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Cyclic Representations of U,(sl(n+1, C))
at ¢"=1

By

Etsuro DATE*, Michio JiMBo**, Kei MIKr***
and Tetsuji MIwaA**¥*

§1. Introduction

In this article we deal with the g-analog of the universal enveloping
algebra U,8l(n+1, C)) when g=w is a primitive N-th root of 1 with odd
N. We shall give an explicit construction of finite-dimensional irreducible
representations having n(n-2) continuous parameters.

Our motivation in this problem originates in the chiral Potts model
[AMPT], [BPA]. This is a solvable lattice model built upon solutions to the
Yang-Baxter equation whose spectral parameters live on certain algebraic
curves of genus greater than 1. Bazhanov and Stroganov [BS] showed in effect
that these solutions can be derived as intertwiners between tensor products of
the representations of Uq(a(Z, C)) with g a root of 1 (see [BS], [DIMM] for de-
tails). Attempts for extending their construction to the case of U (8l(n+1, C))
have been initiated in [BK], [DIMM] for the case n=2.

Representations of U,(g) at roots of 1 have been studied recently by De
Concini and Kac [DK] for an arbitrary finite dimensional simple Lie algebra
g. They showed that the irreducible representations of U,(g) are genmeri-
cally parametrized by dim g number of continuous parameters which are the
values of certain central elements. Our aim here is to write down such re-
presentations in the case g=3l(n+1, C).

Received June 19, 1990.
* Department of Mathematical Science, Faculty of Engineering Science, Osaka Univer-
sity, Toyonaka, Osaka, 560, Japan.
** Department of Mathematics, Faculty of Science, Kyoto University, Kyoto, 606, Japan.
*** Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606, Japan.
*##%k Research Institute for Mathematical Sciences. Kyoto University, Kyoto, 606, Japan.
*** Fellow of the Japan Society for the Promotion of Science for Japanese Junior Scientists.



348 E. DATE, M. JivBo, K. Miki AND T. MiwA

Here is the outline of the paper. In section 2 we consider a Weyl algebra
9P with generators xj, z; (1<j<k<n) such that z;x; =g¢x;z; and all
others pairwise commute. We shall construct (for generic g) an algebra map
0,,s: U (8l(n+1, C))—9Y depending on arbitrary non-zero complex numbers
r; 5; 1<i<m). Explicitly it reads

n
0,,(€;) = kE {rizinZipr 2020 h1 201 Xin X k1 *** X »
=i
i
o,(f;) = kz_}l {8 Zi1mknob 2T 1 km s 1=k B 1k 2T nm b} X T4 1—kmt 1k *** X7 >

pr,s(ti) = iZ?nZT-fl nZFh n -

S
When g=w, 9 admits an N"-dimensional irreducible representation o,,: W—
End ((C¥)®") with m=n(n-+1)/2. Let X, Z be N x N matrices given by

Xu; = uyy (uy =w), Zu; =o'y,

where {#,} o<;<y-; denotes the standard basis of C¥. Let X}, Z;, €End((CY)®™)
denote the matrices acting as X, Z on the (j, k)-component and as identity on
the other components. Then we have

agh(x jk) =g X ik "gh(zjk) =h VA

Here again g, 4, (1<j<k<n) are arbitrary non-zero complex numbers.
Composing o,, with o, , above, we obtain in section 3 a representation of
U,B8ln+1, C)) at g=w. The parameters r;, s;, &; and kj, are not mutually
independent, and there are altogether n(n+2) continuous parameters. We
show next that the central elements take values in an open set of C***2,  From
the results of De Concini-Kac [DK] we then conclude that these representations
are generically irreducible.

§2. Algebra Homomorphism U, (8l(n+1, C))— 9

Let C(g) denote the field of rational functions in an indeterminate g. In
this section we construct a C(g) algebra 9§ and an algebra homomorphism
0.5 UBl(n+1, C))—=HW.

We use the following notations:

I B — Klle—1] - N_ _ IN]!
b =T, g = pa— -, (Y] T
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x—x7 X
x} = , x® =
bt q9—q7" (]!

Suppose that L is a logical expression. We define

oLy =1 if L is true
=0 if L is false .

The algebra 9p is generated by xj, zj; (1<j<k<n) and the inverses x3;,
zji satisfying

e X5] = [Xjas 2jowr] = (205 2jowr] = 0 if (, =+, k), (2.1a)

ZjpXjh = QX2 - (2.18)
We define a C(g) linear involution * by

xFe = Xeti—jns 25 = Ziti—ji -

We also define a C linear involution ™ by

A

| _ A -1
49=9q s Xjp=Xjk> Zj=Zjk .

