9. Corollary. Let f: X-+ Y and f: X' -> Yf be proper morphisms of

complex analytic spaces. Then we have a canonical isomorphism

(3-9.1)

for

Proof. This follows from 3.8 and (/X/')*=(/xid)*(/rfx//)*, cf. (3.3.2).

3.10. Proposition. Let f: X-* Y be a morphism of complex analytic
spaces, and Z be a closed subspace of Y. Put Z'=/"1(Z). Then, for

M^Db(Xf SS), we have canonical isomorphisms

(3.10.1)

(3.10.2)

(310.3)

Proof. It is enough to show the acyclicity of RFi^fMFix^^M and

by the commutative diagram

i i
fzi
I

I I

In particular the assertion is local on Y. and we may assume Y smooth. By
(1.2.9-10) it is enough to show that the direct image commutes with the locali-
zation by a function on Y. But it is clear by definition, because inductive
limit commutes with the sheaf theoretic direct image with proper support.

3.11. Remark. With the notation of 3.5, let L®OZ 3) and L'®OX 3) be
the ^-Modules on X induced by C^-Modules L, I/. We define the (filtered)
group of differential morphisms of L to L' by

(3.11.1)

for W={U-*V} eCPO, where it has a filtration F defined by

(3.11.2)

cf. [14, §2] [16]. In fact, it is independent of the closed embeddings of U into
manifolds V, and is globally well-defined. Note that this definition coincides
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with Grothendieck's one [21] by [16], because the latter is also invariant by

closed embeddings. In fact, let z": X-*Y be a closed embedding of complex

analytic spaces. With the notation of [loc. tit] (see also [16, 1.20]) we have

Jk~or(Pt®oTi*I<> **£') = ^™ox((Ox®oYPpY®oYOx)®oxL, Lr)

with Ox®OYPY®OYOx=Qxxx®OYxY
pY=Ppx usinS tlie riSht exactness of

tensor, where X, Y may be singular and nonreduced.

We define the ring of differential operators on X by

(3.11.3) 3)x = ^Diff(0*3 Ox) .

Let JF= {C/->F} <E£(Jf)3 and ̂ -^=0^0^- Then -2W has commuting
structures of left ^-Module and right .SV-Module by definition (3.1 LI). Let

M be a (right) ^-Module. We define

(3.11.4) Mf
w = (M

Then Af^ are compatible with the morphisms of C(X), and define a ^-Module

on X, which we denote by M®g)x 3) and call the ^-Module on X induced by

a .g^-Module M. So we get a functor ®$X£D of M(3)x) the category of .2)z-

Modules to M(J5T, 3)). We say that a ^)z-Module M is induced by an Gx-

Module L if M=L®Oz 3)x- Then (L®^x $)x)®3)x ®=L®ox 3)* For the
moment the relation between M(3)x) and M(X, 3)) in general is not clear,, cf.

[20] for the one dimensional case.

4L Let/: Jf-> F be a morphism of complex analytic spaces. We define

the pull-back/1: D\Y, 3f)-*D\X9 SS) by the composition:

(4-1-1) /! = 1}P',

where if is the embedding by graph of/, and p: Xx F-> F is the second pro-

jection. Here z/ is defined in (2.1.12). For/?1, we will first show in 4.2 the

existence of MGD*rk(X, 3)) (cf. 1.5) such that

(4.1.2) DRz(M)^a?fC7eD?(C?
z),

where ax: X-*pt is the natural morphism and axC is the topological dualizing

complex, cf. [18]. The uniqueness of M with isomorphism (4.1.2) will be

shown in 4.10, and we denote M by axo)pt. (This notation must be distin-

guished with the topological dualizing sheaf d'xC, although o)pi^C.) We have
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the trace morphism

(4. 1.3) Trfljr : (ax)ia
l
x<»pt -> <opt

by the topological trace morphism Trflx: (ax^.d'xC-^C, cf. [18], because
by (4.1.2). We define

(4.1.4) plN = alxa>pt^N for

cf. 1.8 for [x]. Then we have a canonical isomorphism

(4.1.5) a

using the uniqueness of dxxY&pt and the commutativity of DR with [X], cf. [7]
[10][1], etc. (see also the remark after 4.4). Then the functoriality

can be checked using the diagram (3.3.3). In fact, using the isomorphism (4.7.1)
below, it is enough to show the commutativity of the pull-back by projection
with local cohomology, i.e.

(4.1.7) JxupMRriziN~Rrlx,zidxa>pt^N) ,

and it follows from (1.8.5). This definition of pull-back/1 is compatible with
the usual definition

(4.1.8) f-M =f~1M®f-1,3)Y£)Y+.x[dim X-dim Y]

in the case X, Y smooth, using (2.1.10) in the closed embedding case and
the construction in 4.2 below in the smooth projection case, where -2V«-.y =

o>x®f-ioYf~1(^y®0Y(°)YT1l cf. [1][7][10], etc. We have also

(4.1.9) flM<=DtJtX, 3)} for M^Db
hol(Y, Si) (same for D*k(X, 3))) .

by [6] [7] [10].

