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§ 1. Introduction

In this paper we study the initial boundary value problem for a quasilinear
degenerate parabolic equation of the form

(1.1) b(u\ = uxx + f(u) in x<=Q,t>Q,

with one dimensional open interval Q c R under the initial condition

(1.2) u(x, 0) = UQ(X) in x E Q,

together with one of the following three types of boundary conditions:
(a) the Dirichlet boundary conditions with Q = (0, L)

(1.3a) w(0, t) = u(L, 0 = 0 in t > 0;

(b) the Neumann boundary conditions with Q = (0, L)

(1.3b) ux(Q, t) = ux(L, t) = 0 in t > 0;

(c) the Cauchy problem, namely,

(1.3c) Q = R.

We assume the following conditions on b(u), f(u) and MO(X), respectively:
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(Al) b(u)eC([0, oo))nC°°((0, oo)), b-i(v)eC1([,0, oo)), lira b(u) = oo, b(0)
M-*00

= 0, b(u) > 0 for u > 0 and fc'(w) > 0 &"(M) < 0 for u > 0 where u = b'^v) is the
inverse function of v = b(u) ;

(A2) /(ii)eC([0, oo))nC°°((0, oo)), f(b-l(v))eC*([Q9 oo)) and /(ii) > 0 for

(A3) w0(x)e£(O) and u0(x) > 0 for

where B(fc) is the set of all bounded continuous functions on a closed subset K of
R.

In the case of the Dirichlet problem, we assume in addition the following
compatibility condition :

(A3a) u0(0) = Mo(L) = 0.

Furthermore, we assume the following condition so that weak solutions of (1.1)
may blow up in a finite time:

The equation (1.1) is called a porous media type equation and it represents
the process of thermal diffusion in a nonlinear continuous medium with the
emission of thermal energy. And u(x, t) represents a temperature and f(u)
represents a heat source.

Remark 1.1. Assumptions (Al), (A2) and (A4) are satisfied if, for example,
the equation (1.1) is

(1.4) (ullm\ = uxx + uplm (p > 1, m > 1).

Let us put Qx = Q x (0, T). We know that if T > 0 is small enough, there
exists a unique non-negative weak solution u(x, t) of (l.l)(1.2)(1.3abc) (see e.q.,
[2], [3], [12] and [13]). The definition of "weak" solutions will be given below
in Section 2.

Now let us put

(1.5) T = sup {T | w(x, t) exists in gt = Q x (0, T)}.

If w(x, t) does not exist globally in time, namely,

0< T< oo,

then we call this solution a blow-up weak solution and we call T a blow-up
time. The local existence theorem implies

(1-6) lim sup {u(x, t) \ x e Q} = oo .
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For studies on blow-up or non-blow-up of solutions, see references [6], [8], [9]
and [10].

By a blow-up point of a blow-up weak solution u(x, t) we mean a point
xeQu{co}u{— 00} such that there is a sequence {xn, tn} a Q x (0, T) satisfying

tn t T, xn —> x and u(xn, tn) —» oo as w —> oo.

Also we call the set of all blow-up points a blow-up set.
From the definition, we see that the blow-up set is a closed subset in R U

{00} u{— oo}. We shall study the shape of the blow-up set of each blow-up
solution to (l.l)(1.2)(1.3abc) and furthermore, in the case of the Cauchy problem
(l.l)(1.2)(1.3c) we shall study the asymptotic behavior of an interface of each
blow-up solution of this problem near the blow-up time t = T.

In the case of the Dirichlet or Neumann problem, we shall show that if f(u)
grows more rapidly than u (see (A5)), then the blow-up set of a blow-up solution
is finite (Theorem 5.1). In the semilinear case &(£) = £, this result has already
been obtained by Chen-Matano [4] and our methods are based on theirs. Note
that we have to add some technical conditions on the initial data u0(x) (see (A6)
and (A7)). On the other hand, we do not use the analyticity condition on UQ(X)
and f(u) which is required in .the case of the Dirichlet problem and in case /(O)
>0.

In the case of the Cauchy problem, we assume that the initial data u0(x) has
a compact support [0, L] (see (A8)). If we add some assumptions on b(u) and
f(u) (see (A9)(A10)(A11)), we can obtain a finite propagation of the interface of
the blow-up solution u(x, t) in t < T. We are interested in the behavior of the
interface near the blow-up time t = T as well as the shape of the blow-up set.

We consider the following two cases:

(I) f(u) grows more rapidly than u (see (A5)).

(II) f(u) grows more slowly than u (see (A 12)).

If (I) holds, we obtain that the blow-up set S(u0) is contained in [0, L] and the
interface stays bounded as t ] T. Furthermore, if the technical condition (A7) is
added on MO(X), then S(u0) becomes a finite set (Theorem 6.2 (i)). On the other
hand, if (II) holds, we obtain that the blow-up set S(u0) is equal to Ru{oo}u
{ — 0 0 } and consequently the interface propagates to the infinity as t^T
(Theorem 6.2 (ii)).

To prove these results, we can use the finite propagation property of the
interface for (I) and (II). We can also use the non-blow-up result for the
Dirichlet problem due to Imai-Mochizuki [8] for (II) only. In order to prove
results for (I) we can also use the methods developed Friedman-McLeod [5] and
Chen-Matano [4] for the semilinear problem. Note here that [8] studied the
initial-boundary value problem (l.l)(1.2)(1.3ab) and asserted that the above two
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conditions (I) and (II) on f(u) bring on the completely different blow-up
situations.

Similar results to Theorem 6.3 were already obtained in [6] and [7] for the
special equation (1.4) with m > 1. However, the proof in [6, 7] strongly
depends on the equation and it seems difficult to apply it directly to our general
quasilinear equation.

The paper is structured as follows: In Section 2, we state the definition of
weak solutions of (l.l)(1.2)(1.3abc) and we state some lemmas used throughout
this paper. In Section 3, we also state some lemmas which will be directly used
in our blow-up problems. In Section 4, we shall show that the blow-up set
becomes finite under some special conditions on the blow-up solution
u(x, t). In Section 5 we consider the Dirichlet or Neumann problem using the
results in Section 4 and in Section 6 we consider the Cauchy problem.

Acknowledgment. The author wishes to express his gratitude to Professor
K. Mochizuki for his valuable suggestions and helpful encouragement. The
author is also grateful to Professors M. Matsumura and Y. Shibata for their
kind advice.

