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Cyclic Representations of Uq(8l(n+l, O)
at qN=l

By

Etsuro DATE*, Michio JIMBO**, Kei MIKI***
and Tetsuji MIWA****

§ 1. Introduction

In this article we deal with the ^-analog of the universal enveloping
algebra Uq(§l(n+l, C)) when q=o) is a primitive JV-th root of 1 with odd
N. We shall give an explicit construction of finite-dimensional irreducible
representations having n(n+2) continuous parameters.

Our motivation in this problem originates in the chiral Potts model
[AMPT], [BPA]. This is a solvable lattice model built upon solutions to the
Yang-Baxter equation whose spectral parameters live on certain algebraic
curves of genus greater than 1. Bazhanov and Stroganov [BS] showed in effect
that these solutions can be derived as intertwiners between tensor products of
the representations of Ug(Sl(2, C)) with q a root of 1 (see [BS], [DJMM] for de-
tails). Attempts for extending their construction to the case of Uq(§l(n+l, C))
have been initiated in [BK], [DJMM] for the case n=2.

Representations of Uq(Q) at roots of 1 have been studied recently by De
Concini and Kac [DK] for an arbitrary finite dimensional simple Lie algebra
g. They showed that the irreducible representations of Uq(§) are generi-
cally parametrized by dim g number of continuous parameters which are the
values of certain central elements. Our aim here is to write down such re-
presentations in the case Q=§l(n+l, C).
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Here is the outline of the paper. In section 2 we consider a Weyl algebra
^ with generators xjk) zjk (l<j<k<ri) such that zjkxjk=qxjkZjk and all
others pairwise commute. We shall construct (for generic q) an algebra map
priS: Uq(§l(n+I, C))-*^ depending on arbitrary non-zero complex numbers
ri si (1 < / <ri). Explicitly it reads

r.,(*i) = 53 iriZi* k - l l k - l

Pr,s(fi) == S {SiZi+i-kn-kZT+l-kn + l-kZi-kn+l-kZr-kn-klxT+l-kn+l-k a'*XTn ?
k=i

When q=ct>, ^ admits an JV '"-dimensional irreducible representation agk:
 <W-^

End((CN)®m) with m=n(n+D/2. Let X, Z be NxN matrices given by

XUt = Ui+1 (UN = U0) , Zllf- = Q)'|/f. ,

where {wf}0^«jy-i denotes the standard basis of CN . Let Xjk9 ZJk e End((C^)®M)
denote the matrices acting as X, Z on the (j, fc)-component and as identity on
the other components. Then we have

, °gh(zjk) = hjkZjk .

Here again gjk, hjk (l<j<k<n) are arbitrary non-zero complex numbers.
Composing ogh with pr>s above, we obtain in section 3 a representation of
Uq(Sl(n+l9 C)} at q—o). The parameters r,-, si9 gjk and hjk are not mutually
independent, and there are altogether n(n-\-2) continuous parameters. We
show next that the central elements take values in an open set of C7M(B+2). From
the results of De Concini-Kac [DK] we then conclude that these representations
are generically irreducible.

§ 2, Algebra Homomorphism Uq(Sl(n+ 1 , £7)) -> <W

Let C(q) denote the field of rational functions in an indeterminate q. In
this section we construct a C(q) algebra *W and an algebra homomorphism

We use the following notations:

[k]l[N-k\l
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Suppose that L is a logical expression. We define

0(L) = 1 if L is true

= 0 if L is false .

The algebra ^W is generated by xjk, zjk (l<j<k<ri) and the inverses xjk,

zjk satisfying

[*y*. Xj,k,] = [xjk, zj,k>] = [zjk, Zj,k,] = 0 if C/, fc) =*=(/, *') , (2-lfl)

ZjkXjk =q*jkZjk. (2.1*)

We define a C(^) linear involution * by

X% = X~k+l-jk 5 Zjk = Z'k+i-.j k .

We also define a C linear involution ^ by

q=q~l , xjk = xjk , zyjk - zj*1 .