4.2. Lemma. With the above notation, the dualizing complex axo)pt exists.

Proof, If X is a closed subvariety of a manifold K, the assertion follows
from [7][10] by taking -ft-F[Z]cyF[dim V\ where cov is the analytic dualizing
sheaf (i.e. the top degree differential forms) of V. Moreover a'xo)pt with
isomorphism (4.1.2) is unique by the Riemann-Hilbert correspondence in this
case, cf. [loc. cit.]. In the general case this implies the local existence and
uniqueness of d'X <*>pt- Let W= {Wt} f-SA be a locally finite covering family of X
such that Ui are relatively compact in X, where Wi={Ui-^Vi} ^C(X). We
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may assume X connected, and hence A is countable, i.e. A=N. (In fact Xis

covered by X~ UU^X^^Q Ut (y>0) with X0={x}.} Then the assertion is
reduced to the following

43. Lemma. If X is covered by two open subsets Uv U2 such that

aluao)pt exists for a =1,2, 3 (where U3=Ulri U2) and a\j^o)pt with isomorphism
(4.1.2) is unique, then al

xo>pt exists.

Proof. Let ja: Ua-^X be the natural inclusions. Then we have isomor-
phisms air^&pt | uf^du^pt (a = l, 2) by the uniqueness of al

Uzo)pt This induces

morphisms Us^u^pt^U^u^pt in &(%> ®\ and Bx<»pt is given bY

(4.3.1)

because we have a distinguished triangle

(4.3.2)

4.4. Lemma0 PT/YA f/ze notation of (3.1.5) (3.1.7) and 1.8, we /wve natural

quasi-isomorphisms for N e M( F9 5)) :

(4.4.1) pr

compatible with the morphisms ofW'^C(Y) and N^M(Y, 3)).

Proof. We have the natural morphisms (4.4.1) by definition., cf. 1.8 and
3.1. To show the quasi-isomorphism, we may assume Y is smooth and X is a
closed subspace Z of a complex manifold which will be denoted by X. By
definition we ha\e a canonical morphism

for a .2^-Module M and an (5F-Module N, where only the 0r-Module struc-
ture of N is used in (4.4.1). Then it is enough to show that (4.4.2) is a

quasi-isomorphism in the case M holonomic. because -R/Yzi^V ^as holonomic
cohomologies. Since the assertion is stalkwise on Xx Y, and compatible with
inductive limit of N9 we may assume N coherent, and then free, i.e, N—o)Y9 by
taking a resolution of N. In this case the assertion is more or less well-known.
In fact, let x^X, and Bz denote the e-ball in X with center x (defined by taking
local coordinates). Then, if e is sufficiently small, the direct image a^ ̂ -Module

(PT2)*(M^Qo)Y l ^sX Y) is independent of e, and its cohomology sheaves are
free (5F-Modules of finite rank, cf. [4] [8]. This means that the restriction of

M*'(DRjrxr/rC^KI <%)) to {x} x Y are free 0F-Modules of finite rank. So it is
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enough to show the isomorphism (4.4.2) after taking DRy. Then the assertion
is reduced to the case M=Q)X, by exchanging X and Y, and we may assume
N=O)Y by the same argument as above. Then the assertion is clear.

Remark. This argument is essentially same as the proof of the commu-
tativity of the de Rham functor DR with the external product [X]. cf. for
example [1].

4.5. Corollary. With the notation of 4.1, we have a canonical isomorphism

(4.5.1) (

Proof. This is obtained by taking the direct image of (4.4.1) by Rpl9

because Rp} commutes with inductive limits (and hence with tensor product
over C).

4.6. With the notation of 4.1 we get the trace morphism

(4.6.1) Tr,: Plp
lN->N.

by 4.5 and (4.1.3). For the closed embedding if9 we have the trace morphism

(4.6.2) Tr,7: (/,), i}M = RrlxlM -> M

by (2.1.6.) (2.1.10), and we get the trace morphism

(4.6.3) Tr,: fJlN = Pl(if\ i}plN -> Plp
lN -> N

by (4.6. 1-2).

4.7. Lemma. Let i: Y-*Xx Y be a section of the projection p: Xx Y-*
Y, i.e. pi=id. Then the composition

(4.7.1) rp'M^p, i, ilp'M -> p[P
lM -> M

is an isomorphism for M^Db(X, Of), where the morphisms are induced by (3.3.2),
(2.1.6) and (4.6.1) respectively.

Proof. Since the assertion is local, we may assume X, Y are closed sub-
spaces of complex manifolds X', Y', and i is extended to a section i": 7'-»

X'xY' of the projection p': X'xY'->Y'. Let Z, Z' be the image of f, if .
For M<EMr(jgV/)=M(F, jffl), we have

(4.7.2) RriXxY,ipnM represents plM on X' X Y',

by (1.8.5) and definition of p'lM, p'M. Since the trace morphism
is the composition of the natural morphism



316 MORIHIKO SAITO

(4.7.3) (ax\d'xC = (ax)Mrxa^C -> (a

with the trace morphism (aX')ialx'C-+C9 and Rr[ZipnM = RriZ'ip'lM for
)Y') by (1.2.8)(2.1.8), it is enough to show that the composition

(4.7.4) p{Rriz^p'lM -> p\p'lM -> M

is an isomorphism for MeMF(J2V/), and the assertion is reduced to the case
X, Y smooth. Then we may assume that the section is constant by replacing
the direct decomposition Xx F, and the assertion is clear.

4.8. Theorem. Let

•**• " j\.
(4.8.1) /I [f

+ V \

be a cartesian diagram of complex analytic spaces. Then we have a canonical
isomorphism

(4.8.2) g'-flM=f(g"-M in

for M€iDb(X, 3)) in the following cases: i) g is a closed embedding, ii) f is a
finite morphism, Hi) M is holonomic, iv)f is proper and M &Db

gtCoh(X9 3)).