§2. Definitions and Preliminaries

In this section, we assume (A1)-(A4).

Definition 2.1. Let Q be an open interval in R and let T > 0. A function
u(x, t) defined in QT = Q x (0, T) is called a weak solution of (1.1), if:

1) u(x, f)eB(Q x [0, T']) for each T'E(0, T), and u(x9 t)>Q for (x, t)eQ r;
2) For any T'e(0, T) and any bounded open interval Q' = (a, /?) in D, the

identity

f fb(u(x, T'))(p(x, T)dx - b(u(x, 0))<p(x, 0) dx
J/27 J &

/ay/ n /BJ» * nrpi ,.

b(u(x, t))cptdxdt = ucpxx(x, t)dxdt - u-^-t
JO Jjy JO J|7 JO UX

+ fT f f(u)q>(x,t)dxdt
Jo Jjj

holds for any test function (p(x, t)EC2^(Qr x [0, T)) satisfying (p(a, t) = (p(fi, t)
= 0 for re(0, T) and <p(x, t)>0 for te(0, T).

A function w(x, t) defined in QT = Q x (0, T) is called a we<zfc super-(sub-)
solution of (1.1), if u(x, t) satisfies 1) and 2) with equality replaced by > (<).

A function u(x9 t) defined in (0, L) x (0, T) is called a weak solution of the
Dirichlet problem (l.l)(1.2)(1.3a), if w(x, t) is a weak solution of (1.1) in (0, L)
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x (0, T) and, if u(Q, t) = u(L, t) = 0 in te(Q, T) and u(x, 0) - w0(x) in xe(0, L).
A function u(x, t) defined in (0, L) x (0, T) is called a weak solution of the

Neumann problem (l.l)(1.2)(1.3b), if u(x, t) is a weak solution of (1.1) in (0, L)
x (0, T) and, if u(x, t) satisfies 1) and 2) with cp(x, t) replaced by cp(x, t)eC2>1

(Q1 x [0, T)) satisfying q>(x, t) = Q for (x, t)e({o, j3}\{0, L}) x [0, T) and q>x(x, t)
= 0 for (x, t)e {a, jS} n {0, L} x (0, T), and if u(x, 0) = u0(x) for xe£.

A function u(x, t) defined in (0, L) x (0, T) is called a we0fc super-(sub-)
solution of the Neumann problem (1.1) (1.3b), if u(x, t) satisfies 1) and 2) with
equality replaced by > (<) and with cp(x, t) replaced by cp(x, t)eC2'l(Q
x [0, T)) satisfying <p(x, t) = 0 for (x, t)e({oc, j3}\{0, L}) x [0, T) and <px(x, t)
= 0 for (x, t) e {a, j8} n {0, L} x (0, T).

A function u(x, t) defined in R x (0, T) is called a weak solution of the
Cauchy problem (l.l)(1.2)(1.3c), if u(x, t) is a weak solution of (1.1) in R x (0, T)
and, if u(x, 0) = w0(x) for xeR.

Lemma 2.2 (the comparison theorem). Assume (A1)-(A4). Let Q be an open
interval in R. Then, the two following results hold:

(i) Suppose that u(x, t) is a super -solution of (1.1) in QT = Q x (0, T) and
v(x, t) is a sub-solution of (1.1) in QT = Q x (0, T). Then, if w(x, t) > v(x, t) for
(x, t)edQ x (0, T) 0«d i/ w(x, 0) > v(x, 0) /or xeD, w(x, t) > u(x, t) for all
(x, *)efl x (0, T).

(ii) Suppose that M(X, t) is a super-solution of the Neumann problem
(l.l)(1.3b) in QT = Qx(Q,T) and v(x, t) is a sub-solution of the Neumann
problem (l.l)(1.3b). Then, ifu(x, 0) > v(x, Q) for xe(0, L), u(x, t) > v(x, t) for all

Proof. See Aronson-Grandall-Peletier [2] and Bertsch-Kersner-Peletier
[3]. n

Finally we show the following lemma:

Lemma 23. Assume (A1)-(A4). Let w(x, t) be a weak solution of (1.1) in
QT. Then, if there exists a point (x, t)eQT such that u(x0, t0) > 0, u(x, t) is a C°°-
function in a neighborhood of (x0, tQ) and

(2.1) u(x0, t) > rj(t) > 0 te(t0, T)

where r\(t] is a solution of an ordinary differential equation r\r = — hr\/b'(Y\) for
some positive constant L

Proof. We only show (2.1). By the fact that w(x0, tQ) > 0, there exist d > 0
and a > 0 such that

(2.2) u(x, t) > a > 0 for | x - x0 1 < 6 and 1 1 - t0 <5.

Set



380 RYUICHI SUZUKI

(2.3) v(x, t) = g(x)r,(t)

where

(2.4) g(x) = sin({x - (x0 - d)}n/26)

and r](t) satisfies a differential equation

(2-5) n'=-^-^-

with q(t0) = a and /I = (n/26)2.
We shall show

(2.6) u(x, t) > v(x, t) for all (x, t)e[xQ - 6, x0 + 6J x [t0, T).

First, rj can be represented explicity by

where

(2.7) W(r,)=
i

and FF"1 is the inverse function of W. Noting that W(rj) is an increasing
function and W(rj) -> — oo as rj 10, we have that 77(t) > 0 in t e(t0, oo) and fj(t) 10
as t->oo. Since l/b'(rj) is an increasing function, a simple calculation shows
that

(2.8) 6(4 < vxx + /(i?) for (x, t)e(x0 - (5, x0 + 5) x (t09 T).

Thus, we see that v(x, t) is a sub-solution of (1.1) in (x0 — 8, x0 + d) x (t0, T) and
that

(2.9) i7(x0 ± 8, t) = 0 < u(x0 ± 8, t) for t e (tQ, T)

and

(2.10) t;(x, t0)
 = a^W ^ w(^5

 fo) for x e [x0 - 5, x0 + 3].

Applying the comparison theorem to M(X, t) and i?(x, t), we obtain that
M(X, t) > i?(x, t\ (x, t) e [x0 — 8, x0 + 5] x [£0, T). This proof is complete. D

§38 Fundamental Lemmas

In this section, we assume (A1)-(A4). We state some fundamental lemmas
used after this section.

