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Partial ^-Algebras of Closable Operators
II. States and Representations of

Partial ^-Algebras

By

Jean-P. ANTOINE*, Atsushi INOUE** and Camillo TRAPANI***

Abstract

This second paper on partial Op*-algebras is devoted to the theory of representations. A new
definition of invariant positive sesquilinear forms on partial *-algebras is proposed, which enables to
perform the familiar GNS construction. In order to get a better control of the corresponding
representations, we introduce and study a restricted class of partial Op*-algebras, called partial
GW*-algebras, which turn up naturally in a number of problems. As an example, we extend
Powers' results about the standardness of GNS representations of abelian partial *-algebras.

§ 1. Introduction

In this second paper, we continue the theory of partial Op*-algebras. The
main definitions have been given in the first paper [1] (to be denoted by I in the
sequel) and we will use them freely, keeping consistently the same notation. As
announced in I, the central topic of this paper is the theory of representations of
partial *-algebras. We will define them in Section 2 below, together with
several notions familiar in the case of representations of *-algebras [2]:
extensions of representations, adjoint of a representation, commutants and
bicommutants of various types, irreducibility.

Our interest in representations comes mainly from physical applications,
such as Statistical Mechanics or Quantum Field Theory. Indeed a physical
system is usually characterized by the algebra 91 of its observables, usually an
abstract *-algebra, and then each state on 91 defines a representation of 91 in
some Hilbert space, via the Gel'fand-Naimark-Segal (GNS) construction
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[3]. Since, as argued in I, one should rather start from a partial *-algebra of
observables, we have to generalize the GNS construction, and to begin with, the
notion of state.- In the case of a *-algebra 91, a state is a normalized positive
linear form on 91. If 91 is only a partial *-algebra, the positivity condition alone
already requires the use of sesquilinear forms. For a *-algebra 91, the GNS
construction works only if the starting sesquilinear form 0 on 91 x 91 is
invariant, in the sense that 0(x*y, z) = <j)(y9 xz), for all x, y, ze91 Clearly this
definition is inapplicable for a partial *-algebra, since the products x*y, xz need
not exist. As an alternative, Antoine and Lassner [4, 5] have introduced the
concept of h-form, that is, a positive sesquilinear form 0 which is invariant in the
following sense : if x is a left multiplier of z and x* is a left multiplier of y, then
^(x* y, z) = (f)(y, xz). Furthermore, a fe-form 0 is called weakly GNS if it
satisfies the condition: for each xe9l, there is a sequence {an} in

= {a e 91; a is a right multiplier of each xe9l) such that lim 0(0n — x, an — x)
n-»oo

= 0. This definition then leads to the following result ([5], Theorem 7.1): if 91
is a semi-associative [1] partial *-algebra, every weakly GNS h-form 0 on 91
allows a GNS construction.

However, this proposal is not entirely satisfactory. First one should
remove the assumption of semi-associativity of 91, because partial Op*-algebras
are not always semi-associative. Second, the definition of invariance of a
positive sesquilinear form given above is too restrictive, because it excludes all
non-zero vector forms on a non self-adjoint maximal weak partial Op*-algebra
(see Section 3 below). We shall meet both objections at once by introducing
(Definition 4.1) an alternative notion of invariant positive sesquilinear (i.p.s.)
form on a partial *»algebra 91. The new aspects here are : (i) the possible lack
of (semi-) associativity of 91 is explicitly taken into account ; (ii) the space £(21) of
universal right multipliers is replaced by an arbitrary subspace 93 of J£(9I), dense
in a sense to be precised. This new definition is now flexible enough to allow all
the vector forms we want, and moreover, any i.p.s. form defined in that way
admits a GNS construction, as we will show in Section 3. Furthermore,
another standard result remains true : the GNS representation n^ associated to a
state ^ is irreducible iff the state 0 is pure [36], that is, 0 cannot be written as a
convex combination of two other states (a state is simply a normalized
i.p.s. form). By irreducibility of n^ we mean that its bounded quasi-weak
commutant ^qvv(n^) of n^ is trivial.

However, when we try to implement the GNS construction with sesquilinear
forms on partial Op*-algebras, we discover that very little can be said beyond
the definitions, for this class is still too general. Moreover, there is no
systematic way of constructing i.p.s. forms. At this point, the theory of
topological quasi *-algebras [7] gives us a hint : there it is easy to obtain i.p.s.
forms by taking limits of suitable linear forms defined on the dense
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subalgebra. Following this guide, we introduce in Section 3 a subclass, called
partial GW* -algebras, that will allow more precise results. They are
characterized by the fact that they contain many (a dense set of) bounded
operators, and this allows to obtain i.p.s. forms by a limiting procedure, in
particular the vector forms. Actually the class of partial GW*-algebras has an
intrinsic mathematical interest, for they seem to be a natural generalization of
von Neumann (W*) algebras and of topological quasi *-algebras as well. In
particular, if a partial GW*-algebra 91 leaves the common domain invariant, (i.e.
it is an Op*-algebra), then 91 is an EW*-algebra [8], as it should. We will
study partial GW* -algebras in detail in Section 4. In fact we give here a second
definition, that turns out to be equivalent to the first one. This is a
reminiscence of the two complementary approaches to von Neumann algebras,
the algebraic one (91" = 91) and the topological one (closure in a suitable
topology). We discuss also the interplay between partial Op*-algebras and
topological quasi *-algebras (with respect to the strong* topology).

The real interest of partial GW*-algebras resides in that they arise naturally
when one tries to generalize to partial Op*-algebras a number of properties
known for von Neumann algebras or for Op*-algebras. For instance, vector
forms on partial GW*-algebras are easily characterized, exactly as their
counterparts for Op* -algebras [9]. Next, in the abelian case, Powers' criterion
[2] for standardness of a self-adjoint representation extends naturally to partial
GW*-algebras, as will be shown in Section 5. Finally, they allow a natural
generalization to partial Op*-algebras of the Tomita-Takesaki theory [10] and
of the theory of unbounded derivations [11].

§2. Representations of Partial *- Algebras

A partial *-algebra is a complex vector space 91 with an involution x -> x*
(i.e. (x + Ay)* = x* = Ay*, x** = x) and a subset F c 91 x 91 such that:

( i ) (x,y)er*J(y*,x*)er;
( i i ) if (x, y)eF and (x, z)eF, then (x, Ay + ^z)eF for all A, ^eC;
(Hi) whenever (x, y)e^F, there exists an element xye9l with the usual

properties of the multiplication :
x(y + Az) = xy + A(xz) and (xy)* = y*x*, for (x, y), (x, z)eF and AeC.

An element e of 91 is said to be a unit if e* = e, (e, x)eF and ex = xe = x
for every x e 91. Whenever (x, y) e F, we say that x is a left multiplier of y and y
a right multiplier of x, and write xeL(y) and yeR(x). By (ii), L(x) and R(x) are
vector subspaces of 91. For a subset 23 c 91, we write

L(23) - 0 Ux), R(to) = 0 R(x).
xe® xeSB
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Notice that the multiplication is not required to be associative, but it must be
distributive with respect to the addition by (iii). A subspace 23 of 91 is said to
be a partial *-subalgebra if x*e9S for all xeS3 and x^eS f°r anY *i> *26®
such that x1eL(x2). A partial *-algebra 91 is said to be abelian if L(x) = R(x)
for all xe9l and xy = yx for any xe9l and yeR(x).

As usual, ^ denotes a dense subspace in a Hilbert space Jf , and J2?f(^, J^)
is the set of all linear operators X such that D(X) = 3 and D(X*) ^ 2. Then
J^t(^5 jf ) is a partial *-algebra, denoted J^t(^> <^)> when equipped with the
usual sum X^ + X2, the scalar multiplication AX, the involution
X\-+ Jft = x* \2 and the weak partial multiplication n : Xl is a left multiplier
of X2(X1eI?(X2) or Z2e£w(*i)) iff JT20 c D(Xl*) and X\9 c D(X$ and
then A'i n X2 = X {* X2. A(weak) partial Op*-algebra on 3 is a partial *-
subalgebra W of JSP U®, ^f ), that is, m is a subspace of JS? t(®, jf ) such that
XT em for all Xem and ^nA^eSR for any Xl9X2eWl such that
X1eLw(X2). For any subset 5ft of JS?t(®, j#>) and any £e^, we also define:

In particular, if 9W is a partial Op*-algebra on 3, a special role will be played by
the set Rw(Wl) of (universal) right multipliers of 2R and the two related subsets
Rw(W)t(£E@) and Rw(Wf.