Proof. The case / is a closed embedding is clear by definition, and we
may assume / is the second projection Xx F-» Y. Since the case i) follows
from 3.10, we may also assume g is the second projection Y' x F—»F, and the
case iv) follows from 3.8. In the remaining cases, we have a canonical mor-
phism

(4.8.3) glfiM^>f{g'lM in D\Y,3J)

cf. also (3.8.1). So the assertion is local, and we may assume F, Y' smooth
by the case i), In the case iii) the assertion follows from (4.4.2). In the case
ii), i.e. supp M is finite over Y, (4.4.2) is also a quasi-isomorphism. In fact,
we may assume X smooth, and it is enough to show the stalkwise isomorphism

(4.8.4) N®OY OYxy ~ N®OZXY Ozxrxy/

for N==M®/\iOx, where the sheaf theoretic pull-backs are omitted. Taking
graduation of M®/\{OX by the filtration induced by that on M, cf. (1.2.1),
(4.8.4) is reduced to the case N is an 0z-Module with Z=supp M, and then
N coherent, because the assertion is stalkwise and (4.8.4) commutes with
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inductive limit of N. Then it is clear by the base change property of pro-
jective morphism by smooth morphism which can be easily checked using free
resolutions.

4.9. Theorem. Let f: X-* Y be a morphism of complex analytic spaces.

Then we have the adjunction formula

(4.9.1) Hom^^^M, fN) -> Hornby ̂ (/J M, JV)

/or M e D*(Z, .0), AT e £*(F, .2)), i/i<ft/a?</ ^ the trace morphism Tr,: /,/! #->JV,
c/! (4.6.3), if the assertion of4.7 holds for M,fandg^pr2: Xx Y-+Y.

Proof. By (2.1.12) (4.6.3) we may assume / is the second projection
Xx F->7. Consider the commutative diagram

XxY^- XxXx Y<-*— XxY

(4.9.2) A| |̂ 2

F <-^- XxY

where ^, ^2
 are induced by the projections to the first and second factors of

XxX,f=pl=p2 and qli=q2i=id. We define JS: M->/!/,M by

where the morphism are induced by (4.7.1), (3.3.2), (2.1.6) and 4.8 respectively.
Note that (4.9.3) is defined also for M=f]N, because (4.8.2) holds for M=flN
using (q^\q[p[N =(q^\q2p2N and 4.4. Then it is enough to show that the
compositions

fift , « ft f'<*(4.9.4) /.M^-^/./l/iM >/,Af, /!^— -1-'11"-7

induced by a-.^Tr^- and ft are isomorphisms. The first is same as (^j)i of the
composition

(4.9.5)

because Tr is compatible with direct image, i.e. we have a commutative diagram

(4.9.6)
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by definition of Tr, cf. (4.6.1), since the direct image with proper support com-

mutes with inductive limit. Here the first isomorphism of (4.9.5) is induced by
(4.7,1), and hence the composition (4.9.5) is actually the identity. The second

is same as

(4.9.7) /'#«/' ?i/4# «(fc)iiV' ?J/4 # -* (fc)rflri# — P*N

by the symmetry of the diagram (4.9.2) and the compatibility of Tr with pull-
backs :

«fc),?J)/4tf
(4.9.8)

Here we can use either the projection ql or q2 as we like for the first isomorphism
of (4.9.7) which is induced by (4.7.1)., because it is independent of the choice of

the projection by the symmetry of the diagram (4.9.2). Then the composition

(4.9.7) is an isomorphism. This completes the proof of 4.9.

410* Proposition* The dualizing complex axo)pt in 4.1 is unique up to a

canonical isomorphism,

Proof. This follows from 4.9 by the standard argument on representable

functor, where we can apply 4.9 to M=ax, N=a>pt and ax: X-^pt, because M

is holonomic.

Remarks, i) In the proof of 4.9g the functors fl might depend on the

choice of al
xcopt. In the proof of 4.10? we apply 4.9 to the functor ax as-

sociated with any dualizing complex a'xa)pt. Note that the global uniqueness

of a'x G>pt is not used in the previous arguments.

ii) The notation axo)pt is justified also by 4.105 because it is the pull-back

of G>ptGDgt,k(pt, 3)) by ax. In particular we have

(4.10.1) fl(ti&pt) =<&<»„

for/: Jr-»y by (4.1.6).

4.11. Theorem, // M EE Db(X, 3)) has inductively n-good cohomologies,

cf. 3.5, then f'M has inductively (n+T)-good cohomologies. In particular,

are stable byf1.

Proof. By (3.5.3) (4.1.9) it is enough to show the first assertion. By the
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same argument as (3.7.5), we may assume M quotient coherent induced. If
/ is a projection, the assertion follows from (3.5.5) and 4.12 below. So we
may assume / is a closed embedding. If M is coherent induced, the assertion
follows from 4.13 below. We consider a short exact sequence

(4.11.1) 0 -> M' -> M -> M" -> 0

as in (3.7.7), i.e. M is coherent induced, etc. Then the remaining argument is
similar to that after (3.7.6), where Mlp\ is replaced by M l f l , the locally finitely
generated condition by locally quotient of free Module, coherence by quasi-
coherence, and 0-good (i.e. good coherent) by 1-good. The difference is that
the condition : M is locally isomorphic to a quotient of a free Module, might
be unstable by extension. So we use

(4.11.2) Ker(M'->M) is locally a finite extension of quotients of free
Modules, and Im(M'-> M) is quasi-coherent, if M' is locally a finite
extension of quotients of free Modules and M is quasi-coherent,

(4.11.3) finite extensions of quotients of free Modules are stable by quotients,

for the assertion corresponding to (3.7.6), where M' is called a finite extension
of quotients of free Modules, if there is a finite filtration on M' whose graded
pieces are quotients of free Modules. In fact, (4.11.3) is clear by taking the
quotient filtration on the quotient, and (4.11.2) follows from (3.5.9) by apply-
ing it inductively to a sub-Module of M' and replacing M'9 M by their quotients
inductively. Then we get the assertion as in the proof of 3.7.

