Supplement to "Hodge Spectral Sequence on Compact Kähler Spaces"

Ву

Takeo Ohsawa*

1. The purpose of this short note is to supplement the author's previous article [1] by exhibiting a rigorous proof of the dual L^2 Poincaré lemma as well as its $\bar{\partial}$ -analogue (cf. Proposition 4.1 (7), p. 272 in [1]). We have stated there that up to a slight change its proof is similar to that of the ordinary one, for which we had given a detailed proof. However it turned out that the proof requires a different technique which does not seem to be in the literature. Therefore the author would like to present it here.

2. Let $V \subset \mathbb{C}^N$ be an irreducible complex analytic set of dimension *n* containing the origin as an isolated singular point, let $z = (z_1, ..., z_N)$ be the coordinate of \mathbf{C}^N , and let $||z||^2 = \sum_{i=1}^N |z_i|^2$. We fix $c \in (0, 1)$ so that the spheres $S_c \subset \mathbf{C}^N$ of radius c centered at 0 intersect with V transversally for all $c' \in (0, c]$. We set U $= \{z \in V; \|z\| < c\}$ and $U' = U \setminus \{0\}$. Let us denote by $C'_0(U')$ (resp. $C^{p,q}_0(U')$) the set of (C-valued) compactly supported C^{∞} r-forms (resp. (p, q)-forms) on U' and set $C_0(U') = \bigoplus_{r=0}^{2n} C_0^r(U')$. Let ds^2 be the restriction of the euclidean metric to U' and let dv be the volume element with respect to ds^2 . For all $u \in C_0(U')$, |u| will denote the length of u with respect to ds^2 , and the L^2 norm ||u|| of u will be defined as the square root of the integral of $|u|^2 dv$ over U'. Let $d: C_0(U')$ \hookrightarrow be the exterior derivative and let $\overline{\partial}$ (resp. ∂) be its (0, 1)-component (resp. (1, 0)-component). The maximal closed extensions of these operators to the completion $\overline{C_0(U')}$ with respect to $\| \|$ will be denoted by the same symbols. We put $\Phi = \{K \subset U'; \overline{K} \subset U\}, S' = \{u \in \overline{C'_0(U')}; \text{ supp } u \in \Phi\}$ Sp,q and $= \{ u \in \overline{C_0^{p,q}(U')} ; \text{ supp } u \in \Phi \}.$ Then our goal is to prove the following.

Received July 18, 1990.

¹⁹⁹¹ Mathematics Subject Classification: 32L15.

^{*} Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606, Japan. Present address: Department of Mathematics, Nagoya University, Nagoya 464-01, Japan.

Lemma Under the above situation, $\operatorname{Ker} d \cap S^0 = \operatorname{Ker} \overline{\partial} \cap S^{p,0} = \{0\}$ for all p,

(1)
$$\operatorname{Ker} d \cap S^{r} = \{ du; u \in \mathcal{D} om d \cap S^{r-1} \}$$

and

(2)
$$\operatorname{Ker} \overline{\partial} \cap S^{r} = \{\overline{\partial}u; u \in \mathcal{D}om \,\overline{\partial} \cap S^{r-1}\}$$

if 0 < r < n.

Proof. That Ker $d \cap S^0 = \text{Ker } \overline{\partial} \cap S^{p,0} = \{0\}$ is trivial. Let 0 < r < n, $f \in \text{Ker } d \cap S^r$, and let $f_{p,q}$ be the (p, q)-component of f. First of all we note that $\overline{\partial} f_{0,r} = 0$, $\partial f_{p-1,r-p+1} + \overline{\partial} f_{p,r-p} = 0$ for $1 \le p \le r$ and $\partial f_{r,0} = 0$. Let us fix $b \in (0, c)$ so that $\text{supp} f \subset U'_b := \{z \in U'; \|z\| < b\}$. Then we put

$$F_{r,k} = -\log(b^2 - ||z||^2) + (n-r)\log||z||^2 - k\log\log||z||^{-1}$$

for $k \ge 0$. Then $F_{r,k}$ is a strictly plurisubharmonic function on U'_b . Let $ds^2_{r,k}$ be the restriction of the complex Hessian of $F_{r,k}$ to U'_b , and let $\| \|_{r,k}$ be the L^2 norm with respect to $ds^2_{r,k}$ and the weight function $e^{F_{r,k}}$. Namely we put

$$\|u\|_{r,k}^{2} = \int_{U'} e^{F_{r,k}} |u|_{r,k}^{2} dv_{r,k}$$

where $| |_{r,k}$ (resp. $dv_{r,k}$) denotes the length (resp. the volume form) with respect to $ds_{r,k}^2$. Since $f \in S^r$, $||f||_{r,k} < \infty$ if $k \ge 2$. Note that $(U'_b, ds_{r,k}^2)$ is a complete Kähler manifold for any k > 0. Therfore by Andreotti-Vesentini's theorem (cf. [2] p. 31 Theorem 1.3), one can find a measurable (0, r - 1)-form say $g_{0,r-1}$ on U'_b satisfying $f_{0,r} = \bar{\partial}g_{0,r-1}$, $||g_{0,r-1}||_{r,k} < \infty$ and that $g_{0,r-1}$ is orthogonal to Ker $\bar{\partial}$ with respect to the inner product associated to $|| ||_{r,k}$. Then, by Bochner-Nakano formula for the complex Laplacian with respect to $|| ||_{r,k}$ we obtain

$$\|(\partial + \partial F_{r,k})g_{0,r-1}\|_{r,k} \le \|f_{0,r}\|_{r,k} < \infty.$$

Hence we obtain $||g_{0,r-1}||_{r,k+2} < \infty$. Next we solve the $\bar{\partial}$ -equation $\bar{\partial}g_{1,r-2} = f_{1,r-1} - \partial g_{0,r-1}$ similarly as above with respect to the L^2 norm $|| = ||_{r,k+2}$. Repeating this process and noting that $f_{r,0} - \partial g_{r-1,0} = 0$ since $\bar{\partial}(f_{r,0} - \partial g_{r-1,0}) = 0$ and $||f_{r,0} - \partial g_{r-1,0}||_{r,k+2r} < \infty$, we finally obtain an (r-1)-form, say g such that $||g||_{r,k+2r} < \infty$ and dg = f. Since g is an (r-1) form, finiteness of $||g||_{r,k+2r}$ implies that of $||g||_{n,0}$. Thus the trivial extension \tilde{g} of g to U' satisfies that $\tilde{g} \in S^{r-1}$ and $d\tilde{g} = f$ (cf. Lemma 2.4 of [1]). This completes the proof of (1). Clearly the above proof contains that of (2).

506

References

- [1] Ohsawa, T., Hodge spectral sequence on compact Kähler spaces, *publ. RIMS, Kyoto Univ.* 23 (1987), 613-625.
- [2] Vesentini, E., Lectures on Levi convexity of complex manifolds and cohomology vanishing theorems, Tata Inst. Bombay, 1967.