Let (a;;) be the Cartan matrix of type 4,. By definition the algebra
U,@8l(n+1, C)) is a C(q) algebra generated by e, f;, #; (1<i<n) and the in-
verses ¢7! satisfying

4, t;1=0, (2.2a)
ne;t7 =qliie;, (2.2b)
Lt =qif;, (2.2¢)
le;, f;1=0:;{t:} (2.2d)
1-a..

S (e eseimuh =0 if i+, (2.20)
1-a..

ST =0 it i), 2.2f)

We denote the following C(g) linear involution of U, (8l(n+1, C)) by *.

— _ * __ -1
e¥ =fonis f¥F=e€pn-y, tF=1t71.

We also denote the following C linear involution by .

&:‘q_ly éizei’ f/\i :f;‘s ;izt'i—l-
We define the root vectors ¢;; (1<i = j <n-1) inductively as follows.

Ciit1 = € (23a)
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€;j = Cin€rj—qC;Cut if i<k<j,
€ = (en+2—in+2—j)*’\ if i>j.

In particular
€ir1i = J; -

The consistency of this definition follows from (2.2e) for i==j4-1.
the commutation relations of e;;(cf. [Y]) we shall need the following.

eff er;—eperjepte el =0 i<k<j,
e ep—epjeneteges? =0 i<k<j.
For r=(ry, **+, r,) E(C)" we define
r* =y, n),
P =T ).
We construct a family of C(g) algebra homomorphisms
0, UBl(n+1,C)) — W
depending on r, s&(C*)". Fix r, s and define
Ein = XipXipe1 """ Xin»

_ -1 -1
Cin =T ZpZip1Zic10-1Zi41k »

where z;=1 unless 1<i<k<n. We use the following abbreviations.

C.‘kl---k, = C:klci+1k2 Ci+l—lk, s
Eik,-«k, = 55k15i+1k2 5i+1-1k, .
It is easy to check the following commutation relations.
Ealiw = 4wl if k<k’
=q Cwéa if k=k'
=l if k>k',
EirtnCir = qCiw Eirrn if k<K’
= Cw€inp if k>k',
Ci1i v = 4w i1 if k<k'
=Cwéi-1s it kx>k',
Ealiny =Lty it i=i,i'41.

We define

(2.3b)
(2.3¢)

(2.3d)

Among

(2.4a0)
(2.4b)

(2.50)

(2.5b)

(2.5¢0)
(2.5d)
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or.e) = 33 {Cubean, (2.60)

pr,s(ﬁ) = ps*,r*(en+]-x‘)*9 (2'6b)

pr,s(ti) = Li‘ztgnzrjlnzi_jln- (260)
S:

Note that (2.6b) means

i
pi,s(.f;') = E {Ssz.'+1-kn—kzi_+11—kn+1—kZ,-_;,n+1-k27—}kn—k}xi_h-knn_k xl'_nl-

Proposition 2.1. For a=e,, f;, t; we have

0,.{@)* == pg (@), 0,(a)" = 0;3).
Proof. Straightforward. O
Theorem 2.2. o, defines a C(q) algebra homomorphism.

Proof. We shall check the relations (2.2). The relation (2.2a) is obvious.
By using Proposition 2.1, (2.2¢) follows from (2.2b) and (2.2f) follows from
(2.2¢).
It is easy to see that
pr.s(ti) Cjkpr.s(ti)—l = Cjk ]
pr,s(ti)fjk pr,s(ti)—l = qa'.jfjk .
From this follows (2.2b).
Let us show (2.2d). Set
(G, k) = {rizazilii1 Zipma 21 i} Xig *+ Xin »
G0 = {Sij+1—1n—tZ;T+11-tn+1—12j—1n+1—127—11n-l}xfil-lﬂl—l -t X

Then we have
o) =GR, 0, ) =TG-

Consider the product (i, k) (j,I)’. Using the commutation relations (2.1) we
can move all the x,’s in (i, k) to the right of z,;’s in (j, /)’. This procedure
picks up nonzero power of g in the following two cases.
Case 1: [=j—i+1, k+I=n+1,

