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Abstract

Let (X, K¥? be a spin Riemann surface® of genus >2. By using infinite dimensional
representations of the fundamental group of X, we obtain many local systems on X, which taken
together define a resolution of the halfcanonical ring of X and indicate a non-abelian theory of abelian
integrals on X. The work has a root in a study of the complex structure on the Fricke moduli space
[14].

%) a Riemann surface together with a halfcanonical bundle (4.1).

Summary of Results

Let (X, K¥?) be a spin Riemann surface of genus > 2. For each n > 0, we
construct an increasing sequence F%; i€eZ,, of finite dimensional C-vector
subsheaves contained in the O4(K x"?), regarded as local systems over X (cf. (4.3)
and (5.3)). They are characterized by the following properties.

a) The initial local system F% , for i = 0 is isomorphic to the one induced
from n th symmetric tensor product Sym"(C?) of the vector representation space
C? of SL(2,R) (i.e. F o~ H x Sym"(C?))/n,(X)).

b) Set G%;:=F%:+1/F%; for n, i>0. Then each graded piece G%; is a
trivial local system and the initial one G%, is isomorphic to H(X, O(K%**1))
for i =0 (5.4.5).

c) The cohomology of the F%; for n, i > 0 is as follows ((2.2.5), (3.5.1) and
(4.4) Lemma):
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H*(X, Fk,) ~ H*(X, Ox(Kx"?) @ Gx,[1] ® G%,i-.[2].

d) The sum 9,:= @ @ G%,; forms a (infinitely generated) graded ring

over (a part of) the halfcanonical ring 9y o:= @ G%,. Each graded piece ¥y ;
n=0

=@ G%,; for i >0 is a finite ¥4 y-module (§6 (6.1) and (6.2)).

e) There are derivation maps 6°: %y—>% ®,H'(X,Z) and
0%y ®H (X, Z)> (%x D FY0) ®zH?*(X, Z) (3.6) such that the following
sequence (6.3.1) gives a resolution of the halfcanonical ring 9y ,:

0— Gx0 — Yx -2, Yx ®ZH1(X) _‘“_GBL,(gx &) F?{,o) ®zH2(X) — 0.

where the map 1 to the factor F§,~ C is given by abelian integrals (6.3.2):

feHomy (T, G0 — 3. ( f f@) —f f(bi))ec

f) Statement e) implies the following generating formula for the classes
[G%,:] in the Grothendieck-group of mapping class group equivariant vector
spaces ((3.7) Corollary and (4.4) Lemma).

< [H(X, Ox(Kx))] — [H? (X, Cy)]t

& [Gg,z] ti = 1= [Hl(X’ Cx)]t + [H2 (X, CX)] t2 for n = 0,
0 n . [HO(X, @X(KnX/2+1))]
i;() [Gx,i]l'L = 1— [Hl (X, CX)] t+ [H2 (X, Cx)] 12 for n>0.
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Notation. Let A be an algebra with 1 and I" a group. An A-I" module is a
module with commuting left A4 and right " actions. An A-I" homomorphism is a
map that commutes with the A-I" actions. A I'-module M is reduced if M*
:={meM:m-y=mfor any yeI'} is equal to 0. The i th cohomology group of
I' with coefficients in an A-I' module M is denoted by H(I', M), which is of
course an A-module.

By €, we mean the complex number field and H:= {ze C: Im(z) > 0} is the
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complex upper half plane, whose coordinate is denoted by z.
By Oy and K, we denote the sheaf of germs of holomorphic functions (resp.
the canonical line bundle) of a complex manifold X.

§1. Introduction

(1.1) The Teichmiiller space as a real manifold is well known to carry a
complex structure (Weil, Ahlfors, Bers [2]). The complex structure can be
recovered by several different approaches: Earle & Eells, Beilinson, Manin &
Schechtman [1], Hitchin [8], Pekornen [13], Tromba [18], Wolpert [20].
Although the approaches are different, each construction uses some analysis, or
to put it better, uses some infinite-dimensional spaces. In contrast, the
symplectic structure on the Teichmiiller space is algebraic (cf. [7]).

(1.2) We recently showed [14] that the complex structure on the Teichmiiller
space can be recovered in terms of representations of Fuchsian groups into an
infinite-dimensional space. The starting point of the present paper is an
attempt to “approximate” this infinite-dimensional space by finite-dimensional
subspaces. We first explain this in (1.2).

Let I', be the surface group of genus g > 2 and p: I'; —» SL(2, R) a faithful
discrete representation. The p determines a Riemann surface p(/,)\H and
conjugacy class [p] of p determines a point in the moduli space of spin Riemann
surfaces of genus g (cf. §4). The tangent space of the moduli at [p] is identified
with the cohomology group H(I',, g) (Weil [19]), where I', acts on g:= s/(2, R)
by the adjoint action of SL(2, R) composed with p. The space acquires a
complex structure via the Eichler-Shimura isomorphism ([5, 15]):

(%) .. H\(I,, 9) ~ H'(I',, I'(H, 9)).

Here I'(H, ©) is the complex vector space of holomorphic vector fields on the
upper half-plane H, I'; acts on I'(H, @) by pulling back vector fields and i, is
i The
integrability of this almost complex structure is proved directly in [14] (cf. [10]).

The I,action on I'(H, @) is neither unitary nor completely reducible.
Hence one is led to look for a “small” C-I', module # with g ®gC c F
c I'(H, ©) such that the inclusion maps induce isomorphisms: H'(I,, g)
~HY\I,, #)~H'(I',, I'H, ©)). We will see that there exists a smallest such

% , depending on the representation p. Furthermore, there exists an increasing

induced by the infinitesimal action 1: g— I'(H, @), x+—(—1,2) X (i) d

sequence (F, ;)0 of C-I', modules of finite rank such that #,= () F,; and
i=0

F,iv1/F,; for i>0 are trivial I, modules. We call &, the minimal module

attached to the Fichler-Shimura isomorphism ().



434 Kyon Saito

(1.3) The construction of (1.2) can be carried out in the same way for the
representations of I, on the infinite-dimensional spaces I'(H, O(K ~"?)) for n > 0
with the role of g replaced by Sym"(R?), where n = 2 is the case discussed in (1.2)
(see §4). The present paper studies minimal modules %7 attached to this
situation. The minimal module %} is again exhausted by an increasing
sequence {F} };., of C-I', modules of finite rank such that F},; ,/F}; for i >0
are trivial I, modules. The first step F} ; of the sequence is already known as
the space of Eichler integrals and F} , /F7 , ~ I'(H, O(K™**1))"s (cf. (4.4) Remark
and (5.4.5)). Therefore we regard the spaces F}; for i > 0 as generalizations of
this and called them higher Eichler integrals.

Geometrically, the representation p: I';— SL(2, R) determines a Riemann
surface X := p(I,)\H, together with halfcanonical (spin) bundle K}? (cf. (4.1)).
Then F%,;:=H x F},)/I', for n, i >0 are local systems on X contained in
Ox(K ~"?), which are shown to have the properties stated in the Summary.

Although each step of the construction and proofs is carried out in terms of
elementary use of group cohomology, as a whole, it seems that we are treating
some new object, which may be summarized in a word: non-abelian theory of
abelian integrals on a spin Riemann surface. To describe elements of FJ; as
global holomorphic forms on H (as solutions of algebraic differential equations)
seems to be an interesting but hard problem, which we do not consider in this
paper.

Many of the constructions in this paper may be carried out for further
classes of discrete groups, including groups acting on higher dimensional
spaces. Some Lemmas are formulated in this generality. It would be
interesting to clarify the meaning of the generalization of the complex
(%x ®zH (I, §) in the Summary €) for such a discrete group I.

(1.4) The construction of the paper is as follows.

