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Kyoji SAITO*

Abstract

Let (X, K]l2) be a spin Riemann surface** of genus > 2. By using infinite dimensional
representations of the fundamental group of X, we obtain many local systems on X, which taken
together define a resolution of the halfcanonical ring of X and indicate a non-abelian theory of abelian
integrals on X. The work has a root in a study of the complex structure on the Fricke moduli space
[14].

*) a Riemann surface together with a halfcanonical bundle (4.1).

Summary of Results

Let (X, Kx
/2) be a spin Riemann surface of genus > 2. For each n > 0, we

construct an increasing sequence Fn
Xti zeZ> 0 of finite dimensional C-vector

subsheaves contained in the (9x(Kx
nl2\ regarded as local systems over X (cf. (4.3)

and (5.3)). They are characterized by the following properties.
a) The initial local system Fn

Xt0 for i = 0 is isomorphic to the one induced
from n th symmetric tensor product Symn(C2) of the vector representation space
C2 of SL(2, R) (i.e. Fn

Xi0 - (H x Sym^C^/n^X)).
b) Set GXti:= FXfi + 1 / F X i i for n, i > 0. Then each graded piece Gn

Xji is a
trivial local system and the initial one GXi0 is isomorphic to H°(X, &(Kn

x
2 + l))

for i = 0 (5.4.5).
c) The cohomology of the FXji for n, / > 0 is as follows ((2.2.5), (3.5.1) and

(4.4) Lemma):
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H*(X, Fn
xJ ~ H*(X, &x(Kx

nl2)) © GUI] 0 G^.^].

d) The sum &x:= © © GJfi forms a (infinitely generated) graded ring
1 " 00

over (a part of) the halfcanonical ring ^x,o
:= © GJf0- Each graded piece ̂ x,i

n = 0

= © Gx,i for * > 0 is a finite ^x,o-module (§6 (6.1) and (6.2)).
n

e) There are derivation maps d° : &x -» ̂ x <g) z # * (*, Z) and
^1:^®z^ r l(^Z)^(^©F^o)®zH2(Jf,Z) (3.6) such that the following
sequence (6.3.1) gives a resolution of the halfcanonical ring &x,o

:

0 -» 9Xt0 -^^x^^x (SzH'PO -J^ (»x © *i,o) ®z^2W -* 0.

where the map i to the factor F£j0 ~ C is given by abelian integrals (6.3.2):

f(at)-

f) Statement e) implies the following generating formula for the classes
[G^5J in the Grothendieck-group of mapping class group equivariant vector
spaces ((3.7) Corollary and (4.4) Lemma).

T fC° 1 1' -
 IH °(X> &x(K*m - [g2 (X' C*)] l for «-0&*• J f - i » , c,)] t2 for M-° '

for n>0for n > 0.
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Appendix

Notation. Let A be an algebra with 1 and F a group. An A-F module is a
module with commuting left A and right F actions. An A-F homomorphism is a
map that commutes with the A-F actions. A T-module M is reduced if Mr

:= {meM: m-y = m for any yeF} is equal to 0. The i th cohomology group of
F with coefficients in an A-F module M is denoted by Hl(F, M), which is of
course an v4-module.

By C, we mean the complex number field and H:= {zeC: Im(z) > 0} is the
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complex upper half plane, whose coordinate is denoted by z.
By (9X and Kx we denote the sheaf of germs of holomorphic functions (resp.

the canonical line bundle) of a complex manifold X.

§ L Introduction

(1.1) The Teichmiiller space as a real manifold is well known to carry a
complex structure (Weil, Ahlfors, Bers [2]). The complex structure can be
recovered by several different approaches: Earle & Eells, Beilinson, Manin &
Schechtman [1], Hitchin [8], Pekornen [13], Tromba [18], Wolpert [20].
Although the approaches are different, each construction uses some analysis, or
to put it better, uses some infinite-dimensional spaces. In contrast, the
symplectic structure on the Teichmiiller space is algebraic (cf. [7]).

(1.2) We recently showed [14] that the complex structure on the Teichmiiller
space can be recovered in terms of representations of Fuchsian groups into an
infinite-dimensional space. The starting point of the present paper is an
attempt to "approximate" this infinite-dimensional space by finite-dimensional
subspaces. We first explain this in (1.2).

Let Fg be the surface group of genus g > 2 and p: Fg -> SL (2, E) a faithful
discrete representation. The p determines a Riemann surface p(Fg)\H and
conjugacy class [p] of p determines a point in the moduli space of spin Riemann
surfaces of genus g (cf. § 4). The tangent space of the moduli at [p] is identified
with the cohomology group H1(Fg, g) (Weil [19]), where Fg acts on g:= sl(2, R)
by the adjoint action of SL(2, R) composed with p. The space acquires a
complex structure via the Eichler-Shimura isomorphism ([5,15]):

Here F(H, 0) is the complex vector space of holomorphic vector fields on the
upper half-plane H, Fg acts on F(H, 0) by pulling back vector fields and i^ is

fz\ d
induced by the infinitesimal action i: g -> F(H, 0), XH->( — 1, z)X{ }—. The

\ljdz
integrability of this almost complex structure is proved directly in [14] (cf. [10]).

The /^-action on T(H, 0) is neither unitary nor completely reducible.
Hence one is led to look for a "small" C-Fg module ^ with g(x) R Cc=J^
c r(H, $) such that the inclusion maps induce isomorphisms: H^(Fg, g)
~ Hl(Fg, P) ~ Hl(Fg, r(H, 0)). We will see that there exists a smallest such
3Fp depending on the representation p. Furthermore, there exists an increasing

00

sequence (Fpjf)£>0 of C-Fg modules of finite rank such that Pp = (j Fpii and
i = 0

Fp,i + i/Fpti f°r i>® are trivial Fg modules. We call ^p the minimal module
attached to the Eichler-Shimura isomorphism (*).
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(1.3) The construction of (1.2) can be carried out in the same way for the
representations of Fg on the infinite-dimensional spaces F(H, @(K~nl2)) for n > 0
with the role of g replaced by Symn(R2), where n = 2 is the case discussed in (1.2)
(see §4). The present paper studies minimal modules ^n

p attached to this
situation. The minimal module 3Fn

p is again exhausted by an increasing
sequence {Fn

p>£}i2:0 of C-Fg modules of finite rank such that Fn
pti+l/F

n
flti for i > 0

are trivial Fg modules. The first step Fn
ptl of the sequence is already known as

the space of Eichler integrals and Fn
ptl/F

n
p'i0 ~ r(H, &(Kn/2 + 1))r* (cf. (4.4) Remark

and (5.4.5)). Therefore we regard the spaces F"pji for i > 0 as generalizations of
this and called them higher Eichler integrals.

Geometrically, the representation p: Fg -> SL (2, R) determines a Riemann
surface X:= p(Fg)\H, together with halfcanonical (spin) bundle K%12 (c.f. (4.1)).
Then F^:=(H x Fn

pii)/Fg for n, i>Q are local systems on X contained in
Gx(K~n'2\ which are shown to have the properties stated in the Summary.

Although each step of the construction and proofs is carried out in terms of
elementary use of group cohomology, as a whole, it seems that we are treating
some new object, which may be summarized in a word: non-abelian theory of
abelian integrals on a spin Riemann surface. To describe elements of Fn

ftti as
global holomorphic forms on H (as solutions of algebraic differential equations)
seems to be an interesting but hard problem, which we do not consider in this
paper.

Many of the constructions in this paper may be carried out for further
classes of discrete groups, including groups acting on higher dimensional
spaces. Some Lemmas are formulated in this generality. It would be
interesting to clarify the meaning of the generalization of the complex
(^x®zH'(F), 6') in the Summary e) for such a discrete group F.