4.12. Lemma. With the notation of 4.1 and 4.11, we have

(4.12.1)

Proof. The assertion is clear if X smooth, because axO)pt=o)x[dim X] by
definition (using [7] [10]). The general case is reduced to this case by induction
on dim X using Hironaka's desingularization. Let U be the maximal smooth
open subset of X with pure dimension n, where n is the (maximal) dimension
of X. Then U is a closed analytic subspace of X. Let n' : X'-+ U be a resolu-
tion of singularity, and n: X'-^X its composition with the natural inclusion
U-*X. Then we have a canonical morphism

(4.12.2) Tr: TC^O)^ -+ al
xcopt

by (4. 10. 1) and (4.6.3). Let Z=X\ U and Z' =--n~\Z). We have a distinguished
triangle
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(4.12.3)

by (2.3.2). Since /ZAziflz®** =flz <*># by (4. 10.1), it is enough to show

(4.12.4) Mrlxlzla^a>pf£EDb
gtrh(X, 3)}

by induction on dim X. By (3.10.2) we have a canonical isomorphism

(4.12.5) #AzizJ*i«z'°>

This implies a canonical morphism

(4.12.6)

by (4.12.2). We show (4.12.6) is an isomorphism. Let M, M' be the mapping
cone of (4.12.2), (4.12.6) so that M' = Rrlx]zlM. We have suppe#'AfcZ,
because n is biholomorphic on U, and M^Db

z(X,£D)9 cf. (2.1.4), because
MGD*k(X, SB). This implies Rr^M=M by (2.2.2), and M'=Rrlx^M=0.
Therefore (4.12.4) is reduced to the case X smooth by 3.7 and [7][10], and
follows from the triangle (4.12.3) and the inductive hypothesis, because (4.12.1)
is clear in the smooth case.

4.13. Lemma. With the notation of (3.5.1), let Z be a closed subspace of

X. Then F^M is induced by rLz]L, and M[Z]M by M{Z^L. If L is a coherent
Ox-Module, M[z]L has an increasing exhaustive filtration G such that Grf M[Z^L
are coherent Oz-Modules (i.e. annihilated by the Ideal ofZ) and zero for

Proof. Let M' be the induced ^-Module by r^L. Then we have a
canonical morphism M'— >M, and the first assertion is local, because it is enough
to show that this morphism induces M'^r[z]M by taking r[z]. Then we
may assume X smooth, and the assertion follows form the commutativity of
local cohomology with inductive limit (using a resolution of Qxl<9}- The second
assertion follows from the first by taking injective resolution of L, because a
^-Module induced by an injective 0-Module is r[Z]-acyclic by the same
reason as above. For the last assertion, we use the spectral sequence

(4.13.1) £{•' = Wj^GrG* QX, L) -* M(#L

induced by the filtration G on Qx such that GhQx=Sk
z, where <3Z is the Ideal

of Z. In fact we replace L by an injective resolution so that M[Z-\L is the
cohomology of the complex r^z-\L. Then G induces an increasing filtration G

of T[Z]L which gives (4.13.1), because Grf -T[z]L=^»w^(GrfeO^ L) by the
injectivity of L. Since E { t j are coherent 0z-Modules, the kernel of the projec-
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tion Er'J-^E^J ( r>—/) Is a union of coherent sub-Modules and is coherent
by Noetherian property. So Qfi^Si[z^L are coherent 0z-Modules. This com-
pletes the proof of 4.13 and 4.11.

4.14. Theorem. With the notation of 4.11 and the assumption of 3.7,

Db
s*0i(X, 3)\ Db

girh(X, 3J) are stable byf*, and Db
g,rh(X, 3))=Db

h(X, ®).

Proof. We first show the stability by/*. It is enough to show the stability
of holonomic and regular holonomic conditions by (3.7.1). Then the assertion
is local on F, and we may assume Y smooth. The assertion is well-known if
X smooth by [7] [10], and the general case is reduced to this case using desin-
gularization and induction on dimX as in the proof of 4.12. In fact, let
n: X'-^X and Z, Z' be as in the proof of 4.12. By induction and using the
triangle (2.3.2), it is enough to show the assertion for RrLxlziM, where Me

Dgthol(X., Si) or Db
gfrh(X, 3))- We have a canonical isomorphism

(4.14.1) Tr: ^Rrlx^z^M ~ RP^^M

as in the proof of 4.12 using (3.10.2) (4.6.3), where we have n

Z>h0l(X, Si) by [6], because the assertion is local on X. Since

£Uoi<T> Si) or Db
gtrh(X

f, Si) by 4.11 (using the triangle (2.3.2)), we get the first
assertion by (3.3.2). The proof of the last assertion is similar. If X is smooth,
the assertion follows from the fact that a regular holonomic ^-Module has a
globally good filtration [7] by Remark after 3.6. (Here the case of regular
meromorphic connection is enough for our argument, if the resolution is taken
appropriately.) Then we have the isomorphism (4.14.1) for M^Db

h(X, 3)),

because nlM is regular holonomic by [7] [10], and belongs to Dgtfh(X'9 33). So
the last assertion follows from the first assertion (applied to Hrix'\zr$t'M and
it) using the triangle (2.3.2) and induction.

