Entropy for Canonical Shifts. II

By

Marie CHODA* and Fumio HIAI**†

Abstract

Let $N \subset M$ be a pair of factors. Associated with a conditional expectation E from M onto N with finite index, we introduce the canonical shift Γ on the von Neumann algebra A, with the canonical state ϕ , generated by the tower of relative commutants for the basic constructions iterated from E. Related with the minimum index $[M:N]_0$, we investigate the entropy $h_{\phi}(\Gamma)$ of Γ and the entropy $H_{\phi}(A|\Gamma(A))$ of A relative to the subalgebra $\Gamma(A)$. The inequalities $h_{\phi}(\Gamma) \leq \log [M:N]_0$ and $\frac{1}{2}H_{\phi}(A|\Gamma(A)) \leq \log [M:N]_0$ hold in general. Furthermore when E has the minimum index and $N \subset M$ has finite depth, we establish $h_{\phi}(\Gamma) = \frac{1}{2}H_{\phi}(A|\Gamma(A)) = \log [M:N]_0$.

Introduction

Based on Connes' spatial theory [9] and Haagerup's theory on operator valued weights [15], Kosaki [24] extended Jones' index theory [22] for type II₁ factors to that for conditional expectations between arbitrary factors. For a pair of factors $N \subset M$, let $\mathscr{E}(M, N)$ be the set of all faithful normal conditional expectations from M onto N. Although Kosaki's index Index E varies depending on $E \in \mathscr{E}(M, N)$, it was shown in [19] (also by Longo [30]) that if Index $E < \infty$ for some $E \in \mathscr{E}(M, N)$, then there exists a unique $E_0 \in \mathscr{E}(M, N)$ which minimizes Index E for $E \in \mathscr{E}(M, N)$. Then the minimum index $[M:N]_0$ for $N \subset M$ is defined as Index E_0 .

Pimsner and Popa [33] extensively developed the entropy H(M|N) for type II_1 factors $N \subset M$ in connection with Jones' index [M:N]. Among other things, they showed the inequality $H(M|N) \leq \log[M:N]$ and obtained several characterizations for the equality. Also it was noted in [19] that $H(M|N) = \log[M:N]$ is equivalent to $[M:N] = [M:N]_0$. The entropy H(M|N) was first used in Connes and Størmer [12] to study the entropy of Kolmogorov-Sinai

Communicated by H. Araki, June 28, 1990.

¹⁹⁹¹ Mathematics Subject Classification: Primary 46L37, Secondly 46L40, 28D20.

^{*} Department of Mathematics, Osaka Kyoiku University, Tennoji, Osaka 543, Japan.

^{**} Division of Applied Mathematics, Research Institute of Applied Electricity, Hokkaido University, Sapporo 060, Japan.

Current address: Department of Mathematics, Ibaraki University, Mito, Ibaraki 310, Japan.

† Research partially supported by Grant-in-Aid for Scientific Research.

type for automorphisms of finite von Neumann algebras. Furthermore the notion of entropy for automorphisms was extended by Connes [10] and Connes, Narnhofer and Thirring [11] to the general setup of C^* -algebras or von Neumann algebras.

For von Neumann algebras $N \subset M$ and a faithful normal state φ on M, the entropy $H_{\varphi}(M|N)$ is defined as in [10], which coincides with the above H(M|N) when φ is a trace. General properties of $H_{\varphi}(M|N)$ were given in [21]. When there exists $E \in \mathscr{E}(M, N)$ with $\varphi \circ E = \varphi$, another entropy $K_{\varphi}(M|N)$ was defined in [20] (also [23]) by taking account of Pimsner and Popa's estimate of H(M|N). Given factors $N \subset M$ and $E \in \mathscr{E}(M, N)$, the relation between the entropy $K_E(M|N)$ and the minimum index $[M:N]_0$ was established in [20] in a way analogous to [33]. Here $K_E(M|N) = K_{\varphi}(M|N)$ independently of φ with $\varphi \circ E = \varphi$, and $K_E(M|N) = H(M|N)$ when $N \subset M$ are type Π_1 factors and E is the conditional expectation with respect to the trace.

The entropy $H(\sigma)$ for a *-endomorphism σ of a finite von Neumann algebra A was investigated in [6, 7] in connection with the entropy $H(A|\sigma(A))$ and the generalized index $\lambda(A, \sigma(A))$ introduced in [33]. Here the entropy for *-endomorphisms can be defined in the same way as that for automorphisms. For an inclusion $N \subset M$ of type II_1 factors with finite index, Ocneanu [31] introduced a special kind of *-endormorphism Γ , called the canonical shift, on the tower of relative commutants induced by the tower of basic constructions. The canonical shift Γ is extended on the von Neumann algebra A generated by the tower of relative commutants, which becomes a typical example of 2-shifts. Under a certain assumption (equivalent to the equality $H(M|N) = \log [M:N]$), the following relations were obtained in [7]:

$$H(A|\Gamma(A)) \le 2H(\Gamma) \le \log \lambda(A, \Gamma(A))^{-1} = 2\log[M:N].$$

These numbers are all identical particularly when $N \subset M$ has finite depth. The aim of this paper is to extend the results in [7] to the canonical shift defined for a pair of arbitrary factors.

In § 1 of this paper, for the reader's convenience, we list definitions and preliminaries on the index theory and the entropy theory. In particular, we note that the main results for automorphisms in [10, 11] remain valid also for *-endomorphisms. Now let $N \subset M$ be factors and $E \in \mathscr{E}(M, N)$ with Index $E < \infty$. Then we obtain the basic construction for E following [24], which consists of a factor $M_1 \supset M$, a projection $e \in M_1$ with $M_1 = \langle M, e \rangle$, and $E_1 \in \mathscr{E}(M_1, M)$. In § 2, we obtain an algebraic (up to isomorphisms) characterization of the basic construction (M_1, e, E_1) for E. A similar characterization was given in [17].

Iterating the basic constructions from E, we obtain the tower of factors $N \subset M = M_0 \subset M_1 \subset M_2 \subset \cdots$ with projections $e_{n-1} \in M_n$ and $E_n \in \mathscr{E}(M_n, M_{n-1})$ for $n \geq 1$. In §3, on the tower of relative commutants $M' \cap M_1 \subset M' \cap M_2 \subset \cdots$,

we define the mirrorings γ_n and the canonical shift Γ . To do so, we adopt a powerful idea of Longo's canonical endomorphism [28–30]. Here it is worth noting that the canonical shift Γ on $\bigcup_n (M' \cap M_n)$ is independent (up to isomorphisms) of the choice of $E \in \mathscr{E}(M, N)$. But taking the GNS representation associated with the state ϕ canonically determined by $\{E_n\}$, we extend Γ (denoted by the same Γ) to a *-endomorphism of the von Neumann algebra A generated by $\bigcup_n (M' \cap M_n)$. We call (A, ϕ, Γ) the canonical shift associated with E. In particular, when $E = E_0$ (i.e. Index $E = [M:N]_0$), ϕ is a trace and Popa's analysis [36] on sequences of commuting squares can be applied to the tower of relative commutants in our setup. Thus A is a type II₁ factor when $E = E_0$ and $N \subset M$ has finite depth.

In §§ 4 and 5, we establish relations among the entropy $h_{\phi}(\Gamma)$ of Γ , the entropy $H_{\phi}(A|\Gamma(A))$ relative to $\Gamma(A)$, and the minimum index $[M:N]_0$. The following inequalities hold in general:

$$h_{\phi}(\Gamma) \le \frac{1}{2} \{ K_E(M|N) + K_{E_1}(M_1|M) \} \le \log [M:N]_0,$$

$$H_{\phi}(A|\Gamma(A)) \le 2\log [M:N]_0.$$

We show that $E=E_0$ if $h_{\phi}(\Gamma)=\log [M:N]_0$ or if $H_{\phi}(A|\Gamma(A))=2\log [M:N]_0$. The inequality $H_{\phi}(A|\Gamma(A))\leq 2h_{\phi}(\Gamma)$ holds when $E=E_0$. Furthermore when $E=E_0$ and $N\subset M$ has finite depth, we obtain

$$H_{\phi}(A|\Gamma(A)) = 2h_{\phi}(\Gamma) = \log \lambda_{\phi}(A, \Gamma(A))^{-1} = 2K_{E}(M|N) = 2\log [M:N]_{0}.$$

Finally in §6, we give two typical examples to illustrate our main results.

§1. Preliminaries on Index and Entropy

In this paper, all von Neumann algebras are assumed to be σ -finite. Let M be a von Neumann algebra. The set of all faithful normal states on M is denoted by $\mathscr{E}(M)$. Given a von Neumann subalgebra N of M, we denote by $\mathscr{E}(M,N)$ the set of all faithful normal conditional expectations from M onto N. In this section, we collect definitions and preliminaries on index and entropy for the reader's convenience.

(1.1) Index for conditional expectations

Let $N \subset M$ be von Neumann algebras on a Hilbert space \mathscr{H} . For each $E \in \mathscr{E}(M, N)$, there corresponds uniquely a faithful normal semifinite operator valued weight E^{-1} from N' to M' by the equation $d(\varphi \circ E)/d\psi = d\varphi/d(\psi \circ E^{-1})$ of spatial derivatives where φ and ψ are any faithful normal semifinite weights on N and M', respectively (see [15], [37, 12.11]). When $N \subset M$ is a pair of factors, Kosaki [24] defined the index of E by Index $E = E^{-1}(1)$. Kosaki's

index extends Jones' index [22] in the sense that if M is a finite factor and E_N is the conditional expectation [39] onto a subfactor N with respect to the trace, then Index E_N coincides with Jones' index [M:N].

The following formula (the best constant for Pimsner and Popa's inequality) serves as another definition of Index E. This formula for Jones' index is due to [33, Theorem 2.2], while for infinite factors it was obtained in several ways in [3, 16, 27, 30]. The proof when Index $E < \infty$ is not difficult as shown in [27]. A nice proof of full generality is given in [26].

Theorem 1.1. Let $N \subset M$ be factors where M is not finite dimensional. Then for every $E \in \mathscr{E}(M, N)$,

$$(\operatorname{Index} E)^{-1} = \max \{ \lambda \ge 0 \colon E(x) \ge \lambda x, \ x \in M_+ \}.$$

Moreover $(\operatorname{Index} E)^{-1}$ is always the best constant for the complete positivity of $E - \lambda \operatorname{id}_M$ including the case M is finite dimensional.

(1.2) Minimum index

Given a pair of factors $N \subset M$, the value of Index E depends on the choice of $E \in \mathscr{E}(M, N)$. But if Index $E < \infty$ for some $E \in \mathscr{E}(M, N)$, then the relative commutant $N' \cap M$ is finite dimensional and Index $E < \infty$ for all $E \in \mathscr{E}(M, N)$ as noted in [19]. In this case, it was proved in [19] that there exists a unique $E_0 \in \mathscr{E}(M, N)$ such that

Index
$$E_0 = \min \{ \text{Index } E : E \in \mathscr{E}(M, N) \},$$

which is characterized by the condition

$$E_0^{-1}|N'\cap M = (\text{Index } E_0)E_0|N'\cap M.$$

In fact, $E_0|N'\cap M$ becomes a trace on $N'\cap M$. We define the minimum index $[M:N]_0$ for a pair $N\subset M$ by $[M:N]_0=\mathrm{Index}\,E_0$. Also let $[M:N]_0=\infty$ if $\mathscr{E}(M,N)=\emptyset$ or $\mathrm{Index}\,E=\infty$ for all $E\in\mathscr{E}(M,N)$. Note [24, Theorem 4.4] that if $\mathrm{Index}\,E<4$ for some $E\in\mathscr{E}(M,N)$, then $N'\cap M=\mathbb{C}$ and hence $\mathscr{E}(M,N)=\{E\}$. See [18, 20, 30] for properties of the minimum index.

(1.3) Commuting squares

Consider a square

$$\begin{array}{ccc}
N \subset M \\
\bigcup & \bigcup \\
B \subset A
\end{array}$$

of von Neumann algebras and let $\varphi \in \mathscr{E}(M)$. Then the next proposition can be proved as [14, 4.2.1].