(1.4) The construction of the paper is as follows.
§ 2 treats the construction of a minimal module in a general setting. § 3 is

devoted to a calculation of the cohomology of a surface group Fg by introducing
the concept of i-regularity. §4 recalls the Eichler-Shimura isomorphism and
shows that the associated minimal modules SFn

p = (FJfl)^0 satisfy the regularity
condition of §3. In §5, we show that the Fn

pti form local systems over the
Riemann surface /^\H, depending only on the spin of p. The Fn

pti are
understood as solution spaces of some linear differential equations. We study

00 00

the algebra structure on Jtfp\= 0 ^n
p/F

n
piQ and on gr(Jfp) ~ 0 gr(J^) in

n=0 n=0

§ 6. The Appendix treats the Z-structure on G Jfi for n > 0, i > 0.

(1.5) The author is grateful to Prof. Y. Ihara for pointing out that (1.2) (*) is
known as the Eichler-Shimura isomorphism, which is the starting point of the
present work. He thanks Prof. M. Kashiwara and Prof. T. Oda for discus-
sions and for drawing attention to a Theorem of Labute [22,1] and its
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generalization due to Kohno and Oda [23, Theorem (1.4)] (cf. Summary f) and
(2.6)).

He also thanks Prof. M. Reid for carefully reading the manuscript and for
revising the English.

§2. The Minimal Module & = (F^>0

Let F be a finitely generated group and R an R-F module of finite rank. In
(2.1) we consider a setting, in which the cohomology group H1(F, R) acquires a
C-structure. Then Lemma (2.2) associates with this situation a construction of a
filtered C-jT module 2F = (F^>0, which we shall call the minimal module.

(2.1) Definition. A pair (£?, i) consisting of a C-jT module & and an R-.T
homomorphism i: R-* £f will be called a complexification of R, if i induces

i) an injective C-F homomorphism C (x)R.R-»<9^,
ii) a C-isomorphism C (x)RjRr~ ^r,

iii) an R-isomorphism i^: Hl(F, R) ~ Hl(F, &).

(2.2) Lemma. Let R be an R-F module of finite rank and (&*, i) a com-
plexification of R.

1. There exists a C-F submodule ^ of ^ having an increasing filtration

(Fi)?=o by C-F modules of finite rank such that & = (j Ft and
i = 0

i) i induces an isomorphism:

(2.2.1) C(g)Rz: C(g)RK ~ F0.

ii) For each zeZ>0 , the module Fi+1 is the largest C-F subspace of 3F
containing Ft such that Fi + l/Fi is a F-trivial module.

iii) The inclusion map i: R -> !F induces an R-isomorphism

(2.2.2) Hl(F, R) - Hl(F, 3?).

2. The pair (3F, i) with the properties i)-iii) is unique and rigid in the
following two senses.

i) Let 3? be any C-F submodule of £f containing R such that the natural
maps Hl(F, R) -*Hl(F,3F)^ Hl(F, &} are isomorphisms. Then & c tf.

ii) If cp: ̂  -> IF is a C-F homomorphism which commutes with z, then <p
preserves the filtration on 3F and gr(cp): gr(J^) -* gr(J^) is the identity. If ^ is
reduced, then cp itself is the identity.

Proof 1. Define the sequence Ft by induction on i = 0, 1,....

F0:=Ci(R) = i(R)®^li(R)

Fi + i:={fE^:f-y-fGFi for all ye F} for i > 0.
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By construction, the Ft are C-F modules, and induced action of F on Fi+1/Ft is
trivial. Thus the properties i) and ii) are shown.

Recall that the first cohomology group H\F9 Sf) is given by Z\F9 &)/8&9

where

Zl(F, <?):= {c: F^y\c(yd) = c(y)8 + c(S)}

and S (/) (y) := /• y - f (for /e & and y eF). Hence ker(5) = &r.
Using this notation, the definition of the Ft can be rewritten as

(2.2.3) Fi+l:=8-l(Z*(r,FM i > 0.

Thus 6 induces bijection: Fi+1/&
r^+Zl(r, Ft)(]8(^) for i > 0. If Ft is of

finite rank, then so is Zl(F9 Ft) since F is finitely generated, and hence so is also
Fi+1/y

r. Since yr a R (x) C is of finite rank, one concludes Fi+1 is of finite
rank.

The inclusions R a Ft a y induce maps Hl(F9 R) -»Hl(F, Ft) ->Hl(F, &),
whose compose is an R-isomorphism by assumption. This implies that
Zl(F, Ft) maps surjectively to H1(F9 ^); the kernel is by definition
Fi+1/^

r. Hence one has an exact sequence:

(2.2.4) 0 > Fi+1/^
r-^Zl(F, Fi) > Hl(F, &) > 0, for i > 03

and a splitting as C-vector spaces:

(2.2.5) Hl(r, Ft) - H\r, y) 0 Fi+1/Ft

for i > 1, where the projection H1(F, Fi)-->H1(F9 &>} is induced by Ft c ^ and
the inclusion H1(F9 ^) c: H1(F, Ft) by Fi_1-^Fi. (A decomposition of the
form (2.2.5) for i = 0 will be treated in (2.4).)

00

We define & as the union & \= \J Ft. The inductive limit of (2.2.5) gives
i = 0

an isomorphism Hl(F9 &} ~ Hl(F9 &) and hence (2.2.2).
2. i) Let 3tf be a C-F submodule of £f containing R such that the

inclusion W a <f induces an isomorphism: H\r, Jf) ~ H^(F9 ¥). We prove
the inclusion Ft c jf by induction. The case i = 0 is the assumption. The
inclusion maps Ftcije a^ induce maps: Hl(F, Ft) -+H1(r9JfT)~ Hl(F, &>).
Recalling (2.2.4), one obtains that S(Fi+1) = d(^)r\Z1(F, Fj. This implies that
8(Fi+l) c 8(3?) and hence F£+1/^rc= jf/(jtf n^r). Since yrc= F0 c Jf, one
has F£+1 c jf.

ii) Let (p: 3F -> ̂  be a C-jT homomorphism commuting with /. We show
by induction on f that the restriction <p | Ff (for i > 0) is of the form id + 0i5

where <^£ is a map from Ff to F,-.!. When i = 0, we have (j)Q = Q by the
assumption on cp. For i > 0, apply the induction hypothesis to the element/-7
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/eF£ for feFi+i and yeF. For all yeF, one gets a relation (p(f)-y — (p(f)
<p(f'7 — /) = f'J — f+ 0i (/•? — /)» which we rewrite as

Thus / — <p(/) e Fi and hence cp |F. + x = id (mod Ff). If £f is reduced, then 0f = 0
by induction. This completes the proof. D

Remark 1. The condition 1. ii) of the Lemma is necessary for the unicity of
the filtration (Ff)feN. This is equivalent to the exactness of the sequence:

(2.2.6) 0 - > FI+1/F£ -*-+ Hl(r, F^ - > Hl(F, &} - > 0 for i > 0.

2. The complex structure J on Hl(F, R) induced from Hl(F9 &) is not
enough to determine the C-7" module ^ = (Ff)f>0, since the short exact sequence
(2.2.4) depends not only on J but on the data of the projection: Z1(7", Ft)

(2.3) Definition. The filtered C-F module (3F, i) introduced in Lemma (2.2) is
called the minimal module relative to (5^, i). The induced complex structure on
Hl(F, R) will be denoted by J.

(2.4) The complex structure J on Hl(F, R) determines the first term Fl/F0 as
follows. Let the setting be as in Lemma (2.2).

Lemma bis. The image of FJF^ in C (x)R #*(/", R) under the map 6 (2.2.6)

is the eigenspace of J for the eigenvalue — ̂ / — 1. Hence one has a direct sum
decomposition :

_̂̂ ^ aa?o .̂̂  .̂̂  <

and an isomorphism'.

(242} F IF ~ f/^F 9^^jfc*.^.A«^ Jt J^/-* Q Jl-* \f- 5 ^ / 3

where A denotes the complex conjugate of a C-vector space A.

Proof. The definitions of F0:=C(x)R.R and Fl in (2.2) give rise to the
following commutative diagram
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0 0I I
—> f,/Fr

i I
0 0

with exact columns. Then one has the exact sequence:

0 — > ker (C (x^H1 (JT, R) — » Z1 (r, FoVFJ — > coker (C ®RR -> FJ — > 0.