4.15. Remark. Let /: X-> Y be a morphism of complex analytic spaces.
Assume / is bijective. Then / is topologically an isomorphism by Weierstrass
preparation theorem, and we have an equivalence of categories

(4.15.1) /*: Db(X, Si) - Db(Y, Si)

with a quasi-inverse /!: Db(Y, 3)) -> Db(X, 3J). Note that the complexes with
quasi-coherent (resp. holonomic, resp. regular holonomic) cohomologies are

stable by these functors and (4.15.1) induces equivalences of categories for
these complexes, but the stability of coherent complexes by fl is not clear.
For the proof of (4.15.1) we have canonical morphisms
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(415.2) M-*/!/#M, f*flN-»N

for M<=D\X, 3J)9 N<ED\Y, 3)) by 4.9, and it Is enough to show that (4.15.2)
are isomorphisms for M&M(X, <D), N^M(Y9 £)). Here the assertion is
stalkwise, because (4.15.2) is denned stalkwise by construction (in fact direct
image by finite morphism and algebraic local cohomology are defined stalkwise,
and (4.7.1) depends only on stalk of M.) Then we may assume the stalks of
M, N are finite by using the commutativity of the functor s/1,/* with inductive
limit. So the assertion is reduced to the case M, N coherent (in fact, quasi-
coherence is enough). Since the assertion is trivial on a Zariski open subset
on which /is biholomorphic, we can proceed by induction on the dimension of
X, Y by using the triangle (2.3.2) and the commutativity 3.10 as in the proof of
4.12 and 4.14, where the pull-back/1 commutes with RP^, RriYlzj by (4.1.6)

and (2.3.2). Here we used the quasi-coherence to show that -R/^iz] or

RriY^zi °f the mapping cone of (4.15.2) is zero, if its restriction to the com-
plement of Z is zero.

In the case X smooth, (4.15.1) was studied by [20] in the one dimensional
case, and by [19] in a more general case (where X admits a stratification by
closed smooth subspaces satisfying some condition, and the above argument
can be used to complete some arguments in [loc. cit.]).

§59 Duality

5.1. Let X be a complex analytic space, and d: X-*XxX be the diagonal
embedding. Let M, N&M(X, <D\ and K<=M(XxX, Si) such that supp Kd
Im d. If X is smooth, we have a canonical isomorphism

(5.1.1) Horn^M, Jfomg^N, d~lK)) = Uom^zxz(M^N9 K) ,

cf. [16]. Using this we can construct ^&m^)(N9 d~lK)^M(X, SI) with a mor-
phism e: ^0*ag)(N, d~lK)^N-*K which induces an isomorphism

(5.1.2) Hom^(M, «4W^(JV, d~lK)) ~ Hom^M^TV, K)

for any M by composition, where 3) means the morphisms in M(X5 <B)9 etc.
In fact, with the notation of 1.5, we define ^/om^(N, S~1K}W the representative
of Jfom^N, d-lK) on W={U-*V} (EC(X) by

(5.1.3) Jf

where Wx W={UxU-+Vx V}, and d denotes the diagonal embedding for
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any spaces. By (5.1.1) we have a morphism

(5.1.4) vW2Wl :

using a commutative diagram

(5.1.5)

Here we have the second horizontal morphism, because uWyWl is an isomorphism
on V2\(U2\UJ and/; Jf**g(N, d^K)Wl9 f{NWl are zero on U^U^ (In fact we
may assume Ul=U2 by replacing V2 with V^U^U^.) We can check the

compatibility condition (1.5.2) using (5.1.5), and this implies the isomorphism of
vWzWl on V2\(U2\Ui) using a section as in the proof of (1.3.3), because the
assertion is clear in the closed embedding case. Then the morphism e is well-
defined by (5.1.5). We can check (5.1.2) using (5.1.1) and the morphism of
f\MWi ^fiNWl -*^MWl E3 Nwr*MWz [X] AV2 to the left column of (5. 1.5). Then
we can check that ^&m^(N, d^K) is functorial in N and K using (5.1.2) with
the diagrams

(5.1.6) | |
d-lK^N -> K

(5.1.7) | |
~lK2)^N -> K2

We have also

(5.1.8) <^wttg)(N} d~lK) is injective, if ^Tis injective,

by (5.1.2), because [>3 is exact in both factors, cf. 1.8.
Let N&D'(X9 3)\ K^Db

x(XxX, 3)\ cf. (2.1.4), where Xis identified with
the image of d. We define

(5.1.9) R ^om^(N9 d~lK)^D+(X9 3))

by taking injective resolution of K, where K is represented by a complex whose
components are supported in Im d by 2.2, and its injective resolution has also
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support in Im d by (1.2.6) (1.7.3). Then R Jtomg^N, d"lK) is acyclic if N or
K is acyclic, and it is well-defined. In fact it is acyclic if K acyclic and injective,
and it is independent of resolution of K. Then, if N is acyclic, the assertion
is reduced to the smooth case in [16] by taking the representative on each W
and using (1.2.6). We have a canonical morphism

(5.1.10) e: R ^omg)(N9 d~lK)^N -^ K in D+(XxX, 3)),

and this induces an isomorphism

(5.1.11) Hom^(x>^)(M, R ^^(N, d~lK)) ~ Hom^^x^^CM^^, K)

by (5.1.2) (5.1.6-8) (using an injective representative of ^as above).