§2 treats the construction of a minimal module in a general setting. §3 is
devoted to a calculation of the cohomology of a surface group I, by introducing
the concept of i-regularity. §4 recalls the Fichler-Shimura isomorphism and
shows that the associated minimal modules %} = (F}, ,);», satisfy the regularity
condition of §3. In §5, we show that the F}; form local systems over the
Riemann surface I,\H, depending only on the spin of p. The Fj; are

understood as solution spaces of some linear differential equations. We study
o oo}

the algebra structure on #,:= @ #,/F;,, and on gr(#,) ~ G—)O gr(#5) in
n=

n=0

§6. The Appendix treats the Z-structure on G%; for n >0, i > 0.

(1.5) The author is grateful to Prof. Y. Ihara for pointing out that (1.2) () is
known as the Fichler-Shimura isomorphism, which is the starting point of the
present work. He thanks Prof. M. Kashiwara and Prof. T. Oda for discus-
sions and for drawing attention to a Theorem of Labute [22,1] and its
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generalization due to Kohno and Oda [23, Theorem (1.4)] (cf. Summary f) and
(2.6)).

He also thanks Prof. M. Reid for carefully reading the manuscript and for
revising the English.

§2. The Minimal Module & = (F);.,

Let I" be a finitely generated group and R an R-I" module of finite rank. In
(2.1) we consider a setting, in which the cohomology group H!(I, R) acquires a
C-structure. Then Lemma (2.2) associates with this situation a construction of a
filtered C-I" module & = (F));»o, Which we shall call the minimal module.

(2.1) Definition. A pair (¢, 1) consisting of a C-I' module & and an R-I”
homomorphism :: R » & will be called a complexification of R, if 1 induces
i) an injective C-I" homomorphism C ®zR — &,
i) a C-isomorphism C QrRF~ &7,
iii) an R-isomorphism 1,: HY (I, R)~ H\(I', &).

(22) Lemma. Let R be an R-I' module of finite rank and (¥,1) a com-
plexification of R.
1. There exists a C-I" submodule & of & having an increasing filtration
(F)2o by C-I' modules of finite rank such that & = ) F; and
i=0

i
i) 1 induces an isomorphism:

@22.1) C ®grt: C ®gR ~ F,.

ii) For each i€Z,,, the module F;,, is the largest C-I' subspace of ¥
containing F; such that F;,/F; is a I'-trivial module.
iii) The inclusion map 1: R - % induces an R-isomorphism

2.2.2) HY(I, R)~ H\(I, #).

2. The pair (¥,1) with the properties 1)-iii) is unique and rigid in the
following two senses.

i) Let # be any C-I" submodule of & containing R such that the natural
maps HYI', R)—» HY(I', #)— HYI', &) are isomorphisms. Then F — .

i) If o: F > F is a C-I' homomorphism which commutes with 1, then ¢
preserves the filtration on & and gr(p): gr(F) — gr(F) is the identity. If & is
reduced, then ¢ itself is the identity.

Proof 1. Define the sequence F; by induction on i =0, 1,....

Fo:=Ci(R)=1(R)® /— 11(R)
Fioyi={fe&:f-y—feF; for all yel'} for i>0.
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By construction, the F; are C-I" modules, and induced action of I" on F;, /F; is
trivial. Thus the properties i) and ii) are shown.

Recall that the first cohomology group H (I, &) is given by ZX (I, &)/,
where

Z\ I, )= {c: T - L|c(yd) = c(y)d + ()}

and 6(f)():=f-y—f (for fe ¥ and yel). Hence ker(§) = £
Using this notation, the definition of the F; can be rewritten as

2.2.3) Fiopi=8"Y(Z'(I,F)) i>0.

Thus & induces bijection: F,, /¥’ = ZN (I, F)nd(¥) for i>0. If F; is of

finite rank, then so is Z(I, F,) since I is finitely generated, and hence so is also
F;. /9T Since T R ® C is of finite rank, one concludes F;,, is of finite
rank.

The inclusions R c F; ¢ & induce maps H*(I, R) - HX(I, F;)—» H (I, &),
whose compose is an R-isomorphism by assumption. This implies that
ZY(I', F}) maps surjectively to H(I, &); the kernel is by definition
F;. /%" Hence one has an exact sequence:

224 0—F,, /9T 25272 I, F)— H'I,¥)—0, for i>0,
and a splitting as C-vector spaces:

2.2.5) H\(I, F) ~H'(I', ) ® Fi.1/F;

for i > 1, where the projection H(I', F;) » H(I', &) is induced by F; < & and
the inclusion H'(I, ¥)< H(I, F) by F;_; > F;.. (A decomposition of the
form (2.2.5) for i =0 will be treated in (2.4).)

We define & as the union & := |J F;. The inductive limit of (2.2.5) gives
i=0

an isomorphism HY(I, #) ~ HY(I', &) and hence (2.2.2).

2. i) Let s# be a C-I' submodule of & containing R such that the
inclusion # < & induces an isomorphism: H(I', #)~ H(I', &). We prove
the inclusion F; c # by induction. The case i =0 is the assumption. The
inclusion maps F; c # < & induce maps: HY(I, F;)—» HY(I, #) ~ H\([, &).
Recalling (2.2.4), one obtains that §(F;, ;) = §(#)nZY(I', F;). This implies that
6(F;;,) < 6(#) and hence F;, /¥ = # /(A nFT). Since < F,c #, one
has F;,, = #.

ii) Let ¢: & - &% be a C-I homomorphism commuting with ;. We show
by induction on i that the restriction ¢|F; (for i > 0) is of the form id + ¢,
where ¢; is a map from F; to F,_,. When i=0, we have ¢, =0 by the
assumption on ¢. For i > 0, apply the induction hypothesis to the element f-y
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— feF,; for feF,,, and yeI. For all yeTI, one gets a relation ¢(f)-y — o(f)
=o(f-y—f)=fy—f+¢; (f-y—f), which we rewrite as

{¢i(f'y_f)EFi—1 ifi>0
0

(f = (N = (f= o)y = o

Thus f — ¢(f)eF; and hence ¢|r,,, = id (mod F;). If & is reduced, then ¢; =0
by induction. This completes the proof. O

Remark 1. The condition 1. ii) of the Lemma is necessary for the unicity of
the filtration (F);x. This is equivalent to the exactness of the sequence:

(2.2.6) 0_’Fl+1/F!l)H1(F,Fl)—)Hl(I—',eg'-)_’O fOl'iZO.

2. The complex structure J on H! (I, R) induced from H(I, &) is not
enough to determine the C-I" module & = (F));.(, since the short exact sequence
(2.2.4) depends not only on J but on the data of the projection: Z!(I, F,)
- HYI, &)(~ H\(I, R)).

(2.3) Definition. The filtered C-I" module (£, 1) introduced in Lemma (2.2) is
called the minimal module relative to (¥, 1). The induced complex structure on
HY(I', R) will be denoted by J.

(2.4) The complex structure J on H! (I, R) determines the first term F,/F, as
follows. Let the setting be as in Lemma (2.2).

Lemma bis. The image of F,/F, in C @gH*(I', R) under the map & (2.2.6)

is the eigenspace of J for the eigenvalue — ./ — 1. Hence one has a direct sum
decomposition::

24.1) F JFy @ FF, 2 CQH (I, R),

and an isomorphism:

(24.2) F,/Fy ~ H\(I, &),

where A denotes the complex conjugate of a C-vector space A.

Proof. The definitions of Fy:= C ®zR and F; in (2.2) give rise to the
following commutative diagram
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0 0

l |

C®rR/RT —> F,/FF
I |
C®wZ'(IR) — Z'(I,F)

l l

C®RH1(F,R) — Zl(r: Fo)/F1

l l

0 0
with exact columns. Then one has the exact sequence:
0 — ker (C ®gH' (I, R) — Z' (I, Fy)/F,) — coker (C ®gR - F;) — 0.