The Z1(7", F0)/F1 in the first parenthesis is isomorphic to Hl(F, 3?) as a C-
vector space ((2.2.4)). The image of C (x)M^ in the second parenthesis is F0/F

F

((2.2.1)). These imply the isomorphism FJF0 ^ ker (C (g) R H1 (F, R) -» Hl

(F, &)). Hence one obtains the exact sequence :

0 - > F!/FO - > Hl(r, R) (g) C - > Hl(r, &) - > 0

For an element u:= x + J — lytHl(F, R)@ J — I H V ( F , R\ we have i(u)

= 0 < = > i(x) + ̂ li(y) = i(x + Jy) = 0 < = > x + Jy = Q < = > u = x

+ J-Ux < = > Ju = - ^f^iu. n
(2.5) The coboundary map 6 (cf. (3.6)).

Let the setting be as in (2.2) and let 2F = (Ft-)f>0 be a minimal module with
its filtration. For i > 0 we define a map :

(2.5.1) Fi+JFt -^FJF^ ®zH*(r, Z),

called the coboundary map. In view of Hom(.r, Z) ^ H1 (F9 Z), we identify the
target space with Hom(r, F^/F^). Set

/-7-/ mod(F£_1)

for yeF and feFi+1 representing [/]eFf+1/Ff. Here we write

(2.5.2) f - i :=ZF 0 - (7 - l ) .
yeF

is a homomorphism, since
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/) + (/' 72- n + ((/' ?1 - /) • 72 -(/' 7! - /))

The map 5 (for i > 0)*' is part of a long exact sequence :

(2.5.3) 0 — > F,+1/F, -2-, Homz(r, Fj/F,^) — > #2(F,_i)

Proof. For brevity, we drop F in the notation for cohomology. Consider
the long exact sequence associated to the short exact sequence Q^>Fi^1-^Fi

1-^Q (for i>0) :

Since FJF^^ is /"-trivial, one has H1(Fi/Fi_1) = Homz(/", FJF^^. Applying
(2.2.6) and (2.2.5) for H1(Fi\ one eliminates the first two terms, so that one
obtains a sequence of the form (2.5.3) for some map 8. Since the isomorphism
of (2.2.5) on the second factor is induced by a coboundary map 8, one gets the
description of d given in (2.5.1). D

*) Note that (2.5.3) does not hold for i = 0.

(2.6) Remark. Let Z [/"] be the group algebra for a group F and let «/ be its
00

ideal generated by 7 — 1 for all yeF. Let 3F = (J Ft be a minimal module
;=o

(2.3). Then for any integers i > 0 and j > 1, the action of Z[T] on the quotient
module Fi+j/Ft is factored through an action of Z[jT]/e/J. Therefore, the action
of F on Ft+j/Fi is factored through F/rj9 where Fj is the; th lower central series
of F. That is : /\ := T and rj+ 1 := [r, Fj] for j > 1.

Compare the formula f) in the Summary of the present paper with a
Theorem of Labute [22, 1] and its generalization due to Kohno and Oda [23,
Theorem (1.4)].

§3. The Case of Surface Group

We calculate the cohomology of the surface group of genus g > 1

9

[aj9bj'] = 1>
7=1

using surface topology (3.1)-(3.3). The key result of this section is the heredity
property of regularity (3.4) and its consequences. (For the cohomology of a
group with a single relation, see [11].)

g
(3.1) Let X = {0}IJ ]J (^kO^)LI^ ^e a canonical dissection of a compact
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Riemann surface X of genus g > 2; that is i) Oe X is a point; ii) ak and bk (for k
= 1, ... , g) are simple closed curves on X with base point 0 disjoint outside 0
with intersection number (at, b^ = — (bp aty = dtj and <af, a^ = <bh &,-> = 0
(for 1 < i, j < g); and iii) 7 is an open 40-polygon. We identify ak and bk with
the elements of ni(X9 0) represented by them. This induces the isomorphism:
Fg^n1(X90).

(3.2) Let H -> X be the holomorphic universal covering * of X with H the
complex upperhalf plane. The pull-back of the dissection on X induces a cell
decomposition of H. Let Q be the free abelian group generated by the i-cells
for i = 0, 1, 2. Since Fg acts freely on the set of i-cells, Q is a Z/^-free
module. Since H is contractible, the coboundary maps d define a free Z*rg-
resolution of Z :

(3.2.1) 0 - > C2 -**-> C1 -^ C0 -*-> Z - > 0.

Let us fix a base point OeH over Oe Jf. The 1-cell of H from yd to 6O (if
it exists) is denoted by [y0, (50] = - [c50, y0]. We denote by Z the 2-cell of H
surrounded by the 1-cells [l^-.jO, ^-O] (1 < i < 4g), where Rt:= y^2 ---Ji and
7i» 7 2 > . . . » ?4g is the sequence

a l5 b l9 flf1, ftr1, a2, 62, a^1, & 2 1 . . - - , "gaging1' b g 1 -

Using this notation, the complex (C*, 5) (3.2.1) is given explicitly as:

c0 = zrg-o, d = ® z/v[d, ar1^ 0 © zrg-to, b^loi c2 =

, d2Z =

It is a direct calculation to check that the following / *(3.2.2) gives a homotopy
equivalence between the complex (€„., 3) (3.2.1) and the standard resolution F^
of Z (see [4, Chap. 1.5]).

0 - > C2 -2a+ Ci -2»-» C0 -*-» Z - >• 0

(3.2.2)

where /0(0):=[],

f'O])^^-1] for i= l , . . . , f f ,
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/2(Z):= £ ([K^-DflAfoT1 - l)!^1] - [K-m-DflAftT1 - 1)1 fl*'1]).
k = l

(3.3) For a right /^-module F, the cohomology group is defined as the
homology H (Fg, F) ~ H"((Homzrg(CH5, F), 5*)) of the following complex:

(3.3.1)

eHom^C*, F): cfo^-z) = c(z)-y vye/^ vzeC^}

F (resp. F29, F) if * = 0 (resp. * = 1, * - 2),
{0} otherwise.

k = l

= E WW • (a* - 1) - c(ak) • (bk - 1)) • afc-
 1 b£ l

k = l j = k + l

Remark 1. In view of the isomorphisms Z1(Fg9 F) ~ Z1(Homzr(Cs|., F))
given by ch->{c(af), c(bi)}f=1, we identify 1-cocycles for the standard complex and
for the complex (3.3.1).

2. It is obvious from (3.3.1) that Hj(Fg, F) = 0 for j > 3.
3. Let F = Z be the infinite cyclic group with trivial Fg action and denote

Hk(Fg, Z) by Hk(Fg) (or by H k). The cup product is a skew symmetric form on
Hl(Fg) (~Z20) with values in H2(Fg) - Z (see [4]).

(3.4) Let (&*, i) be the complexification (2.1) of an R-/^ module R for the
surface group Fg (3.1) and J^ = (F^>0 its minimal module (2.3). To calculate
the cohomology of Fi9 we introduce a new concept: regularity of 3F.

Definition 1. Let i be an integer with i > 1. We say that J^ is i-regular if
the multiplication by 7 — 1 on Ft is a surjection onto F f_! for all
ye{al9bl9...,ag,bg}.

2e J^ is Q-regular if the following two conditions are satisfied.
i) rankR(ker(y — l:R-+R))<l for all ye{a1? bl5 ... , ag, bg},
ii) JR = J R - ( f l l - l ) + U-(6 i - l ) for i=l,...,2g.

The following heredity of regularity is a key fact throughout the rest of the
paper.

Lemma. If 2F is i-regular, then it is i + l-regular for i>Q.

Proof. We prove this only for 7 = av. We proceed in 3 steps.

Assertion 1. Assume that 3F is i-regular. Then the following map

n: Z\F,, FJ - > F,, defined by TI(C):= c(Ol)
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is surjective.

Proof. We understand Zl(Fg, Ft) as the space of the 1-cocycles for the
complex (3.3.1) in view of (3.3) Remark 1. One has to show that for any p1 eFf

one can find c = {pp qj}^=1eFf9 satisfying the cocycle condition dl(c) = 0
(3.3.1). This can be solved as follows.