Xig °°* xm(zj+1—tn-zzf+11—1n+1—1) = Q(Zjﬂ-tn—lzﬂll—zn+1—1)x,-k et Xin -

Case 2: I=j—i, k+I=n+1,

. Tl — -1 -1 see
Xir xin(zj—ln+l—lzj—lu—l) = @ N Zj-1nt1-1 2521 ne)Xik *** Xim
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The situation is the same for the product (j, /)’ (i, k).
Case 1: [=j—i+]1, k+I=n+1,

~1 -1 -1 —1 -1 -1
Xjt1—lns1=1 *°* Xjn (Z,kZi-x p—1) = q(Z;kZ.'-l k—l)xj+1—ln+l—l °o* Xjn -

Case 2: [|=j—i, k+I=n+1,
—~1 -1 -1 -1 -1 —1 -1
Xjt1=Ins+1—1 °*° Xjn (Z;4-127614) = ¢ (Zim12Zi w1 )X T 1= 1 b1t *** Xjn

If i> j, neither Case 1 nor Case 2 occurs. If i=j, Case 1 occurs but Case 2
does not. If i<<j, both Case 1 and Case 2 occur. Therefore, if i>> j then

lo,. (e, £, (] =0. @7

When i <j, we use the following formulas for commutative x, y.

{xHayy —{gx} O = {07,
{Ha ™y — {7 o} = 7Y},
{x}+{x7} =0.

If i<j (2.7) follows from these identities. Finally, for i=j we have

[pr.s(ei)’ pr,s(fi)] = {T’;L zlgﬂ z,-'_ll,,z;‘jl ”}

= {0, (1)} .

From (2.5d) and (2.6a) we have [e;, e;]=0 if i==j4-1. This is (2.2¢) for
i j-1. In order to finish the proof we must show (2.2¢) for i=j+1. Before
proceeding to that proof we determine the image of e;;. Since we have shown
(2.2¢) for i = j+1, the map p, , is well-defined on e;;.

Proposition 2.3. For an integer | such that 1<I/<n-+1—i we have

l .
Oy, s(€;i41) = ;2‘,_ ,.21 (—qy 10k, = =k~ <ky)
1= J=
kIZx‘.-;-'l—l
X C,- kykj_y {C,‘.}.]‘-l kj} (C;H kj,H---k,)—lEi kyky (2.8)

Proof. We use induction on /. If /=1 this is (2.6a). Suppose that (2.8)
is shown for /. By the definition we have

€ttt = €€t o141 9541 i 414165 i1 -

Note that

n
Or,(€it1iti+1) = . Z_M {Ci+1k,+1}5i+1k,+1 .
+1
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Consider the product o, (e;,+)0,s(€;r1:+1+1). When we move &;, .., to the
right of o, (€;1;:+1+1), it may pick up some power of g from {;,,, . In fact,
we have

e gORI<k
5ik,---k,ci+1k,+1 = g0ki<ki+0) Ci+1k,+15ik,---k, .

Similarly, for the product o, (€;+;i+1+1)0r,(€;i+1)s Eiv1z,,, MY pick up some
power of g from {;yy_y4,3

— 0lkk
Civtng ey Sitt-1a, = 4 2 ’+1)ci+l—1k,€i+1kl+1 .

We use the following formulas for commutative x, y.

xHgyy —gx My =x71,
Oy —q o} = {372,
x“{y}—q(gx){y} =0,
ot —alaxt {0} = —gx{o} .

From these formulas follows (2.8). O
Proof of Theorem 1 (continued). If i=j—1, (2.2e) is equivalent to
€ii+2€i = 9€;€; 42 (2.9a0)

and if i=j+1 it is equivalent to

€i+1€jj4+2 = q€;j4+2€541 - (2.95)

We shall prove (2.95). The proof of (2.94) is similar. Note the following
formulas.

€ir1 = > {Cj+1k}§;+1k s
k>j+1

€z = k§j (00, <) jagd C7a1 1€ i € 1,90 (ki = K3) 3 AC 1} € oy € jriy) -
ky2j+1

Consider the term in (2.95) corresponding to the summation indices k, ki, k,.
There are 9 cases.