Proposition 1.2. Assume that there exist conditional expectations $E: M \to N$,

 $F: M \to A$ and $G: M \to B$ with respect to φ (i.e. $\varphi \circ E = \varphi \circ F = \varphi \circ G = \varphi$). Then the following conditions are equivalent:

- (i) $E(A) \subset B$;
- (ii) $E \circ F = G$;
- (iii) $E \circ F = F \circ E$ and $A \cap N = B$;
- (iv) E|A = G|A.

We say that

$$\begin{array}{ccc}
N \subset M \\
\bigcup & \bigcup \\
B \subset A
\end{array}$$

is a commuting square with respect to φ if there exist the conditional expectations E, F and G as above and the equivalent conditions (i)—(iv) hold.

(1.4) Entropies $H_{\omega}(M|N)$ and $K_{\omega}(M|N)$

Let $N \subset M$ be von Neumann algebras with $\varphi \in \mathscr{E}(M)$. Following Connes [10], we define the entropy $H_{\varphi}(M|N)$ of M relative to N and φ by

$$H_{\varphi}(M|N) = \sup_{(\psi_i)} \sum_i \{ S(\varphi, \psi_i) - S(\varphi|N, \psi_i|N) \},$$

where the supremum is taken over all finite families $(\psi_1, ..., \psi_n)$ of $\psi_i \in M_*^+$ with $\sum_i \psi_i = \varphi$. Here $S(\varphi, \psi)$ denotes the relative entropy of φ , $\psi \in M_*^+$, which was first introduced by Umegaki [40] in the semifinite case and extended by Araki [1, 2] to the general case. Particularly if M is finite with a faithful normal trace τ , $\tau(1) = 1$, then $H(M|N) = H_{\tau}(M|N)$ is given by

$$H(M|N) = \sup_{(x_i)} \sum_{i} \{ \tau(\eta E_N(x_i)) - \tau(\eta x_i) \},$$

where $\eta(t) = -t \log t$ on $[0, \infty)$, $E_N : M \to N$ is the conditional expectation with respect to τ , and the supremum is taken over all finite families $(x_1, ..., x_n)$ of $x_i \in M_+$ with $\sum_i x_i = 1$. See [21] for general properties of $H_{\varphi}(M|N)$.

When there exists $E \in \mathscr{E}(M, N)$ with $\varphi \circ E = \varphi$, another entropy $K_{\varphi}(M|N)$ of M relative to N and φ was defined in [20] (also [23]) by

$$K_{\omega}(M|N) = -S(\hat{\omega}, \omega)$$

where $\omega = \varphi|N' \cap M$ and $\hat{\omega} = \varphi \circ (E^{-1}|N' \cap M)$. Here unless $\hat{\omega}$ is bounded, the relative entropy $S(\hat{\omega}, \omega)$ is given by the infimum of $S(\omega', \omega)$ for $\omega' \in (N' \cap M)^+_*$ with $\omega' \leq \hat{\omega}$. If N is a factor, then $K_{\varphi}(M|N)$ is independent of the choice of $\varphi \in \mathscr{E}(M)$ with $\varphi \circ E = \varphi$, so that we write $K_{\varphi}(M|N) = K_{E}(M|N)$. Although the entropies $H_{\varphi}(M|N)$ and $K_{\varphi}(M|N)$ are not generally identical, we have $H(M|N) = K_{\tau}(M|N)$ when M is a type II_1 factor.

(1.5) Relation between entropy and index

Pimsner and Popa [33] established the relation between the entropy H(M|N) and Jones' index [M:N] for a pair of type II_1 factors $N \subset M$. The entropy $K_{\varphi}(M|N)$ was investigated in [20] in connection with Kosaki's index and the minimum index for a pair of general factors. In the following, we state the main results in [20] restricting to the case of factors $N \subset M$. Here note that the centralizer $(N' \cap M)_E$ of $E \in \mathscr{E}(M, N)$ is atomic whenever so is $N' \cap M$. Also for each nonzero projection q in $N' \cap M$, E(q) is a scalar and $E_q \in \mathscr{E}(M_q, N_q)$ is defined by $E_q(x) = E(q)^{-1} E(x) q$, $x \in M_q$.

Theorem 1.3. Let $E \in \mathscr{E}(M, N)$.

- (1) If $N' \cap M$ has a nonatomic part, then $K_E(M|N) = \infty$.
- (2) If $N' \cap M$ is atomic and $\{q_i\}$ is a set of atoms in $(N' \cap M)_E$ with $\sum_i q_i = 1$, then

$$K_E(M|N) = \sum_i E(q_i) \log \frac{\operatorname{Index} E_{q_i}}{E(q_i)^2}.$$

Theorem 1.4. (1) $K_E(M|N) \leq \log [M:N]_0$ for every $E \in \mathscr{E}(M,N)$.

- (2) If $[M:N]_0 < \infty$, then the following conditions for $E \in \mathscr{E}(M,N)$ are equivalent:
 - (i) Index $E = [M: N]_0$, i.e. $E = E_0$;
 - (ii) $K_E(M|N) = \log [M:N]_0$;
 - (iii) $K_E(M|N) = \log \operatorname{Index} E$;
 - (iv) Index $E_q = E(q)^2$ Index E for every nonzero projection $q \in N' \cap M$.

(1.6) Entropy for *-endomorphisms

After Connes and Størmer [12] developed the entropy of Kolmogorov-Sinai type for automorphisms of finite von Neumann algebras, Connes [10] and Connes, Narnhofer and Thirring [11] extended it to the general setup of C^* -algebras or von Neumann algebras. As in [6], to fix the notations, we briefly survey its definition extending to the case for *-endomorphisms of general von Neumann algebras.

Let A be a von Neumann algebra with $\phi \in \mathscr{E}(A)$ and σ a *-endomorphism of A with $\phi \circ \sigma = \phi$. Then σ is unital, injective and weakly continuous. For each $n \in \mathbb{N}$, we denote by \mathscr{P}_n the set of all families $\Psi = (\psi_{i_1, \dots, i_n})_{i_1, \dots, i_n \in \mathbb{N}}$ of $\psi_{i_1, \dots, i_n} \in A_*^+$ such that $\sum_{i_1, \dots, i_n} \psi_{i_1, \dots, i_n} = \phi$ and $\psi_{i_1, \dots, i_n} = 0$ except for a finite number of indices. For $\Psi \in \mathscr{P}_n$, $k \in \{1, \dots, n\}$ and $j \in \mathbb{N}$, let

$$\Psi^k_j = \sum_{i_1, \dots, i_{k-1}, i_{k+1}, \dots, i_n} \psi_{i_1, \dots, i_{k-1}, j, i_{k+1}, \dots, i_n}.$$

Given finite dimensional subalgebras B_1, \dots, B_n of A, Connes [10] defined

$$H_{\phi}(B_1,\ldots,B_n) = \sup_{\Psi \in \mathscr{P}_n} \big\{ \sum_{i_1,\ldots,i_n} \eta(\psi_{i_1,\ldots,i_n}(1)) + \sum_{k=1}^n \sum_j S(\phi|B_k,\Psi_j^k|B_k) \big\}.$$

Then the following is easy to check as in [6, Lemma 2]:

$$H_{\phi}(\sigma(B_1),\ldots,\sigma(B_n)) \leq H_{\phi}(B_1,\ldots,B_n).$$

By this and [10, Théorème 5], the following limit exists for each finite dimensional subalgebra B of A:

$$h_{\phi,\sigma}(B) = \lim_{n \to \infty} \frac{1}{n} H_{\phi}(B, \sigma(B), \dots, \sigma^{n-1}(B)).$$

Now the entropy $h_{\phi}(\sigma)$ of σ relative to ϕ is defined by the supremum of $h_{\phi,\sigma}(B)$ for all finite dimensional subalgebras B of A.

The arguments in [11, § VII] remain true also for *-endomorphism, so that we have:

Theorem 1.5. If $\{B_k\}$ is an increasing sequence of finite dimensional subalgebras with $A = (\bigcup_k B_k)''$ (so A is approximately finite dimensional), then

$$h_{\phi}(\sigma) = \lim_{k \to \infty} h_{\phi,\sigma}(B_k).$$

Proposition 1.6. (1) $h_{\phi}(\sigma) = h_{\phi \circ \theta}(\theta^{-1} \sigma \theta)$ for every automorphism θ of A. (2) $h_{\phi}(\sigma^n) \leq nh_{\phi}(\sigma)$ for all $n \in \mathbb{N}$, and the equality holds if A is approximately finite dimensional.

§ 2. Basic Construction and Algebraic Basic Construction

The concept of the basic construction invented by Jones is a core in the index theory [22, 24]. In this section, we present some preliminary results on the (algebraic) basic construction, which will be useful in the next section.

First let us recall the procedure of the basic construction [24]. Let $N \subset M$ be factors and $E \in \mathscr{E}(M, N)$ with Index $E < \infty$. Choosing $\varphi \in \mathscr{E}(M)$ with $\varphi \circ E = \varphi$, we represent M standardly on $\mathscr{H} = \mathscr{H}_{\varphi}$ equipped with the natural cone \mathscr{H}^+ and the associated modular conjugation J. Define the factor $M_1 = JN'J$ and the projection e by $e(x\xi) = E(x)\xi$, $x \in M$, where $\varphi = \omega_{\varepsilon}$, $\xi \in \mathscr{H}^+$. Then

$$M_1 = \langle M, e \rangle (= (M \cup \{e\})'').$$

Also $E_1 \in \mathscr{E}(M_1, M)$ is defined by

$$E_1(x) = (\text{Index } E)^{-1} J E^{-1} (J x J) J, \quad x \in M_1.$$

The construction of (M_1, e, E_1) is called the basic construction for E. We write this procedure as follows:

$$N \subset M \subset {}^{e}M_{1}.$$

The next proposition is a restatement of [25, Appendix I], which shows that the basic construction is canonical up to spatial isomorphisms.

Proposition 2.1. Let $\hat{N} \subset \hat{M}$ be factors with $\hat{E} \in \mathscr{E}(\hat{M}, \hat{N})$. Let $\theta : M \to \hat{M}$ be an isomorphism such that $\theta(N) = \hat{N}$ and $\theta \circ E = \hat{E} \circ \theta$ (hence Index $\hat{E} = \text{Index } E$ $<\infty$). Let

$$\hat{N} \subset \hat{M} \subset \hat{E} \hat{M}_1$$

be the basic construction for \hat{E} defined on a Hibert space $\hat{\mathscr{H}}$ with the conjugation Then there exists a unitary $u: \mathcal{H} \to \hat{\mathcal{H}}$ such that

- (i) $uxu^* = \theta(x), x \in M$,
- (ii) $uJu^* = \hat{J}$,
- (iii) $ueu^* = \hat{e}$,
- $(iv) \quad uM_1u^* = \hat{M}_1,$
- (v) $\operatorname{Ad}(u) \circ E_1 = E_1 \circ \operatorname{Ad}(u)$ on M_1 .

Now let us introduce the notion of algebraic basic constructions. Let N $\subset M \subset M_1$ be factors, $e \in M_1$ a projection, $E \in \mathscr{E}(M, N)$ and $E_1 \in \mathscr{E}(M_1, M)$. We call (M_1, e, E_1) an algebraic basic construction for E if

- (1) $M_1 = \langle M, e \rangle$,
- (2) $E_1(e) = \lambda 1 \ (\lambda > 0),$
- (3) $exe = E(x)e, x \in M$.

In this case, we have Index $E < \infty$ by Theorem 1.1 because for $x \in M_+$

$$\lambda E(x) = E_1(E(x)e) = E_1(exe) \ge E_1(x^{1/2}e) * E_1(x^{1/2}e) = \lambda^2 x.$$

Note [24, Lemma 3.2 and (8)] that the basic construction for E is an algebraic one. The next proposition shows the uniqueness of algebraic basic constructions for E up to isomorphisms. In other words, the above (1)–(3) algebraically characterize the basic construction for E (see [34, Proposition 1.2] for more elegant characterizations in the type II₁ case). A similar result was obtained by Hamachi and Kosaki [17, Theorem 8].

