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High-order Uniform Convergence Estimation of
Boundary Solutions for Laplace's Equation
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By

Kantaro HAYAKAWA* and Yuusuke Iso**

Abstract

Treated in this paper is Laplace's equation with the Neumann condition. Uniform con-
vergence estimation of boundary element methods for this problem was done by Iso [1].
The aim of this paper is to improve the estimates given in [1] and to show high-order
uniform convergence of the boundary element scheme.

§1. Introduction

Many numerical experiments have shown effectiveness of the boundary
element method (=BEM). Especially for elliptic boundary value problems,
we know experimentally that accurate numerical solutions are easily obtained
by this method. For the Neumann problem of Laplace's equation, Iso [1]
showed the uniform convergence theorems for BEM and gave a new method
to construct accurate schemes. In Iso [1], the final rate of convergence is O(ti),
although the truncation errors are of O(h2). Such loss in estimation comes
from the method applied in its proof, and invention of a suitable estimation
technique must enable us to clear off this loss.

The aim of this paper is to give a new technique through which the rate of
convergence becomes O(/f). This technique is deeply connected with some
properties of positive matrices, which are discussed in §4. In this paper, the
Neumann problem for Laplace's equation is dealt with, and a rather mathe-
matical boundary element scheme is adopted. Slight modification will be neces-
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sary for this scheme in case of real numerical computation.
Thruoghout this paper, we use the following notations: Let Q be a

bounded domain in E2 with its boundary F;=d£ smooth. And let us express
a spacial point by x=(xly x2)&E2.

| x | ; the Euclidean distance between the origin and x.
Cs(£); totality of s times continuously differentiable functions on Q.
CS(F); totality of s times continuously difFerentiable functions on F.

I I ^ I H o o ; the maximum norm introduced into C°(F);

U I I * I U > norms introduced into RN;
JF

i.e.

||x|U:=max \xk\,i^k^jsr
where x=(xls x2, •-,

§2. Boundary Integral Equations

The Neumann problem for two-dimensional Laplace's equation is dealt
with, Let Q be a bounded domain in E2, and let its boundary P:=d£ be
sufficiently smooth. Furthermore let us assume that the curvature of F is
positive. Let ng denote the unit outward normal vector to F at zer. Here
we consider the following Neumann problem:

du = Q in ^9 (2.1)

-£-" = « on r, (2.2)
on

^where denotes the outward normal derivative on F9 and where q is a given
dn

function of C2(F) and satisfies

= 0. (2.3)

It is well known that the problem has, in this case, a unique solution in
C2(H)/ {const.}.

To apply BEM, we first derive a boundary integral equation for this prob-
lem. Let g(x) be the fundamental solution of Laplace's equation;

g(x) = - JL log | x| for x<=E2.
2.7U
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The Dirichlet data w(z) satisfies

1 r /5 p
— w(z)+p.v. I ~-g(2-j)w(jXa = \ g(z-y)q(y)da for zGP,
2 Jr cw^ Jr

(2,4)

and this is our aimed integral equation. (See Iso [1]). Let us define a vector
valued function G(x, y) by

G(x,y):=r,g(x-y) for x, y^Ez . (2.5)

Hence the kernel of the integral equation is written in G(z, y)*ny for y,
As is pointed out in Tso [1 ; §2], this kernel function can be extended as a con-
tinuous function on F, and 'p.v.' can be omitted in (2.4). For the sake of con-
venience in the following discussion, we define an operator B from C\r) into
itself and a function r(z) as follows :

(&OGO := ^G(z, y).nyu(y)doy, where zer, WeC°(r); (2.6)

r(z):=j g(z -y)q(y)doy for zer . (2.7)

For the operator J?, we have the next proposition.

Proposition 2.1. (Kellogg [2; Chapter 11])

- {const.} ,

where N( — I+B] denotes the null space of the operator — I+B.

Hence our problem of the boundary integral equation is to find
such that

= r, (2.8)

0. (2,9)

Unique solvability for this problem is guaranteed by Kellogg [2; Chapter 11].
Furtheremore, the solution of (2.8) and (2.9) belongs to C2(F).