Case i > 0. Put c = (pl9 ql9 0, ... , 0), where <heF f is chosen such that
q1-(a1 — 1) = Pi'(b1 — l)^Fi_1. This is possible by i-regularity assumption.

Case i = 0. Put c = (pl9 0, p2, q2,--, 0)» where p2, #2e^o are chosen such
that pi-(bi - I)a^b^a2b2 = q2-(a2 - l)-p2-(b2 - l)eF0. D

Assertion 2. Put Z^(Fg9 FJ:= ker(Tc) where n is defined in Assertion 1. If
3F is i-regular, then the natural inclusion Ft c: Sf induces a surjection Z^(Fg9 Ft)
-+H*(rg9&).

Proof. Case i = 0. It is enough to show that lm(Z^(Fg, R)) in H1(Fg, R)
~ Hl(Fg, &} has R-codimension < 1, since then Im(Z*(Fg, F0)) is a C-module
containing Im(Z*(Fg, R)) and hence its C-codimension in H1(Fg9 <?) can be at
most [1/2] = 0.

For an element ceZl(Fg) R), if c(a1)eR-(a1 — 1), say c(a1) = r-^ — 1) for
an re£, then c — d°(r)GZ^(Fg, R). Since codimu^^fl! — 1) < 1, this implies
that 5°(R) + Z*(Fg, R) has R-codimension at most 1 in Z1(Fg, R). Hence the
same holds for the image of Zl

n(Fg, R) in Zl(Fg, R)/d°(R).

Case i > 0. It is enough to show that Z^(Fg9 FJ + d°Ft is surjective onto
H1(Fg9 ^). Let c be any cocycle in Z1(Fg, F^^. By the hypothesis, there
exists an element /eFf such that f - ( a l — 1) = n(c):= c(a1)eFi,1. Then by
definition c - 5Q(f)eZ^(rg, F,). This means Zl(Fg, F £_ x) cz Zl(Fg, Ft) + <5°F,,
Since Z1(Fg, F^_ x ) surjects to Hl(Fg, £f\ this completes the proof of Assertion 2.

Assertion 3. Surjectivity of the two maps n: Zl (Fg, Ft) -> Ft and Z*(Fg, Ft)
-^H1(Fg, y) in Assertions 1 and 2 imply the surjectivity of the map: Fi+l x
(fli-lJ-^/or i>0 .

Proof. Recalling (2.2.4), we obtain the following diagram:
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0 0

I I
0 -» ker(fll - I)/*"" — Zi(/V F;) - » ff

1 I
0 — > Fi+1/^r -*-> ZM/V F;) — > H1

1-- 1- I
0 — » F l + 1 - ( a , - l ) — »• F, — > 0

I i
0 0

Here all columns and rows except for the last row are exact by the
assumptions. Then the last row is also exact. D

This completes the proof of the Lemma. CU

(3.5) An immediate consequence of Lemma (3.4) is the following.

Corollary. Assume that 3F is i-regular. Then

(3.5.1) H^r^F^Fj/Fj^ for j>i.

(3.5.2) H2(rg, P) = 0.

(Note that F.1=F0 in case of ^-regularity. (cf. (2.5.2)).

Proof. Recall the complex (3.3.1) so that H2(rg, Fj) - Fj/dlFj9. If & is i-
regular for i > 0, then the Lemma implies S1Fjg = -F/-i for j > i so that (3.5.1)
holds. Also 0-regularity implies 51pQ9 = F0 and hence H2(Fg, F0) = 0. Taking
the inductive limit of (3.5.1), (3.5.2) follows. D

(3.6) The coboundary map dk (cf. (2.5)).
We show that there is an exact sequence (3.6.4) (cf. (6.3.1)) for a complex

defined on the graded pieces of an i-regular minimal module J^", where the
coboundary maps dk are defined below. First we put

(3.6.1) Gi:=Fi + l/Fi

for i > — 1. Now introduce the coboundary maps

(3.6.2) dk :Gt®z H
k(Fg, Z) — > Gt _ l (x) z H

k + 1 (Fg, Z) for k = 0, 1

as follows. Put 6°:= 5 for the coboundary map d: Gt--> G^^ ®zti^(r^
introduced in (2.5.1). If dk is defined already, then dk+l is defined as the
composite :
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Hk(rg) -***u Gi_1 (x) Hl(rg) (x) Hk(rg)
 CUP product> G^ <g> Hk+1(rg).g - i_1 g g ^ g

In our Fuchsian group case, let us give an explicit formula:

(3.6.3) ^(9):= I (£(&*)•(** ~ 1) - £(«*)• (&* - 1)) mod F^,
fc=i

<^(y)eF i+1 w 0« element representing <jo(y)eG£:= Fi+l/Fi.

Proof of (3.6.3). Recalling the definition of (5 (2.5.1), we have

((5 x id)(<p)(u, v) = q>(u)-(v — 1) mod F,--!

for 11, t>etfi(r,)~/;/|Tf,rj. Let ^...^eH^r,) be a basis and
e1,..., e29 eHomz(rg, Z) the dual basis. Then one has an expression

= I ((d x id)(cp)(ek, eJHe* V e1)
M=l

By taking the generators ak, bkeFg(i<k<g) as for representatives of a
symplectic basis of Fg/[_Fg9 Fg], we obtain the formula. D

Lemma. Assume that OF is i-regular. Denote Hk(Fg):= Hfe(/^, Z).
the following sequences are exact;

(3.6.4) 0 - >Gj-£+ Gj-i ®z

/or 7 > i. If i> 0 then the following is also exact :

(3.6.5) 0 - > G, -^U G,_x ̂ zH1^) - ^ H^F,^) - > 0.

Proof. Suppose i > 0. For j > i the natural map H2(Fg, Fj) ->
H2(Fg, Fj/Fj-t) ^ Fj/Fj-t (X)ZH2(/^) is bijective, since both modules are
isomorphic to Fj/Fj-! in a natural way (cf. (3.5.1), (3.3.1)). We apply this fact to
the sequence (2.5.3), and obtain for j > i

0 — > Fj+JFj -«U Homz(rg) f/F^J — » H2(r9> f ̂ ^ — -, 0.

Let us show that the map Homz(Fg9 Fj/Fj.^ -^H2(Fg, F^-^ in this sequence is
naturally identified with the map d1 (3.6.2) for j > i. This can be checked by
comparing the explicit descriptions of the coboundary map d1 in (3.3.1) and
(3.6.3).

If i = 0, then 3F is also 1 -regular. So we apply (3.6.4) for i = 1. Since
H2(F0) - F0/d(F29) - 0 by 0-regularity, (3.6.5) becomes

(3.6.6) 0 - > G! -*U GO ®z
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Since G_t := F^/F^^ = 0 in the 0-regular case, (3.6.6) is the initial case of (3.6.4)
for i = 0.

(3.7) The class [GJ in X°C (= the K-group of C-vector spaces, see the Remark
below) is determined recursively by the use of the sequences (3.6.4) and (3.6.5).

Corollary. Let the setting be as in (3.4). Assume that 3F is i-regular. Then
the generating function for the sequence [GJ (for jeZ>0) is a rational function of
the form

oo

(3.7.1) ^[GJ t' = l_LHl(rfC)-].t + LH2(ri>Q-].t2

where P(t) is a polynomial of deg < L In particular if 3F is ^-regular,

(372) - _ _U>. ij.} ,Q j _ [Hi(/^ Q] . t + [H2(r^ c)] . ,2

Proo/ In the formal power series ring, put

(t [GJf'W - [H1]-* + [H2]-*2)
7 = 0

.

where Hfc:= Hk(rg, C) for fc = 1, 2. If i > 0, then (3.6.4) gives the recursion
relations: [G,-] - [H1] (gJcCG^.J + [H2] ®cE

Gj-2] = 0 for 7 > t in the K-
group, so that P(t) is a polynomial of degree < z. If i = 0, then the recursion
relations, including (3.6.6), imply that P(t) is a constant, which is the class of G0

:= FJF0 = Hl(F, &) (2.4.2). D

Remark. There is an isomorphism K°C ^ Z by the correspondence
[G]h-»dimcG. Here in the (3.7.1) and (3.7.2), we used [G] rather than dimcG
for the following reason. In the next paragraph, we study minimal modules
associated to Eichler-Shimura isomorphism. The graded pieces Gn

pti for them
depends analytically on the representation p of the surface group into
SL (2, R). That is, they form vector bundles over the Teichmiiller space Tg

equivariant with the mapping class group action. Then the formula (3.7.1) and
(3.7.2) are the formula for the class in the K-group (the Grothendieck group) for
such vector bundles over Tg.