Proposition 2.2. Besides (M_1, e, E_1) for $E \in \mathscr{E}(M, N)$ as above, let $\widetilde{N} \subset \widetilde{M} \subset \widetilde{M}_1$ be factors, $\widetilde{e} \in \widetilde{M}_1$ a projection, $\widetilde{E} \in \mathscr{E}(\widetilde{M}, \widetilde{N})$ and $\widetilde{E}_1 \in \mathscr{E}(\widetilde{M}_1, \widetilde{M})$ such that $(\tilde{M}_1, \tilde{e}, \tilde{E}_1)$ is an algebraic basic construction for \tilde{E} . If $\theta: M \to \tilde{M}$ is an isomorphism such that $\theta(N) = \tilde{N}$ and $\theta \circ E = \tilde{E} \circ \theta$, then there exists a unique isomorphism $\theta_1: M_1 \to \widetilde{M}_1$ such that

- (i) $\theta_1(x) = \theta(x), x \in M$,
- $\begin{array}{ll} \text{(ii)} & \theta_1(e) = \tilde{e}, \\ \text{(iii)} & \theta_1 \circ E_1 = \tilde{E}_1 \circ \theta_1. \end{array}$

Proof. Since Index $E < \infty$ as remarked above, we can take the basic construction for E. So we may assume that (M_1, e, E_1) is the basic construction (in the spatial sense) for E. Let $\widetilde{E}_1(\widetilde{e}) = \widetilde{\lambda} 1$ ($\widetilde{\lambda} > 0$), while $E_1(e) = \lambda 1$ with $\lambda = (\operatorname{Index} E)^{-1}$. Let $\varphi \in \mathscr{E}(M)$ and define $\psi \in \mathscr{E}(M_1)$, $\widetilde{\psi} \in \mathscr{E}(\widetilde{M}_1)$ by $\psi = \varphi \circ E_1$, $\widetilde{\psi} = \varphi \circ \theta^{-1} \circ \widetilde{E}_1$. According to [33, Proposition 1.3] and [41, 2.5.3], there exists a basis $\{m_1, \ldots, m_n\}$ in M for E which satisfies $\sum_i m_i e m_i^* = 1$. The existence of such a basis shows that M_1 is the linear span of $\{aeb: a, b \in M\}$ (see the proof of [33, Proposition 1.5]). For any $a_i, b_i \in M$, $1 \le i \le k$, we have

$$\psi(\sum_{i} a_{i}eb_{i}) = \lambda\varphi(\sum_{i} a_{i}b_{i}) = \mu\widetilde{\psi}(\sum_{i} \theta(a_{i})\widetilde{e}\theta(b_{i}))$$

where $\mu=\lambda \tilde{\lambda}^{-1}.$ Therefore a map $\theta_1\colon M_1\to \tilde{M}_1$ is well defined by

$$\theta_1(\sum_i a_i e b_i) = \sum_i \theta(a_i) \tilde{e} \theta(b_i), \qquad a_i, b_i \in M.$$

Then (ii) holds and θ_1 is a *-homomorphism. Since $\psi = \mu \tilde{\psi} \circ \theta_1$, θ_1 is normal and hence injective. We get

$$\theta_1(1)\tilde{e} = \theta_1(e) = \tilde{e}\theta_1(1),$$

and since $\theta_1(1) = \sum_i \theta(m_i) \tilde{e} \theta(m_i^*)$,

$$\theta_1(1)\theta(x) = \theta_1(x) = \theta(x)\theta_1(1), \qquad x \in M,$$

so that $\theta_1(1) = 1$, showing (i). Moreover the linear span of $\{\tilde{a}\tilde{e}\tilde{b}: \tilde{a}, \tilde{b}\in \tilde{M}\}$ is the *-algebra generated by $\tilde{M} \cup \{\tilde{e}\}$, so that θ_1 is surjective. Since

$$(\theta_1 \circ E_1)(aeb) = \lambda \theta(ab) = \mu(\tilde{E}_1 \circ \theta_1)(aeb), \quad a, b \in M,$$

we get $\mu = 1$ and (iii) holds. It is immediate that (i) and (ii) uniquely determine θ_1 .

Proposition 2.2 shows that algebraic properties of the basic construction automatically become those of an algebraic basic construction (M_1, e, E_1) for E. So we have for instance

- (4) Index $E = \operatorname{Index} E_1 = \lambda^{-1}$ for λ in (2),
- (5) $N = M \cap \{e\}',$
- (6) $e \in (N' \cap M_1)_{E \circ E_1}$, the centralizer of $E \circ E_1$.

Furthermore we have:

Proposition 2.3. In any representation of $N \subset M \subset M_1$,

- (7) $E^{-1}(e) = 1$,
- (8) $exe = \lambda E_1^{-1}(x)e, x \in M'$

Proof. Since (7) and (8) hold for the basic construction, it suffices by

Proposition 2.2 to show that the validity of (7) and (8) is preserved under isomorphisms, that is, if $\alpha: M_1 \to \tilde{M}_1$ is an isomorphism and if $\tilde{M} = \alpha(M)$, $\tilde{N} = \alpha(N)$, $\tilde{E} = \alpha_0 \circ E \circ \alpha_0^{-1} (\alpha_0 = \alpha | M)$, $\tilde{E}_1 = \alpha \circ E_1 \circ \alpha^{-1}$ and $\tilde{e} = \alpha(e)$, then (7) and (8) imply

 $(7') \quad \tilde{E}^{-1}(\tilde{e}) = 1,$

(8')
$$\tilde{e}x\tilde{e} = \lambda \tilde{E}_1^{-1}(x)\tilde{e}, x \in \tilde{M}'.$$

We may separately consider an amplification, an induction and a spatial isomorphism. The first two cases are easily shown by [20, Propositions 1.7 and 1.5]. The final case is obvious.

From now on, let $N \subset M$ be always a pair of factors with $[M:N]_0 < \infty$. By iterating the basic construction from $E \in \mathscr{E}(M, N)$, we obtain the tower

$$N \underset{E}{\subset} M = M_0 \underset{E_1}{\subset} M_1 \underset{E_2}{\subset} M_2 \subset \cdots$$

of factors M_n together with conditional expectations $E_n \in \mathcal{E}(M_n, M_{n-1})$. Then we have the commuting square property as follows.

Proposition 2.4. Let $\varphi_0 \in \mathscr{E}(M)$ with $\varphi_0 \circ E = \varphi_0$, and define $\varphi_n \in \mathscr{E}(M_n)$ by

$$\varphi_n = \varphi_0 \circ E_1 \circ \cdots \circ E_n, \quad n \geq 1.$$

Then for every $0 \le j \le k \le n$

$$\begin{array}{ccc} M_k & \subset & M_n \\ & \bigcup & & \bigcup \\ M'_j \cap M_k \subset M'_j \cap M_n \end{array}$$

is a commuting square with respect to φ_n .

Proof. Let $E_{k,n} = E_{k+1} \circ \cdots \circ E_n$ which is the conditional expectation $M_n \to M_k$ with respect to φ_n . Hence by [38], we have

$$\sigma_t^{\varphi_n}(M_j'\cap M_n)=M_j'\cap M_n,\quad \sigma_t^{\varphi_n}(M_j'\cap M_k)=M_j'\cap M_k,\qquad t\in\mathbb{R},$$

so that there exist the conditional expectations $M_n \to M'_j \cap M_n$ and $M_n \to M'_j \cap M_k$ with respect to φ_n . Now it is easy to check that $E_{k,n}(M'_j \cap M_n) = M'_j \cap M_k$, implying the conclusion by Proposition 1.2.

Let $E_0 \in \mathscr{E}(M, N)$ be such that Index $E_0 = [M: N]_0$. Then the characterization of E_0 in (1.2) immediately shows the following:

Proposition 2.5. $E = E_0$ if and only if $E(x) = E_1(Jx^*J)$ for all $x \in N' \cap M$.

The next important result on the minimum index for the tower is proved by Kosaki and Longo [26].

Theorem 2.6. Suppose $E = E_0$. Then for every $0 \le k < n$, $E_{k+1} \circ \cdots \circ E_n \in \mathscr{E}(M_n, M_k)$ gives the minimum index for $M_k \subset M_n$; equivalently $[M_n: M_k]_0 = [M:N]_0^{n-k}$. In particular, $E_{k+1} \circ \cdots \circ E_n | M'_k \cap M_n$ is a trace.

§ 3. Definitions of Mirrorings and Canonical Shift

Ocneanu [31] introduced the important concepts of the mirrorings and the canonical shift on the tower of relative commutants for the inclusion of type II_1 factors with finite index. The aim of this section is to present precise definitions of the mirrorings and the canonical shift which are available to the inclusion $N \subset M$ of general factors.

Given $E \in \mathscr{E}(M, N)$ where Index $E < \infty$ by assumption, let

$$N \underset{\overleftarrow{E}}{\subset} M = M_0 \underset{\overleftarrow{E_1}}{\subset} {}^{e_0} M_1 \underset{\overleftarrow{E_2}}{\subset} {}^{e_1} M_2 \underset{\overleftarrow{E_3}}{\subset} {}^{e_2} M_3 \subset \cdots$$

be the tower of basic constructions iterated from E. Here for each $n \ge 1$, M_n is standardly represented on a Hilbert space \mathcal{H}_n with the modular conjugation J_n , so that

$$M_{n+1} = J_n M'_{n-1} J_n = \langle M_n, e_n \rangle,$$

 $E_{n+1}(x) = \lambda J_n E_n^{-1} (J_n x J_n) J_n, \qquad x \in M_{n+1},$

where $\lambda = (\operatorname{Index} E)^{-1}$. Then we obtain the tower

$$M' \cap M_1 \subset M' \cap M_2 \subset M' \cap M_3 \subset \cdots$$

of relative commutant algebras, which is an increasing sequence of finite dimensional algebras.

For each fixed $n \ge 1$, let us define

$$\widetilde{M}_{k} = J_{n} M'_{2n-k} J_{n},$$
 $n+1 \le k \le 2n,$ $\widetilde{e}_{k} = J_{n} e_{2n-k} J_{n},$ $n+1 \le k \le 2n-1,$ $\widetilde{E}_{k}(x) = \lambda J_{n} E_{2n-k+1}^{-1} (J_{n} x J_{n}) J_{n},$ $x \in \widetilde{M}_{k}, n+2 \le k \le 2n,$

where M'_{2n-k} and E^{-1}_{2n-k+1} are defined for $M_{2n-k} \subset M_{2n-k+1}$ represented on \mathcal{H}_n . Then

$$\begin{split} &M_n \subset M_{n+1} = \tilde{M}_{n+1} \subset \tilde{M}_{n+2} \subset \cdots \subset \tilde{M}_{2n}, \\ &\tilde{e}_{k-1} \in \tilde{M}_k, \ \tilde{E}_k \in \mathscr{E}(\tilde{M}_k, \tilde{M}_{k-1}), \qquad n+2 \leq k \leq 2n, \end{split}$$

and we have:

Lemma 3.1. For every $n+1 \le k \le 2n-1$, $(\widetilde{M}_{k+1}, \widetilde{e}_k, \widetilde{E}_{k+1})$ is an algebraic basic construction for \widetilde{E}_k where $\widetilde{E}_{n+1} = E_{n+1}$.

Proof. Let us check three conditions for the algebraic basic construction. Since $M_{2n-k-1} = M_{2n-k} \cap \{e_{2n-k}\}'$, $\widetilde{M}_{k+1} = \langle \widetilde{M}_k, \widetilde{e}_k \rangle$. Since $E_{2n-k}^{-1}(e_{2n-k}) = 1$ by Proposition 2.3 (7),

$$\widetilde{E}_{k+1}(\widetilde{e}_k) = \lambda J_n E_{2n-k}^{-1}(e_{2n-k}) J_n = \lambda 1.$$

Since by Proposition 2.3 (8)

$$e_{2n-k}xe_{2n-k} = \lambda E_{2n-k+1}^{-1}(x)e_{2n-k}, \quad x \in M'_{2n-k},$$

we get for $x \in \widetilde{M}_k$

$$\tilde{e}_k x \tilde{e}_k = \lambda J_n E_{2n-k+1}^{-1} (J_n x J_n) e_{2n-k} J_n = \tilde{E}_k(x) \tilde{e}_k.$$

Lemma 3.1 enables us to apply Proposition 2.2 recursively, so that we have the following:

Proposition 3.2. For every $n \ge 1$, there exists a unique isomorphism $\theta_n : M_{2n} \to \tilde{M}_{2n}$ such that

- $(1) \quad \theta_n(x) = x, \ x \in M_{n+1},$
- (2) $\theta_n(M_k) = M_k, \ n+2 \le k \le 2n,$
- (3) $\theta_n(e_k) = \tilde{e}_k, n+1 \le k \le 2n-1,$
- (4) $\theta_n \circ E_k = \tilde{E}_k \circ \theta_n$ on M_k , $n+2 \le k \le 2n$.