§3. Boundary Element Scheme

In this section, we give a numerical scheme to solve the integral equation
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(2.8) and (2.9) according to the boundary element method adopted In Iso [1 ;

§3].
Let {zA}f=i be a set of nodal points on r, and let us define Fk by the closed

minor arc segment of F cut by zk and zk+l;

i.e. Fk := zkzk+) for l<k<N ,

where zN+1 coincides with zv We call each of {/\}*Li a boundary element.
Here we assume that these nodal points are chosen so that they satisfy

\rt\=jj\r\, (3.1)

where | | denotes length of a curve. And let us define a mesh size h by

h :=— |r| .
Nl

Let {0*}*Li be a set of continuous functions on F which satisfy the follow-
ing properties (i)— (v);

(i) #*e=C°(r), #»(*/) = »*./ for \^j,k<N, (3.2)
(ii) supp(95A) = r4_1UA for \<k<N, where r0 = T^ , (3.3)

(iii) 0Jr.eC2(r,-) for \<j,k^N, (3.4)

(iv) 5 ** = 1 , (3.5)

(v) rt*(y)day = r*£y)da, for l<j,k<N. (3.6)

Then we define an AT-dimensional linear subspace Vh of C°(F) by

Ffe := linear hull <0X, — , 0^ .

Let us define a collocation operator Ph from C°(r) into Vh by

P4: C°(r) - > F4

UJ UJ (3.7)

Under above preparations, we give a discretization of the integral operator
B defined by (2,6) Let us define an operator Bh from Vh into itself by

where D(Bh) denotes the definition domain of the operator Bh. Furthermore

let {h; j}i^i<N be defined by



HIGH-ORDER CONVERGENCE ESTIMATION OF BEM 337

bifj. : = (PhB^3)(z^ for l<i,j<N.

Since Vh is an N-dimensional vector space over R9 we can identify the operator
Bh with the following NXN matrix

Bk=( r r ]. (3.8)Ci.i — bi,N \
I ij-

And, by this identification rule, we note that an element of Vh

tt*=2«J#* (3.9)

can be identified with an element (ul, ••-, wf)re RN. Therefore, the same
notations are used for the cases both of Vh and of RN in this paper. For the
matrix Bh defined by (3.8), we have the following two lemmas. (See Iso [1; §3,

§4].)

Lemma 3.1. There exist positive constants Q and C2, which are indepen-
dent ofh, such that

(i) -C1/*<Z>,-J<--C2/i for \<i,j<N. (3.10)

(ii) S *,./=- 4- f°r 1<*<^. (3-11)
3 ~1 ^

Lemma 3,2. Let Ih be the NxN unit matrix, then we have

rank (— Ih+Bk} = N-l .

From these lemmas, it follows that the matrix — 4+^?& has the eigenvalue 0

with its eigenvector (1, ••-, l)r. Hence we must pay a little attention to give a
discretization of the function r(z), which is the right-hand side of the bound-
ary integral equation.

Let r^e Vh denote a discretization of r(z);

JT
i.e, ^ = •

Here let us assume that we give rh so that it satisfies

max \r(zk)-r
k
h\<Ch\ (3.12)

(3.13)
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where C is a positive constant which is independent of h. And R(—/4+-B* J

denotes the range space of the operator —Ik+Bh. We remark that rk:=Phr

does not always satisfy the assumption (3.13). In order to attain these assump-
tions, we give a discretization of r, for example, by the following manner Let

vh=(vlh, —, »h)^RN be a solution of

'.=0. (3.14)
\ z /

Since

rankf—Ih+BhY = N-l,

we can choose vh, from the Perron-Frobenius theory (e.g. Mine [3; Chapter 1]),
so that all the components of vk are positive. Moreover, vh is uniquely deter-
mined by normalization of ||^||i=l- And it can be proved, from Lemma
3.13 that there exists a positive constant M, which is independent of h, such that

Here let us set

(max vj

:=r(zy)--:. for l<k<N, (3.15)
N i/{

where d denotes the defect defined by

rf:=2r(z>{. (3-16)
y=i

We know, from error estimation in Iso [1, §4], that

d_

4
= O(A) for \<k<N. (3.17)

Hence we can see that the discretization by (3.15) attains the assumptions (3.12)

and (3.13).
Our aimed discretized problem is to find uh=(ul

h, •••, Uh)TGRN such that

='*, (3-18)

2«J=0 . (3.19)
*=i

These equations correspond to a discretization of the boundary integral equa-
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tions (2.8) and (2.9), and it is trivial that this system of linear algebraic equations
has a unique solution.