A ^-representation of a partial *-algebra 91 is a *-homomorphism of 91 into
J?U®, -#*), for some pair ^ c Jf , that is, a linear map TT: 91 -> &\J(29 3?) such
that : (i) n(x*) = n(x)* for every x e 91 ; (ii) x E L(j;) in 91 implies n(x) e L(n(y)) and
n(x) n TI;(};) = n(xy). A priori one could also consider strong representations in
JSf I(®, Jf ), but they seem of little interest, and we will not consider them in the
sequel.

Extensions of * -representations are defined in a natural way. Let nl and
n2 be two ^representations of a partial *-algebra 91 in <£\J(@}l9 Jf ) and
^1^(^29 ^} respectively. If n^x) c n2(x) for all xeSI, then n2 is said to be an
extension of nl9 and this is denoted by n1 <^n2. Notice that the relation n1

c= 7C2 is different from 7 (̂91) <7T2(9I) or 7u1(9l) <w 7i2(9I), where -< and -<w

denote the two notions of (algebraic) extension introduced in I.
As in the case of *-algebras, new representations may be obtained from a

given one by extension and adjunction, with help of the extension theory for
partial Op* -algebras developed in I. Let us recall the basic facts.

Let 9K be a t-invariant subspace of Jg?t(®9 tf). We denote by tm the
topology on 2 defined by the family (|| . \\x; X e9K} of seminorms: ||£||x = ||£||
+ ||X£||, £e^. We denote by @(tm) the completion of 3 relative to the
topology tm and put
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Similarly, we put

D(M) = C[XMD(X)9 X = X

We also define

= (}XemD(i*(X)*), where i*(X) = JSft*

Then one has:

The set W is said to be closed if & = @(tm), fully closed if 0 = ®(2R), self-adjoint
if ® = 0*(2R), algebraically self-adjoint if ^**(2R) - ®*(9K).

Let 71 be a * -representation of a partial * -algebra 91. If 7r(9I) is closed (resp.
fully closed) then rc is called closed (resp. /w//j closed). We put

(x), x e 91.

Then n is a closed * -representation of 91 and TC is a fully closed * -representation
of 91, and they satisfy the relation nan.

Next we define the adjoint of a representation as follows :

TT*(X) - TC(X*)* r®(7t*), xe9I;

and

®(7c**) = n««^*w*),
7C**(X) - 7C*(X*)* t^(7T**), X69I.

Then TC** is a *-preserving linear map of 91 into 3Pi(@(ji**)9 ffl} and one has:

TC(X) c= TC(X) c TT(X) c TC**(X) c= TT*(X) (2.1)

for all xe9I.

In view of the inclusions (2.1), it is natural to extend to the present case the
terminology used for representations of Op*-algebras [2,12,13]:

Definition 2.4. Let n be a ^-representation of a partial *-algebra 91 on
. Then n is said to be self-adjoint if ^(TC*) = 2(n\ essentially self-adjoint if
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We remark that even If TC* = TT**, it is not necessarily a * -representation.
Next we define the weak commutants of a * -representation of a partial *-

algebra. As for any t-invariant subset, we have the usual bounded commutants
of 7i(9l), namely 7i(9l)'w and 7c(2I)^w. In particular we have now:

7r(9l)'w = {Ce^(Jf); (C£|7u(x)i/) = (7u(x*K|C*i/), /or a

In addition, we introduce a new one, specifically adapted to representations:

C^TC) - {Ce7r(9l)'w; (C7c(xJ)5|7c(x2)iy) - (C^foxji/), for all xls *2e9l

(2.2)

The point is that &qw(n) may differ from 7c(9l)^w because TC(X!) a 7t(x2) may exist,
even if x tx2 does not.

These three bounded commutants are weakly closed * -in variant subspaces
of £(jf?) and one has :

*(«%w ^ Mw) c ^Ww (2-3)

As for general t-invariant subsets, it is natural to compare the quasi-weak
commutant Hqw(n) of a representation n with that of its various extensions given
in (2.1). The following result may be proved exactly as Lemma 3.8 of I.

Lemma 2.1. Let n be a ^-representation of a partial *-algebra. Then :

For an Op*-algebra 91, additional extensions may be defined under the
condition that U'w be an algebra [9, 14]. Similar results have been obtained in
I, Theorem 3.9 for partial Op*-algebras, and quite naturally they extend to
representations (with the same proof):

Lemma 2828 Let n be a ^-representation of a partial *-algebra 91 into
&l(@(n\ je). Suppose &qw(n) is an algebra. Put

Then nqw is a ^-representation 0/91 such that n c= nqw c= 71:*, 7i;9VV(9I)/
w = &qw(n) and

nqw(^l)'wSi(nqw) = 2>(nqw).

Remarks. (1) Lemma 2.2 shows the usefulness of the commutant
£aw(7i). Indeed, suppose instead that nC&)'w is an algebra and define:
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Then nw is not necessarily a * -representation of 91 (the situation is slightly better
for strong * -representations).

(2) Partial * -algebras may be tricky. For instance, let n be a *-
representation of a partial *-algeba 91. If 91 is a *-algebra, then rc(2l) is an Op*-
algebra, but when 91 is only a partial * -algebra, 7i(9I) is not necessarily a partial
Op*-algebra, and we have to consider the minimal partial Op*-algebra
2Rw[7c(9I)] containing 7i(9I), as denned in I.

The last notion we want to introduce is that of irreducibility. Let 91 be a
partial *-algebra, n a He-representation of 91 in &\J(3l9 3?\ Then we will say
that n is irreducible iff its bounded quasi-weak commutant <£>qvv(n) of n contains
only multiples of the identity, &qw(n) = {A/, AeC}. This definition is admittedly
conservative, but for GNS representations it leads to the expected corre-
spondence between pure states and irreducible representations (see Section 4).
The same result does not hold, in general, if we replace the quasi-weak
commutant &qw(n) by the weak bounded commutant 7i(9I)'w, and a fortiori by the
weak unbounded one 7r(9I)^.

Let us recall here, for future use, that the weak unbounded commutant 9l'ff
of a t-invariant subset 91 of &(29 tf) is defined [15, 16] as :

for all & ne^ and

It is a weakly closed, t-invariant subspace of Jzft(^5 jf )? and its bounded part
equals SR'J®.

§3. Invariant Positive Sesquilinear Forms on Partial ^-Algebras

As always [3], the crucial question is how to build concrete
representations. For * -algebras, the GNS construction is usually the
answer. In order to extend it to partial * -algebras, we introduce a notion of
invariant sesquilinear form for which the GNS construction is always possible,
and we give some examples. This concept is slightly more general than an
earlier one of /i-form [4, 5].

Let 91 be a partial * -algebra. A sesquilinear form cp on 91 x 91 is called
positive if cp(x, x) > 0, Vxe9l. When 91 has a unit e, a positive sesquilinear
form (p on 91 x 91 is called a state if cp(e, e) = 1. For each positive sesquilinear
form cp on 91 x 91, we have

q>(x, y) = <p(y, x), Vx,);e9I (3.1)

I <p(x, y)\2 < <p(x, x) <p(y, y), V x, y 6 91 (3.2)

and hence

; <p(x9 x) = Q} = {xe9I; <p(x, y) = 0 for all
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and so 91^ is a subspace of 91. For each x e 91 we denote by ^v(x) the coset of
1^ which contains x, and define an inner product (.|.) on (̂91) by

We denote by Jtif 9 the Hilbert space obtained by the completion of the pre-
Hilbert space /l^(9l). We are now ready to introduce our notion of invariance.

Definition 3.L Let cp be a positive sesquilinear form on 91 x 91. If there
exists a subspace 33 of #(91) such that:

(1) ^(33) is dense in J f 9 i
(2) <p(xbl,b2) = q>(bl,x*b2), Vxe9I, Vfo 1 ? fo 2 E33;
(3) <p(xtbl9x2b2) = q>(bl,(xlx2)b2)9 Vx1eL(x2), Vb1 ? fo2e33;
(4) if 91 has a unit e, then ee33,

then cp is said to be SB-invariant. If cp is .R(9l)-in variant, it is simply called
invariant.