Let (af-y) be the Cartan matrix of type An. By definition the algebra

Uq(£l(n+l9 C)) is a C(q) algebra generated by e i 9 f i 9 ti (l<i<ri) and the in-

verses tjl satisfying

[t^ tj] = 0 , (2.2*)

ttejtT^q'vej, (2.26)

tifrT^q-vfj, (2.2c)

fjfll-*r*>=0 if 1=1=7. (2.2/)

We denote the following C(q) linear involution of Uq(8l(n+l, C)) by *.

We also denote the following C linear involution by ^.

We define the root vectors efj (l<i^pj<n+l) inductively as follows.

eiy (2.3d)
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^j=eikekj-qekjesk if i<k<j , (2.36)

efj = (e»+2-<,,+2-j)*A if i>j. (2.3c)

In particular

ei+ll=ft. (2.3d)

The consistency of this definition follows from (2.2e) for i = + = 7 ± l . Among
the commutation relations of ef-,-(cf. [F]) we shall need the following.

$ = 0 /<£<y , (2.4a)

- 0 i<fc<y . (2.4ft)

For r=(rj, — , rn)e(C*? we define

We construct a family of C(q) algebra homomorphisms

depending on r, 5-e(Cx)w. Fix r9 5 and define

f i* = xikxik+l "a xin ?

where zik=l unless !</</:<«. We use the following abbreviations.

It is easy to check the following commutation relations.

if ^>^', (2.5c)

We define



CYCLIC REPRESENTATIONS 351

Note that (2.66) means

Pr,s(fi) = 2 {^i^i+i-*»-*^r+i-*»+i-*^,--*«+i-*^r-*ii-.

Proposition 2.1. For a=eiyfi9 t{ we have

Pr»* == P*.X«*) > Pr>r = PP.Stf) .

Proof. Straightforward. D

Theorem 2.2. pr>s defines a C(q) algebra homomorphism.

Proof. We shall check the relations (2.2). The relation (2.20) is obvious.
By using Proposition 2.1, (2.2c) follows from (2.26) and (2.2/) follows from
(2.2*).

It is easy to see that

From this follows (2.26).
Let us show (2.2d). Set

/• 1L\ /„ _ _—1 _ _—I \ y. ... Y

Then we have
n

f'S * k = i ' ' r>$ 3 l = L

Consider the product (/, k) (j, /)'. Using the commutation relations (2.1) we
can move all the xab's in (/, k) to the right of zab's in (j, I)'. This procedure
picks up nonzero power of q in the following two cases.
Case 1: l=j-i+l, k+l=n+l,

xik '" Xinzj+l-ln-lz7+l-ln+l-l) = q(Zj+1-in-iZj+i-i n + i-i)xik ••• Xin

Case 2: l=j-i, k+l=n+l,

Xik '" Xin(zj-ln+l-lz7-ln-l
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The situation is the same for the product (j, /)' (/, k).
Case 1 : /==/-/+ 1, k+l=n+l,

"" °°B

Case 2: /=y— f, fc+/=

If />/, neither Case 1 nor Case 2 occurs. If i=j9 Case 1 occurs but Case 2
does not. If i<j9 both Case 1 and Case 2 occur. Therefore, if i>j then

K.(««). /U//)l = 0 • (2.7)

When i < j, we use the following formulas for commutative x, y.

{x}{qy}-{qx}{y}={xy-1},

If i<j (2.7) follows from these identities. Finally, for i=j we have

From (2.5cf) and (2.60) we have fo, gy]=0 if /=Nj±l . This is (2.2e) for
/ =1= 7 ± 1 . In order to finish the proof we must show (2.2e) for i = j± 1 . Before
proceeding to that proof we determine the image of ei3-. Since we have shown
(2.2e) for /= f=y±l 5 the map pr>s is well-defined on eu.

Proposition 2.3. For an integer I such that \<1<n+l—i we have

= 23

(2.8)

Proof, We use induction on /. If /=! this is (2.6a). Suppose that (2.8)
is shown for /. By the definition we have

ei i+/+l ~ ei i+

Note that
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Consider the product Pr,s(eil+i)pftS(ei+li+l+l). When we move £ikl...kl to the
right of priS(ei+n+l+1), it may pick up some power of q from C,-+/*/+1- In fact,
we have

Similarly, for the product PrtS(ei+n+l+l)prtS(eii+l)9 ff-+|ft|+1 may pick up some
power of q from Ci+l-lkf;

We use the following formulas for commutative x, y.