§4. Properties of Positive Matrices

Prior to convergence estimation, some properties of positive matrices are
given by Theorem 4.1 and by Theorem 4.2. These properties, especially Theo-
rem 4.2, play an essential role to improve the error analysis. Here we state
them in more general situations.

Let {AN=(a?j)iu^} be a family of NxN real matrices, and let the
following assumptions (i) and (ii) be satisfied:

(i) 2*^ = 1 for !<*<:#, (4.1)
y=i

(ii) there exist positive constants p and C, which are independent of N, such
that

.: for l<i,j<N. (4.2)

Then, from the Perron-Frobenius theory (e.g. Mine [3; Chapter 1]), there exists
#?=($ , — , v%)T<=RN such that

/*7>0 for l<j<N, (4.3)

(Ajifff = »N , (4.4)

IKIli = 1 - (4.5)

Let eN^RN be eN=(l9 1, •••, l)r, and let IN be the NX N unit matrix. Further-
more, define linear subspaces W^ and W(N} of RN by

:= {wN<=RN | (WN, JUN) = 0}, (4.6)

: = {WN e RN | (H^, eN) = 0} , (4.7)

where (u, v) denotes the inner product of u=(ul9 •••, UN)T and v=(vl9 •••, v^)21

i.e. (w, v) = w1v1+w2v2H

Then, we have the following theorem.

Theorem 4.1. Let AN satisfy (4.1) and (4.2), Z/ze« £/ze estimates (i)-(iii) hold;

(i) IMw^|U<i-J- | |M^|U for Ve0T>, (4.8)



340 KANTARO HAYAKAWA AND YUUSUKE Iso

(ii) IK/jr-^^ll-^-ll^ll- for WGWIP, (4.9)
P

(iii) ll(4-^)^IU>f||^IU for "11*6= 0T>. (4.10)
2p

Proof. We first remark that JJLN, defined by (4.3)-(4.5), satisfies the follow-
ing estimate;

C-—<$<?£*— for l<j<N. (4.11)
.AT N

I
i.e. ej = (0,-0, l,0,-,0)r for l<j<N.

(4.12)

Let e*l be an element of RN with its/-th component 1 and otherwise 0;

Then,

On the other hand, for an arbitrary real number ^ and UN& W(
Q

N\ we have

(4.13)

Therefore, from (4.12) and (4.13), we have

m^w^lloo^Hw^Hoo max

Set ^0:=— > then we have Q<a^k-^=afk — -^ from (4.11). Hence,
P ' />

from (4.1) and (4.5), we have

for

and (4.8) has just been proved.
Next for UNSE W(/\ we have

(v(4.8))

=JL
p

Thus we have shown (4.9):
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IK/^-^^IU^J-H^IU for
P

Finally, let VN be defined by

VN . = UN _(uNy pNyr for

then VN <E J*T} and (/„ -^)v* =(4r -AN)uN. Hence we have

ll(/*-^KIU = ll(/*-^K1U . (4.14)

On the other hand, since UN=VN— — (VN, eN)eN, we have
N

2||v^|U. (4.15)

Applying (4.9) to v*e W(*\ we have

lU. (4.16)

Therefore, from (4.14)-(4.16), we have

^—2p
Q.E.D.

Immediately from this theorem, we have the next estimate.

Theorem 4.2. Let eh = (e\, -"yeh)T^BN be the solution of the following
system;

=/4, (4.17)

S 4 = 0 , (4.18)

wherefh=(fl, -••9fh)T^RN is given. Then we have

where Q and C2 are the same constants appeared in (3.10).