Using θ_n in Proposition 3.2, we now define antiautomorphisms γ_n of $M' \cap M_{2n}$, $n \ge 1$, by

$$\gamma_n(x) = \theta_n^{-1} (J_n \theta_n(x^*) J_n), \qquad x \in M' \cap M_{2n}.$$

(Also let $\gamma_0 = \operatorname{id}$ on $M' \cap M = \mathbb{C}$.) We obviously have $\gamma_n \circ \gamma_n = \operatorname{id}_{M' \cap M_{2n}}$. These γ_n are called the mirrorings on the tower of relative commutants, which extend those in [31]. The next proposition shows that the sequence $\{\gamma_n\}$ of mirrorings is determined (up to isomorphisms) independently of the choice of the tower.

Proposition 3.3. Besides the tower and $\{\gamma_n\}$ described above, let

$$N \underset{\overleftarrow{E}}{\subset} M = \hat{M}_0 \underset{\overleftarrow{\hat{E}}_1}{\subset} {}^{\hat{e}_0} \hat{M}_1 \underset{\overleftarrow{\hat{E}}_2}{\subset} {}^{\hat{e}_1} \hat{M}_2 \subset \cdots$$

be another tower of basic constructions from E, and $\{\hat{\gamma}_n\}$ be the associated sequence of mirrorings. Then there exists an isomorphism $\Theta: \bigcup_n M_n \to \bigcup_n \hat{M}_n$ such that for every $n \ge 1$

- (1) $\Theta(x) = x, x \in M$,
- (2) $\Theta(M_n) = M_n$,
- (3) $\Theta \circ E_n = \hat{E}_n \circ \Theta$ on M_n ,
- (4) $\Theta \circ \gamma_n = \hat{\gamma}_n \circ \Theta$ on $M' \cap M_{2n}$.

Proof. Let \hat{M}_n be standardly represented on a Hilbert space $\hat{\mathscr{H}}_n$ with the

conjugation \hat{J}_n . Applying Proposition 2.1 recursively, we have a sequence $\{u_n: n \geq 0\}$ of unitaries $u_n: \mathcal{H}_n \to \hat{\mathcal{H}}_n$ such that for every $n \geq 0$

- (i) $u_n x u_n^* = u_{n-1} x u_{n-1}^*$, $x \in M_n$ (with convention $u_{-1} = 1$),
- (ii) $u_n J_n u_n^* = \hat{J}_n$,
- (iii) $u_n e_n u_n^* = \hat{e}_n$,
- (iv) $u_n M_{n+1} u_n^* = M_{n+1}$,
- (v) $\operatorname{Ad}(u_n) \circ E_{n+1} = \hat{E}_{n+1} \circ \operatorname{Ad}(u_n)$ on M_{n+1} .

Thus an isomorphism $\Theta: \bigcup_n M_n \to \bigcup_n \hat{M}_n$ can be defined by $\Theta(x) = u_n x u_n^*$, $x \in M_n$, $n \ge 0$. Then (1)–(3) are immediate. Let us prove (4). Besides $\theta_n: M_{2n} \to \tilde{M}_{2n} (= J_n M' J_n)$, let $\hat{\theta}_n: \hat{M}_{2n} \to \hat{J}_n M' \hat{J}_n$, $n \ge 1$, be isomorphisms as in Proposition 3.2 associated with the second tower. For each $n \ge 1$, we can define the isomorphism $\Theta_{2n}: M_{2n} \to \hat{M}_{2n}$ by $\Theta_{2n} = \hat{\theta}_n^{-1} \circ \operatorname{Ad}(u_n) \circ \theta_n$ because $u_n(J_n M' J_n) u_n^* = \hat{J}_n M' \hat{J}_n$. Then by Proposition 3.2 together with (i)–(v), we have the following:

- (1°) $\Theta_{2n} = \operatorname{Ad}(u_n)$ on M_{n+1} ,
- (2°) $\Theta_{2n}(M_k) = M_k, n+2 \le k \le 2n,$
- (3°) $\Theta_{2n}(e_k) = \hat{e}_k, \ n+1 \le k \le 2n-1,$
- $(4^{\circ}) \quad \Theta_{2n} \circ E_k = \hat{E}_k \circ \Theta_{2n}, \ n+2 \le k \le 2n.$

Since the above (1°)–(4°) are the conditions which uniquely determine the isomorphism $\Theta|M_{2n}$, it follows that $\Theta_{2n}=\Theta|M_{2n}$. Therefore we get for $x\in M'\cap M_{2n}$

$$(\Theta \circ \gamma_n)(x) = \hat{\theta}_n^{-1}(u_n J_n \theta_n(x^*) J_n u_n^*) = \hat{\theta}_n^{-1}(\hat{J_n} \hat{\theta}_n(\Theta(x)^*) \hat{J_n}) = (\hat{\gamma}_n \circ \Theta)(x),$$

as desired.

In the proof of the next proposition, we adopt a key idea of Longo's canonical endomorphism investigated in [28–30].

Proposition 3.4. For every
$$n \ge 1$$
, $\gamma_{n+1} \circ \gamma_n = \gamma_n \circ \gamma_{n-1}$ on $M' \cap M_{2n-2}$.

Proof. In view of Proposition 3.3, we may show in the particular choice of the tower. First assume that M is infinite (hence so is N). Since the assumption of finite index implies that N' is σ -finite on the standard Hilbert space \mathcal{H} for M, we can choose $\xi_0 \in \mathcal{H}$ which is cyclic and separating for both M and N (see [13]). Let J_M and J_N be the modular conjugations associated with ξ_0 for M and N, respectively, and let $W = J_M J_N$. We define the basic construction (M_1, e_0, E_1) for E via the natural cone associated with ξ_0 for M. Since

$$M_1 = J_M N' J_M = WNW^*,$$

 M_1 is standard on \mathcal{H} with the conjugation $J_1 = WJ_NW^*$ associated with ξ_0 . Hence the basic construction for E_1 can be defined via the natural cone associated with ξ_0 for M_1 , so that we have two steps of the tower

$$N \underset{E}{\subset} M \underset{E_1}{\subset} {}^{e_0}M_1 \underset{E_2}{\subset} {}^{e_1}M_2$$

on the same \mathcal{H} . Here

$$M_2 = WJ_NW^*M'WJ_NW^* = WMW^*.$$

Now define for $n \ge 1$

$$\begin{split} &M_{2n} = W^n M \, W^{*n}, \ M_{2n+1} = W^{n+1} \, N \, W^{*n+1} \, (= W^n M_1 \, W^{*n}), \\ &J_{2n} = W^n J_M W^{*n}, \ J_{2n+1} = W^{n+1} J_N W^{*n+1} \, (= W^n J_1 \, W^{*n}), \\ &e_{2n} = W^n e_0 \, W^{*n}, \ e_{2n+1} = W^n e_1 \, W^{*n}, \\ &E_{2n} = W^n E(W^{*n} \cdot W^n) W^{*n}, \ E_{2n+1} = W^n E_1 (W^{*n} \cdot W^n) W^{*n}. \end{split}$$

Then it is easy to see that the tower

$$N \underset{E}{\subset} M \underset{E_1}{\subset} {}^{e_0}M_1 \underset{E_2}{\subset} {}^{e_1}M_2 \underset{E_3}{\subset} {}^{e_2}M_3 \subset \cdots$$

is a realization of the tower of basic constructions from E. For this tower, the isomorphisms $\theta_n \colon M_{2n} \to \tilde{M}_{2n}$ in Proposition 3.2 are simply $\theta_n = \mathrm{id}_{M_{2n}} \ (\tilde{M}_{2n} = M_{2n})$. Therefore

$$\gamma_n(x) = J_n x^* J_n, \quad x \in M' \cap M_{2n}, \quad n \ge 1.$$

This shows that for $n \ge 1$

$$\gamma_n(\gamma_{n-1}(x)) = Wx W^*, \qquad x \in M' \cap M_{2n-2},$$

and particularly $\gamma_{n+1} \circ \gamma_n = \gamma_n \circ \gamma_{n-1}$ on $M' \cap M_{2n-2}$.

Next assume that M is finite. Taking the tensor product of the tower from E with any infinite factor P, we obtain

$$N \otimes P \underset{E \otimes \mathrm{id}_P}{\subset} M \otimes P \underset{E_1 \otimes \mathrm{id}_P}{\subset} {}^{e_0 \otimes 1} M_1 \otimes P \underset{E_2 \otimes \mathrm{id}_P}{\subset} {}^{e_1 \otimes 1} M_2 \otimes P \subset \cdots,$$

which is really the tower of basic constructions from $E \otimes \mathrm{id}_P$. Since the isomorphisms in Proposition 3.2 for the tensored tower are $\theta_n \otimes \mathrm{id}_P \colon M_{2n} \otimes P \to \widetilde{M}_{2n} \otimes P$ and $M' \cap M_{2n} = (M \otimes P)' \cap (M_{2n} \otimes P)$, the mirrorings for the tensored tower coincide with those for the original tower. Thus the desired equality follows from the infinite case.

The next proposition is a partial extension of [34, Theorem 2.6] (also [31]).

Proposition 3.5. For every $0 \le k < n$, $E_{n+1} \circ \cdots \circ E_{2n-k}$ is the basic construction of $E_{k+1} \circ \cdots \circ E_n$; more precisely

$$(E_{n+1} \circ \cdots \circ E_{2n-k})(x) = \lambda^{n-k} J_n(E_{k+1} \circ \cdots \circ E_n)^{-1} (J_n \theta_n(x) J_n) J_n$$

for all $x \in M_{2n-k}$ with θ_n in Proposition 3.2.

Proof. By the proof of Proposition 3.3, it suffices to show in the particular choice of the tower. When M is infinite, we take the tower specified in the proof of Proposition 3.4 where $\theta_n = \mathrm{id}_{M_{2n}}$. The case k = n - 1 is just the definition of the basic construction. Suppose the equality holds for some 0 < k < n. Then for every $x \in M_{2n-k+1}$, we have

$$(E_{n+1} \circ \cdots \circ E_{2n-k+1})(x) = \lambda^{n-k+1} J_n(E_{k+1} \circ \cdots \circ E_n)^{-1} (E_k^{-1} (J_n x J_n)) J_n$$

= $\lambda^{n-k+1} J_n(E_k \circ \cdots \circ E_n)^{-1} (J_n x J_n) J_n$,

because

$$E_{2n-k+1}(x) = \lambda J_n E_k^{-1} (J_n x J_n) J_n$$

as easily checked. Hence the conclusion follows by induction. When M is finite, we can do as in the proof of Proposition 3.4.

Given the tower from E, Proposition 3.4 enables us to define a *-endomorphism Γ of $\bigcup_n (M' \cap M_n)$ by

$$\Gamma(x) = \gamma_{n+1}(\gamma_n(x)), \qquad x \in M' \cap M_{2n},$$

which is called the canonical shift on the tower of relative commutants. In view of the proof of Proposition 3.4, we know that the canonical shift Γ as well as the mirrorings γ_n can be constructed apart from the choice of $E \in \mathscr{E}(M, N)$. In this sense, Γ is canonical for the inclusion $N \subset M$ rather than for E. Now the faithful state ϕ on $\bigcup_n (M' \cap M_n)$ is defined by

$$\phi | M' \cap M_n = E_1 \circ \cdots \circ E_n | M' \cap M_n, \quad n \ge 1.$$

Then we have:

Proposition 3.6. (1) $\gamma_n(M'_j \cap M_k) = M'_{2n-k} \cap M_{2n-j}, \ 0 \le j \le k \le 2n.$

- (2) $\Gamma(M'_k \cap M_n) = M'_{k+2} \cap M_{n+2}, \ 0 \le k \le n.$
- (3) $\Gamma^k \circ \gamma_n = \gamma_{n+k}$ on $M' \cap M_{2n}$, $k, n \ge 0$.
- (4) $\phi \circ \Gamma = \phi$ on $\bigcup_{n} (M' \cap M_n)$.
- (5) If $E = E_0$, then $\phi \circ \gamma_n = \phi$ on $M' \cap M_{2n}$, $n \ge 0$.