The Z!(I, F,)/F, in the first parenthesis is isomorphic to H!(I', #) as a C-
vector space ((2.2.4)). The image of C ®gR in the second parenthesis is Fo/F’
((22.1)). These imply the isomorphism F,/F,~ker(C ®gH! (I, R)—> H'
(I, #)). Hence one obtains the exact sequence:

0 — F,/Fg — H'(I, YQ C — H' (I, F) —> 0

For an element u:=x+ ./ — 1yeH (I, R)@® / — 1 H*(I', R), we have 1(u)
=0 (=) 1IX)+/—-11()=1(x+Jy)=0 (=) x+Jy=0 (=) u=x
+—-1Jx<(=>Ju=—/—1u O

2.5) The coboundary map & (cf. (3.6)).
Let the setting be as in (2.2) and let # = (F);,, be a minimal module with
its filtration. For i > 0 we define a map:

(2.5.1) Fiur/[Fi > FifFiy @, H'(I, Z),

called the coboundary map. In view of Hom (I, Z) ~ H' (I, Z), we identify the
target space with Hom (I, F;/F;_,). Set

oLfDW:=rfy—f mod(F;_,)

for yeI’ and feF;, representing [ f]eF;,,/F;; Here we write

2.5.2) F_y:=Y Fo-(y — 1).

vell

O(Lf]) is a homomorphism, since

(DO =Sviv2—f
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= =N+ =N+ =Nr2 =11 =)
= (/D) + oD

The map J (for i > 0)® is part of a long exact sequence:

(25.3) 0 — F;/F; =25 Homy (I, F;/F;_;) — H?*(F;_y)
—H*(F) — H*(F,/F;_y)

Proof. For brevity, we drop I” in the notation for cohomology. Consider
the long exact sequence associated to the short exact sequence 0 —» F;,_; - F;
—F,/F,_; -0 (for i>0):

0 ‘—’Fi/Fi-1—’H1(Fi—1) —’Hl(Fi) *"Hl(Fi/Fiﬂ) _—’Hz(Fi—1) —_ .

Since F;/F;_, is I'-trivial, one has H(F;/F;_,) = Homg(l, F;/F;_,). Applying
(2.2.6) and (2.2.5) for H!(F,), one eliminates the first two terms, so that one
obtains a sequence of the form (2.5.3) for some map 4. Since the isomorphism
of (2.2.5) on the second factor is induced by a coboundary map , one gets the
description of § given in (2.5.1). O

x) Note that (2.5.3) does not hold for i = 0.
(2.6) Remark. Let Z[I'] be the group algebra for a group I" and let .# be its

ideal generated by y — 1 for all yel. Let & = |J F; be a minimal module
i=0

(2.3). Then for any integers i > 0 and j > 1, the action of Z[ "] on the quotient
module F; ;/F; is factored through an action of Z[I"]/#7. Therefore, the action
of I'on F; ;/F, is factored through I'/I";, where I'; is the j th lower central series
of I Thatis: I'):=1I and I'j,,:=[I, ;] for j> 1.

Compare the formula f) in the Summary of the present paper with a
Theorem of Labute [22, 1] and its generalization due to Kohno and Oda [23,
Theorem (1.4)].

§3. The Case of Surface Group
We calculate the cohomology of the surface group of genus g > 1
g
I,:=<ay, by,...,a,b,l ]—]1 [a, b]1=1)
i=

using surface topology (3.1)-(3.3). The key result of this section is the heredity
property of regularity (3.4) and its consequences. (For the cohomology of a
group with a single relation, see [11].)

g
(3.1) Let X ={0}[] [] (@]Jb)]]Y be a canonical dissection of a compact
k=1
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Riemann surface X of genus g > 2; that is i) O € X is a point; ii) ¢, and b, (for k
=1,..., g) are simple closed curves on X with base point O disjoint outside O
with intersection number {a;, b;» = — <{b;, a;> = d;; and {a;, a;) = <{b;, b;> =0
(for 1 <i,j <g); and iii) Y is an open 4g-polygon. We identify a, and b, with
the elements of ©, (X, O) represented by them. This induces the isomorphism:
I,~n (X, 0).

(3.2) Let H— X be the holomorphic universal covering  of X with H the
complex upperhalf plane. The puil-back of the dissection on X induces a cell
decomposition of H. Let C; be the free abelian group generated by the i-cells

for i=0,1,2. Since I, acts freely on the set of i-cells, C; is a ZI,-free

module. Since H is contractible, the coboundary maps 0 define a free ZI,-
resolution of Z:

(B.2.1) 0—C, -2 C, -85 Cy—>Z —> 0.

Let us fix a base point O H over OeX. The 1-cell of H from y0 to 80 (if
it exists) is denoted by [y0, 60] = — [0, y0]. We denote by Z the 2-cell of H
surrounded by the 1-cells [R;_,0, R,0] (1 <i < 4g), where R;:=y,y,--+7; and
V1> V25 .-+ » Yaq 18 the sequence

-1 -1 -1 p-1 -1 -1
as, bly a 5b1 > Aa, b29 a, ,b2 s---aags bg)ag ’bg .

Using this notation, the complex (C,, d) (3.2.1) is given explicitly as:

- g - ~ g ~ ~
Co=2I,-0,C, =@ ZI;- [0, a l01® @ Zr, [0, b 10}, C, = Zr,-Z.
i=1 i=1
~ ~ ~ ~ ~ ~ 49 ~
0,[0, a;'0] = (a; ' — 1)-0, 8,[0,b;'0] = (b; ' — 1)-0, 0,Z = ) [R;_,0,
i=1

~ g ~ ~ ~ ~
R0] = kZ1 Rag- 1)t (@ * = 1)-[0, b '0] — (bt = 1)- [0, a; * 0)).

It is a direct calculation to check that the following f,(3.2.2) gives a homotopy
equivalence between the complex (C,, 0) (3.2.1) and the standard resolution F,
of Z (see [4, Chap. L5]).

0—C,2C, % Cyp——>Z—0
(3.2.2) lfz lfx 1.}'0
o — Fy — F, — F, — F, 5> Z —0
where fo(0):= [,
f1([0, a7 101):=[a; '] and £1([0, b *01):=[b;'] fori=1,..,g,
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f2(2):= kzi:l ([R4(k—1)akbk(ak_1 —1)|by - [R4(k—1)akbk(bk_1 —Dl]ay .

(3.3) For a right I');-module F, the cohomology group is defined as the
homology H (I, F) ~ H ((Hom, r,(Cy, F), 6%)) of the following complex:

(3.3.1)
Homg 1, (C,, F):= {ceHomg(C,, F): c¢0™'-2) =c(@)-y “yerl, "zeC,}

_ | F (tesp. F?, F)  if + =0 (resp. =1, » =2),
| {0} otherwise.

8%(m):= (m-(a; — 1), m-(b; — D)y,

g

51((C(ai)a c(b)fi-1):= Z (cby)-(ax — 1) — c(ay) - (b — 1)) (R4(k—1)akbk)—1

k=1
g g
= ) (@) (@ —1)—c@) b —1)-ac bt ] (aba;'b;?).
k=1 j=k+1

Remark 1. In view of the isomorphisms Z'(I',, F) ~ Z' (Homy {(C,, F))
given by ¢+ {c(a;), c(b;)}{-1, we identify 1-cocycles for the standard complex and
for the complex (3.3.1).

2. It is obvious from (3.3.1) that H/(I',, F) =0 for j > 3.

3. Let F = Z be the infinite cyclic group with trivial I, action and denote
HX(T',, Z) by HX(I',) (or by H*). The cup product is a skew symmetric form on
H'(I,) (~ Z*%) with values in H*(I')) ~ Z (see [4]).

(3.4) Let (¢,1) be the complexification (2.1) of an R-I', module R for the
surface group I', (3.1) and & = (F});,, its minimal module (2.3). To calculate

the cohomology of F,, we introduce a new concept: regularity of Z.

Definition 1. Let i be an integer with i > 1. We say that & is i-regular if
the multiplication by y—1 on F; is a surjection onto F;_; for all
ye{ay, by, ..., a, b,}.

2. % is O-regular if the following two conditions are satisfied.

i) rankg(ker(y —1: R—>R)) <1 for all ye{a,, by, ..., a, b,},

i) R=R-(@g;—1)+R-(b;—1) fori=1,...,2g.

The following heredity of regularity is a key fact throughout the rest of the
paper.