Lemma 3.L Assume (A1)-(A4). Let Q = (a, d) be a bounded open interval
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and, let u(x, t) be a weak solution o f ( l . l ) in QT = Q x (0, T). Then, the following
two results hold:

(i) Suppose that u(a, t) > 0 for te [0, T), u(a, 0) > u(d, 0) > 0 and
GCU(X, t) > u(x, t) for (x, t) e [c, d] x [0, T) where acu(x, t) = u(2c — x, t) with c
= (a + d)/2. Then, if there exists t0e(0, T) such that u(x, t) > 0 for xe[a, c],

(3.1) ux(c, t0) < 0.

(ii) Suppose that u(d, t) > 0 for 16 [0, T), u(d, 0) > u(a, 0) > 0 0«d
<TCM(X, t) > u(x, t) for (x, t) e [a, c] x [0, T) where acu(x, t) is as above. Then, if
there exists t0e(0, T) such that u(x, t0) > 0 for xe[c, d~\,

(3.2) ux(c, t0) > 0.

Proof. We shall only show (3.1).
First, we show that

(3.3) GCU(X, t0) > u(x, t0) for c < x < d.

Assume that GCU(XO, t0) — u(x0, t0) = 0 for some x0e(c, d). Set w = v — u
where v = acu. Then we see that w(x,t) satisfies a linear parabolic equation

(3.4)

= f>(
Jo

in (x, t) satisfying w(x, t) > 0, where q> = (p(v, u) = (p'(9v + (1 — 9)u)
Jo

dO. Note that (x0, t0)e(c, d) x (0, T) is a minimum point of w(x, t) in (c, d)
x [0, T). Applying the maximum principle to w(x, t), we obtain that w(x, t0)
= 0 in x x [c, d], which implies w(d, t) = 0 in te[Q, t0]. Namely w(d, 0)
= u(a, 0) — u(d, 0) = 0. However this contradicts the assumption of Lemma 3.1.

Next we show (3.1). Note that u(x, t) > 0 in the neighborhood of t = tQ

and xe[a, c]. Then, by the same methods by which we demonstrated to show
(3.3) we have that w(x, t) > 0 in (x, t)e(c, d} x (t0 — d, tQ + <5) for some d > 0.
Applying the maximum principle to w(x, t) and using the fact that w(c, t) = 0, we
have that wx(c, t)>0 for te(t0 — d, t0 + <5). Namely ux(c, t) < 0 for te(t0

~6,t0 + d). This is a proof of (3.1). D

Next, we further assume the following condition:
(A5) There exists a C°°-function F: [0, oo) -> [0, oo) such that
(i) F(u) > 0, F'(u) > 0, F"(u) > 0, for u > 0;
(ii) there exist c > 0 and M0 > 0 such that,

(3.5) f'F - fF' > c ( F ' F - — F2} for u > M,0
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r;i
Remark 3.2. If p/m > 1, equation (1.4) satisfies this condition.

Lemma 33 (cf. Friedman-McLeod [5], Chen-Matano [4]). Assume (Al)-
(A5). Let Q = (a, b) be a bounded open interval and let u(x, t) be a positive weak
solution of (1.1) in QT = Q x (0, T). Furthermore suppose that

(3.7) ux(x, t)>0 [or ux(x, t) < 0] in (x, t)e[c - S9 c + S] x (T, T),

/or some c e (a, ft) a«d c5 > 0 wM (c — 6, c + 6) a (a, 5) a«J some T e (0, T). Then
there are no blow-up points in (c — d, c + o).

Proof. We shall show this lemma in case

(3.8) ux(x,t)>0 in (x, t)e(c - <5, c + S) x (T, T).

We give an indirect proof. Assume that XOE(C — S, c + d) is a blow-up point of
u(x, t). Then we see that

(3.9) Km u(x, t) = oo for xe(x0, c + <5).

In fact, let de(x0, c + (5) be fixed. Since x0 is a blow-up point, there exist
sequences {xk} c= (c — <5, d) and {tk} c (t, T) such that xk -> x0? tk^>T and

as ^^ °°- By (3.8), we obtain

(3.10) u(x, tk) > u(xk9 tk) for d < x < c + 6.

Hence, by Lemma 2.3 we have

(3.11) u(x, t )> iy k ( t ) s in (— ̂  — - n] for xe[d, c + 5], T> t > r fc.
c + o — d

Here nk(t) = W~l(W(^) - l(t - tk)) and W(rf) = -^-d£ with a = ii(xk, tk) and
Ji C

/I = (n/(c + w — d))2. Since W(rj) is a monotone increasing function, we have

nk(t}>W-l(W(u(xk,tk))-k(T-tk)) in te[tk, T).

Noting that lim {PF(u(xt, tfe) - A ( T — tfe)} = lim w(?;), we obtain

min ^k(t) > W^W^Xjfe, tk)) - 1(T- tk)) -> oo as Ic ^ oo.
fe[tk,r)

This and (3.11) show (3.9) since de(x0> c + 5) is chosen arbitrarily.
Choose de(x0, c + d) again and set
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(3.12) J = u,- ep(x)F(u(x, t)), (x, t)eQ = (d, c + d) x (t,, T)

and

(3.13) P(X) = sin - ~
d-d

where e > 0 and t ^ e f a T). Noting the assumptions (Al), (A4), (A5) and (3.7),
and assuming that 8 is sufficiently small and t± is sufficiently close t = T, we have

(3.14) (V J\ - Jxx > B(x, t)J + C(x, t) J, (x, *) e Q;

(3.15) J(d,t)>Q, J(c + <5, t )>0, t,<t<T;

(3.16) J(x, f 1 )>0 , d < x < c + (5.

(cf. Chen-Matano [4] and Imai-Mochizuki [8]). Applying the maximum
principle to (3.14) (3.15) and (3.16), we obtain J(x, t) > 0 for (x, t)eQ, or

Integrating this inequality over d < x < c + d yields

(3.i8) r+d't}^>er
i
p[x)dx in,

The right-hand side of (3.18) is a positive constant, while the left-hand side tends
to zero as t^Tby virtue of condition (A5)(iii) and (3.9). This contradiction
shows that XQ is a not blow-up point of w(x, t). Then proof is complete. D

Finally we show

Lemma 3.4. Let u(x, t) be as in Lemma 3.3. Then u(x, t) can be extend to a
C2'1-function in (c — d, c + 8) x (0, T]. Moreover if we represent this C2'1-
function as u(x, t) again, then

(3.19) ux(x, T) > 0 lor ux(x, T) < 0] in xe(c-d,c + 6).