Proof. The case of M being finite follows from the infinite case by taking the tensor product with an infinite factor. So let M be infinite. It suffices as before to show for the tower specified in the proof of Proposition 3.4. Then (1)–(3) are directly checked for $\Gamma(x) = Wx W^*$ and $\gamma_n(x) = J_n x^* J_n$, $x \in M' \cap M_{2n}$. (In fact, $W^k J_n = J_n W^{*k} = J_{n+k}$.)

(4) Proposition 3.5 implies that

$$(E_{k+1} \circ \cdots \circ E_n)(x) = \lambda^{n-k} J_n (E_{n+1} \circ \cdots \circ E_{2n-k})^{-1} (J_n x J_n) J_n$$

for all $x \in M_n$, $n > k \ge 0$. Hence for every $x \in M' \cap M_n$, we get

$$\phi(x) = (E_1 \circ \dots \circ E_{n+1})(x)$$

= $\lambda^{n+1} J_{n+1} (E_{n+2} \circ \dots \circ E_{2n+2})^{-1} (J_{n+1} \times J_{n+1}) J_{n+1}.$

Since $J_{n+1} \times J_{n+1} \in M'_{n+2} \cap M_{2n+2}$, we get $E_{n+2}^{-1}(J_{n+1} \times J_{n+1}) = \lambda^{-1}J_{n+1} \times J_{n+1}$. Therefore

$$\phi(x) = \lambda^n J_{n+1} (E_{n+3} \circ \cdots \circ E_{2n+2})^{-1} (J_{n+1} x J_{n+1}) J_{n+1}$$

$$= J_{n+1} J_{n+2} (E_3 \circ \cdots \circ E_{n+2}) (J_{n+2} J_{n+1} x J_{n+1} J_{n+2}) J_{n+2} J_{n+1}$$

$$= (E_3 \circ \cdots \circ E_{n+2}) (Wx W^*) = \phi(\Gamma(x)).$$

(5) Let $E = E_0$ and $x \in M' \cap M_{2n}$. Combining Proposition 2.5, Theorem 2.6 and Proposition 3.5, we have

$$\phi(x) = (E_1 \circ \dots \circ E_{2n})(x) = (E_{2n+1} \circ \dots \circ E_{4n})(J_{2n} x^* J_{2n})$$
$$= \phi(\gamma_{2n}(x)) = \phi(\Gamma^n(\gamma_n(x))) = \phi(\gamma_n(x))$$

by (3) and (4).

Let us extend Γ to a *-endomorphism of the von Neumann algebra generated by $\bigcup_n (M' \cap M_n)$. So define

$$A = \pi_{\phi}(\bigcup_{n} (M' \cap M_{n}))''$$

where π_{ϕ} is the GNS representation of $\bigcup_{n}(M'\cap M_{n})$ associated with ϕ . Further let $\bar{\phi}$ be the normal extension of ϕ on A, so that $\bar{\phi}(\pi_{\phi}(x)) = \phi(x)$, $x \in \bigcup_{n}(M'\cap M_{n})$.

The inclusion $N \subset M$ is said to have finite depth if

$$\sup_{n} \dim Z(M' \cap M_n) < \infty$$

where $Z(M' \cap M_n)$ denotes the center of $M' \cap M_n$ (this condition does not depend on the choice of E).

Proposition 3.7. (1) $\bar{\phi}$ is a faithful normal state on A.

- (2) There exists a unique *-endomorphism $\bar{\Gamma}$ of A such that $\bar{\phi} \circ \bar{\Gamma} = \bar{\phi}$ and $\bar{\Gamma}(\pi_{\phi}(x)) = \pi_{\phi}(\Gamma(x)), \ x \in \bigcup_{n} (M' \cap M_{n}).$
 - (3) If $E = E_0$, then $\bar{\phi}$ is a faithful normal trace on A.
 - (4) If $E = E_0$ and $N \subset M$ has finite depth, then A is a type II_1 factor.

Proof. (1) Let A^0 be the C^* -completion of $\bigcup_n (M' \cap M_n)$ with the extension ϕ^0 of ϕ . Then π_{ϕ} is nothing but the GNS representation of A^0 associated with

 ϕ^0 . Letting $\phi_n = \phi | M' \cap M_n$, since $\sigma_t^{\phi_{n+1}} | M' \cap M_n = \sigma_t^{\phi_n}$ for all $n \ge 1$, we obtain a one-parameter automorphism group σ_t^0 of A^0 such that $\sigma_t^0 | M' \cap M_n = \sigma_t^{\phi_n}$, $n \ge 1$. Hence it follows (see [4, 5.3.9] for instance) that the normal extension $\bar{\phi}$ of ϕ^0 is faithful.

- (2) follows from Proposition 3.6 (4).
- (3) follows from Theorem 2.6.
- (4) Suppose $E = E_0$. Then Popa's arguments in [36, §2] work in our setup as well. In fact, the results [36, Proposition 2.1, Corollaries 2.2 and 2.3] (also [14, 4.6.3]) hold for $\lambda = [M:N]_0^{-1}$ and $\{B_n = M' \cap M_n : n \ge 0\}$, when we consider the dimension vector and the trace vector of B_n with respect to the trace ϕ together with the inclusion matrix of $B_n \subset B_{n+1}$. Thus the same proof as [36, Corollary 2.5] implies the desired conclusion under the finite depth assumption.

Since π_{ϕ} faithfully imbeds $\bigcup_{n}(M' \cap M_{n})$ in A, we consider $\bigcup_{n}(M' \cap M_{n})$ as a subalgebra of A and denote $\overline{\Gamma}$, $\overline{\phi}$ by Γ , ϕ again. We call the *-endomorphism Γ extended on A, or more precisely (A, ϕ, Γ) , the canonical shift associated with E. In particular, let $N \subset M$ be type Π_{1} factors and (A, ϕ, Γ) the canonical shift associated with the conditional expectation $E_{N} \colon M \to N$ with respect to the trace. Then ϕ is a trace whether $E_{N} = E_{0}$ or not. This Γ is the canonical shift for $N \subset M$ investigated in Γ .

On the lines of [29, Theorem 5.1], we have the ergodic property of Γ extending [7, Proposition 21].

Proposition 3.8.
$$\bigcap_{k=1}^{\infty} \Gamma^k(A) = \mathbb{C}$$
.

Proof. Let $\|\cdot\|_{\phi}$ be the norm on A induced by ϕ , i.e. $\|x\|_{\phi} = \phi(x^*x)^{1/2}$. Let $x \in \bigcap_k \Gamma^k(A)$. For any $\varepsilon > 0$, there exist k and $y \in M' \cap M_{2k}$ such that $\|x - y\|_{\phi} < \varepsilon$. For every $n \ge 2k$, Proposition 2.4 shows that

$$\begin{array}{ccc} M' \cap M_{2k} \subset & M' \cap M_n \\ & \bigcup & & \bigcup \\ \mathbb{C} & \subset M'_{2k} \cap M_n \end{array}$$

is a commuting square with respect to $\phi | M' \cap M_n$. By Proposition 3.6 (2), $\Gamma^k(A)$ is generated by $\bigcup_n (M'_{2k} \cap M_n)$. Hence we see that

$$M' \cap M_{2k} \subset A$$

$$\bigcup \qquad \bigcup$$

$$\mathbb{C} \qquad \subset \Gamma^k(A)$$

is a commuting square with respect to ϕ . So there exists the conditional expectation $F: A \to \Gamma^k(A)$ with respect to ϕ , which satisfies $F(M' \cap M_{2k}) = \mathbb{C}$. Since F(x) = x and $F(y) = \phi(y)$, we get

$$||x - \phi(x)||_{\phi} \le ||F(x - y)||_{\phi} + |\phi(y - x)| \le 2||x - y||_{\phi} < 2\varepsilon,$$

which implies $x \in \mathbb{C}$.

§4. Entropy $h_{\phi}(\Gamma)$

Let (A, ϕ, Γ) be the canonical shift associated with $E \in \mathscr{E}(M, N)$ defined in the previous section. Let $B_n = M' \cap M_n$ and $\phi_n = \phi | B_n$ for $n \ge 0$. Then $\{B_n\}$ is an increasing sequence of finite dimensional subalgebras of A with $A = (\bigcup_n B_n)^n$. The aim of this section is to establish the relation between the entropy $h_{\phi}(\Gamma)$ and the minimum index $[M:N]_0$.

Lemma 4.1. (1) For every $n, m \ge 0$, $(\bigcup_{j=0}^m \Gamma^j(B_n))^n$ is included in B_{n+2m} .

(2) Let
$$k_n = \left[\frac{n+1}{2}\right]$$
. Then for every $n, m \ge 0$, $\Gamma^{(m+1)k_n}(B_n)$ commutes with

 $(\bigcup_{j=0}^{mk_n} \Gamma^j(B_n))'' \text{ and } \phi(xy) = \phi(x)\phi(y) \text{ for all } x \in (\bigcup_{j=0}^{mk_n} \Gamma^j(B_n))'' \text{ and } y \in \Gamma^{(m+1)k_n}(B_n).$

(3) The conditional expectation $A \to \Gamma^j(B_n)$ with respect to ϕ exists for every $n, j \ge 0$, and

$$B_n \subset A$$

$$\bigcup \qquad \bigcup$$

$$\Gamma(B_{n-2}) \subset \Gamma(B_n)$$

is a commuting square with respect to ϕ for every $n \geq 2$.

(4) $\Gamma(B_{2n}) = \gamma_{n+1}(B_{2n})$ for all $n \ge 0$.

Moreover if $E = E_0$, then Γ is a 2-shift on the tower $\{B_n\}$ in the sense of [7].

Proof. (1) and (2) follow from Proposition 3.6 (2).

- (3) By the proof of Proposition 3.7 (1) and [4, 5.3.4], the conditional expectation $A \to B_n$ with respect to ϕ exists for every $n \ge 0$. Then Proposition 2.4 shows the desired conclusions (see the proof of Proposition 3.8).
 - (4) is obvious from Proposition 3.6 (3).

By Propositions 3.6 (5) and 3.7 (3), the above (1)–(4) show the last statement.

Proposition 4.2. $h_{\phi}(\Gamma) = \lim_{n \to \infty} \frac{1}{n} H_{\phi}(B_{2n}) = \lim_{n \to \infty} \frac{1}{n} S(\phi_{2n})$ where $S(\phi_n)$ is the entropy of ϕ_n .

Proof. For each $n, m \ge 1$, let $B = (\bigcup_{j=0}^{m-1} \Gamma^{jk_n}(B_n))^m$ where $k_n = \left[\frac{n+1}{2}\right]$, and $\{q_i \colon 1 \le i \le l\}$ be a set of atoms in the centralizer of ϕ_n with $\sum_i q_i = 1$. Furthermore let $q_i^j = \Gamma^{(j-1)k_n}(q_i)$ for $1 \le i \le l$ and $1 \le j \le m$. Then by Proposition 3.6 (4) and Lemma 4.1 (2), $\{q_{i_1}^1 \cdots q_{i_m}^m \colon 1 \le i_1, \dots, i_m \le l\}$ is a set of atoms in the centralizer of $\phi \mid B$ such that $\sum_{i_1, \dots, i_m} q_{i_1}^1 \cdots q_{i_m}^m = 1$ and $\phi(q_{i_1}^1 \cdots q_{i_m}^m)$

 $=\phi(q_{i_1}^1)\cdots\phi(q_{i_m}^m)$. Hence by Lemma 4.1 and [10, Théorème 5(E)] (also [11, Corollary VIII.8]), we get

$$\begin{split} H_{\phi}(B_n, \ \Gamma^{k_n}(B_n), \dots, \Gamma^{(m-1)k_n}(B_n)) &= S(\phi | B) = \sum_{i_1, \dots, i_m} \eta(\phi(q_{i_1}^1 \cdots q_{i_m}^m)) \\ &= mS(\phi_n) = mH_{\phi}(B_n). \end{split}$$

Now the proof is the same as [7, Theorem 1] in view of Theorem 1.5 and Proposition 1.6 (2).