Lemma. If & is i-reqular, then it is i + 1-regular for i > 0.
Proof. We prove this only for y =a,. We proceed in 3 steps.
Assertion 1. Assume that & is i-regular. Then the following map

n: ZNI,, F}) — F,, defined by n(c):= c(a,)
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is surjective.

Proof. We understand Z'(I',, F;) as the space of the 1-cocycles for the
complex (3.3.1) in view of (3.3) Remark 1. One has to show that for any p, € F;
one can find ¢ = {p; q;}%-,€F? satisfying the cocycle condition 6'(c)=0
(3.3.1). This can be solved as follows.

Case i>0. Put c=(py,q4,0,...,0), where g, €F; is chosen such that
qi-(@a, —1)=p,-(b, — 1)eF;_,. This is possible by i-regularity assumption.

Case i=0. Putc=(p;, 0, p,, 45,..., 0), where p,, q,€ F, are chosen such
that p,-(by, — 1)ay 'by 'ayh, = q5-(a; — 1) — p,- (b, — 1)€F,,. U

Assertion 2. Put Z.(I',, F)):= ker(n) where n is defined in Assertion 1. If
F is i-regular, then the natural inclusion F; = & induces a surjection ZL(I',, F)
- HY(I,, #).

Proof. Case i=0. It is enough to show that Im(Z.(I',, R)) in H'(I',, R)
~ HY(I',, &) has R-codimension < 1, since then Im(Z}(I",, F)) is a C-module
containing Im(Z1(I',, R)) and hence its C-codimension in H'(I',, &) can be at
most [1/2] = 0.

For an element ce Z(I',, R), if c(a,;)eR-(a; — 1), say c(a,) =r-(a; — 1) for
an reR, then ¢ — 6°(r)e ZL(I,, R). Since codimgR-(a; — 1) <1, this implies
that 6°(R) + Z,(I',, R) has R-codimension at most 1 in Z*(I',, R). Hence the
same holds for the image of Z1(I',, R) in Z'(I',, R)/6°(R).

Case i > 0. It is enough to show that Z1(I,, F) + 6°F; is surjective onto
HY(I',, &). Let ¢ be any cocycle in Z'(I,, F;_;). By the hypothesis, there
exists an element feF; such that f-(a; — 1) = n(c):= c(a;)eF;_;. Then by
definition ¢ — 6°(f)eZL(I',, F;). This means Z'(I',, F;_,) < ZX(I,, F) + 6°F..
Since Z(I',, F;_,) surjects to H'(I',, &), this completes the proof of Assertion 2.

Assertion 3. Surjectivity of the two maps n: Z* (I',, F)) > F, and Z.(T',, F)
— HY(I'), &) in Assertions 1 and 2 imply the surjectivity of the map: F; . x
(a,—1) > F; for i = 0.

Proof. Recalling (2.2.4), we obtain the following diagram:
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0 0 0

l 1 1

0 — ker(a, — 1)/¥T— ZXI,, F) — H' ([, ¥) — 0
| | il
0 — Fiy/9T —> Zl(rgaFi)‘_’Hl(Fg,y)—’O

N

0 —Fiyy-(@;—1) — F; I 0

Here all columns and rows except for the last row are exact by the
assumptions. Then the last row is also exact. d

This completes the proof of the Lemma. O
(3.5) An immediate consequence of Lemma (3.4) is the following.
Corollary. Assume that & is i-regular. Then
(3.5.1) H*I',, F)~F;/F;_, for j>i.
(3.5.2) H*(I,, #)=0.
(Note that F_, = F, in case of O-regularity. (cf. (2.5.2)).

Proof. Recall the complex (3.3.1) so that H*(I',, F)) ~ F;/6'F¥. If & is i-
regular for i > 0, then the Lemma implies 6'F?¢ = F;_, for j > i so that (3.5.1)
holds. Also O-regularity implies 6' F3? = F, and hence H*(I',, Fo) = 0. Taking
the inductive limit of (3.5.1), (3.5.2) follows. [

(3.6) The coboundary map &* (cf. (2.5)).

We show that there is an exact sequence (3.6.4) (cf. (6.3.1)) for a complex
defined on the graded pieces of an i-regular minimal module &, where the
coboundary maps 6% are defined below. First we put

(3.6.1) G;:=F;.,/F;
for i > — 1. Now introduce the coboundary maps
(3.6.2) *: G, R H (I, Z) — G;_y ® H** (I, Z) for k=0,1

as follows. Put 6°:=4 for the coboundary map 6:G;,—G,_; Q,H'(I)
introduced in (2.5.1). If &* is defined already, then §**! is defined as the
composite : .
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G ® HYI) —2> Gy @ H'(I,) ® HX(I)) =22, G, @ H*T(T).

In our Fuchsian group case, let us give an explicit formula:
g
(3.6.3) o)== kZl (@)@ — 1) — ¢(a)): (b — 1)) mod F;_,,

where ¢(y)eF;,, is an element representing ¢(y)eG;:= F,,/F;.
Proof of (3.6.3). Recalling the definition of § (2.5.1), we have
(0 x id) (o) (u, v) = ¢(u)-(v — 1) mod F;_,
for u, veH(I'))~T,/[Il, I,]. Let ey,..,e;eH(I,) be a basis and
e',..., e¥*eHomy(l,, Z) the dual basis. Then one has an expression
30)= 3 (6 deNew ) V e,
By taking the generators a;, b,el,(1 <k <g) as for representatives of a

symplectic basis of I')/[I,, I',], we obtain the formula. O

Lemma. Assume that % is i-regular. Denote H¥(I')):=H"I',, Z). Then
the following sequences are exact;

(364 0—G, G-, ®,HNT) 256G, ®,HX () —0
for j>i. Ifi>0 then the following is also exact:
(3.6.5) 0_‘)Gi6—0)Gi_1 ®ZH1(Fg)—>H2(Fi—1)__)0'

Proof. Suppose i>0. For j>i the natural map H?*(I, F)—
H*(I,, F;/F;_) ~F;/F;,_; @  H*(I'y) is bijective, since both modules are
isomorphic to F;/F;_, in a natural way (cf. (3.5.1), (3.3.1)). We apply this fact to
the sequence (2.5.3), and obtain for j > i

0 — Fj,,/F; % Homy(I',, F;/F;_,) — H*(I,, F;_;) — 0.

Let us show that the map Homy(I',, F;/F;_;) —» H?*(I',, F;_) in this sequence is
naturally identified with the map ! (3.6.2) for j >i. This can be checked by
comparing the explicit descriptions of the coboundary map 6! in (3.3.1) and
(3.6.3).

If i=0, then & is also 1-regular. So we apply (3.6.4) for i=1. Since
H?(F,) ~ Fo/6(F3) ~ 0 by 0-regularity, (3.6.5) becomes

(3.6.6) 0— G, %5 G, H'(I,) — 0.
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Since G_,:= Fy,/F_, =0 in the O-regular case, (3.6.6) is the initial case of (3.6.4)
for i=0.

(3.7) The class [G,] in K°C (= the K-group of C-vector spaces, see the Remark
below) is determined recursively by the use of the sequences (3.6.4) and (3.6.5).

Corollary. Let the setting be as in (3.4). Assume that F is i-regular. Then
the generating function for the sequence [G;] (for jeZ,,) is a rational function of
the form

P(t)
1= [H(T,, O)]-t + [HXT,, O]t

(3.7.1) Y [Glt =
j=o0
where P(t) is a polynomial of deg <1i. In particular if ¥ is O-regular,

[H (I #)]
1 —[HYI,, O)-t + [HXI,, O)]-t*

(3.7.2) i;io [G]t =
Proof. In the formal power series ring, put
PO:= (3, [G16) (1~ [Tt + [H?]-0)
= [Gol + ([G,] — [H'] ®<[Go)t
+ 3, (6]~ [H'] @elGyi] + [H] ® [G;-2])

where H*:= H¥I',, C) for k=1,2. If i >0, then (3.6.4) gives the recursion
relations: [G;] — [H'] ®¢[G;-1]1 + [H*] ®c[G;-,]1=0 for j>i, in the K-
group, so that P(t) is a polynomial of degree <i. If i =0, then the recursion
relations, including (3.6.6), imply that P(¢) is a constant, which is the class of G,

:= F,/Fo = H(I, &) (24.2). |

Remark. There is an isomorphism K°C ~Z by the correspondence
[G]+—dimcG. Here in the (3.7.1) and (3.7.2), we used [G] rather than dim¢G
for the following reason. In the next paragraph, we study minimal modules
associated to Eichler-Shimura isomorphism. The graded pieces G); for them
depends analytically on the representation p of the surface group into
SL(2, R). That is, they form vector bundles over the Teichmiiller space T,
equivariant with the mapping class group action. Then the formula (3.7.1) and
(3.7.2) are the formula for the class in the K-group (the Grothendieck group) for
such vector bundles over T,.