{x} {y} -q{qx} {y} = -qx{y} .

From these formulas follows (2.8). n

Proof of Theorem 1 (continued). If i=j—l9 (2,2e) is equivalent to

**H-2*.- =^i^i+2 (2.9fl)

and if 7=7+! it is equivalent to

= ^y y+2 ey+1 . (2.96)

We shall prove (2.96). The proof of (2.9a) is similar. Note the following
formulas.

_

.

Consider the term in (2.96) corresponding to the summation indices k, kl9 kz.
There are 9 cases.
(1)
(2)
(3) k1<k=k2,
(4) k,<k2<ky

(5) k<k2<kl9

(6) k=kz<kl9

(7) k2<k<kl9
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(8) k2<k,<k9

(9) k=k2=kl.

Using (2.5) we have

(l)+(8) = (2)+(4) - (3) = (5)+(7) = (6) = (9) - 0. Q

For ^=(^)eC(x)*, let 5A? TA denote the automorphisms of <W

S\(xjk) == Zjkxjk> S\(zjk) — zjk 9

Tx(Xjk) = Xjk , Ti(zik} - ljk zjk .

Proposition 2.4. For r, s, ?, SeC(x)M, there exists a ^e(Cx)*1 such that

T^PftS=P"s (2.10)

if and only ifr^^.—r^^ (l<i<n).

Before the proof we prepare

Lemma 2.5. Given rf,-eCx ( l<j</) , consider the equations for the

unknowns Zjk (l<j<k<l)

(2-11)

we 5-er ̂  = 1 w?ifejj l<j<k<L Define djk=djdj+l°^dk for

k<l- Then (2.11) has a unique solution given by

*jk = djkdj_lk_i — </!*-/+! • (2.12)

Setting Xfk=Zkli-jk we have

^fc = l. (2.13)

. Set

The equation reads as

<*/

This equation has a unique solution given by

#/* = ^y* •

Therefore, from (2.14) we have

^y* == djk*j-ik-i = djkdj-ik-i •••

This is (2.12). Substituting the solution we obtain
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^k-jk-l

From this foUows (2. 13). D

Proof of Proposition 2.4. The condition (2.10) is equivalent to the fol-
lowing equations.

(2.15*)

. (2.15c)
J,-

Set di=fi/ri.> d'i=sf/s? and /=« in Lemma 2.5. The equation (2.15a) is solved
by

and the equation (2.15Z?) is solved by

Since Jf-* = ^+i-,-*, these two solutions are consistent with the definition
Xfk=Xili+ik if and only if d{d\ = \. This is equivalent to risn+1^i=fisn+1^i,
Finally, (2.15c) follows from (2.15a) and (2.156) with k=n. Q

§3. Finite-dimensional Representations

Fix a positive odd integer N>3. Let o> be a primitive N-th root of unity,
and let ®N(q) denote the AT-th cyclotomic polynomial so that 0^(a>)=0. We
set

JL = {feC(q)\ /is regular at ®N(q)=fy .

Let Uji denote the c^?-subalgebra of Uq generated by e i 9 f { , tf (l<i<ri). Let
further UM=Uji®ji Cu, where Cu denotes the <_^?-algebra C on which q acts as
CD. We define Wji, °lVm analogously.

Consider an TV-dimensional vector space with fixed basis tif (0<z <N— 1).
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V1 = ^fro1 Cui .

We define the following representation a of the Weyl algebra Wi with gen-

erators x, z:

a: -

o(x)ui = ui+1 (UN=UQ) , o(z)ui = a>X- .

Set m=n(n+l)/2 and V=(Vl)*m. Then we have a representation o®mi <Wue*

(Wi)®*->End(K) by letting the generators xjk, zjk act on the (j9 fc)-component

of V as a(x), <r(z) and as identity on the other components. Composition with

Pf,s'* #»-*W« and the automorphisms Sg, Th gives rise to a representation

Prs Sg°Th 0®m

*: t/w-^» W — <W - »End(F). (3.1)

Besides r, s&(C*)n, n contains «(«+!) arbitrary parameters £=(##), A=
(hjk)G(C*)m. In view of Proposition 2.4, these parameters are not all indepen-

dent9 and we can set e.g. ̂  = 1 (l<i<ri) without loss of generality.