§4. The Eichler-Shimura Isomorphism

We recall the Eichler-Shimura isomorphism (see [4], [15, 16]). The
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minimal modules relative to the isomorphisms are shown to be 0 (or 1-) regular
in the sense of (3.4).

(4.1) Let Symn(R2) be the n th symmetric tensor product space over R of the
vector representation space R2 of SL(2,R) for ?ieZ>0. The space can be
identified with the space of all real polynomials in one variable, say z, of degreee

< n. An element A = \ \eSL(2, R) acts on cp(z)eSymn(R2) on the right:

(4.1.1) <p(z) - ad** (A):=cp (cz + d)» -

(We use the notation adn/2 for the action, since in case of n = 2 the action is
identified with the adjoint action of SL(2, R) on j/(2, R).)

/ d V/2

Let @m(Km
nl2):= (9m \ — } be the invertible sheaf on the upper half plane

dz

H:= (zeC: Im(z) > 0} with the base ( — ) . The element A = [ J
\dzj [c d\

SL(2, R) acts on the sheaf from the right, denoted again by adn/2,

By definition, the R-linear embedding

(4.1.3) i.: Synf(R2) —

for ft > 0 is equivariant with respect to the adn/2 actions of SL (2, R).
Let Fg be the surface group of genus g > 2 (3.1.1) and let

(4.1.4) p:rg—»SL(2,R)

be a faithful discrete and cocompact representation. Fg acts on Symn(R.2) and
F(H, (9m(Kun/2)) by the composite adn

p
/2:= adnl2°p, which is equivariant with

respect to in.

Remark. 1. p induces a representation p: F^> PSL(2,R) and defines a
Riemann surface X := /}(/")\H of genus #. Conversely, for a given p there exists
a lifting p (4.1.4), determined up to the choice of spin structure eZ2/
(cf. [17], [2]).

2. The right action of adn
p
/2(y) on (9m(K^n/2) is equivariant with the left

action of p(y)"1 on H (for yeFg), so the quotient Om(K^n/2)/Fg is an invertible
sheaf on the surface X, denoted by Ox(K^n'2\ The pair (X, (9X(K^12)) is called a
spin Riemann surface. Two representations p and p* give isomorphic spin
Riemann surface if and only if they are conjugate in SL(2, R) up to Aut(F).
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(4.2) The Eichler-Shimura isomorphism is formulated as follows.

Theorem. The map in induces an isomorphism of R-vector spaces

(4.2.1) Hi(Fg, Symn(R2)) ~ H^p(Fg, F(H, &H(K^2))

of the 1 st cohomology group of Fg w. r. t. the action adp
/2.

(The lower script p at the notation is added to indicate the dependence of the
cohomology group on p (4.1.4).)

An outline of the proof [15]. Serre duality implies that the right-hand side
of (4.2.1) is dual to H°p(Fg, T(H, (9H(Kn/2 + 1))) = the space of automorphic forms
of weight n + 2. Then the R-ranks of the both sides of (4.2.1) are shown to be
equal in Eichler [4]. The injectivity is shown by Shimura [15] using the
Peterson inner product on the automorphic forms.

The isomorphism is generalized to higher-dimensional cases. (See Mura-
kami [12] and the references given there.)

(4.3) The pair (r(H, (9H(K~n/2\ in) is a complexification of Symn(R2) in the sense
of (2.1) in view of the isomorphism (4.2.1).

The minimal module relative to the pair mil be denoted by

ttn _ (p?n \
^ p ~ v rp,i/i>OJ

which is a filtered C~Fg submodule of T(H, 0(K^n'2)) depending on p, n and i
(cf. (2.3)). Of course, one has the isomorphism: Symn(C2) ~ FJ>0.

(4.4) The following is a key fact in all what follows.

Lemma0 i) The minimal modules ^°p for any p are \-regular.
ii) The minimal modules ^n

p for any p and n > 0 are (^-regular.
(For the definition of i-regularity, recall (3.4).)

Proof, i) For/eF(H,

< = > f(p(y)z) - f(z) = const for any y e Fg

< = > dp(y)*(df) - df= 0 for any ye/;

That is, any/eFp f l can be expressed as an indefinite integral CD for an abelian

differential co of the first kind on the Riemann surface X:= p(Fg)\H in such a
f

way that that /• y - / = <h co. The space T(H, Q^)p(n ^ F(X, Q1) is of rank g
J y

over C and hence 2g over R, and is dual to H^X, R). Hence for a generator al

r
of Fa one can find an abelian differential co s.t. (b co = 1.
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ii) It is well known that the image p(y)eSL(2, R) of an element y ^ 1 of a

surface group Fg is hyperbolic, and hence it is conjugate to ^4r:= _1 for

some reR with \r\ > 1. The action of Ar on Symn(R2) is given by zk-adn/2(Ar)
_ r2k-nzk £or j; = o,., w. Hence it is semisimple with real eigenvalues r2k~n (for
0 < fe < n). In particular adn/2(A) — 1 has non-trivial kernel if and only if n is
even, and then its rank is equal to 1. For even n, let us show that

(*) For any two hyperbolic elements A and B of SL (2, R) the following three
conditions i) ~ iii) are equivalent.

i) A and B commute,
ii) ker (ad"/2(,4) - 1) = ker (adn/2(£) - 1),

iii) im (ad"/2G4) - 1) = im (adn/2(B) - 1).

Proof. We may assume A = Ar and B = As• Ad\ , . Note that i) is
\_c d}

equivalent to "either a = d = Q or b = c = 0", since an element of GL(2)

commutes with Ar if and only if it is diagonal and As • Ad\ 1\ = A *1 for a
[c d ]

= d = Qorb = c = Q. Since the fixed points for A (resp. B) is spanned by znf2

(resp. ((az + b) (cz + d))n'2\ ii) is possible only when either b = c = 0 or a = d
= 0. The image for A (resp. B) is spanned by zk (resp. (az + b)k(cz + d)n~k) for
k = 0,..., n, k 7^ n/2. Hence iii) implies in particular that (az + b)n and (cz + d)n

do not contain the monomial zn/2. This implies again either a = d = Qorb = c
= 0. Hence *) is proved.

(*) implies conditions i) and ii) of (3.4), Lemma 2. D

Remark 1. As seen in the proof, the space F°sl is identified with the space
of abelian integrals of the first kind. Generally for n > 0, an element <p(z)

d\nl2 iaz + b\
— eT(H, (9H(K-n/2)) belongs to F" x if and only if cp(n) (cz + d)n + 2

dzj p' \cz + dj
( d V/2

— cp(n}(z) = 0 (5.4.5). Such cp(z) I — ) is called the Eichler integral of weight n
\dzj

[4]. For this reason, we regard elements of Fn
flti for ieN as generalizations of

Eichler integrals. In fact FJtl- may be regarded as the null space for certain
linear differential operators on X (cf. (5.4)).

2. H2(Fg, Sym°(R2)) = R and H2(Fg, Symn(R2)) = 0 for n > 0. (by (3.3.1)
and the Lemma.)

(4.5) As consequences of Lemma (4.3), we can apply several result of §3. For
the sake of completeness, we recall and summarize them.