§4. The Eichler-Shimura Isomorphism
We recall the Eichler-Shimura isomorphism (see [4], [15, 16]). The
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minimal modules relative to the isomorphisms are shown to be 0 (or 1-) regular
in the sense of (3.4).

(4.1) Let Sym"(R?) be the n th symmetric tensor product space over R of the
vector representation space R> of SL(2,R) for neZ,,. The space can be
identified with the space of all real polynomials in one variable, say z, of degreee

b .
<n. An element 4 = [Z d]eSL (2, R) acts on ¢(z)e Sym"(R?) on the right:

@.1.1) 0(z)-ad"?(4):= ¢ (Z I Z) (cz + d)".

(We use the notation ad™? for the action, since in case of n =2 the action is
identified with the adjoint action of SL(2, R) on s/(2, R).)

d n/2
Let Ox(Kg"?):= Oy (E) be the invertible sheaf on the upper half plane

n/2
H:= {zeC:Im(z) > 0} with the base (;) - The element 4= I:Z s]e
z

SL(2, R) acts on the sheaf from the right, denoted again by ad"/?2,

d \"? b d \"?
@4.12) ((p(z) <E> >-ad"/2(A):= 0 (Z j: d) (cz + dy" (ZE) .

By definition, the R-linear embedding

d n/2
@.13)  1,: Sym"R?) —> I'(H, Ox(Kz"?), 0(2)— ¢(2) (E) ;

for n >0 is equivariant with respect to the ad™? actions of SL (2, R).
Let I, be the surface group of genus g > 2 (3.1.1) and let

@.1.4) p: T, —> SL(2, R)

be a faithful discrete and cocompact representation. I, acts on Sym"(R?) and
I'(H, Og(Kg™?) by the composite adi/*:= ad"?°p, which is equivariant with
respect to 1,

Remark. 1. p induces a representation p: I'— PSL(2, R) and defines a
Riemann surface X := p(I")\H of genus g. Conversely, for a given p there exists
a lifting p (4.1.4), determined up to the choice of spin structure eZ2¢
(cf. [17], [2]).

2. The right action of ad}?(y) on Ox(Kg™?) is equivariant with the left
action of p(y)~! on H (for yeI},), so the quotient Oyx(Kgz"?)/I, is an invertible
sheaf on the surface X, denoted by Ox(Kx"?). The pair (X, Ox(K¥?)) is called a
spin Riemann surface. Two representations p and p* give isomorphic spin
Riemann surface if and only if they are conjugate in SL(2, R) up to Aut(l).
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(4.2) The Eichler-Shimura isomorphism is formulated as follows.
Theorem. The map 1, induces an isomorphism of R-vector spaces
4.2.1) H)(I,, Sym"(R?) ~ H)(I,, I'(H, Og(K§"™?))

of the 1 st cohomology group of I', w.r.t. the action ad}>.

(The lower script p at the notation is added to indicate the dependence of the
cohomology group on p (4.1.4).)

An outline of the proof [15]. Serre duality implies that the right-hand side
of (4.2.1) is dual to HS(I',, I'(H, Og(K™?*1))) = the space of automorphic forms
of weight n + 2. Then the R-ranks of the both sides of (4.2.1) are shown to be
equal in Fichler [4]. The injectivity is shown by Shimura [15] using the
Peterson inner product on the automorphic forms.

The isomorphism is generalized to higher-dimensional cases. (See Mura-
kami [12] and the references given there.)

(4.3) The pair (I'(H, Ox(K ~™?), 1,) is a complexification of Sym"(R?) in the sense
of (2.1) in view of the isomorphism (4.2.1).
The minimal module relative to the pair will be denoted by

97; = (Fz,i)izO’

which is a filtered C-T", submodule of I'H, O(Kg"?)) depending on p, n and i

g9

(cf.(2.3)). Of course, one has the isomorphism: Sym"(C?) ~ F7 .
(4.4) The following is a key fact in all what follows.

Lemma. i) The minimal modules 9 for any p are 1-regular.
i)) The minimal modules %, for any p and n >0 are O-regular.
(For the definition of i-regularity, recall (3.4).)

Proof. 1) For feI'H, Oy),
feFy (=) fp(h)2) — f(z) = const  for any yer,

(=D dp(y)*(df)—df=0 for any ye[l,
(=) w:=dfel'H, Qp".

That is, any fe F9 ; can be expressed as an indefinite integral r o for an abelian
differential w of the first kind on the Riemann surface X := p(I,)\H in such a
way that that f-y — f = § . The space I'(H, QL") ~ I'(X, 2') is of rank g
over C and hence 2g over lyl, and is dual to H,(X, R). Hence for a generator a,

of I', one can find an abelian differential w s.t. iﬁ w=1
a
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ii) It is well known that the image p(y)e SL(2, R) of an element y # 1 of a

0
some reR with |r| > 1. The action of 4, on Sym"(R?) is given by z*-ad"?(4,)
=r2"nzk for k=0,.,n. Hence it is semisimple with real eigenvalues r2*~" (for
0 <k <n). In particular ad"?(4) — 1 has non-trivial kernel if and only if n is
even, and then its rank is equal to 1. For even n, let us show that

. . . . 0
surface group I, is hyperbolic, and hence it is conjugate to 4,:= l:r _I:I for
r

(*) For any two hyperbolic elements A and B of SL(2, R) the following three
conditions 1) ~ iii) are equivalent.

i) A and B commute,

ii) ker(ad"?(A4) — 1) = ker(ad”*(B) — 1),

iii) im(ad”?(4) — 1) = im (ad”?(B) — 1).

b
Proof. We may assume A = A, and B = A;- Ad |:Z d:l. Note that i) is
equivalent to “either a=d =0 or b=c=0", since an element of GL(2)

. . o g b
commutes with A, if and only if it is diagonal and A;- Ad ':: d:l =AF' fora

n/2

=d=0o0r b=c=0. Since the fixed points for 4 (resp. B) is spanned by z
(resp. ((az + b)(cz + d))"'?), ii) is possible only when either b=c=0 or a=d
= 0. The image for A (resp. B) is spanned by z* (resp. (az + b)*(cz + d)* %) for
k=0,...,n k #n/2. Hence iii) implies in particular that (az + b)" and (cz + d)"
do not contain the monomial z%2. This implies again eithera=d=0o0rb=c
= 0. Hence #) is proved.

(*) implies conditions i) and ii) of (3.4), Lemma 2. O

Remark 1. As seen in the proof, the space F9 ; is identified with the space
of abelian integrals of the first kind. Generally for n >0, an element ¢(2)

n/2 +b
(%) eI’ (H, Oyx(K ")) belongs to F% , if and only if ¢® <az > (cz + d)"*2
z

cz+d
d\" .

— ¢™(z) =0 (54.5). Such ¢(2) (d—> is called the Eichler integral of weight n
z

[4]. For this reason, we regard elements of F; for ieN as generalizations of
Eichler integrals. In fact F; may be regarded as the null space for certain
linear differential operators on X (cf. (5.4)).

2. HX(I,, Sym°(R?)=R and H*(I',, Sym"(R?*) =0 for n> 0. (by (3.3.1)
and the Lemma.)

(4.5) As consequences of Lemma (4.3), we can apply several result of §3. For
the sake of completeness, we recall and summarize them.