We denote by 3F '9 the family of subspaces 33 satisfying the conditions (l)-(4)
of Definition 3.1. Given 23 eJ^, there exists a maximal subspace in &9

containing 33 ; we denote it by [23].
We will show below that the GNS-construction is possible for every 33-

invariant positive sesquilinear form on 91 x 91. Before that, let us comment
briefly the definition of invariance just given. As compared to the earlier notion
of /z-form [4, 5], two new aspects are crucial :

(/) Condition (3) takes explicitly into account the possible lack of (semi)-
associativity of 91 ;

(ii) Conditions (l)-(4) are not imposed to the whole set K(2l), but only to the
dense subspace 23. The reason is that K(9l) may be too large or difficult to
characterize completely, whereas it is often easy to find a suitable subspace 23.

These two modifications together make Definition 3.1 more flexible than the
earlier one of /i-form. We will illustrate this by concrete examples at the end of
this section.

Proposition 3.2. Let <p be a positive sesquilinear form on 91 x 91. Then the
following statements hold.

(1) Suppose cp is ^-invariant. Put

), xeffl, foe 33.

Then n* is a ^-representation of 91 into <£ U/^(S), Jff9). If 91 has a unit e, the
vector Q9 = ^(e) is cyclic for TI®. If cp is invariant, we denote n*(S&) simply by n9.

(2) 7u® c 4S] for each 8 e J% and TT® ^ n[*] in general. ^ ^
(3) Let 3319 332e^. Then [33J / [332] if and only if n™ * n™.

Proof. (1) It follows from (2) in Definition 3.1 that i*(
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and 7cJ(x)t = rcjfrc)* \ A^S) = *%(x*) for each xe9l. It is clear that TC® is a
linear * -invariant map of 51 into J&f^A^S), J^v). Furthermore, by (3) in
Definition 3.1, we have

for each x1eL(x2) and bl9 b2e93. Hence, 7c®(x1)eLw(7i®(x2)) and Tc^xJ n 7r®(x2)
= n®(x1x2) for each x1eL(x2). Thus TC® is a *-representation of 51 into

js?t(V»)» •*%)• xs. /\
(2) The inclusion 71® c rc^f ] is obvious, and the example given in Corol-

lary 3.8 (3) below shows that TC® ^ nl®} in general.

(3) Suppose that rcj*11 = 7c^2]. For every ^e[S2] and x^^l, there exists

a sequence {aj in [93 J such that lim A^aJ = Av(&) and lim Av(xf aj = A^(xf b).
H— »• OO /I"*1 OO

Then we have

<p(x?b, x2fl) = lim (Av(xf aJ|A^(x2a))
n~* oo

= lim <p(x?aB, x2a)
n-* oo

= lim q>(an, (x^a)

for every x2G.R(x1) and ae^J. Similarly,

for every x!eL(x2), aG[SJ and be[952]. Hence, [SJ + CbeJ%,. By the
maximality of [33J, we have beCSBJ. Therefore, [93J = [932]. This com-
pletes the proof.

We call the triple (rcJJ, Av, Jf?9) the GNS-construction for 9, based on 93. When
<p is invariant, the triple (n^, Av, Jf ^) is called simply the GNS-construction for
cp. If 3* ' 9 + 0, then cp is said to be GNS-representable.

By construction, the vector Q9 = I9(e) is cyclic for TT®, and it is even
strongly cyclic. This concept, familiar for Op*-algebras [2], may be adapted to
the present situation, but as expected it ramifies into several different notions (see
also [5]). These are studied in detail in a separate paper [17], together with the
applications to the GNS construction.

We assume now that $1 has a unit e, and consider a 93-invariant state cp on
91 x 91. As usual, we say that the state cp is pure if it cannot be written as a
convex combination of two 93-invariant states <pl9 <p2:
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(p =£ A <p1 + (1 - A) (p2, 0 < A < 1 .

The interest of this concept is that the equivalence between the purity of a state
cp and the irreducibility of its GNS representation TC® extends to partial *-
algebras.

Proposition 3.3. Let 21 be a partial *-algebra with unit and (p a ^-invariant
state on 21 x 21. Then the GNS representation n® is irreducible, in the sense that

= CI, if and only if cp is pure.

Proof. We follow essentially Powers [2]. Assume that q> is not pure: cp
= A<P! + (1 — A) cp2, 0 < A < 1, cp1 ̂  q>2. On the dense domain A^S) consider
the sesquilinear form

(A^IA^^Acp^fe), a, be®.

Since

this form is bounded. Thus it extends to the whole space J^9 and defines a
unique bounded operator A9 0 < A < /, A ^ II, such that

Now (Pi is a state, in particular it is ^-invariant; this implies, by condition (2) of
Definition 3.1, that Ae&qw(n*).

Conversely, suppose &qw(n*) ^ CI. Although &qw(n*) is not an algebra, it
is easily shown [2] that there exists an element B e £€W(TT®) such that 0 < B
< I. Then (Q^ \ BQ9) > 0, where Q^ = ^(e) is cyclic for TC®. Otherwise, we
would have, for all a, b e 33 :

and this would imply B = 0. Similarly (QJ(1 - B)fl^) > 0. We define now
two sesquilinear forms on 21 x 21:

92(x, V) = (^

These two forms are positive and 58 -invariant; for instance:
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b2) = (n^x^bJlB^b^.

i, x*b2).

Similarly, for x1eL(x2):

9 i ( x f b l 9 x2b2) = (n^x^^b

= (l,(bj | B v»(Xl x2) A,(&2)) . (fl, 1

Finally, (j^ and p2 are states and cp = ^q>l + (1 - A)<p2 , with A = (fi
which concludes the proof.

Notice that, if we define the irreducibility of rcJJ by the condition 7cJJ(2l)'w
= C7, then the positive sesquilinear form <p1 on ^l x 51 defined in the proof of
Proposition 3.3 need not verify the equality:

<Pi(xfbl9 x2b2) = v^, (xlx2)b2)9

so that <pl is not S-invariant. This also shows that, for a partial *-algebra, the
quasi- weak commutant &qw(n) of a * -representation n plays more important role
than its weak commutant 7c(9I)^.

Let us given now some examples of invariant positive sesquilinear forms on
partial *-algebras.

(i) Invariant positive sesquilinear forms on topological quasi *-algebras \
Let 51 be a topological quasi *-algebra [7] ; that is, 91 is the completion [9I0]

T of
a topological *-algebra 910 with topology T. We denote by P(9I0, T X T ) the set
of all positive linear functional / on 510 such that (a, b) -+f(b*a)eC is
continuous on 9I0 x 910, and denote by 7P(9l x 91, T x T) the set of all (jointly)
continuous invariant positive sesquilinear forms on 91 x 91. For each /e P(910,
T x T) we put:

where {aj and {bp} are nets in 910 such that aa -^ x and bp -~> y. Then the

map/->/° is an injection of P(9I0, T X T ) into /P(9l x 91, T x T); if 91 has a unit,
then the map is a bijection.

Let us give a concrete example [5]. Take 9I0 = C°(A\ the space of
continuous functions on a finite interval A c R, with pointwise multiplication
and an IP-norm (1 < p < oo). Then 91 = I? (A, dt) is an abelian topological
quasi-* -algebra, and therefore L(9l) = #(91) = 9I0. It is semi-associative, but
not associative [18]. If 2 < p < oo, any positive function peUlp~2(A, dt)
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defines a positive sesquilinear form cpp on 91 by the following relation:

9P(f,0)= I f(t)W)p(t)dt9
J A

( f \I and a state if p(t) dt = 1 J. The form cpp is jointly continuous in the Lp-norm
\ J A /
of 91. Furthermore, 9l(f)p = {0}, JP9p = L2(A9 pdt) and the form <pp is
invariant. Hence we may build the GNS representation: nv (f) is simply the
operator of multiplication by feLp on the domain &(nVp) = C°(A\ and so is its

full closure TC(PP(/) on the domain 2(n9p) = L°°(J, pdt). This representation is of
course highly reducible. Its commutants [1, 19] consist also of multiplication
operators, namely:

; = U(A, pdt),

(ii) Invariant positive sesquilinear forms on partial Op*-algebras'.
Let 501 be an Op*-algebra on 2. A vector form on 501 is a positive sesquilinear
form ££=1 co|k on 50? x 50* of the following type:

G=i O(*> 50 = I* = i <(*> 10 = SUi (*tk\ Yt& X, Yem, {^} c ^,

and every such form is invariant. However, this need not be the case if ($R, ^)
is a partial Op*-algebra. So the question arises: when is a vector form on a
partial Op*-algebra invariant! Let 501 be a partial Op*-algebra on @}9 and
Kw(500* (fe®), Rw(50lf the sets defined in Section 2. We remark that if 5JR is
self-adjoint, then jRw(50*f = £w(50*). The following result is easy:

Proposition 3.4. Let *$Sl be a partial Op*-algebra on 2. Then the following
statements hold.