Proof. We shall show this lemma in case ux > 0. By Lemma 2.3 and
Lemma 3.3, for any c — d < di < d2 < c + d, there exists M' = M'(dl9 d2) > 0
such that

^ < u(x9 t) < Mf for (x, t)e[dlf d2] x [T, T).

Therefore we can easily extend u(x, t) to C2>1-function u(x, t) in (c — d, c + (5)
x [T, T] by means of standard Lp and Schauder's estimates (cf. Chen-Matano
[4]).
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Choose d e (c — d, c + 5) arbitrarily and choose / > 0 such that [d — /, d + /]
c= (c — (5, c + d). Let us consider the following initial boundary value problem:

(3.20)

b(v)t = vxx + f(v) in xe(d - I, d + /), t > T,

t;(x, T) = w(x, T) in x e(d — I, d + I),

v(d±lt) = rj + (t) in t > T,

where *? + (£) are continuous functions on [T, oo) and satisfies that rj±(t) =
u(a±l9 t) for t e [T, T) and »/_(*) < ij + (t) for te [T, oo). Then, there exists T' > 0
such that a solution v(x9 t) of (3.20) exists in (d - I, d + /) x (T, T + T) by the
existence theorem, and the uniqueness theorem implies

(3.21) v(x, t) = u(x, t) in (x, t)e(d-l,d + l)x [T, T].

We compare C7du(x, t) and i;(x, t) in [d — /, d] x [T, T + T'). We can see easily
that ffdv(x9 T) > t?(x, T) for xe[d - /, d], crdf(d, t) = t;(d, t) for f e[r, T+ T') and
adv(d -l,t)- v(d -l,t) = ri + (t)-ri_(t)>Q for te[>, T+ F). Noting <rdi; and
t; are solutions of (1.1) and applying the comparsion theorem, we obtain

(3.22) <rdv(x, t) > v(x, t) in (x, t) e [d - /, d] x [T, T + F).

Then it follows from Lemma 3.1 that

(3.23) ux(d, t) > 0 for t e (T, T + 7"),

so ux(d, T) > 0. Since de(c — d, c + 8) is chosen arbitrarily, we obtain
(3.19). D

§4. Key Lemma

In this section, we assume (A1)-(A5) and prove the following key lemma for
the case of a bounded domain:

Lemma 4.1. Assume (A1)-(A5). Let M(X, t) be a positive weak solution of
(1.1) in QT = Q x (0, T) = (0, L) x (0, T) and let 0 < al < ax < L. Suppose that
for any t0e(Q, T) there exists d = 6(t0) > 0 such that

(4.1) ux(x, t)>Q lor ux(x, t) < 0], (x, t)e [a^ - d, al + 5] x (f0, T)

(4.2) u,(x, t) < 0 [or u,(x, t) > 0], (x, t)e [a2 - d, a2 + 5] x (t0? T)

af — (5, a£ + (5] c O (i = 1, 2) and [a^ — 6, a1 + (5] n [fl2 — <5, a2

/ze blow-up set of w(x, t) is finite in (at — 6, a2 + d).

Remark 4.2. Consider the Dirichlet problem (l.l)(1.2)(1.3a) with b(u)



ON BLOW-UP SETS AND INTERFACES 385

= u. Let u(x, t) be a blow-up solution of the problem. Then, we see that
M(X, t) > 0 for (x, t)e(Q, L) x (0, T) and for any ie(0, T) there exists 5 = 5(c) > 0
such that ux(x, t) > 0, (x, t)e(0, <5) x (T, T) and MX(X, t) < 0, (x, t)e(L- 6, L)
x (T, T) (see Friedman-McLeod [5]). Using Lemma 4.1 and the fact that the
blow-up set of w(x, t) is contained in (0, L) (Friedman-McLeod [5]), we obtain
that the blow-up set of w(x, t) is a finite set. Then, we do not use the analyticity
condition on a initial data MO(X) and a heat source f(u) which is required in
Chen-Matano [4] in case /(O) > 0.

We need some notations and preliminary lemmas (see Chen-Matano [4]
and Angenent [1]).

Notation 4.3. Let w(x) be a continuous real value function on K where K
is S1 = R/Z or a bounded closed interval in R. We define the nodal number of
w by

v(w) = the number of points xeK with w(x) = 0.

This defines a functional v: C(K) -> Aru{0}u{oo}.

Definition 4.4. We say that weC1^) poses only simple zeroes if w'(x) / 0
for any x E K such that w(x) = 0. The set of all such functions is denoted by

Lemma 4.5 (Angenent). Let p(x, t), q(x, t) and r(x, t) be locally bounded
continuous functions on S1 x (t0, T) with pxx, pxt, ptt, px, pt, qx, qt, all locally
bounded continuous. Furthermore, let p(x, t) > 0 and let w(x, t) be a classical
solution of

(4.3) wt - p(x, t)w« + q(x, t)wx + r(x, t)w, (x, OeS1 x (t0, T).

Assume that w is not identically equal to zero. Then
(i) v(w(-, t)) is finite for any te(t0, T) and is monotone nonincrasing in t\
(ii) there exists a strictly decreasing sequence of points {tk} c= (t0, T) such

that {tk}lt0 and w( - , t)eZ(S*) for any te(tQ, T)\{tk}.

Lemma 4.6 (Angenent). The assertions of Lemma 4.5 hold with S1 replaced
by a closed interval [a, fo] in R, if we assume in addition that w(a, t) =£ 0 and
w(b,t)^Qfor any te(t0, T).

Remark 4.7. Lemma 4.5 and Lemma 4.6 follow immediately from the next
lemma due to Angenent [1] :

Lemma 4.8 ([!]). Under the assumption of Lemma 4.1 or of Lemma 4.2, we
have

( i ) v(w( • , 0) is finite for te(t0, T).
(ii) If (x0, ti) is multiple zero of w, then v(w(- , t2)) > v(w(- , £3)) for all t2
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< t1 < t3 < T.

With Lemma 4.6 we can now prove Lemma 4.1.