) k<k <k,

Q) ki<k<k,

() ki<k=k,,

@ ky<k,<k,

6) k<k,<k,

©) k=k,<k,

(N kp<k<k,
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®) k<k <k,

) k=k,=k,.
Using (2.5) we have
M+ =@+@=03)=O+" =(®) =) =0. O

For 2=(2;,)€C(*)", let S), T, denote the automorphisms of 74
Sa(xj) = ApXj, SNZp) = Zjs s
Ta(x1) = X TA(Z,'/:) = A5 2j.
Proposition 2.4. For r, s, 7, 5&C(*)", there exists a A& (C*)" such that
Tyoo,s = 075 (2.10)
if and only if 1;8p41-; =FSp1—; (1<i<n).
Before the proof we prepare

Lemma 2.5. Given d,€C* (1<j<), consider the equations for the
unknowns 2;, (1< j<k<I)

d; = 'Ijkxjk-l(li—lk—llj+1k)_l (I<j<k<l) 211

where we set X =1 unless 1< j<k<l Define dj=d;d;,,---d, for 1<;<
k<I. Then (2.11) has a unique solution given by

Mg = djpdjrh-1  Aipmjur - (2.12)
Setting 2% =2311-j we have
Apih=1. (2.13)
Proof. Set
Ui = X211 - (2.14)

The equation reads as
dj = i1 -
This equation has a unique solution given by
L =dy .
Therefore, from (2.14) we have
xjk = djk /zj—1k—1 = djk dj—xk—l dlk-j+1 .

This is (2.12). Substituting the solution we obtain
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lik djk dj—lk—l d1 k—j+1

A,-'k-1 - djk—ldj-lk—z dl k-j
= dk+1—jk
. Apv1-jk
i
_ Hi
=%
From this follows (2.13). O

Proof of Proposition 2.4. The condition (2.10) is equivalent to the fol-
lowing equations.

A S SARY ras IR (1<i<k<n) (2.15a)
¥ =s¥alaf AT 2T, (1<i<k<n)(2.15b)
T h g, (<i<n). 2.15¢)
§; S;

Set d,=F,[r;, d}=5¥/s¥ and /=n in Lemma 2.5. The equation (2.15q) is solved
by

Ay = dpdi_yp-1 - Dpeinr s
and the equation (2.15b) is solved by

'z:'kk = dikdf—l k=1 """ dx{k—i-kl .

Since 4, =24,,,-;2, these two solutions are consistent with the definition
A5=231i41, if and only if d;d{=1. This is equivalent to r;S,4,_;=F;§11-;-
Finally, (2.15¢) follows from (2.15a) and (2.15b) with k=n. O

§3. Finite-dimensional Representations

Fix a positive odd integer N >3. Let » be a primitive N-th root of unity,
and let @ 4(q) denote the N-th cyclotomic polynomial so that ®,(w)=0. We
set

A = {f€C(q)| fis regular at @4(q)=0} .

Let U _j denote the A-subalgebra of U, generated by e, f;, t; (1<i<mn). Let
further U,=U_;® ;C,, where C, denotes the . f-algebra C on which g acts as
@. We define 9y, 9, analogously.

Consider an N-dimensional vector space with fixed basis #; (0<i <N—1).
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V" == ),'v:ol Cu,- .

We define the following representation ¢ of the Weyl algebra 9¥. with gen-
erators x, z:
o: W, — End(V}),

o(u; = Uiy (uy =), 0(2u; = o'y, .

Set m=n(n-+1)/2 and V=(V,)®". 'Then we have a representation o®”: G =
(W%)2" —End (V) by letting the generators X, z;; act on the (j, k)-component
of V as o(x), o(z) and as identity on the other components. Composition with
0,,s: U,~, and the automorphisms S,, 7}, gives rise to a representation

Oy,s SgoTh o®n
z: U, — qp 99, End (V). G.1)

Besides r, s€(C*)", = contains n(n-+1) arbitrary parameters g=(g;), h=
(hjp)E(€*)". In view of Proposition 2.4, these parameters are not all indepen-
dent, and we can set e.g. s;=1 (1<i <n) without loss of generality.

The goal of this section is to show that (3.1) is irreducible for generic choice
of the parameters r;, g; and A;. For this purpose we prepare some lemmas.
In what follows we set

(5 ) _ Aot} g oy
y [»]!

Lemma 3.1. For any positive integer | we have in 9

) . B Sy Ve | oy pv
0, (ei) =23 DI | s 11 &5
=1 n2k1>--->hp21 r=1 y’—y’_H r=1
1=v1>...>vP21

where v,,,=O0.