Assertion 1. Put
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n .__ n n
Gp,i"‘ Fp,i+1/Fp,i

for n>0 and i > — 1. Then one has the following exact sequences

0— Gy, £ Gli-1 ®ZH1(rg) 2 Gyi-2 ®ZH2(rg) —0
for n>0 and j> 1. For j=1, we have separate cases.

0— Gg,l £, Gg,o ®ZH1(Fg) - F?{,o ®ZH2(Fg) —0
and

0—Ghy 255G o®,H(I,) — 0  for n>0.

Here we notice that F$,:= C @gR°® ~C.

2. The formula for the cohomology of F},; in Summary c) can be proven by
the formula (2.2.5) and Corollary (3.5).

3. The formula for the generating functions . [G, -t in Summary f) can
be proven by Corollary (3.7). =0

§5. Local Systems over Spin Riemann Surfaces

We describe the transformation rules of the filters F}; of the minimal
modules &, for a representation p (4.1.4) by the actions of PSL(2, R) and
Aut(I')). This leads to local systems F% ; over a spin Riemann surface (X, K}
depending only on the spin class of p.

(5.1) For AePSL(2,R) and a representation p, we denote by p-Ad(A) the
representation given by yel,—>A~ ! p(y) Ae SL(2, R).

Assertion. For given p and n, the right action ad"*(A) of AeSL(2, R) on
I'(H, Og(Kg"?)) induces bijections: F'—>F . qaay and Fjpy = Fy g4 for

i€Z,,. The bijections are equivariant with respect to the action of yeI,. Hence
one has commutative diagrams:

n adn/2(4) n adn/2(A)
Fp,i Fp-Ad(A),i F:,i+1 F:'Ad(A),i+1
lv lv and lép 15;:-“(/4)
dn/2(A 1 dn/2(4 1
F; 22 FY aa Z\I, Fp, ) =4 ZY(L, F)y ga4))

Proof. Recall that the right action of ye I, on I'(H, Ox(Kg"?)) (or on F} )
is defined by the composition ady?(y):=ad"*(p(y)) (4.1). We verify the
following commutativity of the actions on I'(H, ©):
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ad;ﬂ ) ad"? (4)= ad"IZ(A) : ad:’-id(A) »)-

(Since  ad}%u4)(y) = ad”* ((p- Ad(A)()) = ad"*(A™" p(y)A) = ad”*(A)™* - ad"?
(p(7))- ad"*(A) = ad"*(A)~ ' - ad}*(y)- ad"*(A).)
By subtracting ad"?(A4) from both sides of the equality,

(ad}*(y) — 1)- ad"*(4) = ad"*(4)-(ad} %0 (¥) — 1)

This implies that ad"*(A) maps F%; into F’. 4 by induction on i, where the
case i = 0 is trivial: F} ; = C ® 1(Sym"(R?)) is invariant under SL(2, R). Since
ad"*(A™') = (ad"*(A))" !, the maps are bijective. The commutativity of
diagrams follows from the same relation. [J

(5.2) An element ae Aut(I",) acts on a representation p on the left by (x-p)(y)
== p@” (). Inview of p(I',) = (a- p)(I,), we have F) = F1 and F), = F1.,;
for i, n > 0 as subsets of I'(H, Ox(Kgz"?)).

Assertion. One has the commutative diagrams:

F:,i = F:-p,i F:,H—l = F:-p,i+1
lv la(v) and lﬁp lamp
FZ,.' = F:-p,i Zl(rgb FZ,i) > Zl(rg’ F:'p,i)

where o, is the bijection defined by o,(c)(y):= c(a™*(y)).
Proof. This follows from the equality
ady 5 (y) = ad"(p(e™ ' () = ad}* (@™ (7). O
(5.3) Define the local system over the Riemann surface X,:= p(/,)\H,
Fj.:=T,\(Hx F}))
by the diagonal action of yeI': y-(z, f):= (p()z, f-ad*(y~1)).

Lemma. The local system F),; (n, i€ Z,,) depends only on the isomorphism
class of the spin Riemann surface X = (X, K¥?).

Proof. Recall that two representations p and p* give the same spin
Riemann surface if and only if there exist A€ PSL(2, R) and a€ Aut(I',) with p*
=a-p-Ad(A). Then the isomorphism is given by

Vo Xpi= PUNH = X,pgaay= (o p- Ad(A)T)\H
PINz — (@ p- AdA)TNA')
adil%: OKg")/p(I) ~ OKg")/a-p- Ad(A(T)
@f) — (A7'@), f-ad"(4)).
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It is enough to show that ad}% induces a right ¥, ,-isomorphism of the local
systems: *)  ad¥%: Fh,—=> Fh .4 With the property: ) adj2 .z
= ad?}-ad}}. ) follows from the facts (5.1) and (5.2). ##) is also a straight-
forward calculation and is omitted. O

The isomorphism class of local system Fj; over X is denoted

(5.3.1) %.i for i,neZ,,

(7772 -
Fhi=
13

ics

F%.: for neZ,,.

By construction, the local systems are embedded into the sheaf 0, (K ~"2) over X
as multi-valued global sections. The graded pieces

(53.2) Gx,i:= F"x,i+1/F')'{,i (i, neZ,y)

are trivial local systems over X, whose ranks (which depend only on n, i and the
genus g of X) are denoted by gj;:= rankc G%;. By (4.5) and (3.7), we have

& ;. @—1Hn+1)
5.3.3 § nopi =Y )
( ) =0 9o 1—2gt+¢2 for n>0,
_ g—t _
=7 T for n=0.

(54) We give an interpretation of the local systems FY% ; as sheaves of solutions
of linear differential equations on X.

Assertion. There exists a sequence of holomorphic linear differential
operators
54D %t Ox(KE2) — Ox(KE ")

of degree gy ; for i=0,1,2,..., such that
i) The local system F%; is characterized as the solution of the equation:
%.i°Dxi-1°°Dx0(¢)=0. That is,

(54.2) ker(D%,;°oD%;i-1°--°D%,0) = Fk,-

ii) The map D% ;°D%;_,°---°D% induces an injection:
(54.3) Dy ;oD% i-1°-°Dyo: Gyi = I'(X, Ox(K#E ).
Here dj; (i > 1) is given inductively by the formula:

(5.4.4) gi=n+2 and dj,  =@d", + gz (g5 + 1).

g



452 Kyon Saito

Proof. The Lemma is proved using the Wronskian as follows. At the
start, for i =0, put

d n/2 d n+1 } 22
n . e— - n+
Dx,o<<o(z> ( dz) ) (( dz) <p(z)) (@)D",
The following transformation rule can be checked directly:

d n+1 b d n+1 b
(@) (g o) - (&) o)(Ea) o

This was studied by G. Bol[3], Peterson and Eichler [4]. i) and ii) for i=0
follows obviously from this. Particularly, D% , induces an isomorphism:

(54.5) D%o: Gyo =~ I'(X, Ox(K¥**1)

Suppose the operators D%,..., D%;—; for i>0 are constructed. Let
0,(@)(dz) €Dy ;1o Dy ;5o DY o(F5,) (for 1<j<g;:=gy), be a C-basis
for the image of G, For ¢(z)(dz)*'*€ Ox(K%'?), put
(Pl(Z), (p2(z)5 ceny (pg.-(z)a (p(Z)
?1(2), 95(2),..., 942, ¢'(2)
%d@@)d2)* )= | 0P(2), 9P(2), ..., 0P(2), 9P(2) | (dz)+?

P90, 9570, -, 032, 99()

(Here in this definition, there is an ambiguity of a choice of the basis of
G%.:- See the following Remark 1.)