5.2. With the above notation, let MeD*oh(Z, 3)). We define

)) by

(5.2.1) DM = R ^om^(M, d~ld* d'x a>pt) .

Here DM^Db
coh(X, 3)) follows from (2.1.11) and the canonical isomorphism

(5.2.2) (DM)W = D(MW) : = R ^om^v(Mv, ovfdim V]®Ov 3)v} ,

cf. [16], which follows from the definition (5.1.3). In fact, we have

(5.2.3) d-ld*(al
z o>pt)w = (a* a>pt)w®Ov 3)y - Rriina>v[dim V]®Ovv

and R ^^^)V(MW, Rr^coyldim V]®ov3)v) -* R ^°^3)V(MW, cyF[dim F]
®0V 3)y) by MW^D\M^3)V)\ cf. (1.2.5). This implies also

(5.2.4) Db
hol(X, 3)) and D*h(JT, Sf) are stable by D.

By definition we have a canonical pairing

(5.2.5) DM^M-*3*a*a>pt in D\XxX,3J)

inducing the isomorphism

(5.2.6) Hom^pr, ̂ (N9 DM) ~ UomDb(x x x, <D) (^IEI M, d* a
l
xc*pt) .

by composition, cf. (5.1.10-11). We say that a morphism

(5.2.7) N^M-^dtAup in Db(XxX, 3))

is a perfect pairing of M, N^Db
coh(X, 3)\ if the corresponding morphism by

(5.2.6):

(5.2.8) N-+DM in Db(X, 3J) ,
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is an isomorphism. By (5.2.2) we have

(5.2.9) perfect pairings are invariant by closed embeddings,

i.e. for a closed embedding i: X-* Y, N^M-+d*al
xo)pt is a perfect pairing if

and only if so is the composition i"* N £<] i*M-+ d* i* ax o)pt -> d*ay o)pt. Then
we have a canonical isomorphism

(5.2.10) DDM = M,

i.e. the transpose M^DM-^d^al
xo)pt of DM^M-*d%a]

xa)pt is a perfect pair-
ing, because the assertion is local, and reduced to the smooth case by (5.2.9).

Let/: X-* Y be a morphism of complex analytic spaces. We define

(5.2.11) f*M = Df'DM for

using (4. 1.9) (5.2.4).

5.3. Let X be a complex analytic space, and W={U-+V}GC(X). We
denote by Kv the complex of currents on V shifted by 2 dim V to the left, and
Kv its subcomplex consisting of forms of type (dim F, /) with 0</<dim F, so
that Kv and Kv are quasi-isomorphic to Cv[2 dim V] and a>F[dim V] respec-
tively. By [9] the stalks of the components of Kv and Kv are injective Ox,x~
modules. We define

(5.3.1) Kw=rLuiKv, Kw = ^*m0v(QU9 Ky) ,

so that Kw is a subcomplex of Kw. Then, for a morphism /: Wl-^ W2 as in
(1.5.1), we have canonical morphisms

(5.3.2) f\Kwl -*• Kwz 9 fi^Wi ~* Kwz >

induced by the push-down of currents faf\KVl-> KVs, because f$(mf*g)=f$(rn)g
for me/,^Fl, g^Oyz. Here/, denoted the sheaf theoretic direct image with
proper supports, and the second morphism of (5.3.2) is a morphism of com-
plexes of 0-Modules. Then they satisfy the condition (1.5.2) by the func-
toriality of push-down of currents. Since Kw and Kw are differential complexes

in the sense of [16], we denote by DR~1KW and DR"1^ the complexes of

5}-Modules induced by Kw and Kw respectively (i.e. (DR-^)''=^®.®, etc.),
and they can be also viewed as complexes of ^-Modules on X by zero exten-
sion. Then, for /as above, we have a morphism of complexes of ̂ -Modules

(5.3.3)

(5.3.4)
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induced by (5.3.2) and they satisfy (1.5.2), where the first /, in (53.3-4) denotes

the direct image of ̂ -Modules with proper supports, and the first isomorphism

is obtained by the same argument as in [16], because /I commutes with inductive

limit. Here/; in (5,3.3-4) can be omitted if DR"1^. and DR"1^. are viewed

as complexes of ^-Modules on X by zero extension as above, because /, is

essentially the zero extension, cf. 1.4. Although the morphisms in (5.3.2-4)

do not induce isomorphisms of complexes on F2\(t/2\t/1), they are quasi-iso-

morphisms on V2\(U2\U1), because it is clear in the closed embedding case, and

we can use the section of /as in (1.3.3) in general.

With the notation of 1.6 (e.g. Wr={FFl-}g-eA is a covering of X), we define

complexes of induced ^-Modules DR"1!̂  and DR"1^ by the co-Cech double

complexes whose (p9 #)-components are

(5.3.5) ®1-ir^P(DR"1lWl)
q, e^^/DR"1^/

V

respectively, where the co-Cech morphism is induced by (3.5.3-4), and we use

the zero extension of DR~1J?prj, etc. as above. Then we have a natural mor-

phisni

(5.3.6)

We define similarly a complex of O ̂ -Modules Kw by the double complex whose

(/?, ^-component is

(53.7) 01-i/i-^fr,.

In this case KWl are complexes of CVj"Modules and the second /, in (5.3.2) is

really the zero extension. Then DR"1^ is the complex of ̂ -Modules induced

by the complex of 0^-Modules Kw, i.e. we have a canonical isomorphism of
complexes

(5.3.8) DR-1^ = Kw®3) .