(1) Let £ be an element of 2 such that £W(50J)^ = $»£• Then ca% is an
R^^Kf3-invariant positive sesquilinear form on 501 x 501. In particular, if 50* is
algebraically self-adjoint, then co° is invariant.

(2) Suppose Rw(3Rf is ts-dense in 501. Then every vector form on 501 x 501 is
R™'(501)^-invariant. In particular, if 501 is algebraically self-adjoint, then co° is
invariant.

However, this general result is not very constructive, since it is often difficult
in practice to characterize the whole set Kw(50l) for an arbitrary partial Op*-
algebra 501. But the case of quasi-*algebra discussed in (i) above gives us a
hint. In that case it was easy to obtain invariant positive sesquilinear forms on
91 by taking limits of positive linear forms on 9I0, which is dense in 91. This is
the key fact: what we need is a class of partial Op*-algebras containing a subset
of bounded operators, dense in a suitable topology. The most natural choice
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for the latter is the strong* -topology ts*. Then the first question is whether
there are partial Op*-algebras which are topological quasi-* algebras for ts*. We
will examine this point in Section 4 below, but the answer is not very
encouraging. The next step is to find a type of partial Op* -algebras with the
required properties. It turns out that the following definition yields a useful
class.

Definition 3.5. Let ^ be a dense subspace of 3? and 9K0 a von Neumann
algebra such that W$Q) = @. Then a weak partial Op*-algebra SOI on 2 is
called a partial GW*-algebra over 9JZ0 if it is fully closed and equals the ts*-
closure [$R0 \&Y of SR0|^ in W(9, Jf).

We will study those partial GW*-algebras in detail in Section 4, and in
particular we will give another, equivalent, definition. The simplest nontrivial
example is the following. Let 2 be such that £f^(39 3?) is fully closed. Then
&l(®, Jf) is a partial GW*-algebra over a(Jf?), since &l(®9 3tf)

We first investigate under what conditions a positive sesquilinear form on a
partial GW*-algebra is a vector form. The following results are proved as in
Ref.9.

Lemma 3.6. Let W, be a partial GW* -algebra on 2 over 9M0 and (p be a
positive sesquilinear form on 501 x 90?. Then,
(1) The following statements are equivalent :

(1)1 cp is a vector form on 9JI x 2R.
(I) 2 cp is ts- continuous and (p \ Sfto x 5K0 is an invariant positive sesquilinear

form on 9K0 x 9K0.
(1)3 There exists finite subsets {£k} and {rjk} of Q) such that

\q>(X9 7)| < \Y!=1(X£k\Yrik)\ for all X, 7e2K and (p\mo x SR0 is invariant.

(1)4 q>(X, 7) = 7° (X, 7) = limM/(B|AJ, X, YeWfor some tw-continuous
positive linear functional f on 9[R0, where {Aa} and {Bp} are nets in 9[Ro such that
Aa-^X and Bp-+Y in ts*.
(2) The following statements are equivalent :

(2)1 <P = Z."- 1 < f°r some (Q e ®co(a«)-
(2)2 (p is ^-continuous and <p|3R0

 x ^o ^ invariant.
(2)3 There exists elements {{„}, {rjn} of&^W) such that \<p(X, 7)| < |J^=1

(X^|7^)| for all X, 7eSR a«J <p|2R0 x 9K0 w invariant.

(2)4 cp(Z, 7) - 7° (*, 7) = lima^ /(BJAJ, A-, 7e 9W /or 50me f «w-
continuous positive linear functional f on 9K0, where {Ax} and {Bp} are nets in $R0

such that AX-^X and Bp-+Y in tJJJ,.
/« f/zz'5 ca.se, z/ 50i0 has a separating vector, then q> = co° /or some £ e ̂  0«d z/

5010 /zflj a cycft'c fl«J separating vector £0, //zew cp = a>^ /or a unique vector ^ zw
where &\Q is the natural positive cone associated with the achieved left
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Hilbert algebra 9W0f0[20].

Proof.
© (1)1 => (l)3 : This is trivial.

@ (1)3=>(1)4: Define f ( A ) = (p(A, I), AeaR0- By (1)3, / w a £w-continuous

positive linear functional on $R0 ; then the relation (p = /° is immediate.
• (1)4 => (1)2 : Obvious.
© (1)2=>(1)1: Since cp is ts-continuous, it follows that

\9(X, 7)| < £Ui ||^fe||)(L7=1 II Ytij\\ ), X, Yem (3.4)

for some {£k}, {rjk} c Q). Then

U9(X)\\<Yl=1IX^l Xem (3.5)

for some {£k} c ^. We first show the statement (l)x in the case where

for some Ce^- Then it is easily shown that C = (KPC)* (KPc)eSW0, where Pc

= ProjS[R0C and K is a bounded linear map of PcJf onto Jf^ which is an
extension of the map A^ ->

Since 50?^ = ̂  we have

9(

for some £e@. Considering

A 0 ...

0 A ...

A

L Cn J

[<p] (
in the general case (3.5), we can prove

Bltt9 A,

for some {£k} c ^5 which implies by (3.4) and [$R0]
S* = 2R that ^ = J^=1 a)%k for

{{fc} c: ®. This proves the equivalence of (1)1-(1)4.
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A similar proof yields the equivalence of the statements (2)1-(2)4, replacing
C b y

PR]. =

X 0

0 X 0 ...

... 0 X 0

The remaining assertions are proved in the same way as in Ref. 9.

The following concrete example [5] illustrates the situation described in
Lemma 3.6. Take a Hilbert space ffl and a self-adjoint operator H in ffl such
that exp(-jSH) is nuclear for every j? > 0. Let {<£„, An} be the eigenvectors and
the corresponding eigenvalues of H . Define

Then SR = &\,(&9 3f) is self-adjoint, hence it is a partial GW*-algebra over
Consider now the following positive sesquilinear form over &l,(@, 3?} :

<pf(A9 B) = Z-1 £n°°=1 (AfaWJe-"-, Z =

The restriction of (pp to 8(stf) is the familiar state Z~l1r(A*B e~pH). Clearly
this form verifies all the conditions of statement (2) of Lemma 3.6, in particular it
is invariant. It is a /i-form in the sense of [4, 5], but it is not a vector form,
since 9K0 = &(Jjf ) has no separating vector. This form q>ft was used by
Bouziane and Martin [21] in their proof of the Bogoliubov inequality for
unbounded operators.

Let us come back to the general discussion. With help of Lemma 3.6, we
obtain now a characterization of vector forms on partial GW*-algebras which
illustrates the parallelism of the latter with topological quasi-* algebras. Indeed,
using the von Neumann density theorem, Proposition 3.4 (2) and Lemma 3.6, we
may prove the following

Proposition 3.7. Let W, be a partial GW* -algebra on 2 over $R0 mch that
9Kon(9K?)* = 9K0nJ?t(®) is a nondegenerate *-subalgebra of 9J10. Then the
following statements are equivalent:

(1) q> is a ts- continuous, (5R0 fl &^(@))-invariant, positive sesquilinear form on
w x an.

(2) cp is a ts- continuous positive sesquilinear form on 90? x SOI and <p
x 9W0 is invariant.
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(3) (p is a vector form on 9W x $R.

(4) (p = f° far some t^-continuous positive linear functional f on 9W0.