Assertion 1= Put
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G n ._ T?n ipn
p,i-~ rp, i+l / rp, i

for n > 0 and i > — 1. 77zefl owe was1 the following exact sequences

0 —> G"p,j -£+ G"PJ^ ®zHi(rg) ^U GJj_2 (8)zH
2Cg — > 0

/or n > 0 fl«d 7 > 1. For j = 1, we /zat;e separate cases.

0 - > G° ! -*U G°0 ®zH
l(rg) - > F°>0 ®zH

2(rg) - > 0

0 - , Gp4 ̂ ^ GJ>0 ®zH
l(rg) - > 0 /or n > 0.

we notice that FX,O:= C (x)RR0 ~ C.
28 77ze formula for the cohomology of Fn

pti in Summary c) can be proven by
the formula (2.2.5) and Corollary (3.5).

3. The formula for the generating functions £ [GJJ, J • £' zw Summary f) caw
/ — Q

fee proven by Corollary (3.7).

§5. Local Systems over Spin Riemann Surfaces

We describe the transformation rules of the filters Fn
pti of the minimal

modules 3Fn
p for a representation p (4.1.4) by the actions of PSL(2, R) and

Aut(Fg). This leads to local systems Fn
Xti over a spin Riemann surface (X, K]l2)

depending only on the spin class of p.

(5.1) For AePSL(29 R) and a representation p, we denote by p-Ad(A) the
representation given by yEFg\-^A~lp(y)AeSL(2,E).

Assertion. For given p and n, the right action adn/2(A) of AeSL(2, R) on

F(H, &m(Knnl2)) induces bijections: ^n
p ^ ^n

p.Ad(A) and Fp>1 -^Fn
p.Ad(A)ti for

ieZ>0 . The bijections are equivariant with respect to the action o/ye/^. Hence
one has commutative diagrams:

un adn/2(A) ^ j?n 17/1 adn/2(A)
r p,i ^^ r p-Ad(A),i * ni+i

\f>PI-
Fn

p,t -****+ Fn
p.Ad(A}, Z\r9 Fp,) -5fi^4U Zi(/; F«.^y)

Proo/ Recall that the right action of y e/^ on T(H, ^H(^HW/2)) (or on FJfi)
is defined by the composition adn

p
/2(y):= adn/2(p(y)) (4.1). We verify the

following commutativity of the actions on jT(H, 0):
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(Since adn
p'

2
Ad(A) (y) = adn>2 ((p • Ad(A))(y)) = adn'2(A ~ * p(y)A) = adn'2(A)~ * • ad*'2

(p(y)) • adn/2(A) = adnl2(A)'1 • adn
p
/2(y) • adn/2(A).)

By subtracting adn/2(A) from both sides of the equality,

(adn'2(y) - l)-adn'2(A) = adn'2(A)-(adn
p(

2
Ad(A}(y) - 1).

This implies that adn/2(A) maps Fn
pti into Fn

p.Ad(A)ti by induction on i, where the
case i = 0 is trivial: Fn

pt0 = C (x) i(Symn(R2)) is invariant under SL(29 R). Since
adnl2(A~l) = (adn/2(A))~1

9 the maps are bijective. The commutativity of
diagrams follows from the same relation. D

(5.2) An element aeAut(Fg) acts on a representation p on the left by (a-p)(y)
:= p(*~l(y)). In view of p(Fg) = (a- p)(r9\ we have &*p = &l.p and F*pti = ^n

a.pti

for i, n > 0 as subsets of F(H, ̂ H(^i"/2))-

Assertiono O«^ Aa.y the commutative diagrams'.

and

where x^ is the bijection defined by a^(c)(7):= c(a"1(y)).

Proof. This follows from the equality

ad"i.2p(y) = ad»'2(p(«- '(y)) = «tf2(oT ^y)). D

(5.3) Define the local system over the Riemann surface X$:= p(Fg)\H.9

Fn
pti:= rg\(H x Fn

flii)

by the diagonal action of yeF: y-(z,f):=(p(y)z,f-adn
p

/2(y~1)).

Lemma, T/H? /oca/ system Fn
pti (n, ieZ>0) depends only on the isomorphism

class of the spin Riemann surface X = (Xp, K]l2).

Proof. Recall that two representations p and p* give the same spin
Riemann surface if and only if there exist AePSL(2, R) and a,EAut(Fg) with p*
= a • p • Ad(A). Then the isomorphism is given by

:= (a • /

(z,/) H-* (A-\z\f-adn'\A)).
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It is enough to show that ad"[A induces a right i/^^-isomorphism of the local

systems: *) adnJ2
A: FJpl ^-» Fn

a.p.Ad(A)>i with the property: **) adn^A.B
= ad^A-adn

p
/2

B. *) follows from the facts (5.1) and (5.2). **) is also a straight-
forward calculation and is omitted. D

The isomorphism class of local system Fn
pti over X is denoted

(5.3.1) FJ§I for i, neZ>0

&x'= U FX,I for neZ^0 .

By construction, the local systems are embedded into the sheaf ®x(K~n'2) over X
as multi-valued global sections. The graded pieces

(5-3.2) Gn
Xti:=Fn

x,i+JF»Xii (i, neZ,0)

are trivial local systems over X, whose ranks (which depend only on n, i and the
genus g of X) are denoted by 0J f£:= rankc GXti. By (4.5) and (3.7), we have

(5.3.3) £ g»tit
l = ~ ? 2 for n > 0 ,

= -—^~^ 2 for n = 0.
l-2gt + t2

(5.4) We give an interpretation of the local systems Fn
Xji as sheaves of solutions

of linear differential equations on X.

Assertion. There exists a sequence of holomorphic linear differential
operators

(5.4.1) Dn
xi: O^Kjf'*1

of degree gn
9ti for i = 0,1, 2,..., such

i) The local system Fn
Xti is characterized as the solution of the equation:

(5-4.2) ter (DJ i i °Di f i _ 1 o---°DJ f o) = fJ ii.

ii) The map Dn
xi°Dn

xi^l ° ••• °D^0 induces an injection:

(5.4.3) Dxi°Dxi-i ° '" °DXO: GX i c ^(^ ^x(^F'1 + 1/2))-

/fere d^- (i > 1) is given inductively by the formula:

(5.4.4) dn
g>1 = n + 2 o/w/ dj f i + 1 = (dn

gti + gn£ (gn . + 1).
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Proof. The Lemma is proved using the Wronskian as follows. At the
start, for i = 0, put

n/2

The following transformation rule can be checked directly:

dz

This was studied by G. Bol [3], Peterson and Eichler [4]. i) and ii) for i = 0
follows obviously from this. Particularly, DXt0 induces an isomorphism:

(5.4.5) DXj0 : Gx>0 ~ F(X, Ox(K
n
x
2 + l))

Suppose the operators Dn
Xt0,..., DJ.i-i f°r ^">0 are constructed. Let

(pj(z)(dz)di/2EDn
x^1°Dn

Xfi_2°'-'°Dn
Xi0(F

n
pii) (for l<j<^:=^) , be a C-basis

for the image of Gn
pti. For q)(z)(dzf*l2£@x(K

djl2l put

) , . . . , (pgi(z\ <p(z)

) , . . . , <p'gt(z), cp'(z)

' (dz)di^12

(Here in this definition, there is an ambiguity of a choice of the basis of
Gn

Xti. See the following Remark 1.)
Dn

x>i commutes with the adjoint action of the Fg. To see this,

for A = r b
d 1 ep(rg), substitute q>i(A(z))(cz + d)~d\ ..., cp9i (A(z))(cz + d)~d\

<p(A(z))(cz + d)~di for <PI(Z), ..., <pgi(z), cp(z) in the definition of DXii.
( d V

Apply the fact that — (^(A(z))(cz + rf)"d) - cp(k)(A(z))(cz + d)~d~2k +
_

+ d)~d~2k+j for some constants c,-, so that the right hand is

equal to

(CZ +

(cz

d)-*
H- d)-11'-2

0 (cz

0

) , . . . , ?M(z))