In the derived category Db(X9 3J), DR™1^ and DR"1^ are independent of

the choice of covering W (because (5.3.3-4) induces quasi-isomorphisms on the

complement of U2\U^ and we denote them by DR"1^ and DR"1 J^ respec-
tively. (Similarly for Kw and Kx <E Db(Ox).}

5o40 Let /: X-^-Y be a morphism of complex analytic spaces. By the

functoriality of push-down of currents, we have the trace morphisms of S>-

Modules



^-MODULES ON ANALYTIC SPACES 327

(5.4.1) Tr,: /,DR-%, -> DR-1^ , Tr,: f

compatible with the morphisms DR'^-^DR""1^, DR'^-^DR'1^ in
(5.3.6), where we use WxW'(=C(XxY) for W^C(X)9 W'^C(Y) as in
(3.1.9). Here the first morphism in (5.4.1) is induced by the trace morphism
of 0-ModuJes

(5.4.2) TT

using the commutativity of DR"1 with direct image. Note that we have a
canonical isomorphism

(5.4.3)

compatible with the trace morphism for ax : X-^-pt by construction of 4.2. We
can also check that Kx is canonically isomorphic to the dualizing sheaf in [11]
using Theoreme 14 in [12], see Remark below, and in the / proper case, the
trace morphism (5.4.2) induces the duality isomorphisms for the direct images
of coherent complexes of 0-Modules by [12] [13].

Remark. Let X be a complex manifold of dimension d, and K' denote the
dualizing complex of [11]. By definition K'~l is the sheaf associated to the
presheaf which assigns to U the inductive limit of the meromorphic sections of
&{z\®u with Z running over closed sub varieties of dimension i in U, where
the meromorphic sections are defined by the functor Aziz'] m (1-2.1), and the
differential of K' is induced by a long exact sequence similar to (1.2.2). Here
we may assume Z (and Z') are complete intersections in U, because we take
inductive limit for U, Z (and Z'). By Theoreme 14 of [12] we have a natural
morphism K'-*KX, where Kx is as in 5.3. This morphism is defined by using
residues and principal values, combined with Koszul comlexes calculating the
higher extensions (whose limit gives the algebraic local cohomology). This
morphism is compatible with closed embedding of complex manifolds and also
with the smooth projection as in (1.6.4) so that we get a quasi-isomorphism of
the dualizing complex of [11] with Kx in 5.3 in the singular case.

5.5. Proposition. Let M be a coherent induced S)-Module L®3), and

DL=R cJtomQ^L, KX) the dual of L as Ox-Module. We have a pairing

(5.5.1)

induced by (5 3.6)(5.4.3) and the natural pairing DL®L->KX, and it is a perfect
pairing, i.e. we get a canonical isomorphism in Db

coli(X, W) :



328 MoRimKO SATTO

(5.5.2) DL®3) = D(L®S))

Proof. The assertion Is local, and we may assume X smooth by (5.2.9).
Then the assertion is clear by definition, cf. [16].

5,6e Proposition, The categories Db
gtCOh(X, 3)} and Db

gthol (X, 3)) are stable
byD,

Proof. By (5.2.4) it Is enough to show the stability of Db
gtCoh(X, £D). We

have a spectral sequence

(5.6.1) E{J = Mi+jDGif M^ Mw DM

associated with a filtration G on M (by restricting X), and a long exact sequence

(5.6.2) -> Ml

associated with a short exact sequence as (3.7.7), i.e. M is coherent induced,
Mrr is quotient coherent induced, and M' is good coherent. Then M1DM are
coherent induced by 5.5, and we can show M{DM', &iDM"&D*g9Cg&(X9 3)) by
increasing induction on i using 3.6, because Db

oh(X, SJ) is stable by D.

5e78 Theorem, Let f: X— > 7 be a proper morphism of complex analytic
spaces. Then for M^Db

g>coh(X, SJ), we have a canonical and functorial isomor-
phism in Db

giCoh(Y, £)):

(5 J.I) f*JDM^Df*M

induced by TTf:f^axO)pt-^ayQ)pt in (5.4.1)(5.4.3). If f is a closed embedding,
(5.7.1) holds for M £EDb

coh(X, SJ).

Proof. We have the perfect pairing

(5.7.2) ZM/KlAf -***<&<»* ^ Db(XxX, SJ)

corresponding to the identity on DM, cf. (5.2.5-6). Taking the direct image
by /x/ and composing it with the trace morphism, we get

(5.7.3) f^DM^f^M^d^a^pt^d^a^pt in

and (5.7.1) is obtained as the corresponding morphism by (5.2.6). Here
(/X/)*(JDAf^M)=/#ZM/|^|/*M follows from 3.9. So it is enough to show
that (5.7.3) is a perfect pairing. Then the closed embedding case follows form
(5.2.9). In general, we can check (5.7.1) is compatible with morphisms of M
using (5.2.6) with the commutative diagram
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x-""

DMfc

^

\fM 'Df*M

^K1./*M'

r .s^

for a morphism M-*M'. So we may assume M good coherent, cf. 3.5. If
M is a coherent induced ^-Module L®3), and DL is as in 5.5, we have a com-
mutative diagram

I

by (5.4.1), and the assertion follows from the duality for (5-Modules [12][13] by
5.5. Then we can show the injectivity and surjectivity of

(5.7.4) M*f*DM -> MlDf* M

for good coherent ^-Modules by increasing induction on i using the long exact
sequences

(5.7.5)

associated with (3.7.7) and the long exact sequences associated with 0-^G^M'
-»G,-M' ->Chf M'-»0, cf. 3.5 for G. For example, the surjectivity of (5.7.4)
for / with M good coherent is reduced to the surjectivity for / with M quotient
coherent induced and the injectivity for i with M good coherent, because the
injectivity for z+ 1 with M quotient coherent induced follows from the injectivity
for i with M good coherent.