As an example, we take again a fully closed 5?\,(2, $? ), which is a partial
GW*-algebra on a over J>pf). Since {£® ̂ ; & f/e^} c J>(.Tf n (^pff )*,
where ({®ffK = (C|i/K for feJf, it follows that J^fn(^pff)* is a
nondegenerate *-subalgebra of J'(Jf). Then we have the following result:

Corollary 3.8. (1) Every vector form on &U(29 JF) is GNS-representable.
(2) No non-zero vector form on JS?£,(®, ^) i§ a fc-form.
(3) Suppose ^t(^> <?f ) is algebraically self-adjoint. Then every vector form
on &l(&9Jtr) is invariant and, for each £^0e0, TI®O (^ (0, jf )) (resp.
Tc^oC^U^, Jf))) is unitarily equivalent to &l(@, JlT) (resp. i*(J?U®, Jf)),
where SB denotes the linear span of {r\®^\r\, £e^}. Hence, if J£?U^, =lf) is
not self-adjoint, then TT®O ^ TU^O.
(4) Suppose 3?\, (2, Jf ) is not algebraically self-adjoint. Then, for each

, there exist ^, A2eRw(£>l(@9 Jtf)) and X 6 J?U®, Jf ) such that

Proof. (1) This follows from Proposition 3.7.
(2) Suppose co£ is a /i-form for some £ ^OeS. Let A'eJSf^, Jf) be

such that X^ = X and Jf ^ ^T*. Since ?/®^e^w(Z) for each rieD(X*)9 we
have

for each ?/, £eD(X*), which implies ^ = X*. This is a contradiction.
(3) Clearly 93 f = 0. Hence ^(JSf^®, Jf )) is unitarily equivalent to

JS?!(0,jr). We show that £W(<H(^ ^))5 = ^*(J2?U^, #))• Clearly,
Conversely, take an arbitrary

^)) and iy= | | 5 i r 2 (^
Therefore it follows that R»(&1(9, Jf))^ = g*(&l(99 tf)\ which

implies that ^(JSfU®, Jf )) is unitarily equivalent to /*(JS?1,(0, ̂ f)).
(4) Suppose a>^(X n ^x, ^42) = o%(Al9 X^ n A2) for each X e &l(&9 Jf) and

Al9 A2eRw(&l(@, &)). Since n®l = R"(&U(99 Jf)) for each 77 eD*
we have

= n 5 n ~4 Q>K^ ° (»/ ® a c ® 1}
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for each Xe&l(9, 3?) and ij, £e®*(&l(99 #)), and hence 9**(&l(9,
= @*(<elv(@,3f)\ which contradicts the assumption that &l,(&, Jtf) is not
algebraically self-adjoint. This completes the proof.

Remark 3.9. (1) Statements (1) and (2) of Corollary 3.8 show that the
invariant positive sesquilinear forms used in this paper are more general that the
/i-forms introduced in Refs. 4,5. Since the latter do not contain any vector form,
for the example considered here, the concept of /i-form is probably too
restrictive.

(2) Statements (3) and (4) explain why we have not imposed conditions (1)-
(4) of Definition 3.1 to the whole set JR(2I), but only to some appropriate
subspace 93 : if £(21) happens to be too large, as in the present case, the earlier
definition of /i-form becomes unduly restrictive. On the other hand, jR($I) may
also be defficult to characterize completely, although it is in general easy to find
a subspace 23.

(3) The case of topological quasi-* -algebras is discussed in a recent paper
by one of us [22], where a notion of state is introduced in such a way that the
GNS construction becomes possible. The approach of that paper is, however,
quite different from the present one.

§4 Partial GW*-AIgebras

Some generalizations of von Neumann algebras have been studied in
[8, 15, 23-27]. We describe them here briefly. Let $R0 be a von Neumann
algebra on a Hilbert space Jtf and & a dense subspace in Jtif. Suppose (i) 2R'0^
c^ and (ii) SR0^ <= ^- Then the t*-closure 9K = [2R0 \3rfftW($i) of
9W0 \3f into J2?t(®) is an Op*-algebra on 2 such that the bounded part Wlb

equals mo \ 2 and X is affiliated with 9W0 for each Xem. A *-subalgebra of 2R
containing 5ffZ0 \ 2 is called an EW*-algebra on <& over 9J10. Such algebras have
been studied in [9, 23-26]. But, this class is too restrictive for most of the
interesting Op*-algebras. For instance, if 9M0 is purely infinite, then 2R&

= W0\@ [26].
Suppose that only the condition (i) $R'0^ c Q) holds. Then

m = [_mo t^]s*nJ^t(^) is an Op*-algebra on 2 such that (WJ = 9K0 and m
= (mo\@ytvan^(@) = {Xe^(@);X is affiliated with SR0}. This 0p*-
algebra is said to be a generalized von Neumann algebra (or a GW*-algebra] on
& over $J!0, and it plays an important role for the study of the unbounded
Tomita-Takesaki theory [25]. However, the bounded part W,b of SR does not
necessarily equal 9K0 \ 2. Hence, it seems meaningful to study the £*-closure
[2R0 \ ®Y itself. The ts*-closure [9K0 \ @J* is a weak partial Op*-algebra on 2
with bounded part 9K0 \<&, and so its full closure is a partial GW*-algebra over
$R0, as introduced in Section 3.
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In this section we analyze in detail the partial GW*-algebras introduced in
Section 3. They present a common feature with topological quasi ^-algebras:
both contain a dense *-algebra. In the case of partial GW*-algebras, this
distinguished subset is a von Neumann algebra, which is dense for the strong*
topology of &*(&, Jf).

We begin our discussion on the connection between these two structures in
JS?t(®5 j/f) with a natural question: given a *-algebra 2R c= JS?t(09 jf) (possibly
an Op*-algebra\ is [8K]S* a partial Op*-algebra or a topological quasi *-
algebra 1 Clearly, for [9K]5* to be a topological quasi * -algebra, it is necessary
that the multiplications A\-+AB, A\-*BA, for BE 2R9 be continuous maps from
W. into itself. Unfortunately this does not occur frequently.

Before examining the question whether [90J]S* is a partial Op*-algebra, we
recall that if 91 is a t-invariant subset of ^^(^, $£\ various unbounded
commutants of 91 may be defined [15, 16, 18, 19], but we need only the weak
one, 91J,, and also several unbounded bicommutants of 91, namely:

Then 9l^ff, 9l£wo. and 9l^ff are three weakly closed, ts*-complete, t-invariant
subspaces of J^t(^? jf) such that 91 c 9C c 91^ c 9i;;

Wff. (Remark: the set 91
w ca/ferf on SK*-jgr i/ Stt = 9i;ff[19]).

Now if 211 is a *-algebra in J^t(^? jf) and [$FJ]S* is its ts,-closure,
Proposition 3.3 of [19] provides a criterion for [9K]S* to be a (weak) partial Op*-
algebra: we have only to require that W^ = 2 and [2R]S* = SJCff. This fact
motivates the alternative definition of partial GW*-algebra given below, where
precisely these conditions will appear.

The next proposition is, in a sense, a warning : if we ask the behavior of the
objects in consideration to be too reasonable, we fall into an almost trivial case !

Proposition 4.1. //"(9K, 9W0)[^*] ^ a topological quasi *-algebra with 9R0 a
closed Op*-algebra, then 501 is an Op*-algebra.

Proof. Let (9K, 9W0)[*s*] be a topological quasi *-algebra and Xe9K. Thus
there is a net {JQ c= $Ft0 such that Xa -* X in ts*; let now Be2K0, then {5Xa/}
is a Cauchy net in the norm or, equivalently, {Xxf} is a Cauchy net in
tmo. Hence there is ^e^($F!0) such that Xaf-+\l/ in tmo and thus if/
= If. This in turn implies that Xfe@ = ®(9K0).

The situation described in the previous discussion becomes particularly clear
when 9K consists of bounded operators only. In this case, first of all, the
problem posed by Proposition 4.1 cannot occur, since a bounded operator
algebra is never closed in ^, if 2 / Jf . We have in fact :

420 Let mo be a * -algebra with unit in £(#?) c J&?t(®, jf) and
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m = [2R0]
S* its ts*-closure. If (9K0Xv^ = ®> then m is a ™eak partial Op*-

algebra and it is stable under the strong multiplication. Moreover, i
then (TO, TO0)[£S*] is a topological quasi *-algebra.

Proof. If TO0 is a *-algebra with unit in J*(Jf), then by Proposition 3.3.1 of
[16], TO = (TO<Xff and therefore, by Proposition 3.3 of [19], m is a weak partial
Op*-algebra. Since it is the unbounded commutant of (TO0)'W, it is also stable
under the strong multiplication. If TO0^ c @, then we have only to remark
that, since TO0 consists only of bounded operators, both the right and the left
multiplication are continuous.

For the sequel of our discussion, we need more information on the nature of
the bicommutants. First notice that, for any t-in variant subset 91 c &i(@9 $?\
the following relations hold true:

NW = (9Cyw <= (KX s«;w = (9ijwx c (9i;wr, (4.1)
which implies

Then we have:

Lemma 43. Let 91 be a ^-invariant subset of J^t(^5 jf). Then the
following statements hold.