Theorem 4.3. (1)
$$h_{\phi}(\Gamma) \leq \frac{1}{2} \{ K_E(M|N) + K_{E_1}(M_1|M) \} \leq \log [M:N]_0.$$

- (2) If $h_{\phi}(\Gamma) = \log [M:N]_0$, then $E = E_0$.
- (3) Suppose $N \subset M$ has finite depth. Then the following conditions are equivalent:
 - (i) $E = E_0$;
 - (ii) $h_{\phi}(\Gamma) = \log [M:N]_0$;
 - (iii) $h_{\phi}(\Gamma) = \log \operatorname{Index} E$.

Proof. (1) For each $n \ge 1$, choose a set $\{q_i^{(2n)}\}$ of atoms in the centralizer of ϕ_{2n} with $\sum_i q_i^{(2n)} = 1$. Since the centralizer of $E_1 \circ \cdots \circ E_{2n}$ is nothing but that of ϕ_{2n} and

$$\operatorname{Index}(E_1 \circ \cdots \circ E_{2n})_{q^{(2n)}} \geq 1,$$

Theorem 1.3 (2) implies that

$$K_{E_1 \circ \dots \circ E_{2n}}(M_{2n}|M) \ge 2\sum_i \eta(\phi_{2n}(q_i^{(2n)})) = 2S(\phi_{2n}).$$

Furthermore by [20, Theorem 5.1 (1)] and [21, Proposition 8.1], we have

$$K_{E_1 \circ \cdots \circ E_{2n}}(M_{2n}|M) \le \sum_{j=1}^{2n} K_{E_j}(M_j|M_{j-1}) = n\{K_E(M|N) + K_{E_1}(M_1|M)\}.$$

Thus Proposition 4.2 implies the first inequality. Also we get the second inequality by Theorem 1.4 (1).

- (2) Suppose $h_{\phi}(\Gamma) = \log [M:N]_0$. Then $K_E(M|N) = \log [M:N]_0$ holds, which is equivalent to $E = E_0$ by Theorem 1.4 (2).
- (3) In view of (2), it suffices to show that (i) implies (ii) under the finite depth condition. So suppose $N \subset M$ has finite depth and $E = E_0$. Then there exists n_0 such that $\dim Z(B_{2n_0+2}) = \dim Z(B_{2n_0})$. Since [36, Corollary 2.3] holds for $\{B_n\}$ in our setup as noted in the proof of Proposition 3.7 (4), the trace vector of B_{2n} with respect to the trace ϕ is given by $(\lambda^{n-n_0}s_k)_k$ for any $n \geq n_0$, where $\lambda = [M:N]_0^{-1}$ and (s_k) is the trace vector of B_{2n_0} with respect to ϕ . Let $s = \max_k s_k$ and $n \geq n_0$. Since $\phi_{2n}(q_i^{(2n)}) \leq \lambda^{n-n_0}s$, we have by Theorems 2.6 and

1.4 (2)

Index
$$(E_1 \circ \cdots \circ E_{2n})_{q_i^{(2n)}} = \phi_{2n}(q_i^{(2n)})^2$$
 Index $(E_1 \circ \cdots \circ E_{2n})$
 $\leq (\lambda^{n-n_0} s)^2 \lambda^{-2n} = (\lambda^{-n_0} s)^2$

for all i. Therefore by Theorems 2.6, 1.4 (2) and 1.3 (2), we have

$$\begin{split} 2n\log \big[M:N\big]_0 &= \log \big[M_{2n}:M\big]_0 = K_{E_1 \circ \cdots \circ E_{2n}}(M_{2n}|M) \\ &\leq \sum_i \phi_{2n}(q_i^{(2n)}) \log \frac{(\lambda^{-n_0}s)^2}{\phi_{2n}(q_i^{(2n)})^2} = 2S(\phi_{2n}) + 2\log(\lambda^{-n_0}s), \end{split}$$

so that $h_{\phi}(\Gamma) \ge \log [M:N]_0$ by Proposition 4.2.

Specializing Theorem 4.3 to the type II₁ case, we have:

Corollary 4.4. Let $N \subset M$ be type II_1 factors and $H(\Gamma)$ the entropy of the canonical shift Γ for $N \subset M$. Then:

(1)
$$H(\Gamma) \le \frac{1}{2} \{ H(M|N) + H(M_1|M) \} \le \log [M:N]_0 \le \log [M:N].$$

- (2) If $H(\Gamma) = \log [M:N]_0$, then $[M:N] = [M:N]_0$ and $E_{M' \cap M_1}(e_0) = [M:N]^{-1} 1$ where $E_{M' \cap M_1}$ is the conditional expectation $M_1 \to M' \cap M_1$ with respect to the trace.
 - (3) If $N \subset M$ has finite depth, then

$$H(\Gamma) = H(M|N) = \log [M:N]_0 = \log [M:N].$$

Proof. Let E_N be the conditional expectation $M \to N$ with respect to the trace. We know by [33, Corollary 4.5] and [19] that $E_N = E_0$ (i.e. $[M:N] = [M:N]_0$) if and only if $E_{M' \cap M_1}(e_0) = [M:N]^{-1}1$. According to [36, Corollary 3.7], if $N \subset M$ has finite depth, then $E_{M' \cap M_1}(e_0) = [M:N]^{-1}1$ automatically holds. Thus the corollary is the specialization of Theorem 4.3.

§5. Entropy $H_{\phi}(A|\Gamma(A))$

Let (A, ϕ, Γ) be the canonical shift associated with $E \in \mathscr{E}(M, N)$. Let B_n and ϕ_n be as in §4, and $C_n = M_2 \cap M_n$ (= $\Gamma(B_{n-2})$), $n \ge 2$. In this section, we investigate the entropy $H_{\phi}(A|\Gamma(A))$ in connection with $[M:N]_0$ and $h_{\phi}(\Gamma)$.

The entropy $H_{\phi}(B_n|C_n)$ is given in [10] by

$$H_{\phi}(B_{n}|C_{n}) = \sup_{(\psi_{k})} \sum_{k} \{ S(\phi|B_{n}, \psi_{k}|B_{n}) - S(\phi|C_{n}, \psi_{k}|C_{n}) \},$$

where the supremum is taken over all finite families (ψ_k) of $\psi_k \in A_*^+$ with $\sum_k \psi_k = \phi$. But we have $H_{\phi}(B_n|C_n) = H_{\phi_n}(B_n|C_n)$ by Lemma 4.1 (3). Proposition 2.4 and [21, Proposition 2.12 (1)] show the following:

Proposition 5.1. $H_{\phi}(A|\Gamma(A)) = \lim_{n \to \infty} H_{\phi}(B_n|C_n)$ increasingly.

Proposition 5.2. $h_{\phi}(\Gamma) \leq H_{\phi}(A|\Gamma(A))$.

Proof. By [21, Proposition 2.2 (1)] and Proposition 3.6, we get for $n \ge 1$

$$H_{\phi}(B_{2n}) \leq H_{\phi}(B_{2n}|C_{2n}) + H_{\phi}(C_{2n}) = H_{\phi}(B_{2n}|C_{2n}) + H_{\phi}(B_{2n-2}).$$

This implies that

$$\frac{1}{n}H_{\phi}(B_{2n}) \leq \frac{1}{n}\sum_{j=1}^{n}H_{\phi}(B_{2j}|C_{2j}).$$

Hence the desired inequality follows from Propositions 4.2 and 5.1.

Theorem 5.3. (1) $H_{\phi}(A|\Gamma(A)) \leq 2\log \lceil M:N \rceil_0$.

- (2) If $H_{\phi}(A|\Gamma(A)) = 2\log[M:N]_0$, then $E = E_0$.
- (3) Suppose $N \subset M$ has finite depth. Then $E = E_0$ if and only if $H_{\phi}(A|\Gamma(A)) = 2\log[M:N]_0$.

Proof. (1) Let

$$N \underset{E_0}{\subset} M \underset{E_{0,1}}{\subset} {}^{e_0} M_1 \underset{E_{0,2}}{\subset} {}^{e_1} M_2 \subset \cdots$$

be the tower of basic constructions iterated from E_0 . Here we can assume as remarked before Proposition 3.6 that the factors M_n are the same as those in the tower iterated from E. For $n \ge 1$, let $\tau_n = E_{0,1} \circ \cdots \circ E_{0,n} | B_n$ which is a trace by Theorem 2.6, and let $h_n = d(E_n | M'_{n-1} \cap M_n) / d(E_{0,n} | M'_{n-1} \cap M_n)$. Since $E_n = h_n^{1/2} E_{0,n} h_n^{1/2} (= E_{0,n} (h_n^{1/2} \cdot h_n^{1/2}))$ by [8, Théorème 5.3], we get

$$E_1 \circ \cdots \circ E_n = (h_1 \cdots h_n)^{1/2} (E_{0,1} \circ \cdots \circ E_{0,n}) (h_1 \cdots h_n)^{1/2},$$

so that $d\phi_n/d\tau_n = h_1 \cdots h_n$. For each fixed $n \ge 2$, we denote by F and F_0 the conditional expectations $B_n \to C_n$ with respect to ϕ_n and τ_n , respectively. For $1 \le k \le n$, let us define $E'_{0,k} \in \mathscr{E}(M'_{k-1}, M'_k)$ by $E'_{0,k} = \lambda E^{-1}_{0,k}$ where $\lambda = [M: N]_0^{-1}$ and $E^{-1}_{0,k}$ is defined on the standard Hilbert space for M_n . Then it follows that

$$M'_{n} \underset{E'_{0,n}}{\subset} M'_{n-1} \underset{E'_{0,n-1}}{\subset} {^{e_{n-1}}} M'_{n-2} \subset \cdots \subset {^{e_2}} M'_{1} \underset{E'_{0,1}}{\subset} {^{e_1}} M'$$

is n steps of algebraic basic constructions. Since by Theorem 2.6

$$E'_{0,n} \circ \cdots \circ E'_{0,1} | B_n = \lambda^n (E_{0,1} \circ \cdots \circ E_{0,n})^{-1} | B_n = \tau_n,$$

we have $F_0 = E'_{0,2} \circ E'_{0,1} | B_n$, so that

$$\frac{d(\phi_n|C_n)}{d(\tau_n|C_n)} = F_0(h_1 \cdots h_n) = h_3 \cdots h_n.$$

Hence the cocycle derivative $[DF: DF_0]_t$ of F and F_0 is computed as follows (see [8, 15]):

$$\begin{split} [DF:DF_0]_t &= [D(\tau_n \circ F):D(\tau_n \circ F_0)]_t \\ &= [D(\phi_n \circ F):D(\tau_n \circ F)]_t^* [D(\phi_n \circ F):D(\tau_n \circ F_0)]_t \\ &= [D(\phi_n | C_n):D(\tau_n | C_n)]_t^* [D\phi_n:D\tau_n]_t \\ &= (h_3 \cdots h_n)^{-it} (h_1 \cdots h_n)^{it} = (h_1 h_2)^{it}. \end{split}$$

Now let $\psi_1, ..., \psi_m \in (B_n)^+_*$ be faithful with $\sum_k \psi_k = \phi_n$. Then

$$\begin{split} [D(\psi_k \circ F) \colon D\psi_k]_t &= [D(\psi_k \circ F) \colon D(\psi_k \circ F_0)]_t [D(\psi_k \circ F_0) \colon D\psi_k]_t \\ &= [DF \colon DF_0]_t [D(\psi_k \circ F_0) \colon D\psi_k]_t \\ &= (h_1 h_2)^{it} [D(\psi_k \circ F_0) \colon D\psi_k]_t. \end{split}$$

Hence by [32, Theorem 4], we get

$$S(\psi_k \circ F, \psi_k) = i \lim_{t \to +0} \frac{1}{t} \psi_k ([D(\psi_k \circ F) : D\psi_k]_t - 1)$$
$$= S(\psi_k \circ F_0, \psi_k) + \psi_k (\log h_1 h_2).$$

Since by Theorem 1.1

$$F_0(x) \ge (\operatorname{Index}(E'_{0,2} \circ E'_{0,1}))^{-1} x = \lambda^2 x, \quad x \in (B_n)_+,$$

we have $\psi_k \circ F_0 \ge \lambda^2 \psi_k$, so that

$$\sum_{k} S(\psi_{k} \circ F_{0}, \psi_{k}) \leq \sum_{k} \psi_{k}(1) \log \lambda^{-2} = 2 \log [M: N]_{0}.$$

Therefore

$$\sum_{k} S(\psi_k \circ F, \psi_k) \le 2 \log [M:N]_0 + \tau_2(\eta(h_1 h_2)).$$

By the lower semicontinuity of the relative entropy ([2, Theorem 3.7]), the above inequality holds for any $\psi_1, \ldots, \psi_m \in (B_n)^+_*$ with $\sum_k \psi_k = \phi_n$. This implies by [21, Lemma 2.6] that

$$H_{\phi}(B_n|C_n) \leq 2\log[M:N]_0 + \tau_2(\eta(h_1h_2)).$$

Since $\tau_2(\eta(h_1h_2)) \le \eta(\tau_2(h_1h_2)) = 0$, the desired inequality follows from Proposition 5.1.