Proof of Lemma 4.1 (cf. Chen-Matano). We note that the point of
(a1 — (5(£0), a1 + <5(£o))U(a2 ~ ^(^o)» a2 + <5(*o)) *s not a blow-up point.

By differentiating equation (1.1) with respect to x, we see that w = ux(x, t)
satisfies a parabolic equation of the form (4.3) in [al9 02]

 x (*o> T)- Therefore
noting (4.1) and (4.2) and using Lemma 4.6 (ii), we can see the existence of
T6(t0, T) such that

(4.4) ii,(., t)E£([al9 flj) for all te[t, T).

Applying the implicit function theorem to MX, we obtain C1 -curves

Si, «2,-, £,: fo T)-^(fli, «2) such that

(i) £i(0 < SiW < - < S»W for te[t, T)9

and

(ii) {X6[fll, a2]|Wx(x, 0 = 0} = {^(t), - , UO}

for each te[T, T).
Let S(u0) be the blow-up set of u(x, t). We shall show

(4.5) lim ^(0 = a£ exists for each 1 < i < n

and

(4.6) S(u0)n(fli, a2) c {al9 a2, • • - , « „ } -

First, set a£" = lim inf &(t), a^+ = lim sup ^-(t) and Jf = [a£~, a^+] for eachf tT t t r
1 < i < n. Then, by (4.1) and (4.2) we have

(4-7) U Jt c (fll, a2).
i=l

Moreover we obtain

(4-8) (al5 a2)\ U Jt c (at, a2)\S(M0).
i=l

n
In fact, choose a closed interval [c, d~] c (al5 a2)\ U Jt(c< d) arbitrarily. Then,

i= l

there exists ^6(1, T) such that ux(x,t)^Q does not change its sign in the
rectangular region [c, d~] x [>15 T). It follows from Lemma 3.3 that (c, d)

n

c (fll, 02)\S(ii0). Since [c, rf] c (fll, ̂ 2)\ U J^ is chosen arbitrarily, (4.8)
i= l

follows.
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Next we define the family [W^ of sets inductively as follows: For closed
intervals A^ = [cl9 dj and A2 = [c2, dj, set (Al9 A2) = ((Cl + c2)/2, (d, + d2)/2)
and define Wj (j = 0, 1, • • • ) inductively as

Then, we see easily the following properties with Wj = (j A:
AeWj

(4.9) Wjd Wj+i for j>0,

(4.10) Wj c (fll - 5, a2 + 5) for each j,

and there exists m > 1 such that

(4.11) (fl i ,f l2)c: U %
j=o

Hence, if we show

(4.12) (U J,)n(U «}) = *
i= l j=0

o n o
where X is the set of all interior points of a subset K in R, then we have U Ji

i=l

= (/) by (4.7), and therefore we obtain (4.5) and (4.6) by (4.8).
Let us show (4.12). Suppose that (4.12) does not hold. Then, by (4.9) there

exists j0 (1 < j0 < m) such that

(4.13) Wio

(4.14) ^ rHUJV*.
i = l

Since A is represented as A = (Al9 A2) for some Al9 A2eWjo-l9 it follows from
(4.8) and (4.13) that

(4.15) {A,()A2}\{x\x = af = af
+} ci (al5 a2)\S(u0).

On the other hand, by (4.14), there exists i0 (1 < i0 <n) such that

(4.16)
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Noting that A = (Al9 A2), there exist ae^Xja la = a£~ = a*} and a non-empty
open interval D c A2\{a\a = a£" = af

+} such that

(4.17) (a, 5) =

Hence, by (4.15) we have

(4.18) D c (fll, a2)\S(u0).

Noting that D c ^42\{a|a = a£~ = af
+}, there exist t2e(tl9 ^) and a non-empty

closed interval K c= D such that wx / 0 does not change its sign in K
x [t2, T). Therefore, by Lemma 3.3, we can extend M(X, t) to a C2)1 -function in
o o

K x It 2, T] uniquely and we may see that ux(x, T) > 0 for all xeK Since the

lim u(a, t) = u(fl, T) also exists by Lemma 3.3, we can see the existence of xeK

such that H(XO, T) ^ u(a, T). Hence there exists t'2 e [t2, T) such that

(4.19) H(XO, t) + u(a, t) for all te[t'2, T).

Set w(x, t) = (7bu(x, 0 - u(x, t) where afcw(x, t) = u(2b - x, t) with fo = (x0

+ a)/2. Assume that x0 < a for convenience. Then we can see that w(x, t) is a
solution of a linear parabolic equation of the form (4.3) in [x0, a]
x (t'2, T). Moreover, it follows from (4.19) that

(4 20)1 " j w(a, t) = ii(x0, 0 - ffbM(x0, t) * 0, te(t'2, T).

Applying Lemma 4.6 to w(x, t) in [x0, a] x (t'2, T), we see that there exists
t3e(t'2, T) such that w(- , t)eZ([x0, a]) for all te[f3, T). Hence, noting w(fc, t)
= u(&, t) - u(b, t) = 0, we have wx(fe, t) / 0 for te[t3, T), namely,

(4.21) ' !!,(&, t)*Q for all te[t3, T).
o

On the other hand, since beJio = (a£~, a^), there exists a sequence {tn} c (0, T)
such that t n f T a n d b = £*0(O? that is, Mx(i, fn) = 0 w > 1. This contradicts
(4.21). So we have (4.12), namely, (4.5) and (4.6). Thus the proof is
complete. D

§5. The Case of a Bounded Domain

Throughout this section, we assume (A1)-(A5) and consider the Dirichlet or
Neumann problem (l.l)(1.2)(1.3ab). We assume further the following technical
conditions on an initial data u0(x):

(A6) w0(0) = M0(L) = 0 and HO(X) > 0 for xeQ = (0, L);
(A 7) there exist ai and a2 in Q = (0, L) such that 2a1 < a2, a1 < 2a2 — L,
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°"fliMo(x) ^ wo(x) on *e[0, ax] and oa2u0(x) > u0(x) on xe[a2, L] where oau(x)
= u(2a - x).