The goal of this section is to show that (3.1) is irreducible for generic choice

of the parameters ri9 gjk and hjk. For this purpose we prepare some lemmas.

In what follows we set

4 =
I MI

Lemma 3.1, For any positive integer / we have in

= 23 23 n |*' ~'+1 n fXVr+1
p = l «£*>••• >*f r=l I J/ — V J r = l r

Proof. We use the induction on /. The case /=! follows from the defini-

tion.

Assuming the Lemma for /s we can calculate Pris(ei+1)IVY- as

SS 23 {C«} f „ n { C"' ; ~ Vr+1 } n f VA;V'« .
k^i p = l »>*!>»• >*^i r=l I J/r — j;r+l J r = l

Since Sik^ii=^iiSikq"~9(l^k}~Q(l>k^ the summand becomes

{c,> n - >>• - - r - r o£ik ^
r-l I ^r-^r+l J r=1 '

We divide the sum into two parts according to whether (i) k=^ks with some s9
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or (ii) ks_1>k>ks with some s. In the first case let kj=kj (l<j<p), v} =
vi+0(j<s). In the second case replace/? by/? — 1, and set kj=kjy i>j=Vj+l

(j<s), k's=k, *{=!/.+ 1, k'j=ks-l9 *J=",--i (s<j£p). Then l+l>v{> - >
*4>1, and the cases (i), (ii) correspond to v's — ̂ +i>l or =1, respectively.
Dropping primes and rewriting the summand, we get in both cases

n K»r; -»v«-l}.K».; -"."-1 }{<•„,}. n{
f«'; -""'In fir*"'-

r<. I I/,-**-! J I I/.-V^-l J r>.l Vr-Vr+l Jr- l '

It remains to show that

n - i - . * . - - { c } . n

The sum for s=p—l, p reads

n K,,; -v^-

If C ,̂,; -v, U
^ "- J

The assertion follows by repeating this procedure. D

Lemma 3.2. Let A, B be elements in an associative algebra over C(q),
satisfying the relations

B^A-BAB+AB^ -0.

Set C—AB—qBA. Then for any positive integers k, I -we have
(i) C^=^}^(-q)l-jA^B^A^\

(ii) 5(*UW=So^*./(-l^^^
(iii) A

Proof. Formulas (i) and (ii) are proved in [Lu]. Formula (ii) with k=l
together with AC=q~1CA gives

Multiplying by A from the left and using the definition of C, we get
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ABA& = A«+l>B+[l]BA^ . (3.3)

Similarly we have

Then multiplying eq.(3.3) by B(k~l} from the left and using the above identity
we obtain (iii). D

Now consider the following 'monomials* in *W:

For convenience we shall call an element /eW of type I if it is an cJf-linear
combination of monomials with ajk, pjk&NJZ, and of type

Lemma 3.3. For any i ^ j 9 p r t S ( e u ) ^ c f f l w « sum of elements of type
I and of type IL

Proof. Assuming i<j we prove the Lemma by induction on j—i. The
case i>j follows by applying the involutions *Q//S

O

Let/—f=l. From Lemma 3.1 we have

M-1
n (py* \ —— ^5~^ TT

In view of the formula

JT-l

II (xq~'—x"lq5) —
y=o

+ 2
0<V<Jf

we find that the assertion is true in this case.
Next let us prove the case j—i>l. Taking

A=eik, B = ekj, C = ei§

we can apply Lemma 3.2 to obtain

,._M-^. t.^.. . . * - - , « - ^v"°*

i '
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From the induction hypothesis it suffices to show the following.
(i) If/ g are of type I, then so are/g and [/, g]/[N] !,
(ii) If /is of type I and g is of type II, then/g, g/and [/, g]l[N]l are of type II,
(iii) If/ is either of type I or type II and g is a monomial, then [/, g] is of

type II.
TO show (i)-(iii), let /^/0 n z#* n *#* . g-gQ n z#* n *fh/0> a»e JL

Then we have

=/of. n q-*"*»$»+** n 4/i+^
y*#* f „ a.t+a'/ogo n zt n__ = — __ -

The assertions (i)-(iii) are clear from these. D

We now specialize q to co. It is clear that the image under o®m of elements
of type I are scalar, while those of type II vanish. From this we have the
following.