- (2) Suppose $H_{\phi}(A|\Gamma(A))=2\log [M:N]_0$. Then $\tau_2(\eta(h_1h_2))=0$ and hence $h_1h_2=1$ by the strict concavity of η . This implies $E_1\circ E_2=E_{0,1}\circ E_{0,2}$, so that $E_1=E_{0,1}$, equivalently $E=E_0$.
 - (3) Suppose $N \subset M$ has finite depth and $E = E_0$. Since $\gamma_n(C_{2n}) = B_{2n-2}$,

it follows from Proposition 3.6 (5) that $H_{\phi}(B_{2n}|C_{2n}) = H_{\phi}(B_{2n}|B_{2n-2})$ for all $n \ge 1$. Now let us proceed as in the proof of [36, Corollary 2.4]. Choose n_0 such that dim $Z(B_{2n_0+2}) = \dim Z(B_{2n_0})$. Let \overrightarrow{d} be the dimension vector of B_{2n_0} . A the inclusion matrix of $B_{2n_0} \subset B_{2n_0+1}$, and (s_k) the trace vector of B_{2n_0} with respect to the trace ϕ . Then according to [36, Corollary 2.3], $(\Lambda \Lambda^t)^n \overrightarrow{d}$ is the dimension vector of B_{2n_0+2n} and $(\lambda^n s_k)_k$ is the trace vector of B_{2n_0+2n} with respect to ϕ for any $n \ge 0$ where $\lambda = [M:N]_0^{-1}$. Hence by [33, Theorem 6.2] (also [35]), we have for every $n \ge 1$

$$H_{\phi}(B_{2n_0+2n}|B_{2n_0+2n-2}) = \sum_{k,l} (\Lambda \Lambda^t)_{kl} ((\Lambda \Lambda^t)^{n-1} \overrightarrow{d})_k (\lambda^n s_l) \log \frac{((\Lambda \Lambda^t)^n \overrightarrow{d})_l (\lambda^{n-1} s_k)}{((\Lambda \Lambda^t)^{n-1} \overrightarrow{d})_k (\lambda^n s_l)}.$$

Since (s_k) is the Perron-Frobenius eigenvector of $\Lambda\Lambda^t$ with the eigenvalue λ , we have

$$\lim_{n\to\infty} \frac{((\Lambda\Lambda^t)^n \overrightarrow{d})_l(\lambda^{n-1}s_k)}{((\Lambda\Lambda^t)^{n-1} \overrightarrow{d})_k(\lambda^n s_l)} = \lambda^{-2}$$

for all k, l. Therefore

$$H_{\phi}(A|\Gamma(A)) = \lim_{n\to\infty} H_{\phi}(B_{2n_0+2n}|B_{2n_0+2n-2}) = \log \lambda^{-2},$$

as desired.

Following [33], we define the number $\lambda_{\phi}(A, \Gamma(A))$ by

$$\lambda_{\phi}(A, \Gamma(A)) = \max \{\lambda \geq 0 : E_{\Gamma(A)}(x) \geq \lambda x, x \in A_+\},\$$

where $E_{\Gamma(A)}$ is the conditional expectation $A \to \Gamma(A)$ with respect to ϕ . In view of Theorem 1.1, we can consider $\lambda_{\phi}(A, \Gamma(A))^{-1}$ as a generalized index of $E_{\Gamma(A)}$ when A is not necessarily a factor.

Proposition 5.4. $\lambda_{\phi}(A, \Gamma(A))^{-1} \leq (\operatorname{Index} E)^2$.

Proof. Let $\lambda_{\phi}(B_n, C_n)$ be defined for the conditional expectation $B_n \to C_n$ with respect to ϕ_n . Then as [33, Proposition 2.6], we have $\lambda_{\phi}(A, \Gamma(A))$ = $\lim_{n\to\infty} \lambda_{\phi}(B_n, C_n)$ decreasingly by Proposition 2.4. For each fixed $n \ge 1$, let us use the notations in the proof of Theorem 5.3 (1). Since $[DF: DF_0]_t = (h_1 h_2)^{it}$, $F = (h_1 h_2)^{1/2} F_0(h_1 h_2)^{1/2}$ follows from [8, Proposition 4.11]. Define $E' = (h_1 h_2)^{1/2} (E'_{0,2} \circ E'_{0,1})(h_1 h_2)^{1/2}$. Then $E' \in \mathscr{E}(M', M'_2)$ because for $x \in M'_2$

$$E'(x) = E'_{0,1}(h_1)E'_{0,2}(h_2)x = E_{0,1}(h_1)E_{0,2}(h_2)x = x.$$

Moreover it follows (see [19]) that

Index
$$E' = (E'_{0,2} \circ E'_{0,1})^{-1} ((h_1 h_2)^{-1}) = \lambda^{-2} E_{0,1} (h_1^{-1}) E_{0,2} (h_2^{-1}) = (Index E)^2$$
.

Since $F_0 = E'_{0,2} \circ E'_{0,1} | B_n$, we have by Theorem 1.1

$$F(x) = E'(x) \ge (\operatorname{Index} E)^{-2} x, \qquad x \in (B_n)_+,$$

so that $\lambda_{\phi}(B_n, C_n) \geq (\operatorname{Index} E)^{-2}$, implying the desired inequality.

The next theorem is an extended version of [7, Theorem 14].

Theorem 5.5. Suppose $E = E_0$. Then:

- (1) $H_{\phi}(A|\Gamma(A)) \leq 2h_{\phi}(\Gamma) \leq \log \lambda_{\phi}(A, \Gamma(A))^{-1} = 2K_{E}(M|N) = 2\log [M:N]_{0}.$
- (2) If $\lim_{n\to\infty}\frac{1}{n}\log k_n=0$ (this is the case if $\sup_n\frac{1}{n}k_n<\infty$) where k_n is the number of simple summands of B_n , then $H_\phi(A|\Gamma(A))=2h_\phi(\Gamma)$.
- (3) If $N \subset M$ has finite depth (in particular, if Index E < 4), then the numbers in (1) are all identical together with $\log [A:\Gamma(A)]$.
- *Proof.* (1) By Lemma 4.1, Γ is a 2-shift on the tower $\{B_n\}$. The results [36, Proposition 2.1 and Corollary 2.2] hold for $\{B_n\}$ and λ = $[M:N]_0^{-1}$. Furthermore we have by Theorems 1.3, 1.4 and 2.6

$$H_{\phi}(B_{2n}) \leq \frac{1}{2} K_{E_1 \circ \cdots \circ E_{2n}}(M_{2n}|M) = \frac{1}{2} \log [M_{2n}, M]_0 = -n \log \lambda.$$

Thus we conclude that $\{B_n\}$ is a locally standard tower for λ^2 with period 4 in the sense of [7, Definition 3]. Hence [7, Theorem 8] implies that

$$H_{\phi}(A|\Gamma(A)) \leq 2h_{\phi}(\Gamma) \leq 2\log[M:N]_0 \leq \log \lambda_{\phi}(A,\Gamma(A))^{-1}.$$

Since $\lambda_{\phi}(A, \Gamma(A))^{-1} \leq [M:N]_0^2$ by Proposition 5.4, we obtain the conclusion. (2) For $n \geq 0$, let K_n be the set of simple summands of B_{2n} . Then by assumption, $\lim_{n \to \infty} \frac{1}{n} \log |K_n| = 0$ where $|\cdot|$ denotes the cardinal number. We denote by $(d_k^{(n)})_{k \in K_n}$ the dimension vector of B_{2n} and by $(t_k^{(n)})_{k \in K_n}$ the trace vector of B_{2n} with respect to the trace ϕ . Moreover let $(a_{kl}^{(n)})_{k \in K_n, l \in K_{n+1}}$ be the inclusion matrix of $B_{2n} \subset B_{2n+2}$ and let $L_n = \{(k, l) \in K_n \times K_{n+1} : a_{kl}^{(n)} > d_k^{(n)}\}$. To simplify the notation, we define as in [6, 7]

$$I_{\phi}(B_{2n}) = \sum_{k \in K_n} d_k^{(n)} t_k^{(n)} \log \frac{d_k^{(n)}}{t_k^{(n)}}$$

and analogously $I_{\phi}(C_{2n})$. For each $n \geq 1$, since the mirroring γ_n maps $B_{2n-2} \subset B_{2n}$ to $C_{2n} \subset B_{2n}$, the inclusion matrix of $C_{2n} \subset B_{2n}$ coincides with $(a_k^{(n-1)})_{k \in K_{n-1}, l \in K_n}$ and the dimension vector of C_{2n} coincides with $(d_k^{(n-1)})_{k \in K_{n-1}}$

under the identification of respective simple summands via γ_n . Also let $(\tilde{t}_k^{(n)})_{k \in K_n}$ be the trace vector of B_{2n} corresponding to $C_{2n} \subset B_{2n}$, which is a permutation of $(t_k^{(n)})$ via γ_n . Then according to [33, Theorem 6.2], we have

$$H_{\phi}(B_{2n}|C_{2n}) = I_{\phi}(B_{2n}) - I_{\phi}(B_{2n-2}) + \sum_{(k,l) \in L_{n-1}} d_k^{(n-1)} a_{kl}^{(n-1)} \tilde{t}_l^{(n)} \log \frac{d_k^{(n-1)}}{a_{kl}^{(n-1)}},$$

because $I_{\phi}(C_{2n}) = I_{\phi}(B_{2n-2})$ by Proposition 3.6. Now let $\tilde{\lambda} = \max\{\lambda, 1 - \lambda\}$. Then $0 < \tilde{\lambda} < 1$ except the trivial case N = M. Since B_{2n} contains mutually commuting projections $e_1, e_3, \ldots, e_{2n-1}$, and since

$$\phi(f_1 f_3 \cdots f_{2n-1}) = \phi(f_1) \phi(f_3) \cdots \phi(f_{2n-1}) \leq \tilde{\lambda}^n$$

for $f_{2i-1}=e_{2i-1}$ or $f_{2i-1}=1-e_{2i-1}$, $1 \le i \le n$, we get $t_k^{(n)} \le \tilde{\lambda}^n$ for all n, k. Furthermore according to [36, Corollary 2.2], we get $a_{kl}^{(n)} \le [M:N]_0$ for all n, k, l. These imply that

$$0 \le -\sum_{(k,l)\in L_{n-1}} d_k^{(n-1)} a_{kl}^{(n-1)} \tilde{t}_l^{(n)} \log \frac{d_k^{(n-1)}}{a_{kl}^{(n-1)}}$$

$$\le \sum_{(k,l)\in L_{n-1}} (a_{kl}^{(n-1)})^2 \tilde{t}_l^{(n)} \log a_{kl}^{(n-1)}$$

$$\le |K_{n-1}| |K_n| \tilde{\lambda}^n [M:N]_0^2 \log [M:N]_0,$$

which tends to 0 as $n \to \infty$. On the other hand, it follows (see [6, Proposition 16], [7, Proposition 4]) that

$$0 \le 2H_{\phi}(B_{2n}) - I_{\phi}(B_{2n}) \le \log |K_n|.$$

Therefore by Propositions 5.1 and 4.2

$$H_{\phi}(A|\Gamma(A)) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} H_{\phi}(B_{2i}|C_{2i}) = \lim_{n \to \infty} \frac{1}{n} I_{\phi}(B_{2n}) = 2h_{\phi}(\Gamma).$$

(3) As [36, Corollary 6.7] (also [14, 4.6.6]), we see that if Index E < 4, then $N \subset M$ has finite depth. Thus the desired assertion is immediate from (1) and Theorem 5.3 (3) together with Proposition 3.7 (4).