The main result in this section is as follows:

Theorem 5.1. Assume (A1)-(A7). Let u(x, t) be a blow-up weak solution of
problem (l.l)(1.2)(1.3a) or (1.1)(1.2) (1.3b) with blow-up time t = T and, let S(u0)
be the blow-up set of u(x, t). Then

(5.1) S(uQ) is a finite set,

and furthermore in the case of the Dirichlet problem,

(5.2) S(ii0) <= (fli, fl2)-

First, we consider a weak solution u(x, t) of the Dirichlet problem
(l.l)(1.2)(1.3a). We need some lemmas.

Lemma 5.2. Assume (A1)-(A7). Let u(x, t) be a blow-up weak solution of
the Dirichlet problem (l.l)(1.2)(1.3a). Then

(5.3) aaiu(x, t) > u(x, t) for all (x, f)e[0, flj x [0, T);

(5.4) aa2u(x, t) > u(x, t) for all (x, t)6|>2, L] x [0, T).

Proof. We show only (5.3). Set v(x, t) = crai u(x, t). Then we see that
v(x, t) is also a weak solution of (1.1) in (0, a^ x (0, T). By the assumption (A7),
we obtain that v(x, 0) = crfllu0(x) > u0(x) = u(x, 0). For boundary values of
u(x, t) in (0, fli) x (0, T), we obtain that v(Q, t) = caiu(Q, t) > 0 = u(Q, t) and
v(a±, t) = u(aly t) for te[0, T). Applying the comparison theorem to v(x, t) and
u(x, t), we have that v(x, t) > u(x, t)for (x, t)e(0, aj x (0, T). This is a proof of
(5.3). D

This and Lemma 3.1 imply the following

Lemma 5.3. Let u(x, t) be as in Lemma 5.2. Then

(5.5) «»(«!, f ) > 0 for all te(0, T);

(5.6) i ix(a2 , t)<0 for all te(0, T).

Lemma 5.4. Let u(x, t) be as in Lemma 5.3. Then for any t0e(0, T), there
exists 5 = 6(t0) > 0 such that for any ae[at — d, a1 + 5]

(5.7) aau(x, t) > u(x, t) for all (x, t)e [0, a] x [t0, T)

and for any a e [a2 — d, a2 + ^]

(5.8) aau(x, t) > u(x, t) for all (x, t)e [a, L] x [t0, T).

Proof. We only show (5.7). Noting the proof of Lemma 5.2, we see that it
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is enough to show the following: For any t0 £ (0, T), there exists 6 = 5 (t0) > 0
such that for any aela^ — 5, a^ + <5],

(5.9) Gau(x, t0) - u(x, tQ) > 0 for all x e [0, a).

Therefore we show (5.9).
By (5.5), for any t0e(Q, T) there exists 6 = 8(tQ) > 0 such that

(5.10) ux(x9 t0)>0 for \x-a1\< 8.

Set h(d)= min [oau(x, t0) — u(x, t0)} for each 0e[0, L/2]. Then, we see
Q<x<a — d/2

clearly that h(d) is a continuous function in [0, L/2]. Noting the proof of (3.3),
we obtain

(5.11) *(*i)>0.

Hence there exists 5' > 0 (0 < 8' < 8/2) such that h(a) > 0 for all \a - a±\ < 5',
namely

(5.12) aau(x, t0) - u(x, t0) > 0 for 0 < x < a - 8/2, \a - a1\ < 8'.

On the other hand, since a — 8/2<x<a and \a-al\<d/2 imply —8<
x-al< 8/2, by (5.10) we have

(5.13) ffau(x, tQ) - u(x, tQ)>0 for a - 8/2 < x < a, \a - a±\ < 8f.

Combining (5.12) and (5.13), we obtain (5.9). The proof is complete, a

This and Lemma 3.1 imply the following

Lemma 5.5. Let u(x, t) be as in Lemma 5.4. Then,

(5.14) ux(x, t)>0 for all (x, t)e{_a^ - 8, av + S\ x (t0, T);

(5.15) ux(x, t)<Q for all (x, t)e [a2 - 8, a2 + 5] x (t0, T).

We are now ready to prove Theorem 5.1 in the case of the Dirichlet
problem.

Proof of Theorem 5.1 (the case of the Dirichlet problem). By Lemma 5.5
and Lemma 4.1, we see that S(w0)n(0i — 8, a2 + 8) is a finite set. Hence, if we
show that [0, a1 — 5] U [fl2 + <5» L"] c: [0, L]\S(u0), the proof is complete. We
show only

(5.16) [0, a, - 5] c= [0, L]\S(ii0)

Now we assume that x0e[0, at — 5] is a point of S(u0). Then, by (A7) we
have that 2at — xe[a ls 02]« It follows from Lemma 5.2 that 2al — x0eS(w0).
Since S(u0)n(al — 8, a2 + 5) is a finite set, there exists a3e(a1 — 5, % + 8) such
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that 2a3 — x0$S(u0) and 0 < x0 < a3. By the fact that oa3u(x, f) > M(X, t) for
(x, t)e[0, %] x [£0, T), we obtain that XO$S(UQ). This contradicts the assump-
tion that x0ES(u0\ and thus we prove (5.16). D

Next we cosider a blow-up weak solution u(x, t) of the Neumann problem
(l.l)(1.2)(1.3b). We can consider the following three cases:

(I) w(0, t) = w(L, t )-0 for all te [0, T).

(II) (i) w(0, t) = Q for all te[0, T) and there exists t1e(Q, T) such that
u(L, ti) > 0,

(ii) u(L, t) = Q for all te[0, T) and there exists ^6(0, T) such that
ii(0, t,) > 0.

(III) there exist tl9 £2e(0, T) such that w(0, tx) > 0 and w(L, r2) > 0.

Proof of Theorem 5.1 (the case of the Neumann problem).

Case (I). Since u(x, t) can be regarded as a solution of the Dirichlet problem,
this case comes to the case of the Dirichlet problem.

Case (II). We only prove in case (ii). Extend a weak solution u(x, t) as

M(X, t) 0 < x < L
(517) ' - L < x < 0 .

Then, we see that w(x, t) is a weak solution of the Neumann problem and that
u(±L,t) = Q f o T t > t 1 and u(x, t^ > 0 for x E( - L, L). Hence this case comes
to the case (I).