Proposition 3.4. We have

where Ytj^C are given as follows.

YU = (riS7
lh2

inh7-\ nhjlmY (3.4a)

= 2

2 I
•,-, */^«+/-i y=i

rjik =.

Let us now examine the irreducibility of the above representaitons of t/u.
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Hereafter we assume s~l without loss of generality. We denote by Y the
map C2m+n-*C2m+n, (gij9 hij9 r^(Y{j) defined in Proposition 3.4.

Let Z0 denote the subring of the center of U* generated by tfN and e%9

and let Rep be the set of equivalence classes of irreducible representations of
Un. De Concini and Kac show [DK] that
(i) ZQ is a polynomial ring in n(n+2) indeterminates,

(ii) the natural map X': Rep-> Spec ZQ^Cn(n+2) has finite fibre,
(iii) dim R<Nm for all J?eRep3 the equality being true for generic X'(R).
To show the irreducibility of our representations n (for generic values of para-
meters), it is therefore sufficient to show that the image of Y contains an open
set, since our representations are Nm dimensional. We shall show that the
Jacobian determinant of Y at the point P:gij = hij=l (l<i<j<n)9 rs = t
(l<i<ri) does not vanish (for generic t)

It is easy to see that the Jacobian matrix at P is of triangular form.

O O a,
J\ *

0 0 G

We shall show that H, R, G are non-singular. From (3.4a) it follows that R

is NtN~lidN(idN: NXN identity matrix).

Proposition 3.5, The Jacobian matrix H is non-singular.

Proof. The change of variables (hij)i<1i£j£n-~*(hij\<zi<,j£n is invertible at
hu=l (l<i<j<ri). The change of variables (RiA^^^-^CS^)^^/^, where
7)ij=JiijJiij-iJiTlij-i7iT+ij is also invertible. In fact, the inverse map is given
inductively by

Therefore, it is sufficient to show that the Jacobian matrix

is non-singular. We have
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" *n+2-i,n+l-j
y-i+i

= -22 2 (

Here we have adopted the following convention for the usual binomial coef-
ficients

(J j = 0 if &<0 or j<k .

If j<k then 9Yn+2_iin+l_j/d7iki =0 at P. Therefore, it is sufficient to show

that the diagonal blocks ( "~~ ) (l<k<ri) are non singular. Note that

if
j—k

== 1 if l+j=n+k .

The assertion follows immediately. D

Proposition 3.8. The Jacobian matrix G is non-singular.

Proof. We have

^ - s

i*. =-Ndtr6(s>k).
&gr.,

In the limit r->0, the leading terms of the right hand side come from j=l.

Setting l=j+l—i and r'=r— f+1 we get

where

A/.r.= 2

= ̂ ,^^2, <kk<...^ ^l

-^Cl/T/Ir)- (3'5)
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It remains to show that det(DijifS)1^i^j^n^O. Since the summand of (3.5)
l£r£s<£»

is independent of s, it is easy to see that det(DjVVs) = det (/){/,,-*) where

D'ij rs =(S~~l}(n~S\ This matrix is block triangular since D'^ rs=Q if r<L
\r— /Ay — r J

Further if r=i we have det Wjtis)i^J-tS^n = l. This completes the proof. Q

If we specialize the parameters, we get invariant subspaces. Let / be an
integer such thatO</<??— 1 and let / be an integer such that Q<i<N— 1. Set

O', kycomponent,

and

Ot ̂ -component, i

Fix the parameters ry ( l<j</) and Ay ̂  (1^/^fc^/) in such a way that

rj = <y-2 , (3.60)

hjkhjk-1hjll^1hj]ilk=a)l-is^ for l<j<k<l, (3.66)

Af*Af*-iAfriViAf+i1*=®-1+'a/.i for \<j<k<l, (3.6c)

where h%=hj+i-j *.
From Lemma 2.5, (3.66) and (3.6c) are consistent and have a unique solu-

tion. The parameters rf- (l<i<ri), gik (l<i<k<n) and /z^ (l<j<A:s l<k<ri)

are free.