(1) 9fl'w w a von Neumann algebra if and only if 91^
(2) *$l'qw is a von Neumann algebra if and only if 9lg'Wff =

Proof. (1) Suppose 9l'w is a von Neumann algebra. By (4.1), (SR^Jw i§ a

von Neumann algebra. Hence it follows from Theorem 3.9 of I that fiw(9twff) ̂
s a

t-invariant subspace of JSft(®w(5l)9 ^f) such that

which implies

for each ^691^ and Ce9l'w. Hence ew(X) is affiliated with (91X and so there
exists a sequence {,4n} in (9TW)' such that

lim A£ = sw(X)t and Mm
«-* oo «-* oo

for each <^e^w(9l). In particular, we have

lim .4n£ = X£ and lim
n-+ao n-»oo

for each ^e^, and hence JrG[(9l^)']s*. Thus we have 9C c [(91'J']5*. The
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converse inclusion follows from (9TW)' \ 2 a 91^ and the strong*-closedness of
WJlwa-

Conversely suppose that 91^ = [(9i;j]s*. Take arbitrary Cl9 C2e$l'w and
Xe9l. Since 91 c Jft^ = [(91 )̂']**, there exists a net {Aa} in (91 J' such that
Iimav4a{ = X£ and lima^4*^ = Xi£ for each £e^. Then we have

for each £, rjE@, and hence C1C2e9lJv, which implies that 9l'w is a
von Neumann algebra.

Using Theorem 3.9 (2) of I and Eq.(4.1), we can prove the statement (2) in a
similar way.

Proposition 44. Let 501 be a 1-invariant subset of 5£^(<$, Jf) satisfying the
following conditions:

(1) 501& w a von Neumann algebra;

\ / b '

Then (yJlb)'a [ts*] w a topological quasi *-algebra over 50J&.

Proof. Since 50i& is a von Neumann algebra, then %Jlb = (9KX- By
Lemma 4.3, we have

(2Bfc)"ff = [(50J')"]S*5

or, in other words, (3Jlb)'a = [50ZJ,]S*. The statement follows then from the
previous proposition.

The two conditions of Proposition 4.4 are typical for the partial GW*-
algebras as defined up to now. In particular, if 501 is a partial GW*-algebra
over 50lb, then 50!b is £s*-dense in 501; hence we get

and so,

Corollary 4.5. If 50! is a partial GW*-algebra over 50Sb, then Wa [ts*] is a
topological quasi *-algebra over 50l'w.

Remark. If 50lb^ = Q), then 501̂  is also a partial Op*-algebra, thus it is
almost a partial GW*-algebra: the only property that may fail is fully-
closedness, and it is not clear that the full closure 501̂  still verifies the conditions
for a partial Op*-algebra.

Now we are ready to introduce an alternative definition for partial GW*-
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algebras. Of course, we will show later that the two are indeed equivalent.

Definition 4.6. A fully closed weak partial Op*-algebra W, on @ is said to
be a partial GW*-algebra on 2 if 9W'W^ = 2 and W^a = W.

We first remark that for any properly infinite von Neumann algebra 9W0 on
X there exists a partial GW*-algebra SR on & such that 2R ̂  mb and (9WJ'
= 9K0. In fact, let H be a self-adjoint unbounded operator in 3tf affiliated with

mo and & = 0 ^(#n). Then

m = {Xe&i(2, 34?); X is affiliated with 2R0}

is a partial GW*-algebra on 2 containing {Hn\^;neN} such that (WVJ = $R0.
The main problem is, of course, how to construct partial GW*-

algebras. The examples above give us a hint. Let 91 be a t-invariant subset of
JS?t(^, Jf); then we are led naturally to the following questions:

(A) When is 9C a partial GW* -algebra!
(B) When does one have 91^ = [(91'JT?

Question (B) has obtained an implicit answer by means of Eq. (4.2) and by
Lemma 4.3.

In order to solve Question (A), we need a new concept. Given a *-
invariant set 93 of bounded operators, we define :

#*(93', ®) = {Xe^(@y jff>)-9 x is affiliated with 93'}

(this object was introduced in [19] where it was denoted 23,,), it generalizes the
corresponding subset of J5ft(®) introduced in [25]. The following relations are
obvious :

93' c «!»(»', ^) c [93']s* c »;. (4.3)

Then we have the following result.

Theorem 4.7. Let 91 be a t-invariant subset of J^t(^5 jf). 77ze« ?/z
following statements are equivalent:

(1) 9C w a pflrrffl/ GW* -algebra on ®(9l^ff).
(2) 9l';ff w ^-symmetric [19] : r/z0r w, (/ + **X)~ x e (9l'w)' for each X e 9i;
(3) 9
(4) 9

® (1)=>(4) : This follows from (4.1).
» (4)=>(3): Since 91̂ (91̂  = ^(91^), it follows that X is affiliated

with (9l'J' for each Xe9C, which implies 9l^ff c «p((9l/J/, S). By (4.3) we
have
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(3) => (2) : This is trivial.
(2) =>(!): Since SR^ is * -symmetric, it follows that
ff), which implies that

= (X2$\C*X\ri)

\X\*i)

for Xl9X2e ?C, Xl e l?(X2\ C e K'w and & ly e 0. Hence, A^ n X2 6 ?C, and

so 91^ is a weak partial Op*-algebra on 3f. As stated in I, Section 3, 9l^ff is a
fully closed weak partial Op*-algebra on ^(9l£,J. Further, it is easily shown

that (SR^C = 9C. Thus, SR^ is a partial GW*-algebra on ^(91^). This
completes the proof.

Similarly we have the following

Corollary 48. Let 91 be a t -invariant subset of J^t(^5 jf). Then the
following statements are equivalent:

(1) 9Cff is a partial GW* -algebra on
(2) 9l^ff w ^-symmetric.
(3) 9
(4) 9

The statement (4) in Theorem 4.7 implies the statement (4) in Corollary 4.8,

and hence if $C is a partial GW*-algebra on ®(9O, then K;ff is a partial
GW*-algebra on J(5R).

Theorem 4.7 shows that the two definitions of partial GW*-algebra are
indeed equivalent. If 9K is a partial GW*-algebra in the sense of Definition 4.6,
we observe [19] that its bounded part $fftfc = (S0l'wy is a von Neumann
algebra. Then it follows from Theorem 4.7 that, for SR0 = (SW'w)' = Wb9 one has
«R = [2R0 f ̂ ]s* = 9K;ff = ^P(9W0, ®)- Conversely, if 50! satisfies the conditions
of Definition 3.49 we get (SW'J' = 50I0 and therefore a«'w^ = 0, which implies, by
Theorem 4.7 (4), that 50} is a partial GW*-algebra in the sense of Definition 4.6.

These definitions seem to be a good choice, for the resulting partial GW*-
algebras have all the expected properties, in particular they appear as a natural
generalization of von Neumann algebras. Indeed, in the bounded case, a *-
invariant subset ?i of 3$(2tf\ containing the identity, is a von Neumann algebra
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iff 9T = 91 and then it equals [9l]s*. Furthermore, if a partial GW*-algebra m
on ® leaves 2 invariant, i.e. 2R c Jgft(^), then 2R is an EWt-algebra [8], that is,
a symmetric Op*-algebra $R such that 3Rfe is a von Neumann algebra.

We may try also to generalize to partial Op*-algebras, and in particular to
Op*-algebras, the other familiar statement: if 91 is a *-invariant subset of <%(3tf\
then 91 = 91" is the minimal von Neumann algebra containing 91 and it verifies
the relation 2T = 91'. The first part of the sentence, namely existence of a
canonical partial GW*-algebra containing 91, goes over easily, provided 9TW is an
algebra. In the sequel, we will write for short 9l£ = 8w(9l)^CT. We will discuss
the question of minimality later on.

Proposition 4.9. Suppose 91 is a ^-invariant subset of J§?t(®, 3?) such that

9l'w is an algebra. Then (C(Ww<r and 9l£ = ew(5l)iff are partial GW* -algebras on
and ^(9l£), respectively.

Proof. If follows from Theorem 3.9 of I that £w(9l) is a t-invariant subset of
9l), jf) such that ew(9l) > 91, ew(9l)'w = 9l'w and ew(9l)'w ̂ w(9l) - 9W(W),

which implies that ew(K)^ J(ew(5R)) = ®(ew(5R)) and ew(9iyw^(9l£)
= ^(9l£). Then the statement of the proposition follows from Theorem 4.7 and
Corollary 4.8.

The next proposition summarizes the situation for partial Op*-algebras.

Proposition 4.10. Let W, be a ts*-closed partial Op*-algebra. Then :
( i ) 50lb is a von Neumann algebra.
(ii) If [mbT = SR, then m = W^ and it is a partial SV* -algebra.

(ni) If P0ys* = 2R, then (C(5K))wff and W = £w(9R);ff are partial GW*-
algebras on ^(gw(SDt)) and @($RE) respectively.