Case (III). By extending w(x, t) as (5.17) and appropriate rescaling of the
variables, this problem can be converted into the form (1.1) (1.2) with Q = S1

= R/Z. Set t0 = max^, t2}. Then, it follows from the assumption (III) and
Lemma 2.3 that u(x, t) > 0 for all (x, ^eS1 x (£0, T) and w(x, t) is a classical
solution of (1.1) on S1 x (t0, T). Noting Lemma 4.5 and Lemma 3.2 and using
the same methods as Chen-Matano [4], we can prove the assertion in this
case. The proof is complete. D

Remark 5.6. Considering the proof in this section, we can also get the
similar result as Theorem 5.1, even if we extend conditions (A6) and (A7) on
MO(X) to the following condition:

i
(*) there exists a finite family {£j- = i of open intervals such that (J Qt c (0, L),

and w0(x) = 0 in (0, L)\ U &;> and such that (A6) and (A7)

hold with Q replaced by Q{.
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§6. Asymptotic Behavior of an Interface

In this section, we consider the Cauchy problem (l.l)(1.2)(1.3c). We
assume (A1)-(A4) and assume the following conditions on an initial data u0(x):

(A8) u0(x) > 0, x e (0, L) and u0(x) = 0, x e R\(0, L).

Furthermore, we assume the following conditions for the finite propagation of
the interface of a weak solution u(x, t) to (l.l)(1.2)(1.3c) in te(0, T):

"i A™

fJoJo

(A10)

(All) there exists a C^function G(u) on [0, oo) such that

(6.1) G(u) > f(u) and G'b - GV > 0 for all u > 0.

Now we can show a finite propagation of an interface of a weak solution.

Theorem 6.1 (a finite propagation of an interface). Assume (A1)-(A4) and
(A8)-(A11). Let u(x, i) be a blow-up weak solution 0/(l.l)(1.2)(1.3c) with blow-up
time t = T. Then, there exist continuous functions £t(t): [0, T) -»R (i = 1, 2) such
that

(6.2) (£i(t\ £2(t)) = {x e R | u(x, t) > 0} for each t E [0, T),

£j(£) is a monotone decreasing function and £2(£) is a monotone increasing function,
and furthermore,

(6.3) - oo < ^(t) < £2(1) < oo for each te[Q, T).

Next we state behavior of the interface of u(x, t) near the blow-up time
t = T. For this aim, we further assume (A5) or the condition

(A12) lim ^ = 0

where H(u) =

Theorem 6.2. Let S(u0) be the blow-up set of u(x, t) where u(x, t) is as in
Theorem 6.1 and let £t(t) (i = 1, 2) is the interface of u(x, t). Then the following
two results hold.

(i) If (A5) hods, then

(6.4) S(ii0) c [0, L]

and
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(6.5) - oo < lim £i(t) < lim £2W < °°>

fl«d furthermore if (A7) holds, then

(6.6) £(1*0) c («1? 02) and S(u0) is a finite set.

(ii) // (A12) holds,

(6.7) S(w0) = Ru{oo}u{- 00}

and

(6.8) lim ̂ (t) = - oo am/ lim £2(f) = oo.

Remark 6.3. If p > 1 and m > 1, equation (1.4) satisfies these conditions
(A9)-(A11) with G(u)=f(u) = up/m. If p/m < 1, equation (1.4) satisfies condition
(A12).

First we prove Theorem 6.1. We need the following lemma:

Lemma 6.4. Assume (A1)-(A4) and (A9)-(A11). Let u(x, t) be a weak
solution o/(l.l)(1.2)(1.3c). Suppose that there exist (a, tJeR x [0, T) and M
> 0 such that

(6.9) u(x9tl) = 0 for x>a;

(6.10) u(a,t)<M for te[tl9 T).

Then, there exist I > 0 and h > 0 depending on only M such that

(6.11) u(x,t) = Q for (x9t)ela + l9co)x[tl9tl+H]^ltl9T).

Proof. Consider the function \j/: [0, oo)->[0, oo) such that

u) = r
Jo

(6.12) ^(u)= r^ (see Knerr [11]).

Then, by (Al) and (A9) we see that \l/(u) is well defined and is an onto and one to
one mapping. Put

(6.13) v(x9 t) = il/(u(x9 t)).

Since u(x9 t) satisfies the equation (1.1) in (x, t)-set where u(x, t) > 0, a simple
computation gives

where \l/~l(v) is the inverse function of v =



394 RYUICHI SUZUKI

Let us consider the following function v(x, t):

(6.15) v(x, t) = (j/(t) - C(x - a))+ for x > a, t > t1

where r\(t) satisfies the problem

• o
(6.16)

: = C 2 + -

and C is a positive constant. Then ri(i) is represented as the following:

(6.17) i/W = G-1(G(ij1)-(t-t1))

where

Here we note that

and £ = G l(rf) is the inverse function of 77 = G(^). And we have

(6.19) rj(t)<ao9 telt^t^+h) and Y\(t)\ oo as t t ^ i + *>

where fc = Gfai). Since t;(x, f) = fy(t) — C(x — a) where ?/(t) > C(x — a), we
obtain

Considering that I / K X , . / t , x is a monotone increasing function by (Al) and (All),

and that i;(x, t) = (i/(r) - C(x - a))+ < iy(r) for x > a, namely \l/~l(v) <\l/~l(ri) for
x > 0, we have

Hence, if we put w(x, t) = \// l(v(x, t)), we obtain

(6.21) b(w\ > wxx + f(w), te[tl,t1 + h), n(t) > C(x - a), x > a.

On the other hand, since v(x, t) = 0 namely w(x, t) = 0 in (x, t)-set where x > a,
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te[tl9 t1 4- h) and ri(t) < C(x — a), and since /(O) = 0, we have

(6.22) 6(w)r = wxx + /(w), 1 6 [tls *! + % if(t) < C(x - a), x > a.

Since w = 0 on rj(t) = C(x — a) and b(0) = 0, we have

(6.23) w, = M(w)l,,=c<,-a) = 0.

Hence, combining (6.21), (6.22) and (6.23), we see that w(x, t) is a super-solution
of (1.1) in [a, oo ) x [tl9 ^ + h).

On the other hand, by (6.9) and (6.10) we have

(6.24) w(a, t) = ils~l(v(a, t)) > il/~l(ri(t)) > ^~l(^(M)) = M> u(a, t)

for te[tl9 t^ + fe)n[ti, T) and

(6.25) w(x, fj > 0 = w(x, t^ for x > a.