Proof. We use the induction on /. The case /=1 follows from the defini-
tion.
Assuming the Lemma for /, we can calculate o, ((e!*")/[/]! as

b

» .
{Cubéa 11 { Cins =V } II &V
r=1 yr+1

y, — r=1

B30 p=1 >k S >kp>i ,

1=V > >Vp>1
Since £;;,¢;;=C;;£,,q 0"2P~0U>B_ the summand becomes

{€at 11 {Goors o= 020 =001

V=V

»
beadles. 62

We divide the sum into two parts according to whether (i) K=k, with some s,
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or (i) k,_;>k>k, with some 5. In the first case let kj=k; (1<j<p), vj=
v;46(j<s). In the second case replace p by p—1, and set ki=k;, vj=v;41
(j<9), ki=k, vi=y,+1, kj=k;_;, vi=v;; (s<j<p). Then I[+1=v{> >
v;>1, and the cases (i), (ii) correspond to v;—v»},;>1 or =1, respectively.
Dropping primes and rewriting the summand, we get in both cases

I {Cik,; Yy -1 } . {C.ks Vor1—1 } {C.k,} ,I;I,{ iky > r+l}H & Vs

r<s YVe—Vrt1 Vs— Vs —1 Vo= Ve 771

It remains to show that

ség {Cik,; —”r+1~1},{ci/¢s Yer1— }{C;k} I { iky > —Vr+1}

V=V Vi~ Vst >s Vo=Vt

=p+1 1 { 4o "”'H}.

=LA VeV
The sum for s=p—1, p reads

Cirys —1’r+1—1}<{cikl,~ 5 } {cik ;0}
f!:[;[-l { V,—V, 4 1 _1 {kaﬁ—l} :

Vy1—

.
_I_{Cikp—w _Vﬁ—l }{ C.kﬁ: } [Vp]>
V17V
=11 {Cik,; —Yp—1 }{ Cityeys — Vs }[”g—ﬂ{ Citys —Vpt1 } .
r<h-1 Y,—V, 1 Vpo1= Y, Vy—Vpi1
The assertion follows by repeating this procedure. O

Lemma 3.2. Let A, B be elements in an associative algebra over C(q),
satisfying the relations
APB—ABA+4-BA® =0,
B®4—BAB+AB® =0,
Set C=AB—qBA. Then for any positive integers k, | we have
D) CO=3_o(—q)"~ ADBD Q=D
(ii) B(")A(”=Eos,~5k ,(——l)j q—i—(k—i)(l-i)A(l—i)C(i)B(k-i)’
(iiiy AB®AD =BE-YAPDB L[] | 1]BB 4D,
Proof. Formulas (i) and (ii) are proved in [Lu]. Formula (ii) with k=1
together with AC=q~1CA gives

BAD = g (ADB—CAUD)

Multiplying by A4 from the left and using the definition of C, we get
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ABA® = A BL[I|BAMY | (3.3)
Similarly we have
BYAB = ABYL[I]1BHVY .

Then multiplying eq.(3.3) by B¢ from the left and using the above identity
we obtain (iii). O

Now consider the following ‘monomials’ in 9¥:
@ . B
szik]:[xjik al'k’ ﬂ]kEZ'

For convenience we shall call an element fE9¥ of type I if it is an f-linear
combination of monomials with e, #;,ENZ, and of type II if f E DN @Q)W 1.

Lemma 3.3. For any i=j, p, (e EW is a sum of elements of type
I and of type II.

Proof. Assuming i<j we prove the Lemma by induction on j—i. The
cagse i> j follows by applying the involutions %o "
Let j—i=1. From Lemma 3.1 we have

N-
0,,elis1) =_S% J_I: {¢.1q7 "} €%+ (elements of type II).

In view of the formula

T (=i =1 N ,~N(N-1)/2 __—N ,N(N-1)f2
jl;Io(xq —x7'q’) =x"q —xgq
+ I:N:I(_l)vq—zv(zv—1)/z+(1v—1)vxzv—zu
2wy

we find that the assertion is true in this case.
Next let us prove the case j—i>1. Taking
A=eik’ B=ekjs C=e,‘j (i<k<])

we can apply Lemma 3.2 to obtain

e’-"- _ eiy,-+1el,y+1j—q1ve£'v+lje£yi+1+ (__q)N—]; e?'."'lely.,.l- eiyi:-kl
ij = :
IN]! 0<E<N k]! ! [N—K]!
N N N
e ey, q; 1—
=[ HESH) x+11]+( q )e{,\f_'_li e?’“_l

IN]! V]!
-k €hatjeliatlefin, elinlelTh
to2 9 KIIN—K]!
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From the induction hypothesis it suffices to show the following.
(i) Iff, g are of type I, then so are fg and [f, g]/[N]!,
(ii) If fis of type I and g is of type II, then fz, gf and [f, g]/[N]! are of type II,
(iii) If f is either of type I or type II and g is a monomial, then [f, g] is of
type 11.
To show (i) —(iii), let f=f, IT z57* IT xf,{’*. g=g, Il z?,:i" I x?,;f",ﬁ,, ZHEA.
Then we have

fo = fogo TL g~ PPzt e TT O

—Sepbis_g—SNab e, Y
[[J]";]ig'] _ q 7k :{Nﬁ kI jk fogo II z?’:k—i—aﬂ, I x]/..?’:k-!-ﬁ,h .