(iv) If [9R&]S* = m and mb@ c ^, then (m, 9Kb) [£s*] is a topological quasi
*- algebra.

Proof, (i) is obvious.
(ii) follows from Proposition 3.1.1 of [16].
(iii) If P0lfc]

 s* = SR, then Ww is an algebra ; so the statement follows from
Proposition 4.9.
(iv) follows from Proposition 4.2.

It is clear that if SR is a fully closed and £s*-closed partial Op*-algebra with
WbQ) c Q) and we require that (2R, $Rb)[£s*] is a topological quasi *-algebra, then
SR is automatically a partial GW*-algebra.

If we require 2R to be self-adjoint, the situation simplifies

Proposition 4.11. Let 2R be a ts*-dosed and self-adjoint partial Op*-
algebra. If (SR, 9Rfc)[tsJ is a topological quasi *-algebra, then SR is a partial
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GW* -algebra.

Proof. $Jlb is clearly a von Neumann algebra and (9K6)'W = 9W'W ; thus
maps 2 into

We turn now to the question of the minimality of the partial GW*-algebra
generated by *-invariant set of operators of &i(@, 3tf\ In the bounded case, if
91 = 91* c &(&), then 31 = 91" is the o/i(y von Neumann algebra that verifies
the relation 91' = 9T, and it is the smallest one that contains 91. In the general
case, 91 = 9lt c &i(2, je\ there might be many partial Op*-algebras 9K such
that Ww = 9i'w, living on different domains. As the following theorem shows,

there is a distinguished one among them, namely 9l£ = £w(9l)^ff : it is a partial
GW* -algebra over (9TW)', and moreover it is minimal, in the sense that it lives on
the smallest possible domain. To show this, however, we need a new notion,
that of embedding.

Let 91 be a t-invariant subset of J^t(^5 jjf). In I, Section 3 we have
considered the partial Op* -algebra 9Ww[9l] generated by 91, on the same domain
®. We have also extended the subset 91 to a set g(9l) living on a larger domain,
but the two sets are still in one-to-one correspondence. In general we need
more: how does one compare two (partial) Op*-algebras living on different
domains ®19 ^2?

Definition 4.12. Given ®x c ®2, let 90^ and 9K2
 be two partial Op*-

algebras on 9)^ and ^2? respectively. Then 9R2 i
§ said to embedded in 9W! if

®! c ^2 and 50!2 t^! c= 5Rls which is denoted by 9K2 ^ 9Mi-

Suppose that 9K2 5. SKi. Then the map:

is a faithful *-homomorphism of the partial Op* -algebra 5012 into the partial
Op*-algebra 9W1? but it is not necessarily a * -isomorphism; that is, SR2 \3)v is
not a partial *-subalgebra of W^ In particular, if e(9W) >9K, then e(9M) ^ 9K
and e ~ 1 = / is a bijection onto SOt This suggests a stronger notion of
embedding :

Definition 4.13. 9K2 is said to be a partial *-subalgebra of 90^ £y restriction
if 9M2 Ei SKj and i is a ^-isomorphism of SR2 into $Rl5 which is denoted by 90?2

In particular, if s(3K)>w9K or 6(501) >-s9K, then e(aR)&9Pl and z is an
isomorphism onto.

Using this notion of embedding, we are now ready to show our point.

Notice that the partial GW*-algebra W = £w(9%ff verifies the relations (91% =

9!'w and (91% J(9l£) = 9(W). Denote by / the set of all weak partial Op*-
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algebras 9K which are fully closed and live on domains $ such that 2 c <f , SR'W
= 9l'w and Ww $ = $. The embedding relation E^ is a (partial) order on
/. Then we state:

Theorem 414. Suppose 91 is a t -invariant subset of <£^(2, 3?) such that $l'w

is an algebra. Then the partial GW* -algebra 91E = ew(9l)'^0 is maximal in the
ordered set (^", 5- )•

Warning : According to Definition 4.6, 'maximal' implies 'living on the
smallest domain* \

Proof. Let 9M be a fully closed partial Op*-algebra on a domain $ such
that 0 c g, mf

w = Ww and $R'w<f = g. Since 91^ c 9K^ - g9 we have ^W(SR)
c ^. Take an arbitrary 7e$0l Since 9«; = Srt^, SW^rf = # and YC£ = C Y£
for each CeWw and ^e^, it follows that

for each Cesw(<R)'w = 9l'w and £J=1 Cfc£fc, ZJ=i C}C}e®w(SR), and hence

y| 0W(SR) e 91E = ew(SRC, for all 7e TO, (4.4)

which implies

: H

Furthermore, we have by (4.4)

for each FeSR, and hence

for each Ye 90!, which implies SR ^ 9l£. This completes the proof.

If the set 91 of Theorem 4.14 consists of bounded operators only, we get the
following result:
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Corollary 4.15. Suppose 91 is a ^-invariant subset of

JSft (®, jf); X is bounded}. Then (ew(9l))^ e#w0/s rAe 00/1 Neumann algebra
£ = ew(9l)JU is 0 /?arrw/ GW*-algebra on

Replacing weak commutants by quasi- weak ones in Theorem 4.14, we
obtain an entirely similar statement, which is proved in the same way:

Theorem 4,16. Suppose 91 is a ^-invariant subset of 5£^(Q), Jf) such that 9lqw

is an algebra. Then (£qw(9l))'^a and eqw(9l)r^ff are partial GW* -algebras on

@(£qw(9l)) and ^(£qw(9l)f^a), respectively. In particular, sqw(9l)f^a is maximal in the
ordered set (/q, 5- ) consisting of weak partial Op*-algebras (50J, <f ) on domains
£ such that Ww = $lqw and W^g = g .

§5. Invariant Positive Sesquilinear Forms on Abelian Partial *- Algebras

Powers [2] has shown that a self-adjoint representaion n of an abelian *-
algebra 51 is standard iff (n(W)f

w)r is abelian. In this section we extend this
property to the case of abelian partial Op*-algebras, and apply this result to the
study of invariant positive sesquilinear forms on abelian partial * -algebras.

Let (O, &, m) be a tr-finite measure space and Ji(Q} be the set of all
multiplication operators Mf by a.e. finite measurable functions / on Q. Then
Jt(Q} is the set of all densely defined closed operators in L2(Q) affiliated with the
von Neumann algebra MLoo(/2), which is an abelian EW*-algebra [23]. A fully
closed partial Op*-algebra (501, ̂ ) is said to be a partial Op*-algebra generated
by measurable functions on Q if 501 e M(Q\

We first give some necessary and sufficient conditions for a fully closed
partial Op*-algebra to be unitrarily equivalent to a partial Op*-algebra
generated by measurable functions.

Theorem 5,1. Let 501 be a fully closed partial Op*-algebra on Q). Consider
the following statements :

(1) 9X»9 cz 3 and (50Q' is abelian.
(2) [(9M^)' \@Y is an abelian, standard partial GW* -algebra on 9.
(3) 501 is abelian and standard.

Then the following implications hold:

(1) ^=> (2)

(3)

Furthermore, suppose 501 has a strongly p-cyclic vector <^0, that is, KW(50I)^°^0 is a
core for each X, X e5DJ [17]. Then the statements (l)-(3) above are equivalent to
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the statement
(4) There exists a compact Hausdorff space Z and a bounded Radon measure

ILL on Z such that 50! is unitarily equivalent to a partial Op*-algebra (5R, $ )

generated by measurable functions on Z, such that (SR'W)' = MLoo(Z)M).

Proof. ® (1) => (2) : Since W^ c 2 and 50! is fully closed, it follows from
Corollary 4.8 that [(50Q' \ ̂ ]s* is a partial GW*-algebra on 2 and

[(50!'w)' t ̂ ]s* = {Xe &i(®, tf) ; 1 is affiliated to (WJ} . (5.1)

Hence it follows from Theorem 5.6.15 of [29] that X* = X for every X
= Xte[(mfJ \@J\ Hence [(2R'J' |̂ ]s* is standard. Since (50!'J is abelian,
we have

for all X, yeKOR'J' \@Y and ^ iye®, which implies that *eLw(F) iff
and then XnY=YuX. Hence [(SD^)' t^]s* is abelian.
« (2) =>(!): This is trivial.
9 (2)=>(3): This follows since SR is a *-subalgebra of the abelin, standard
partial GW*-algebra [(JK'J' f^]s* on ®.