(dz)"'-/

= Dn
xi((p(z)(dz)di/2)-ad-di+l/2(A) for £ (d£ + 2/) = dl+1. On the other hand,

j=o



HIGHER EICHLER INTEGRALS 453

<p/z)(dz)*/26r(H, (9H(Kdil2))r* means q>j(A(z))(cz + d)~di = <Pj(z) for 1 < } < gt.
This implies that

for fE(9H(K^di/2) and yeFg as a generalization of Bol's relation. So the
operator is well defined. By properties of the Wronskian, i) is verified. To
prove ii), observe that /eT(H, (9(K^n/2)) belongs to F£> f + 1 if and only if/
—f-adn

p
/2(y)EFn

p>i. Applying DXi° ••• °DXt0 to this relation, we obtain

Remark 1. To be more precise, the operator DXii must be normalized as

-—,^n , .Dy ; to kill the ambiguity arising from the choice of basis of Gy... For
det(G£,i)

the purpose, one needs to study the vector bundles \J (G\J) over the moduli

space yg of curves of genus g. This is beyond the treatment in this paper.
2. The isomorphisms Fn

ptl/F
n
pt0 ~ Hl(X9 @x(Kx

n/2) (2.4.2) and DJi0: Fn
ptl/F

n
ptQ

~r(X,@x(K
n
x
2 + l)) (5.4.5), and Serre duality between Hl(X, &x(Kx

nl2}) and
r(X9 &x(K

n
x
2 + l)) implies that the space Gn

ptl := Fn
p^/Fn

pj0 and its conjugate are C
dual of each other. This is nothing but the Weil-Petersson metric on the space.

§6. Algebra Structure on Jtfx

00

We introduce an algebra structure on 2tfx\= 0 «^"J/FJ>0, whose associated

graded ring &x:= gr(^fx) admits derivations by the elements of Fg.

(6.1) Recall Bol's map Dn
x,0\= dn + 1: T(H, 0(K~nl2)) -» T(H, (9(Kn/2 + 1)) (5.4) on

global sections. Obviously dn+l is surjective and equivariant with respect to the
action of rg. Its kernel is JFJ.

Assertion. The product Kn^2 +1 x Kg/2 +1 -> Kg+m)/2 + 2 on the tensors of the

halfcanonical bundle K^2 induces a Fg-equivariant and filter preserving product

map:

(6.1.1) dn + 1(^x) x dm~*

Proof. We have only to show that the image of the filters by the product
map belongs to the filter described in (6.1.1)*. We proceed by induction on i
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and j. First we remark that :

for an element <pe.T(H, &(Kn/2 + l)) and for zeZ>0 , we have
if and only if q> • ad~nl2 ~ 1 (y) - cp e dn+ l Fn

x>i for all y e Tr

If i = - 1 (resp. j = - 1), then dn + 1 (Fn
x,0) (resp. dm+1(F^0)) is 0 so that the

image of the map is 0 c d(F^~0
m+2). Now suppose z, j > 0 and take elements

n + 1(Fn
x>i+1) and 0eam+1(F£J+1)). Then for ye/;,

*) (<

= (q> • adp(y) - <p) - $ + cp • (0 • adp(y) - $) + (<p • adp(y) - cp) • (0 • adp(y) - 0),

which belongs to 3w+m+3(F^t2) by hypothesis. By the above remark, c p - < £
belongs to dn+m+3(Fn

x^^)' D

Corollary- The product (6.1.1) pufcra? a product GJpi x G™fJ.-> G^+t2 /or
ij,n,m > 0. For ye 7^, /^? (5y fee the coboundary map defined in (2.5.1). Then

(6.1.2) &7(9'<l>) = 8y(<P)-<l> + 9'&y(<l>)

for cpeGn
Xii9 0eG^- and yeFg. Here Gn

x^.= F*Xti + l/F*Xti cf. (3.6.1).

(6.2) Inspired by the calculations in (6.1), we introduce:

n=0 ' w=0

Each summand will be denoted as

B + l

this carries a filtration

(6.2.3) HJ if:= Fiil + 1/Fii0 ^ dn+1F»x,i+1 i = 0, 1, 2, ...

induced by that on ^"J. Then (6.1.1)* can be rewritten as a product:

Tjn v rrm _ . rjn + m + 2
^X.i X "Jf,j > nX,i + j

and so Jf x is a graded algebra with increasing filtration

(6.2.4) #X9i:= ®Hn
x,i9 i = 0,l,2,....

The first filter: ̂ ,o ^ 0 FJ,i/f J,o - 0 ^(H, ̂ H(^H/2 + 1))rg is (a part of) the
n=0 n=0

half canonical ring for the spin Riemann surface (X, Kx
12) associated to the

representation p. It is well known that 3^X,Q i§ a finitely generated algebra over
C and is noetherian.

In the remaining of this paragraph, we prove the following:



HIGHER EICHLER INTEGRALS 455

Lemma. Jf x is an integral domain over Jf x,o su°h tnat each filter 3Fx,i ^ a

finite module over J^Xto-

By generalities in commutative algebra, to prove the Lemma, it is enough to
prove the same statement (Lemma* below) for the graded algebra

,i-i (Here ^x,-i-= 0). The associated graded algebra of
i = 0

which we denote by <&x, is given by

(6.2.5) 9x:

where 9Xtl:= X^JX1^-! = © F*Xil+1/F*Xtl = © G*Xil(i > 0). Of course <3X is
n=0

a bigraded algebra, as GJfi x G^-^G^+t2 is induced from (6.1.1). The 0-
graded part &Xt0 w.r.t. the index i is the same as the Jf Xt0. Therefore we prove
the following:

Lemma* i) &x is an integral domain over &XtQ.
ii) For i > 0, &Xti is a &Xt0- finite module.

(6.3) To prove the Lemma*, we summarize some of the previous results in a
Theorem, which describes a resolution of the half canonical ring &XtQ ; this can
be regarded as the main result of the present paper.

Theorem. Let dk : ̂ x^ (x) Hk(Fg, Z) -» 9Xti _ 1 (x) Hk + 1 (/;, Z) ^ rte
coboundary map introduced in (3. 6.2) /or i > 0 #«£/ fc = 0, 1. Then they are &X,Q-
module homomorphisms, and they define the following resolution of the
halfcanonical ring ^Xt0:

(6.3.1)

o — - ̂ xo — >$x-^$x <8>zHl(r) -^» (yx © F°O) ®zH
2(r) — > o.

Here F£>O ~ C as a &x ̂ -module is annihilated by any element of^Xt0. The map
i to the factor FXt0 is given by abelian integrals :

9 f f
> GX,O) > X /(fli) ~ f(bi)£FXt0 ~ C.

*= 1 J b,- •> a •

(6.3.2)

Proof. The exactness of (6.3.1) follows from Lemma (4.3) and Lemma
(3.6). The fact that (5° and dl are commutative with the ^Xj0-module structure
follows from (6.1.2). The map i comes from the exact sequence (3.6.5) for i = 1
and n = 0:

//^ o o\ r\ /~*0 (~*Q ̂ vS J-I ^-(T"1 7\ i v 17*0 ^\/\ J-f^fJ"1 '7\ C\

To obtain an explicit formula (6.3.2), we refer to (3.6.3) and its proof. D
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Remark. The exactness of (6.3.1) can be reformulated in terms of the
cohomology of the complex (^x®zH', 5') denned by

F° k — 1r X,0 K — I,

0 otherwise.

(6.4) Recall the coboundary map 5y: Gn
x,i+1 -» Gn

Xii for yerg (2.5). The
relation (6.1.2) implies that dy is a derivation of the algebra ^x over ^x,o- By a
use of derivations, one can recover the filtration on <&x as follows:

for an element /e^, the following are equivalent

i) /G 0 *,.„ ii) 8l.-.8d+J=Oforall51,...95d+1eDer(9x/9Xt0).
i = 0

Proof, ii) implies i) by the injectivity of (5° in (3.6.4). i) implies ii) because
the derivations have degree — 1 by definition. D

Proof of Lemma* i). It is enough to show that the product :

does not have zero-divisors. Let us prove this by induction on i and j. The
start of the induction : when i = j = 0, the above product is just the product in
the half canonical ring ^Xj0 which is obviously integral.