The assertions (i)-(iii) are clear from these. |

We now specialize g to @. It is clear that the image under ¢®” of elements
of type I are scalar, while those of type II vanish. From this we have the
following.

Proposition 3.4, We have

z(t¥) = Y,id. (1<i<n),
2(el) = (@—0™) VY;id. (I<i+j<ntl).

where Y;;EC are given as follows.

Yy = (r;st hi whi whiien)™ (3.4a)
l .
Yiw= _ 2 (=1 0k > > k<o <ky)
ky2i,ekp2it-1 j=1
77ikl---kj_l(775+j—1kj_7]7-:1'-1 h,-)ni—-:jk,-+1---k,0ik1---k, (3.4)
l .
Yooivznoivz-1=—__ 20 S (=10 = 2k < <ky)
klzx,---,k,2|+l-1 j=1

= = =1 =1
i kl.-.k,-_,(ﬂuj—l kT Nivj—1 k_,-)77i+ikj+1---k, 0; Eyeky (3.4¢)
= -1 7, -~ -1
where we set g;,=gry1-j ks Pjp=Rps1- 1o Fi=Smv1-i >

Tt = Pl Ry B 11 AT 10)Y

Bip = (S Rig by oy B2 a1 AR )Y
Op=11gY, 04 =1I1(Z)"
1=k i=k
and @ ..k, =Pin,*** Biv1-1, Jor $=1, 7, 0, 0.

Let us now examine the irreducibility of the above representaitons of U,.
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Hereafter we assume s;=1 without loss of generality. We denote by Y the
map C?#**—C*n (g, hy;, r;)>(Y;;) defined in Proposition 3.4.

Let Z, denote the subring of the center of U, generated by zF¥ and e,
and let Rep be the set of equivalence classes of irreducible representations of
U,. De Concini and Kac show [DK] that

(i) Z,is a polynomial ring in n(n+2) indeterminates,

(ii) the natural map X’: Rep— Spec Z,=C***? has finite fibre,
(iii) dim R<N™ for all RERep, the equality being true for generic X'(R).
To show the irreducibility of our representations z (for generic values of para-
meters), it is therefore sufficient to show that the image of Y contains an open
set, since our representations are N™ dimensional. We shall show that the
Jacobian determinant of Y at the point P: g;;=h;;=1 1<i<j<n), r;=t
(1<i<#n) does not vanish (for generic ¢)

It is easy to see that the Jacobian matrix at P is of triangular form.

(Y h<igjsntr)
O((hijh<isisns (Fhiisa (Gih<isjsa)) lp

(Yij)15j<iSn+l (Yvii)ISiSn (Yij)ISi<an+1

(hihi<isizn | H * *
= (Figi<n 0 R *
(&ijhsi<j<n 0 0 G /

We shall show that H, R, G are non-singular. From (3.4a) it follows that R
is Nt¥1idy(idy: N X N identity matrix).

Proposition 3.5. The Jacobian matrix H is non-singular.

Proof. The change of variables (B;,)<;<j<n—> (i jhi<i<j<q 1S invertible at
hi;=1 (1<i<j<n). The change of variables (%;;)<;<j<n—> (Bijhi<i<j<s Where
7ij=hi;hi j_1 ki j_1 kil ; is also invertible. In fact, the inverse map is given
inductively by

hij = 7ijTiarj o ﬁjjhi—lj—l .
Therefore, it is sufficient to show that the Jacobian matrix

a(( Yu+2—i.n+1-j)ISiSan)
(7 jhsisj<n) P

is non-singular, We have
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aYn+2—i,n+1—j

j—it1
o7 =-=2 3] 21 (110 psma O Ok = oo 2 e <o <K i41)
&l =

P ky>i

kj-i+12]
— _(—1)- ,(n /—{—k—z)(n l)
k—i —k
Here we have adopted the following convention for the usual binomial coef-
ficients

(i):o if k<0 or j<k.