Suppose now there exists a strongly p-cyclic vector ^0 for 9W.
® (3) =>(!): Since 2R is abelian and standard, we have

= RS(W) = LW(9W) -

Since £0 is strongly p-cyclic for 501, it follows that R($R) ^0 is dense in 3tf , which
implies that the map

extends to an isometry J on J»f . Then it is easily shown that

(5.2)

(5.3)

By (5.2), (5.3) and the standardness of 501 we have
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for all CeR(SDiyw, XeW and A, BeR(Wl), which implies

= mf
w. (5.4)

By the standardness of 50J, A is self-adjoint for each A = A^GR(3R). Let A

f°°= A dEA(l) be the spectral resolution of A In the same way as in Theorem

7.1 of [2], we can prove that (R(Wyj = {EA(X)\ A = A*eR(W), - oo < A < oo}"
and EA(X)EB(p) = EB(n)EA($ for all A = A\ B = B^R(m) and - oo < /I, p
< oo. Hence it follows from (5.4) that (SK'J' is abelian.
® (4) => (3) : Since 91 c ,Jf (Z), it follows from Theorem 5.6.4 of [29] that 91 is
standard and X is affiliated with MLt»(Z>j[i) for each X e 91, which implies that 91 is
abelian. Hence 501 is standard and abelian.
@ (2)=>(4): Let 3 be the abelian C*-algebra on jf generated by {EA(X); A
= A^e K(50l), - oo < A < oo}, Z the spectrum of 3 and f\->Tf the Gelfand
representation of the C*-algebra C(Z) onto 3- Then, by the Riesz representa-
tion theorem, there exists a bounded Radon measure # on the compact
Hausdorff space Z such that

OXoKo)= fdp,feC(Z).
Jz

Since (WJ = Ww = 3' and £0 is cyclic for 3', it follows from [30] (Part I,
Chapter 7) that the Gelfand representation /H-> Tf extends to a *-isomorphism
f\-+Tf of L°°(Z, n) onto (5W'W)' and

which implies that there exists an isometry C7 of L2(Z, ju) onto 3tf such that
(7L°°(Z, /x) = (SK'J^o and l/*(aR/J/£7 = MLOO(Ztfl). Hence it follows from (5.1)
and Theorem 5.6.4 of [5] that 17*501 17 is a fully closed partial Op*-algebra on

such that U*mu c= ^T(Z). This completes the proof.

By Theorem 5.1 we have the following

Corollary 5.2. Let 9M be an abelian partial GW* -algebra on 2 over
9W0. Then 501 is standard. In addition, if%Jl has a strongly p-cydic vector, then it
is unitarily equivalent to a partial GW* -algebra generated by measurable functions
on a compact Hausdorff space.

Next we apply Theorem 5.1 to the study of invariant positive sesquilinear
forms on abelian partial * -algebras.

Let ffl (91) be the Hilbert space obtained by the completion of a maximal
Hilbert algebra 91. We denote by TCO and p0 the left and right regular
representations of 91, respectively, and by J*^) (or simply, J) the involution of

For each x6Jf(9I) we denote by n#,(m)(x) and p^^x) the closures of
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the closable operators defined by

and

respectively. Pallu de la Barriere [31] has shown that

rcjr<«i)M* = n*WJx) and -^woM*7 = Pwi)(Jx)» *e Jf (91). (5.5)

Suppose yeD(7cjr(to(x)). Then it follows from (5.5) that

and n^m(Jy)Jx = Jn^(^(x)y. (5.6)

It is easily shown by (5.5) and (5.6) that 2tf (91) is an associative partial *-algebra
equipped with the involution x -> Jx and the following partial multiplication :
xeL(y) iffyeD(n#,(m}(x)), and then xy = n^(^(x)y, so that R(Jtf (91)) - 91. The
partial *-algebra Jf (91) is called the H-system of 91.

For the structure of abelian //-systems we have the following

Proposition 5.3. Let Jf (91) be a //-system of a maximal Hilbert algebra 91
with unit. Then the following statements are equivalent.

(1) 91 is abelian.
(2) The //-system tf (91) is abelian.
(3) Jf (91) is isometric and isomorphic to the //-system L2(Z, /x)

where Z is a compact Hausdorff space and \i is a bounded Radon measure on Z.

Proof. The implication (3) => (2) => (1) are trivial.
© (1) => (3) : Let £0 be a unit of 91. As shown in the proof of the implication
(2)=>(4) in Theorem 5.1, there exists an isometry U of L2(Z, fj) onto J"f (91) such
that U 1 = £0 and 17* 7i0(9I) 17 = MLoo(ZfAI), where Z is a compact Hausdorff space
and ^u is a bounded Radon measure on Z. Then it is easily shown that
n*w(Uf) U9 = UnL2(Zjfl)(f)g for each/eL2(Z, //) and ^eL°°(Z, //), which implies
that/, ^EL2(Z, /i);/GLfe) iff UgeDfr^Uf)) iff UfzL(Ug\ and then (C//)(t/^)
= t%f. It is clear that J#w(Uf)= UJL2(Ztll}f for each /eL2(Z, /^). Thus
Jf (91) and L2(Z, /^) are isometric and isomorphic.

Theorem 5.4. Le/ 91 be an abelian partial *- algebra with unit e and <j) a S-
invariant positive sesquilinear form on 91 x 91. Then the following statements are
equivalent./\

(1) TC® is standard. ^
(2) TtJ (9l)'w ^(e) c: »(T£) and (TcJ («%)' - 7cJ(ffl)'w.

(3) 7cJ(«% ̂ (g) c 9$) and n%(W)'w ^(e) is dense in ^.
(4) There exists a *-homomorphism <i>oftyi into the H-system L2(Z, fj) such

that
(4)j_ 0(93) w a core for each nL2(Ztfl) (&(x)), xe9l;
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(4)2 <^(x, y) --
z

where Z is a compact Hausdorff space and \JL is a bounded Radon measure on Z.
In this case, 23 is maximal in 3F ̂ .

Proof. Theorem 5.1 implies that (!)<=> (2) and'(!)=> (3).
© (3) => (1): Since (7 (̂91)̂ ,)' ̂ (e) is a maximal Hilbert algebra in Jf^, it follows
that

**v<W) CV*) = c W = *JM CA,(e)
for each ;>ce9I and Ce7t®(2l)'w, where n# is the left regular representation of the
H-system ^. Hence we have

which implies by (5.5) that

XX
for each xe9l. It follows that Ttf is standard. Thus the statements (l)-(3) are
equivalent.
• (1)=>(4): Since (1%(«%)' = TtJ(S%, it follows that (nJWJ'A,(<0 is a
maximal abelian Hilbert algebra in Jf0. By Proposition 5.3 there exists an
isometric *-isomorphism U of the H-system ^ onto the H»system L2(Z, /x),
where Z is a compact Hausdorff space and n is a bounded Radon measure on
Z. As shown above in the proof of the implication (3) => (1), we have

(5.7)

We introduce on A 0(91) the partial multiplication of the H-system Jf^ ; that is,

A0(x)eL(A^)) iff A0(j;)eD(7c^(A0(x))) = D(^(x)). We now put # = l / ° A , .
Take arbitrary x, ye 91 such that xeL()>). Since 7c® is a *- representation of 91,
we have it$ (x) e LW(TT| (j;)). Thus it follows from (5.7) that

which means that A0(x)eL(A^(};)) and A0(x) A^(y) = A^xy). Hence, A0 is a *-
homomorphism of the partial ^-algebra 91 into the If-system ^. Furthermore,
since U is a *-isomorphism of Jf^ onto L2(Z, /x), it follows that 0 is a *-
homomorphism of the partial ^-algebra 91 into the H-system L2(Z, //).

Next we show that 0(S) is a core for each rcL2(ZfM)(<P(x)), xe9I. Indeed, for
each aeS there exists a sequence {An} in (^(91)^)' which converges strongly to

7c*(fl). Thus we have

lim
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lim rcL2(z „)(#(*)) UA^Je) = lim
n-»oo ' n-*ao

which means that <P(2?) is a core for KL2(Z>/J)(<P(x)). For each x, ye31 we have

0(x, JO = (Wl V>0) = (U^(x)\ UA,G>))

= (*(*) |*00)

•J.
(4) =>(!): Since

for all x, y e 31 and all a, b e 93, and &>(%$) is a core for each 7tL2(z>M)(<£(x)), x e 91, it

follows that TT®(X) is unitarily equivalent to nL
2(z,n)(&(x)\ which implies that

= ^(x*). This completes the proof.
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