D%; commutes with the adjoint action of the I,. To see this,
for A= |:ccl 5] ep(l,), substitute ¢,(A(2))(cz + d)~%, ..., ¢, (A2)(cz + d)™%,
o(A@) (cz+d)™% for @4(2), ..., ¢,(2), ¢(z) in the definition of D%,

Apply the fact that (}) (PA@) ez +d) ™ = ¢ (A@) ez + )~ +
k

Y ¢;0% P (A(2)) (cz + d)~?~2**I for some constants ¢, so that the right hand is
j=1

equal to
(CZ + d)_di ¢1(A(Z))s LERIE} (P(A(Z))
(cz+d) %2 0 PP (A@2), ..., 9P (A(2)) | (dz)y+2

0 (cz+d)y™ %72 | | 0¥)(A(2)),..., ¥ (A(2))

gi
= D% (p(2)(d2)"'?)-ad ~%+?(4) for ) (d;+ 2j)=d;+,. On the other hand,

=0
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@,(z)([d2)* e ' (H, Ox(K%'?)'s means ¢;(A(2))(cz + d)™% = @,z) for 1 <j <y
This implies that

%.: (f-ad; "2 () = Dk, (f)-ad, 7 (y)

for feOx(Kg*'?) and yel, as a generalization of Bol's relation. So the
operator is well defined. By properties of the Wronskian, i) is verified. To
prove ii), observe that feI'(H, O(Kg"?)) belongs to F},,, if and only if f

—f-ad}?*(y)eF% .. Applying D ;o---°D%, to this relation, we obtain
Do Dy o(f) = Dyio++° Dyolf)- ady 412 = 0. O

Remark 1. To be more precise, the operator D% ; must be normalized as
1

———— D% ; to kill the ambiguity arising from the choice of basis of G%;. For
det(G%) ’

the purpose, one needs to study the vector bundles () (G%,;) over the moduli

[xleTg
space J, of curves of genus g. This is beyond the treatment in this paper.

2. The isomorphisms Fj;/Fj o ~ H'(X, Ox(Kx"?) (24.2) and D% o: F} ,/Fn,
~ I'(X, Ox(K¥**1)) (5.4.5), and Serre duality between H'(X, O4(Kx™?) and
I'(X, Ox(K%**1)) implies that the space G} ,:= F% ,/F" , and its conjugate are C
dual of each other. This is nothing but the Weil-Petersson metric on the space.

§6. Algebra Structure on 'y

0

We introduce an algebra structure on #y:= @ F%/F%, whose associated
n=0

graded ring %y:= gr(#’x) admits derivations by the elements of I',.
(6.1) Recall Bol's map D% o:=0"*"': I'(H, O(K %) - I'(H, O(K"**1)) (5.4) on

global sections. Obviously 8"*! is surjective and equivariant with respect to the
action of I',. Its kernel is FG.

Assertion. The product Kif**! x Kg?*t — K§*™/2*2 on the tensors of the
halfcanonical bundle K}Y* induces a I',-equivariant and filter preserving product
map:

(611) an+1(yv;() % am+1(g;§) N 6n+m+3(g;r;{+m+2)_
(6.1.1)* O (F i) X O (FY ji) — O"TAFYETR)
for i, j> —1.

Proof. We have only to show that the image of the filters by the product
map belongs to the filter described in (6.1.1)*. We proceed by induction on i
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and j. First we remark that:

for an element pe I'(H, O(K">*Y)) and for i€ Z,,, we have ped" " (F% ;)
if and only if ¢-ad,"?* ' (y) — @ed"*' F%,; for all yeTI,.

If i= — 1 (resp. j = — 1), then 0"** (F%,) (resp. 0™*1(F%0)) is 0 so that the
image of the map is 0 = 0(F%'g"*?). Now suppose i, j > 0 and take elements
ped" 1 (Fy;+,) and ¢p€d™ ' (F%;+y). Then for yer,,

)  (p-P)ad,(y) — - ¢
=(p-ad,(y) — @) ¢ + ¢-(¢-ad,(y) — ¢) + (¢-ad,(y) — ¢)-(¢-ad,(y) — ),

which belongs to 9"*™*3(F5i%7?) by hypothesis. By the above remark, ¢-¢
belongs to 0"*™*3(FyLT12). O

Corollary. The product (6.1.1) induces a product G%; x G% ;> G512 for
i,jyn,m>0. For yel,, let §, be the coboundary map defined in (2.5.1). Then

(6.1.2) 0,(¢-¢) =06,(9) ¢ + @-5,(9)
for oeG%;, ¢€Gx; and yel,. Here G%;:= F%;./F%,; cf. (3.6.1).

(6.2) Inspired by the calculations in (6.1), we introduce:
(6.2.1) Hy=@® Fy/Fyo~ @ "' 7%
n=0 n=0

Each summand will be denoted as

6.2.2) vi=F % Fyo~ 0" Fy;

this carries a filtration

(6.2.3) Hy i =F%i1/Fyo~0"""Fy;1, i=0,1,2,...

induced by that on &#%. Then (6.1.1)* can be rewritten as a product:
Hy i x Hy; — Hy2)*

and so 'y is a graded algebra with increasing filtration

(6.2.4) ‘”X,i:= @ H')l(’i, i = 0, 1, 2, Y
n=0

The first filter: #y o~ @ Fk.1/Fyo~ @ I'(H, Ox(K}?* )" is (a part of) the
n=0 n=0

half canonical ring for the spin Riemann surface (X, K¥?) associated to the
representation p. It is well known that 5y , is a finitely generated algebra over
C and is noetherian.

In the remaining of this paragraph, we prove the following:
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Lemma. £y is an integral domain over H# y o such that each filter # x; is a
finite module over #y .

By generalities in commutative algebra, to prove the Lemma, it is enough to
prove the same statement (Lemma* below) for the graded algebra gr(s£y)

=@ Ay Hxi-1 Here #y _,:=0). The associated graded algebra of #y,
i=0
which we denote by ¥4, is given by

(6.2.5) Gyi=gr(Hy) = C_‘Bo x>

where Gy ;i= Hx )/ Hxi—-1= @ Fkxis1/Fxi= @ G%:(i=0). Of course ¥y is
n=0 n=0

a bigraded algebra, as G%; x G%,;— G%:71? is induced from (6.1.1). The 0-
graded part 95 , w.r.t. the index i is the same as the s#x ,. Therefore we prove
the following:

Lemma* i) %y is an integral domain over %y .
i) For i>0, 95, is a Gy o- finite module.

(6.3) To prove the Lemma*, we summarize some of the previous results in a
Theorem, which describes a resolution of the half canonical ring %y ,; this can
be regarded as the main result of the present paper.

Theorem. Let ¢6*:%,, Q@ H"(I,,Z)> %y, @ H** (I,,Z) be the
coboundary map introduced in (3.6.2) for i >0 and k = 0, 1. Then they are Gy -
module homomorphisms, and they define the following resolution of the
halfcanonical ring G o:

(6.3.1)
0 —_’gx,o — Yy Jo_’g){ ®ZH1(rg) M’(gx@ F?{,o) ®ZH2(F4]) —0.

Here F} o ~ C as a 9y o-module is annihilated by any element of 44 ,. The map
1 to the factor F$, is given by abelian integrals:

(6.3.2) feHomg(I',, G% o) — i j f(a) — J f(b)eF%,~C.
1), o

Proof. The exactness of (6.3.1) follows from Lemma (4.3) and Lemma
(3.6). The fact that §° and &' are commutative with the ¥y ,-module structure
follows from (6.1.2). The map : comes from the exact sequence (3.6.5) for i = 1
and n=0:

(633) 0 Gy —> G3o @z H' (I, Z) —> F§o @z HA(T,, Z) — 0

To obtain an explicit formula (6.3.2), we refer to (3.6.3) and its proof. O
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Remark. The exactness of (6.3.1) can be reformulated in terms of the
cohomology of the complex (9x ®zH', &) defined by

gxyo k = 0
HY %y ®zH (), 6)= | F3, k=1,
0 otherwise.