Finally in the type II₁ case, we have the next proposition (without the assumption $E_N = E_0$) in view of the proof of Theorem 5.5 (2).

Proposition 5.6. Let $N \subset M$ be type II_1 factors and $H(\Gamma)$ the entropy of the canonical shift Γ for $N \subset M$. Then:

- (1) $H(A|\Gamma(A)) \leq 2H(\Gamma)$.
- (2) If $\lim_{n\to\infty} \frac{1}{n} \log k_n = 0$ where k_n is the number of simple summands of B_n , then $H(A|\Gamma(A)) = 2H(\Gamma)$.

§6. Examples

In this section, we present two simple examples to illustrate the results in §§ 4 and 5. In the following, we use the same notations as before.

Example 6.1. Let M=R be the hyperfinite type II_1 factor, $N=R_\lambda$ Jones' subfactor [22] of M with $[M:N]=\lambda^{-1}$, and Γ the canonical shift for $N\subset M$. It follows from Proposition 3.2 that $\gamma_n(e_k)=e_{2n-k}$ for every $n\geq 1$ and $1\leq k\leq 2n-1$. Hence

$$\Gamma(e_n) = \gamma_{n+1}(\gamma_n(e_n)) = \gamma_{n+1}(e_n) = e_{n+2}, \qquad n \ge 1$$

Suppose $\lambda \geq 1/4$. Then it is known (see [14, 4.7.b]) that $M' \cap M_n = \langle 1, e_1, ..., e_{n-1} \rangle$. Hence $A = \{e_n : n \geq 1\}^n$ ($\simeq R$), so that Γ coincides with σ_{λ}^2 where σ_{λ} is a special case of the shifts discussed in [5, 6]. We have by [6, Example 2]

$$\frac{1}{2}H(A|\Gamma(A)) = H(\Gamma) = 2H(\sigma_{\lambda}) = H(M|N) = \log \lambda^{-1}.$$

Next suppose $\lambda < 1/4$ and $t(1-t) = \lambda$, t > 0. We get

$$H(\Gamma) = \lim_{n \to \infty} \frac{1}{n} H(B_{2n}) \ge \lim_{n \to \infty} \frac{1}{n} H(\langle 1, e_1, \dots, e_{2n-1} \rangle)$$
$$= 2H(\sigma_{\lambda}) = 2\eta(t) + 2\eta(1-t) = H(M|N)$$

by [7, Theorem 1], [6, Example 2] and [33, Corollary 5.3]. On the other hand,

$$H(\Gamma) \le \frac{1}{2} \{ H(M|N) + H(M_1|M) \} = H(M|N)$$

by Corollary 4.4 (1) and [21, Proposition 8.4]. Hence $H(\Gamma) = H(M|N)$. Moreover since the Bratteli diagram for the tower $B_0 \subset B_1 \subset B_2 \subset \cdots$ is Pascal's triangle (see [14, p. 231]), we have $H(A|\Gamma(A)) = 2H(\Gamma)$ by Proposition 5.6 (2). Therefore $\frac{1}{2}H(A|\Gamma(A)) = H(\Gamma) = H(M|N)$ for any λ .

Example 6.2. Let us consider $M = N \otimes B \supset N = N \otimes \mathbb{C}$ where N is any factor and $B = M_m(\mathbb{C})$. Let $\varphi_0 \in \mathscr{E}(B)$ and $h = d\varphi_0/d\tau$ where τ is the normalized trace on B. Define $E \in \mathscr{E}(M, N)$ by $E = \mathrm{id}_N \otimes \varphi_0$ and $\varphi_1 \in \mathscr{E}(B)$ by $d\varphi_1/d\tau = h^{-1}/\tau(h^{-1})$. Then it follows (see [21, Example 8.3]) that the basic constructions $E_n \in \mathscr{E}(M_n, M_{n-1})$, $n \geq 1$, iterated from E are given as follows:

$$\begin{split} &M_n=M\otimes B^{(n)}=M_{n-1}\otimes B,\\ &E_{2n-1}=\mathrm{id}_{M_{2n-2}}\otimes \varphi_1,\quad E_{2n}=\mathrm{id}_{M_{2n-1}}\otimes \varphi_0, \end{split}$$

where $B^{(n)} = \bigotimes_{1}^{n} B$. Moreover it is easy to see that the mirrorings γ_n on $M' \cap M_{2n} = B^{(2n)}$ are given by

$$\gamma_n(a_1 \otimes a_2 \otimes \cdots \otimes a_{2n-1} \otimes a_{2n}) = a_{2n}^t \otimes a_{2n-1}^t \otimes \cdots \otimes a_2^t \otimes a_1^t,$$

where a^t denotes the transpose of a. Therefore

$$\Gamma(a_1 \otimes a_2 \otimes \cdots \otimes a_{2n-1} \otimes a_{2n}) = \gamma_{n+1}(a_{2n}^t \otimes a_{2n-1}^t \otimes \cdots \otimes a_2^t \otimes a_1^t \otimes 1 \otimes 1)$$
$$= 1 \otimes 1 \otimes a_1 \otimes a_2 \otimes \cdots \otimes a_{2n-1} \otimes a_{2n},$$

so that Γ is the unilateral shift on $(A, \phi) = \bigotimes_{1}^{\infty} (B^{(2)}, \varphi_{1} \otimes \varphi_{0})$. This example clarifies that ϕ is not generally invariant for γ_{n} but Γ preserves ϕ . By [10, Corollaire 10], we have

$$h_{\phi}(\Gamma) = S(\varphi_1 \otimes \varphi_0) = S(\varphi_0) + S(\varphi_1) = \frac{1}{2} \{ K_E(M|N) + K_{E_1}(M_1|M) \}.$$

When $\varphi_0 = \tau$ and hence $\varphi_1 \otimes \varphi_0$ is the trace on $B^{(2)}$, we get by [6, Example 1]

$$\frac{1}{2}H_{\phi}(A|\Gamma(A)) = h_{\phi}(\Gamma) = 2\log m = \log [M:N]_0.$$

Also when $\varphi_0 \neq \tau$ (hence A is a type III factor), we get (see [21, Theorem 6.6], [20, Proposition 3.6 and Example 4.6])

$$\frac{1}{2}H_{\phi}(A|\Gamma(A)) \leq S(\varphi_0) + S(\varphi_1) = h_{\phi}(\Gamma).$$

References

- [1] Araki, H., Relative entropy of states of von Neumann algebras, *Publ. RIMS*, *Kyoto Univ.*, 11 (1976), 809–833.
- [2] , Relative entropy for states of von Neumann algebras II, Publ. RIMS, Kyoto Univ., 13 (1977), 173-192.
- [3] Bailet, M., Denizeau, Y. and Havet, J. F., Indice d'une esperance conditionnelle, Compositio Math., 66 (1988), 199-236.
- [4] Bratteli, O. and Robinson, D. W., Operator Algebras and Quantum Statistical Mechanics II, Springer-Verlag, New York-Heidelberg-Berlin, 1981.
- [5] Choda, M., Shifts on the hyperfinite II₁-factor, J. Operator Theory, 17 (1987), 223-235.
- [6] ——, Entropy for *-endomorphisms and relative entropy for subalgebras, J. Operator Theory, to appear.
- [7] ——, Entropy for canonical shifts, Trans. Amer. Math. Soc., to appear.
- [8] Combes, F. and Delaroche, C., Groupe modulaire d'une espérance conditionnelle dans une algèbre de von Neumann, Bull. Soc. Math. France, 103 (1975), 385-426.
- [9] Connes, A., On the spatial theory of von Neumann algebras, J. Funct. Anal., 35 (1980), 153-164.

- [10] Connes, A., Entropie de Kolmogoroff-Sinai et mécanique statistique quantique, C. R. Acad. Sci. Paris Sér. I, 301 (1985), 1-6.
- [11] Connes, A., Narnhofer, H. and Thirring, W., Dynamical entropy of C* algebras and von Neumann algebras, Commun. Math. Phys., 112 (1987), 691-719.
- [12] Connes, A. and Størmer, E., Entropy for automorphisms of II₁ von Neumann algebras, Acta Math., 134 (1975), 289-306.
- [13] Dixmier, J. and Maréchal, O., Vecteurs totalisateurs d'une algèbre de von Neumann, Commun. Math. Phys., 22 (1971), 44-50.
- [14] Goodman, F. M., de la Harpe, P. and Jones, V. F. R., Coxeter Graphs and Towers of Algebras, Springer-Verlag, New York, 1989.
- [15] Haagerup, U., Operator valued weights in von Neumann algebras, I, II, J. Funct. Anal., 32 (1979), 175-206; 33 (1979), 339-361.
- [16] Hamachi, T. and Kosaki, H., Index and flow of weights of factors of type III, Proc. Japan Acad., 64A (1988), 11-13.
- [17] ——, Orbital factor map, preprint.
- [18] Havet, J. F., Esperance conditionnelle minimale, preprint.
- [19] Hiai, F., Minimizing indices of conditional expectations onto a subfactor, Publ. RIMS, Kyoto Univ., 24 (1988), 673-678.
- [20] , Minimum index for subfactors and entropy, J. Operator Theory, to appear.
- [21] , Minimum index for subfactors and entropy. II, J. Math. Soc. Japan, 43 (1991), 347-379.
- [22] Jones, V. F. R., Index for subfactors, Invent. Math., 72 (1983), 1-25.
- [23] Kawakami, S., Some remarks on index and entropy for von Neumann subalgebras, Proc. Japan Acad., 65A (1989), 323-325.
- [24] Kosaki, H., Extension of Jones' theory on index to arbitrary factors, J. Funct. Anal., 66 (1986), 123-140.
- [25] , Characterization of crossed product (properly infinite case), Pacific J. Math., 137 (1989), 159-167.
- [26] Kosaki, H. and Longo, R., A remark on the minimal index of subfactors, preprint.
- [27] Loi, P. H., On the theory of index and type III factors, C. R. Acad. Sci. Paris Sér. I, 305 (1987), 423-426.
- [28] Longo, R., Solution of the factorial Stone-Weierstrass conjecture. An application of the theory of standard split W*-inclusions, Invent. Math., 76 (1984), 145-155.
- [29] -----, Simple injective subfactors, Adv. in Math., 63 (1987), 152-171.
- [30] ——, Index of subfactors and statistics of quantum fields. I, Commun. Math. Phys., 126 (1989), 217-247.
- [31] Ocneanu, A., Quantized groups, string algebras and Galois theory for algebras, preprint.
- [32] Petz, D., Properties of the relative entropy of states of von Neumann algebras, *Acta Math. Hungar.*, 47 (1986), 65-72.
- [33] Pimsner, M. and Popa, S., Entropy and index for subfactors, Ann. Sci. École Norm. Sup. Sér. 4, 19 (1986), 57-106.
- [34] —, Iterating the basic construction, Trans. Amer. Math. Soc., 310 (1988), 127-133.
- [35] , Finite dimensional approximation of pairs of algebras and obstractions for the index, J. Funct. Anal., 98 (1991), 270-291.
- [36] Popa, S., Classification of subfactors: the reduction to commuting squares, Invent. Math., 101 (1990), 19-43.
- [37] Strătilă, Ş., Modular Theory in Operator Algebras, Editura Academiei and Abacus Press, Tunbridge Wells, 1981.
- [38] Takesaki, M., Conditional expectations in von Neumann algebras, J. Funct. Anal., 9 (1972),

306-321.

- [39] Umegaki, H., Conditional expectation in an operator algebra, Tôhoku Math. J., 6 (1954), 177-181.
- [40] ——, Conditional expectation in an operator algebra, IV (entropy and information), Kōdai Math. Sem. Rep., 14 (1962), 59–85.
- [41] Watatani, Y., Index for C*-subalgebras, Memoirs Amer. Math. Soc., no. 424, 1990.