Take/e^Xjf for i > 1, and ge^j0 and assume /# = 0. For any derivation
(5, one has 0 = d(fg) = 5(f)g + fd(g) = d(f)g. Hence either g = 0 or S(f) = 0
for any S by induction on i. Hence either g = 0 or / = 0.

Let i, j > 1 and take /e &Xti and g e &x tj with / ^ 0, g / 0. Suppose /#
= 0. Let 5 be any derivation. If dlf / 0, then let us show dj~kg = 0 for k =
— 1, 0, 1 , ... ,7 by induction on fe, where the case of k = — 1 is clear. Assume

true for k - 1. Then the relation 0 = di+j~k(fg) = r +j~ k\dif)(6J-kg)

implies 6j~kg = 0 by induction. Hence g = 0 for k=j contradicts the
assumption on g. Thus 5lf = 0, and similarly Sjg = 0. If i — 1 > 0 and
(5 f~1//0, then again a similar argument shows that d j ~ l ~ k g = Q for fe =
- 1, 0, ... J — 1, which gives a contradiction. This implies again that di~1f= 0
and also 5J~1gf = 0 as far as i — 1 > 0 and j — 1 > 0. Repeating a similar
argument for p inductively, we obtain 8l~pf=Q and dj~pg = 0 for 0<p
< min(f, j). By assuming i <j, this implies that 8f=0 for any derivation <5 of
degree — 1 and hence / = 0.

ii) The exact sequence (6.3.1) implies the exact sequences:

0 — 9Xl -^ 9X ( z H 1 -^ GJ.! ®#2 — -> 0
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and

_ . (0. 6° v (& /O\ rjl Sl
 v (a /O\ rj2 _ . r\ /: >. r\\

- > ^x,i+i - » ^x,t Qyz^ - » ^x,i-i Q9z^ - > u U > w

as ^Q-module. Since &Xt0 is noetherian, by induction on i, this implies the
finiteness of &Xfi as ^^-module for i > 0. D

Remark. The ring ^x is neither noetherian nor of finite Krull dimension.
(The denominator 1 — 2gt + t2 of the dimension formula (5.3.3) has a real root

t0 = g — ̂ /g2 — 1 such that 0 < t0 < 1. This implies the exponential growth
9g,t ~ 0(tol) of the ranks of G^ in i so that the graded ring can not be
noetherian. D)

Appendix

In the Appendix, for a 0-regular minimal module 3F = (F^>0 for a surface
group Fg, we give a Z-structure on the C-vector spaces G f:= Fi+1/Ft (for
i > 0). This is done by an explicit lattice description of the G^-'s (see (A. 5)).

We introduce a sequence of lattices Ln and maps 6® : Ln + 1 -> Homz(rg, Ln)
— H®zLn (for n > 0) by induction on n. (Here H:= Homz(Fg, Z) is the
symplectic lattice together with the symplectic form /. ) The induction starts with
L0:= Z, L1:= H and S% : L± -> H (x)z Z the natural isomorphism. Suppose that
Ln and d^-^ are already defined for some n > 0; define the map <5,J: H (x)zLn

->!,„_! as the composite

H /O\ r idx<?° v rr /o\ rj /Ov r f xid v r TVi/=»« ,T7c» *«knf09 z ̂ n - •" 09 z ̂ * 09 z ̂ n - 1 - *^n - 1 • * ncn we put

<5°:= the canonical inclusion map of Ln+1 into f/(x)zLn.

Thus one has the following exact sequence:

(A.2) 0 - > Ln + 1 -^ H (x)zLn -^ Ln_! (n > 0).

(/fere by convention, we set L_ x = 0.)

Lemma 1. For p, q>0, one can define a contraction map ipq: Lp(^)zLq

-> Lp-i (X) L^_! in term of the cup product /, giving rise to an exact sequence'.

(A.3) 0 - > Lp+q - > LP®ZL, ̂ > Lp_! ®zLq_l - > 0.

2. There exists an integral bilinear form In on Ln (n > 0), symmetric or skew-
symmetric according as n is even or odd, and compatible with the inclusions Lp+q
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-»Lp®zLqfor p,q>0.

Proof. Rewriting the definition of Ln inductively, one has the following
description of Ln for n > 1.

(A.4) Ln~{<p€H*n:Ij(cp) = Q for j = 1, ... , n - I.}

where Jff®" denotes the tensor product of n copies of H over Z and /,- is the
contraction map from H®n to /f®("~2) defined by the cup product / of j th and
(/" + 1) th components for 1 < j < n — 1.

1. The restriction of the linear form Ip on H®(p+q) induces the map ipq on
Lp®zLq whose range is Lp^i ®zLq-i c= H®(p+q~2) and whose kernel is
Lp+r The surjectivity of ipq will be shown by induction on p. If p = 0, this is
trivial since L_x = 0 and L0 = Z. For p = 1, we put iq:= ilq and prove the
surjectivity of iq (q > 0) as follows.

Asserion. Let el9 e2, /i, f2 be elements of H with the properties: I(el9 e2)
= I(e2, £1) = 0 and I(el9 /x) = I(e2, /2) = 1- Then the restriction of iq: ef (x) Lq

-+Lq_l is surjective for i= 1, 2 and

Proof. This is shown by induction on q. The case of q = 1 follows from
the fact that I(et, Z/f) = Z (i = 1, 2). Assume that iq : e2 (x) Lq -* L^_ x is
surjective. Then for any x 6 Lq there exists y e Lq such that zg(/! (g) x)
= z€(e2 ® ^)- This means that z:= f1^) x — e2®y belongs to Lq+1 by
definition. Since iq+1 (e^ (§) z) = I(el9 /x)x — I(el9 e2)y = x, this implies the
surjectivity of et (g) Lq+1 -> L^. D

In a symplectic lattice H, one can choose el = e2 = a and f1 = f2 = b for
the symplectic pair a and b. Thus in is surjective for n > 0.

Return to the proof of the surjectivity of ipq for p > 1. Consider the
following natural commutative diagram.

0 0 0

H(g)zLp(g)zL,

i j i
0 0 0



HIGHER EICHLER INTEGRALS 459

By assumption, all columns are exact. By the induction hypothesis the bottom
and the middle rows are exact. Hence the first row is exact. This completes
the induction on p and the proof of the Lemma 1.

2. In view of the description of (A.4), the bilinear form /®B on H®n induces
a bilinear form /„ on Ln, which is symmetric or skew symmetric according as n is
even or odd. The fact that In are compatible with the inclusion maps is
obvious.

D

CO

Let us consider the formal power series: f(t):= ]£ [LJ tn. Then (A.3)
n = 0

implies: 0 -+-r(tf(t)) ->/(t)2 -> t2f(t)2 -» 0, which can be solved to give f(t) = (1
at

— \H]-t 4- t2)"1. In particular we have

and hence an explicit formula:

rank(Ln) = T (- 1)" (" ~ k\ (2g)"-2k.

Remark 1. The construction of the sequence Ln can be started from any
lattice H. The condition of the Assertion is satisfied by a wide class of lattices
(e.g. one containing a unimodular sublattice of rank > 2), and the exactness (A.3)
holds also for them.

2. Let us denote by Pn(g) the polynomial of the right-hand side of the
formula for rank(LJ. Then Pn(g) = 0 has n distinct real roots in g, which
separates the roots of Pn+i(g) = 0.

Now, we are able to describe graded pieces of a 0-regular minimal module
in terms of integral lattices Ln.

Lemma. Let the setting be as in (3.4). Assume that 3F is ^-regular. Then
there is a canonical isomorphism

(A.5) Fi+1/Fi^Li(g)zH
l(rg9^).

Proof. This is proved by an induction on z, where i = — 1 is trivial by
convention that both sides are zero. The case i = 0 is proved in Lemma (2.4.2).

The exact sequence (A.2) induces a corresponding exact sequence for

Lf (QzH1^, ^). A comparison of this exact sequence with that of (3.6.4)
implies (A.5). EH
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