Proposition 3.9. 7%e subspace Vitl is U^ invariant.

Proof. It is easy to see that Kf-f / is invariant by ej,fK+1^.j with l<j<n
and ff. for all /. If l<j<l, we have

Pr.X^') = S fjk fa'1 Zjk Zj ft-l ̂ 7-1 *-l ^7+1 *> >

Pr,s(fn+l-j) = S
*>/

If !<7<

and therefore, by using (3.66), (3.6c) and {1} =0,

>Kl - 0 f

/ ^ 0 .
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Thus we have shown that Vitl is invariant by the action of 6j and/}. D

In [DJMM], we have constructed an Nn dimensional irreducible repre-
sentation. We shall show that it is isomorphic to the representation on VQ>n-i.

First we recall the construction in [DJMM]. Let J^=(K1)®("+1) and let Zj and
Xj (!<7<w+l) be the operators acting as a(z) and a(x) on the y-th compo-
nent of W. Set WV^iu^WlItf+lZjU^u}. Define n'\ U^
by

Now consider ^.^(F1)®". Let Cj and Qj (l<j<ri) be the operators
acting as o(z) and a(x) on the >th component of (Vl)®n. Then the subrepre-
sentation of n on F0 M_1? which we denote also by n, reads as

= gjn

Choose dj (l<j<ri)in such a way that

J 2 _ = £ L = 1. (3.7)

For l<j<n, define mutually commuting operators

where

The equation (3.7) implies <2>f = l,
Define a linear isomorphism

by

= ri
"
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We denote also by ̂  the induced algebra homomorphism

ir: EndcftF1)®*) -» Endc(JF(0)) .

Then we have

MCjCjli) = Z, . (3.8o)
•^(Sij) = 0,. . (3.86)

We shall show that by a suitable choice of the parameters hja, gja (l<,j<,ri)
and rn we have

*«(«,) = *'(«/) . (3-9«)

*«(# = *'(//), (3-96)

Vo,r(ry) = *'(',') • (3-9c)

The equations (3.9a) and (3.96) give rise to

''di+i0)a.+iZj+i} >

"y+i_/ l y + i y + j - = g j H \ n j H n j - i M - i n j H - 1 n j - i H j d-{o>a-Z} '

These are satisfied if we choose

£/. = -Mj+iA^
hjnhjlln = GHljhj^hjlin-i ,

fnhnn = ®-1^+l *,-l »-l -

Finally, (3.9c) is checked easily.

In closing we shall explain how we get the above representations.
For ^=(^, -%4)eCK

9 let M^=Uq/I denote the Verma module where
Vq(ti—qKi)- Let cA = l mod/ be the highest weight vector.

Let further F\jlk »•• jkk)=f{^ «°«f^(jrk^Z^, l<r<k<n). We define

From now on, jr,=0 unless l<r<5<w, and by convention Fk(jlk, •••,7A*)=0,
^[7]— 0 if a negative value of some jrs appears in the expressions. Then iwe
have

Proposition 3.10. Set ejk=(dfrdk^1^r^s^1t. The action of eitft and ti on
vectors VK [/] is given by
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«,«»[;] = 13 [i+^-y« -2 *SJ«+ S

-m~ 2

Proo/. From fo,/^^/}'-1^1"1*,} and Lemma 3.2 with ^=/; and
J3=f._j9 we have

and for 1</<A:

Here/0 is understood to be zero. From these the propoistion follows. Q

Returning to the Weyl algebra S^, let us consider the following represen-
tation of ^W on the linear span of the symbols V[J],

xjk V[J] =- V[J- e jk] , zy,F[J] -

This induces a representation of Uq via. pftS with r—q**, s{ = l. Explicitly it

reads

e<V[J] - 2 U + ̂ l- /rt + Ji+l A + /I-1A-1-/IA-J^-S 'ill ,

If we formally identify V[J]=vx[j] with /rf=2J-r7r*, we see that this repre-
sentation has the same form as the one for the Verma module described above.
(Note that in the latter case the vectors v^[j] are not linearly independent in
general.)
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