Proof. It is clear that the equations (4.17) and (4.18) have the unique
solution. Set AN: = —2Bh and put p: ̂ Q/Cg, then AN satisfies the both assump-
tions (4.1) and (4.2). Since the solution ek satisfies eh^W[N\ we get, from
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Theorem 4.1. (iii)5

Hence we have

Q.E.D.
In convergence estimation in the next section, eh and/^ in (4.17) and (4.18)

are to mean the discretization errors and the truncation errors respectively.

§5. Uniform Convergence Estimation

Let u be the solution of (2.8) and (2.9), and let uh be the solution of (3.18)
and (3.19). We use these notations throughout this section. Our purpose is
to estimate |||M— wJIU in O(h2). On the other hand, we have

and the estimate of |||w— ̂ w||U is of O(h2). For this reason, we are sufficient
to show

III^-^IIU = 0(h2) i.e. \\Ptu-uk\\. = 0(lf)-

Before starting error estimation, we remark two estimates from Iso [1; §4],
which are derived from the Taylor expansion.

Lemma 5.1. (Iso [1 ; §4]) There exists a positive constant C, which is
independent ofh, such that

\\Ph(±-I+B)(Phu-u)\\»<Ch\ (5.1)

|J (Phu-Uh)da\^Ch*. (5.2)
JF

Let us start error analysis. Set sk:=Pku—uh9 then we have, from (5.2),

Define eh=^^le
k
h<pk^Vh by

ei :=4~0} 4 for l<j<N,



HIGH-ORDER CONVERGENCE ESTIMATION OF BEM 343

then it satisfies

|>*=0, (5-3)

IK-*JU<C/z2. (5.4)

On the other hand, we have

Therefore we have

h(-Ll+B^(Phu-u)+(Phr-rk)+(±-Ih+Bh )(*»-**). (5.5)

For the first term of the right-hand side of (5.5), we get. from (5.1),

hu-u)\^<Ch\ (5.6)

and for the second term, we get, from (3.12),

(5.7)

and finally for the last term, we get, from (3.11) and (5.4).

II (y/*+5* )(**-**) IU<C/t*. (5.8)

- - - ~ - e

from (5.6)-(5.8),

Furthermore, from the definition of /4, we have

(y /»+*.)*»=/*,

S e\ = 0 .
* = 1

Hence, immediately from Theorem 4.2 and (5.9), we obtain

Set fh;=ph(±-l+B^(Phu-u)+(Phr- rh)+(~Ih+Bk)(ek-eh), then we get,

(5.9)

<Ch2.

We have just come to our conclusion.
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Theorem 5.1. Assume that (3.12) and (3.13) are satisfied, then the system
of linear equations (3.18) and (3.19) has a unique solution uh^MN. And there
exists a positive constant C, which is independent of hs such that

(5.10)

Unique solvability of (3,18) and (3.19) is mentioned in §3,

Since we identify Vh with RN , we immediately have the following
corollary from this.

Corollary Sol* There exists a positive constant C, which is independent of
h, such that

§60 Concluding Remarks

In this paper, we showed uniform convergence of O(h2) for the boundary
element scheme. (See Theorem 5.1 and Corollary 5.1). The final results are
improved beside those of Iso [1]. But we should, here, remark that the scheme
adopted is rather mathematical and that the assumption (3.12) and (3.13) are
the keys in our arguments. We give, in §35 a method to clear up these assump-
tions., but it requires to solve a system of linear equations (3.14). From practi-
cal viewpoints? such a procedure consumes more computing time, and an easier
method to attain the assumptions should be proposed.

The assumptions (3.1) and (3.6) seem to be strong, and they can be replac-
ed by weaker conditions. But such replacement yields not essential but rather
complicated changes in error estimation. For weaker conditionss details are
mentioned in Iso [1 ; §5].

The properties of positive matrices, stated in Theorem 4.1S will be of use
not only for error analysis but for some applications in the game theories.
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