5.8. Proposition. Let M^D^X, 3)}. The pairing

(5.8.1)

induced by the canonical perfect pairing (5.2.5) and the de Rham functor w a
perfect pairing, i.e. we get a canonical isomorphism

(5.8.2) DRCDAf) = D DR(M)
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where D on the right is the dual functor in Db
c(Cx).

Proof. The de Rham functor commutes with external product, because the
assertion is local and well-known in the smooth case, cf. for example [1] (see
also the remark after 4.4). So we get (5.8.1). Then the assertion is local, and
reduced to the smooth case [5][7] (cf. also [16]), because (5.8.1) is compatible
with the direct image by closed embeddings, cf. (5.7.3).

5.9. Remark. By construction the duality isomorphism of 5.7 in the
good holonomic case is compatible with the duality isomorphism for construc-
tible sheaves by the de Rham functor.

§6. Riemann-Hilbert correspondence

6.1. Let X be a complex analytic space. The de Rham functor DR=
DR* in (3. 1.7) induces

(6.1.1) DR: Db
rh(X, 3)) -> Db

c(Cx)

by [5]. Let Z be a closed subspace, and i: Z-»X, j: X\Z-*X the natural
inclusions. Then for M &Db

h(X, W), we have canonical isomorphisms

(6.1.2) DR(jermM) = /*£!DR(M)

(6.1.3) DR(Rr[xlZ]M) = Rj+j* DR(M)

In fact the assertion is local by the functoriality of /*/ !, Rj*j* applied to the
natural morphisms RrizjM-*M-*Rrix]Z]M in (2.3.2). Then we may assume
X smooth, and (6. 1 .2-3) are well-known in this case by [7][10]. Note that (6. 1 .2)
implies

(6. 1 .4) DR(rM) = / !DR(M) , DR(/ *M) - i *DR(M)

for M^Db
h(X9 3)), where the second follows from the first by definition

(5.2.11) and duality.

6.2. Theorem. The functor (6.1.1) is an equivalence of categories.

Proof. Let M, N^Db
rh(X, 3)). We have a canonical pairing DM^M

-*a*o)pt in (5.2.5), and the induced pairing DR(DM)^DR(M)-*d*al
xC in

(5.8.1), and they induce a commutative diagram

(6.2.1) j
), DR(Z?M))
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because the composition is compatible with the de Rham functor. So we get

(6.2.2) DR: Db
h(X, 3)) -> Db(Cx) is fully faithful,

if the second vertical morphism of (6.2.1) is bijective. We have a canonical

morphism N^M-*d*d*(N^M) which induces an isomorphism

(6.2.3) RomDb(X x x,

~

because it is isomorphic to

(cf. (2.1.12) (2.2.1)) by duality (5.2.10). Since $*, S* commute with DR by

(3.3.4) (6.1.4), the isomorphism (6.2.3) is compatible with the de Rham functor

(i.e. it gives a commutative diagram), and the assertion (6.2.2) is reduced to

the isomorphism

(6.2.4) Horn Wt <Z?) W «&<»„) ^ Hom^cy (DR(M), dxC )

for M(EDb
h(X,3))

induced by the de Rham functor, because the functor d# : Db(X, 3J)-*>

Db(XxX, St) is fuUy faithful by 2.2, and it is same for <?*: Db(Cx)-*Db(Cxxx).

Here M corresponds to the above £*(JV[X]M). We take an injective represen-

tative K of al
xo)pt so that the left hand side is obtained by the hypercohomology

of the sheaf complex ~4W^)(M, K) on X, where «#»«0(Af '', Kj) is defined by the

presheaf t/-» Hom^(M' | U9 K
j \ v\ and is flasque by the injectivity of K. This

construction is compatible with the de Rham functor, i.e. we have a natural

morphism ^^^(M, K)-+t4<wic(DR(M), K') which induces (6.2.4) taking

hypercohomology, where K' is a resolution of DR(K). So the assertion is

localized, and we may assume X smooth. In fact, for a closed embedding

i: X-*Y, the morphism

(6.2.5) HomD6(xt g>)(M, d'x o)pt) -* Hornby; g))(i#M, dy o)pt)

induced by the trace morphism i^axo)pt-^a'y o>pt is an isomorphism by (2.1.12),
because ilaY<opt=aYO)pt9 and moreover the isomorphism (6.2.5) is compatible

with the de Rham functor (i.e. it gives a commutative diagram). Then (6.2.4)

is well-known in this case [7][10] (see also [16]). So we get (6.2.2). Then by the

standard argument [1][10] we can show
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(6.2.6) DR: Db
yh(X, £f)-+D*c(Cx) is essentially surjective,

i.e. for any 3^Db
c(Cx), there exists M^Db

rh(X,3)) such that
Here we may assume 3=Rj*L by using triangles and stratification of con-
structible sheaves, where L is a local system on a smooth Zariski open subset
j: U-*X (i.e. X\U is a closed analytic subset). Then we may assume X
smooth and X\U a divisor with normal crossings, using Hironaka's resolution
and (6.1.3) (3.10.2). The assertion follows from Deligne's theory of regular
singularity [2] as is well-known.
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