Applying the comparison theorem to w(x, t) and w(x, t) on [a, oo) x [tl9 t0)
where t0 = minl^ + h, T}9 we obtain

(6.26) w(x, t) > u(x, t) for (x, t)e[a, oo) x [tl9 t0).

Namely,

(6.27) M(X, t) = 0 for x > a, rj(t) < C(x - a\

If we choose h = h/2 and / = rj(t1 + A)/C, we can show the assertions of Lemma
6.3. D

Proof of Theorem 6.1. Set ̂ (t) = inf{x | u(x9 t) > 0} and £2(t) = sup{x | M(X, t)
> 0}. Then, by Lemma 2.2 and Lemma 2.3 it is obvious that ^(t) is a
monotone decreasing function and £2(0 is a monotone increasing and that (6.2)
holds (cf. Knerr [11]).

Next, we show (6.3) and here we only prove

(6.28) £2(£) < oo for each te(0, T).

Assume that (6.28) does not hold. Then, it follows that

(6.29) f2W = oo for all te(0, T)

or there exists tQe(Q, T) such that

(6.30) £2(0 < oo for te(0, t0) and £2(f0) = oo.

We only drive a contradiction in case of (6.30). In case of (6.29), we can also
drive it similarly.

Set

M = sup{w(x, t)\(x9 t)eR x [0, t0 + d~]}
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where 0 < d < T— t0. Then, by Lemma 6.3 there exist / > 0 and h > 0 such
that (6.11) holds with T replaced by t0 + d. Choose a > 0 and £x e(0, t0) such
that t0 < t1 + h and a = £2(*i)- Then, we obtain

u(x, t) = Q for (x, t)e[a + I, oo) x [tl5 tx + h] n [tl9 *0 + 5),

that is,

This contradicts (6.30) and thus (6.28) is shown.
Finally we can show the continuity of £t(t) by similar methods as that show

(6.28), and we omit this proof. D

We need some lemmas to show Theorem 6.2.

Lemma 6.5. Assume (A1)-(A4) and (A8). Let u(x, t) be a weak solution of
(l.l)(1.2)(1.3c) and let aeR\(0, L). Then

(6.32) aau(*,t)>u(x,t}, f * «[* "> _ ^^ .e(0, T).
for all xe( — oo, a] ifa<v

Therefore, w(x, t) is a monotone decreasing function on x > L and a monotone
increasing function on x < 0 for each t e (0, T).

Proof. This proof is similar to it of Lemma 5.2. We omit it. D

Lemma 6.6. Let ^(t) (i = 1, 2) be as in Theorem 6.1. Then

lim ^(t) = - oo if and only if lim £2(t) = oo.

Proof. This proof is obvious by Lemma 6.5. D

Proof of Theorem 6.2 (i). First, we show that S(u0) ^ PX £]-
Assume that XoeS^o) is not a point in [0, L]. Without loss of generality,

we may assume that x0 > L. By Lemma 6.5, we have that [L, x0) c S^WQ). It
follows from Lemma 3.1 and Lemma 6.5 that for any d > 0 small enough there
exists t0 = *0(5)e(0, T) such that w(x, t) > 0 for (x, t)e[L, x0 - 5] x [t0, T) and
wx(x, t) > 0 in (x, i)e [L, x0 — £] U [t0, T). Using Lemma 3.3, we have that
(L, x0 — 6) c: S(w0)

c. This contradicts that [L, x0) c S(w0) and thus we show
that S(u0) c [0, L].

Hence, noting that M(X, r) < M(^) for (x, t)e( - oo, - <5] U [L + d, oo)
x [0, T) (5 > 0) and using the similar method as in the proof of Theorem 6.1, we
see (6.5).

Next we further assume (A7) and prove (6.6). Consider u(x, t) and oa2u(x, t)
in (a2, oo ) x (0, T). By the comparison theroem on a half space, we have that
afl2w(x, t) > w(x, t) in (a2, oo) x (0, T) (cf. proof of Lemma 5.2). Using Lemma
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3.1, we obtain that ux(a2, t) < 0 for te(0, T). Hence, by the similar method as
in the proof of Lemma 5.4 and by the continuity of £2(£), we have that, if
^6(0, T) is sufficiently close to t = 0, then vau(x, t^) > u(x, t^) iq. [a, oo)
x [t1? T) where \a — a2\<8 for some d > 0. Using Lemma 3.1 again, we
obtain that ux(a, t)<Q for \a — a2\ < <5, tl<t<T. Also similarly we obtain
that ux(a, t) > 0 for a — a1\<d'9 t^<t < T for some §' > 0. Therefore as we
prove Theorem 5.1, we obtain (6.6). The proof is complete. D

Next we prove Theorem 6.2 (ii). We need the following lemma due to
Imai-Mochizki [8].

Lemma 6.7. Assume (A1)-(A4) and (A12). Let u(x, t) be a weak solution of
the Dirichlet problem (l.l)(1.2)(1.3a). Then, u(x, t) exists globally in time and
stays bounded (in L°°(0, L)) as t\ oo.

Proof of Theorem 6.2 (ii). First, we show

(6.33) (-oo,0]U(L, oo)cS(ii0).

Here, we only show that [L, oo) c S(u0).
Assume that x0e[L, oo) is not a point in S(u0). Then, by Lemma 6.5 we

have that for some Mx > 0

(6.34) u(x, t) < M1 for (x, t)e [x0, oo) x [0, T),

and by (A8) we see

(6.35) u(x9 0) = MO(X) = 0 for x > x0.

As we prove Theorem 6.1, we obtain

(6.36) lim£2(£)< oo.

Using Lemma 6.6, we have

(6.37) lim{1(0> -oo.

Choosing x1 < lim ̂ (t) and lim ̂ 2W < *2,
 we see ^at u(xly t) = 0 and w(x2, t)

= 0 for t e (0, T). Since we can look w(x, t) as a solution of the Dirichlet
problem with Q = (xl5 x2), we see that w(x, t) does not blow up at t = T by
Lemma 6.7. This is a contradiction since t = T is assumed to be the blow-up
time of M(X, t) and thus we prove (6.33). Noting Lemma 6.5, we obtain that

(0, L) c S(u0). Hence we see that S(u0) = R(j {00} U { - 00} and that lim £2(t)

= oo and lim ^(t) = — oo. The proof is complete. D
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