(6.4) Recall the coboundary map 6,: Gk ;+{ - G%,; for yel, (2.5). The
relation (6.1.2) implies that 6, is a derivation of the algebra ¥y over ¥x,. By a
use of derivations, one can recover the filtration on %5 as follows:

for an element fe %y, the following are equivalent

d
) fe@® Yxp il) 0120441 =0 for all 6y,..., 6411 €Der(Gx/Yx,0)-
i=0

Proof. ii) implies i) by the injectivity of 6° in (3.6.4). i) implies ii) because
the derivations have degree — 1 by definition. O

Proof of Lemma* i). It is enough to show that the product:
Gxix Gxj— Gxi+j

does not have zero-divisors. Let us prove this by induction on i and j. The
start of the induction: when i = j = 0, the above product is just the product in
the half canonical ring %, which is obviously integral.

Take fe%y,; fori > 1, and ge %y, and assume fg = 0. For any derivation
0, one has 0 = d(fg) = d(f)g + fo(9) = 6(f)g. Hence either g =0 or o(f) =0
for any 6 by induction on i. Hence either g =0 or f=0.

Let i, j>1 and take fe%y; and ge%y; with f#0, g # 0. Suppose fg
=0. Let J be any derivation. If §'f # 0, then let us show ¢ *g =0 for k =
—1,0,1,...,j by induction on k, where the case of k = — 1 is clear. Assume

true for k—1. Then the relation 0=6i+f"‘(fg)=<l+]i _k>(6if)(6f"‘g)

implies & *g=0 by induction. Hence g=0 for k=j contradicts the
assumption on g. Thus &f=0, and similarly ég=0. If i—1>0 and
8 1f+#0, then again a similar argument shows that 6~!7%*g =0 for k=
—1,0,...,j — 1, which gives a contradiction. This implies again that 5 ! f =0
and also 8 'g=0 as far as i—1>0 and j—1>0. Repeating a similar
argument for p inductively, we obtain 6 Pf=0 and & Pg=0 for 0<p
< min(j, j). By assuming i < j, this implies that § f = 0 for any derivation ¢ of
degree — 1 and hence = 0.
ii) The exact sequence (6.3.1) implies the exact sequences:

0— Yx.1 2 Yx.0 ®ZH1 2 G?{,—1 ®ZH2 — 0
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and
0 — %yiv1 Lgx,i@zHl a—l)gx,i—l ®zH> — 0 (i>0)

as 9y o-module. Since ¥y, is noetherian, by induction on i, this implies the
finiteness of ¥y ; as %y ,-module for i > 0. O

Remark. The ring %y is neither noetherian nor of finite Krull dimension.
(The denominator 1 — 2gt + t2 of the dimension formula (5.3.3) has a real root
to =¢g — /g% — 1 such that 0 <t, < 1. This implies the exponential growth
gp:~ O(ty?) of the ranks of G%; in i so that the graded ring can not be
noetherian. [J)

Appendix

In the Appendix, for a O-regular minimal module &% = (F)),,, for a surface
group I,, we give a Z-structure on the C-vector spaces G;:=F;./F; (for
i>0). This is done by an explicit lattice description of the G;’s (see (A.5)).

We introduce a sequence of lattices L, and maps 63: L, » Homg([',, L,)
~H®gzL, (for n>0) by induction on n. (Here H:= Homy(l,, Z) is the
symplectic lattice together with the symplectic form I.) The induction starts with
Ly:=Z,L;:=H and 83: L; » H ®  Z the natural isomorphism. Suppose that
L, and 6?_, are already defined for some n > 0; define the map J!: H ®,L,
—L, as the composite

H®,L, ", HQ®,H®zL,., —*4 L,_,. Then we put

(A1) L, :=ker(d,),
62 := the canonical inclusion map of L, into H®,L,.

Thus one has the following exact sequence:
(A2) 0— Ly 5 H®zL, 5 L, (120).

(Here by convention, we set L_; =0.)

Lemma 1. For p, q >0, one can define a contraction map 1,,: L, ® 5L,
— L, 1 Q L, in term of the cup product I, giving rise to an exact sequence:

(A3) 0 — Ly, — L,®;L, 2L, ;®zL,, — 0.

2. There exists an integral bilinear form I, on L, (n > 0), symmetric or skew-
symmetric according as n is even or odd, and compatible with the inclusions L, ,
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—)Lp ®ZLq for ps q Z 0

Proof. Rewriting the definition of L, inductively, one has the following
description of L, for n > 1.

(A4) L,~{peH®: I {p)=0 for j=1,...,n—1}

where H®" denotes the tensor product of n copies of H over Z and I; is the
contraction map from H®" to H®"~? defined by the cup product I of j th and
(j + 1) th components for 1 <j<n— 1.

1. The restriction of the linear form I, on H®®*% induces the map z,, on
L,®zL, whose range is L,_; ®zL,—; =« H®®*%"? and whose kernel is
L,+, The surjectivity of 1,, will be shown by induction on p. If p =0, this is
trivial since L_; =0 and Ly =Z. For p=1, we put 7,:=1,, and prove the
surjectivity of z, (g > 0) as follows.

Asserion. Let ey, e,, f1, f, be elements of H with the properties: I(e,, e,)
= I(ey, e;) = 0 and I(e,, f1) = I(e,, f,) = 1. Then the restriction of 1,: ¢; @ L,
— L,_, is surjective for i=1,2 and qeN.

Proof. This is shown by induction on q. The case of g =1 follows from
the fact that I(e, Zf)=Z (i=1,2). Assume that 1,:e;, L, > L, ; is
surjective. Then for any xeL, there exists yeL, such that 1,(f; ® x)
=1,(e; ®y). This means that z:=f @x—e,®y belongs to L,.; by
definition. Since 1,.,(e; @ z) = I(ey, f1)x — I(ey, e;)y = x, this implies the
surjectivity of e; ® L., = L. O

In a symplectic lattice H, one can choose e; =e, =a and f, = f, = b for
the symplectic pair a and b. Thus i, is surjective for n > 0.

Return to the proof of the surjectivity of 1,, for p> 1. Consider the
following natural commutative diagram.

0 0

l l

0
0— Lp+q+1 I Lp+1 ®ZLq m Lp ®ZLq—1 — 0

1 1

0 — H®ZLp+q I H®sz®qu — H®qu—1 ®qu—1 — 0

Ip-\\'ql lpl llp—l

0 — Lp+q—1 — Lp—l ®ZLq ﬁ’ Lp—-2 ®ZLq~1 — 0

l | |

0 0 0



HiGHER FICHLER INTEGRALS 459

By assumption, all columns are exact. By the induction hypothesis the bottom
and the middle rows are exact. Hence the first row is exact. This completes
the induction on p and the proof of the Lemma 1.

2. In view of the description of (A.4), the bilinear form I®" on H®" induces

a bilinear form I, on L,, which is symmetric or skew symmetric according as n is

even or odd. The fact that I, are compatible with the inclusion maps is
obvious.

O

Let us consider the formal power series: f(t):= ), [L,]t". Then (A.3)
n=0

implies: 0 — %(t 1(8)) = f(t)*> - t2f(t)> — 0, which can be solved to give f(t) = (1
—[H]-t + 37! In particular we have

Y rank(L)t"=(1—2g-t+1t»)7,
n=0

and hence an explicit formula:

[n/2

1 n—k _
rank (L) = Y. (— 1)"( )(2g)" *,
k=0 k

Remark 1. The construction of the sequence L, can be started from any
lattice H. The condition of the Assertion is satisfied by a wide class of lattices
(e.g. one containing a unimodular sublattice of rank > 2), and the exactness (A.3)
holds also for them.

2. Let us denote by P,(g) the polynomial of the right-hand side of the
formula for rank(L,). Then P,(g) =0 has n distinct real roots in g, which
separates the roots of P,,,(g) =0.

Now, we are able to describe graded pieces of a 0-regular minimal module
in terms of integral lattices L,.

Lemma. Let the setting be as in (3.4). Assume that F is O-regular. Then
there is a canonical isomorphism

(A.5) Fi+1/Fi2Li®ZH1(Fg, F).

Proof. This is proved by an induction on i, where i = — 1 is trivial by
convention that both sides are zero. The case i =0 is proved in Lemma (2.4.2).
The exact sequence (A.2) induces a corresponding exact sequence for

L, ®zH'(I', #). A comparison of this exact sequence with that of (3.6.4)
implies (A.5). d
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