If j<k then 8Y,,,_; n4,-;j/07: =0 at P. Therefore, it is sufficient to show
that the diagonal blocks (’_1_1) (1<k<n) are non singular. Note that
J =R k<i<n

kSIS
(’_’—’) —0  if Ij>ntk
j—k
=1 if I+j=n+k.
The assertion follows imimediately. O

Propesition 3.8. The Jacobian matrix G is non-singular.

Proof. We have

’ .
GY, i+ Z‘(—1)’"10(k12'-'2k,~<"'<k1)
agr,s ki>i, ky>i+l-1 j=1
% ,(21’—1—1)1\! (tN -N) zkl kI
gr.s
9u _ N5 6(s=F).
9g,.s

In the limit #—0, the leading terms of the right hand side come from j=1.
Setting /=j+1—i and r'=r—i+1 we get

Y. . .
S — —NemUTHIN(D, 4 0(1)
gr,s
where
Dij,rs = > 6(S2k,/)
iSh<e<ki_ia
- > > 1

r<kSs iSky<n<k <k k<<, <n

-2 (50) (3
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It remains to show that det(D;; ,,),<i<;j<,+0. Since the summand of (3.5)
1Sr<s<n
is independent of s, it is easy to see that det(D;;,,,) =det(Di;,.) where

Di; +s =(s l)(" S). This matrix is block triangular since Df; ,,=0 if r<i.
r—i/\j—r

Further if r=i we have det (D}; is)i<j,s<a=1. This completes the proof. []

If we specialize the parameters, we get invariant subspaces. Let / be an

integer such that 0</<n—1 and let { be an integer such that 0<i<N—1. Set

U= u;Q--Quy,
vw—y
(i, B)-component, 1<j<k<!
and
V,-'I =u,~,,® Vl®"'®V1 .

(j k)-component, 1<j<k, I<k<n

Fix the parameters r; (1< j</) and 4, , (1< j<k</)in such a way that

r,=w, (3.60)
hjkhjk lhl.‘-_ll k—lth-ll-lk = (Dl-isf:l for ].Sjsksl N (3.6b)
h h;kk_1 h]_l k=1 h;“:llk = (1)—1+i8i:1 for 1S]Sk$l » (360)

where h¥,=hzi1—j &

From Lemma 2.5, (3.6b) and (3.6¢) are consistent and have a unique solu-
tion. The parameters r; ({<<i<n), g; (1<i<k<n) and h; (1<j<k, I<k<n)
are free.

Proposition 3.9. The subspace V,,, is U, invariant.

Proof. 1t is easy to see that V;; is invariant by e;, f,4,-; With I<j<n
and ¢, for all i. If 1<j</, we have

0,,4(e;) = E.Ejk{w_lzjkzjk—lz;'——ll b—1Z5418} 5
O, frr1-;) = 2 Ehidozhiziioizi 20
If 1< j<k<I, then

-1 -1 i
ZikZjp-12j-1 k=14j41 U5 = a"sﬂui,l s
-1 -—1 -8
zhefizfoa iy, = o Biug,
and therefore, by using (3.6b), (3.6¢) and {1} =0,
- -1 -1
0®"0S 0 Ty({0™ 2 2; 412721 k125014 iy = 0,

-1 -1
0®m°sg°Th({@Z;FkZ?k-1Zf-1 k—lz;l‘+lk})ui,l =0.
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Thus we have shown that V; ; is invariant by the action of e; and f;. |

In [DJMM], we have constructed an N” dimensional irreducible repre-
sentation. We shall show that it is isomorphic to the representation on V; ,_;.
First we recall the construction in [DJIMM]. Let W=(V*)®**) and let Z; and
X; (1< j<n+1) be the operators acting as o(z) and o(x) on the j-th compo-
nent of W. Set WO={ucW |1} Z;u=u}. Define z': U,—End. (W)
by

7'(e;) = bila; Z} X; X7
l(f,) = b {a,+1Z,+1}X— F+1 s

’(t)_‘ 27;4.1

Now consider V,, ;= (V)®". Let C; and 2; (1<j<n) be the operators
acting as o(z) and o(x) on the j-th component of (V*)®*. Then the subrepre-
sentation of z on ¥, ,_,, which we denote also by =, reads as

75(8 ) '—g/n{r; in ]n 1/’1_,...11”_111—+1,,C Cj-l-l}‘g
”(f) = g7 {h7 b3t ln—lh]n 1h, 12 C7 C —1}‘9_
”(t) =1r; hjnhj ln/7_1+lnc C ]+1 .

Choose d; (1< j<n) in such a way that
i a—a 3.7
divi @)1 —azih

For 1< j<n, define mutually commuting operators

0, = (f{Z)X) [ Z X j31) ™

_NZ) s (i)

X; X7}
fi(@Z))

-1
-1 s
f;+1(0-’Z,+1) i XiHXJ >

where

The equation (3.7) implies @Y =1.
Define a linear isomorphism

Y (V) — WO
by

Y(up, @ Quy,) = }::Il L7 S
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We denote also by v the induced algebra homomorphism
+: End; ((VY)®*") — End, (W©) .
Then we have

w(C;C7t) =Z;, (3.80)
w(@)=0;. (3.8b)

We shall show that by a suitable choice of the parameters 4;,, g;, (1<j<n)
and r, we have

Yox(e;) = n'(ey), (3.9q)
yon(f;) =='(f}), (3.95)
Yrox(t;) = z'(t;) . (3.9¢)
The equations (3.9a) and (3.9b) give rise to
_ _ _ d{a;Z}
bi{a; Z;} = giulrihn hju-shiin1hje1nZinn} d—_-_—jﬂ{lcuaj-ﬂlz,-ﬂ} :
djp {a;1.Z 41}

bJTl{ajﬂ Zj+1}' = g;nl{hfnl hJT—ll n—1 hj n—1/7j—1nZi_1} W ’
These are satisfied if we choose

Ein = —bjd‘+1/dj B

J

-1 -1
hj”hj_ln = wajhj”_lhj_l n—19

rnhfm = w_la;l_-ll-.lhn—l n—1"
Finally, (3.9¢) is checked easily.

In closing we shall explain how we get the above representations.

For 2=(2, «*+, 2,)EC", let M,=U,/I denote the Verma module where
I=33; Uye;4-33; Uy(t;—q"). Let v, =1mod I be the highest weight vector.
Let further F*(jy, «+o juu) =f U0 ooo fG10 (j,E Zsy, 1<r <k<n). We define

nljl= F”(jlm o0y Jun) *°° Fl(jll)v)\ , J= (jrs)lgrssSnEZgo .

From now on, f,,=0 unless 1<r<s<n, and by convention F*(jy, ***, ju)=0,
o[ j]1=0 if a negative value of some j,, appears in the expressions. Then we
have

Proposition 3.10. Set ¢;,=(0,,0,h<,<s<s- 1he action of e, f; and t; on
vectors v, [j] is given by
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” k-1 k-1 k
e ljl = E [1+2;—7u —_2!=2ij” + ,mz_lji—-l x+,§1ji+u] olj—€ul
Saalil =, 2 _[1 Vitknr—Jitk-n-16] OlJ+23 €1vicnri— 23 Erpimn-ril s
=nt1-§ 1>k I1>k+1

. =23 =iJutDi=i-1fi-n+ Dl =i fitrr
toljl=¢q ulj].

Proof. From [e;, f{P]=0;;f{'~V{¢"""t;} and Lemma 3.2 with 4=f; and

B=f;_,, we have
[ei, Fk(jlka "'3jkk)] = 0(k21)
X F*¥(fags **5 Jimrio Jin— 1o Jiwrio s Ju) {g v ivnag}

and for 1<i<k

SiF G =5 Jue) = F* (s =5 Jimzo Ji—16— L Jiet1s Jignns =5 Jundfi-1

+[jik_ji-1k+1]Fk(j1k’ 0y Jim1ks jik_l-l: ji+1ka "':jklz) .

Here f; is understood to be zero. From these the propoistion follows. d

Returning to the Weyl algebra 9, let us consider the following represen-
tation of ¥ on the linear span of the symbols V[J], J€Z":

Xp V1 = VIU—eul, zpVJ]=q 7#V[J].

This induces a representation of U, via p,, with r;=q¢", s;=1. Explicitly it
reads

e; V[J] ”—‘;2'_ M+ —Ja+ T st icip— TV ”‘% €l

fiVIJ] =k=,§-.~ U+iskenr—itb-n-16—Tirr=nt-1+Tith-n-1-1
XVII+2 enicadl»
=%
t;VIJ] = gh ¥t imiatieanV[J]

If we formally identify V[J]=uv\[j] with J,,=>3i., j,;, we see that this repre-
sentation has the same form as the one for the Verma module described above.
(Note that in the latter case the vectors z,[j] are not linearly independent in
general.)
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