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Representation Theoretical Meaning
of the Initial Value Problem

for the Toda Lattice Hierarchy II

By

Takashi TAKEBE*

Abstract

The Toda lattice hierarchy is shown to have the virtual Bruhat decomposition of the A^ group
as its parameter space, instead of the Grassmann manifold for the KP hierarchy. The small cells of
the Bruhat decomposition are examined. The parametrization of the KP hierarchy is utilized for
this purpose with the help of the Miura transformation.

§ 0. Introduction

This is the continuation of the paper [Take] which shows that solutions of
the Toda lattice hierarchy are parametrized by the Bruhat decomposition of the
A^ group in the generic case. The present paper aims to establish this relation
in the non generic case. As in the KP theory, where the degenerate cells of the
universal Grassmann manifold parametrize pseudo regular solutions, the
degenerate cells of the Bruhat decomposition of A^ parametrize pseudo regular
solutions of the Toda lattice hierarchy. (The notion of pseudo regularity will be
reviewed in §1.2.)

The main problem is how to recover the initial data from non regular
solutions. In the generic case, as seen in [Taka] and [Take], the initial data
can be recovered just by taking the initial values of the wave functions, but in
general this does not work. Hence, we use an indirect method making use of
the result of the KP theory. This is enabled by the Miura transformation,
which, in this situation, means extracting one component of the flag consisting of
the elements of the universal Grassmann manifold.

The term "Bruhat decomposition" is somewhat misleading, because there
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does not exist any group decomposed, but for the moment we retain using this
to designate the disjoint union

x aH x N+.

Here N+ (resp. JV_) is the set of upper (resp. lower) triangular matrices, H is the
set of diagonal matrices, a is an element of the "Weyl group" and Na

= JV_ DdAf-cr"1 . For the "Weyl group" we take the set of charge conserving
permutations introduced in §1.1 instead of the set of finite permutations. This
allows us to reduce the whole theory to the periodic system corresponding to the
affine Lie algebra A\i}.

The present paper is organized as follows: §1 is devoted to the
preparation, especially in § 1.2 we recall the Sato theory of the KP hierarchy for
the non generic case. In §2 we construct the T function and wave functions of
the Toda lattice hierarchy, as in the previous paper [Take], in terms of the
vacuum expectation value. In §3, after recalling the Miura transformation in
[UT], we show that the pseudo regular wave functions of the Toda lattice
hierarchy determine an element of the Bruhat decomposition.

We keep all the notations of [Take].
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§ L Preliminaries

§ LI Charge Conserving Permutations

As in [Take], a Maya diagram of charge s is a set of strictly decreasing
integers {is > is_1 > is_2 > ...} with the condition ik = k for k « 0, and Jis

denotes the set of all Maya diagrams of charge s.

Definition 1.1. A permutation a: Z-»Z is called charge conserving, if for
all MeJts, seZ, it satisfies a(M)eJ^s. The set of all charge conserving
permutations is dnoted as E. We call two charge conserving permutations a
and a' equal up to finite difference, a ~ a', if aa'~l is a finite permutation. •

Finite permutations and periodic permutations (i.e., o(kN + r) = kN + 0N(r)
for some AT, some permutation of N letters <TN, and all /ceZ, reZ/JVZ) are
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examples of charge conserving permutations.
Take one of the equivalence class with respect to ~, and fix its

representative aQ. Then, if a belongs to this equivalence class, we can define its
action on the Fock space 3F inductively so that it satisfies

(1.1) d

for all Maya diagram M and feZ, with the normalization

Here Z^0 is the set of all non positive integers and |0> is |Z^0>. For finite
permutations we take the usual normalization such that

(7|M> = det((i|M)|(T(M)>.

It is easy to see that the dual action on the dual Fock space ^v is similarly
defined and satisfies

Remark 1.2. With appropriate choice this "action" may be the action of
the group of all charge conserving permutations, but we do not need it later.

§1.2 Pseudo-Regular Solutions of the KP Hierarchy

Here we recall about the correspondence between solutions of the KP
hierarchy and the universal Grassmann manifold, following [SN] . Let ^ be an
algebra over C and m\= «T[x]], Jf := *((x)). Let ̂  and g^ be the ring of
differential and micro differential operators respectively with coefficients in some
ring stf. d denotes d/dx as usual. We introduce the decreasing filtration of the
ring £4 by the order of the micro differential operators:

Fs^:={Pe^\ordP^ -s}.

Define the infinite dimensional <& linear spaces i^9 V* and the filtration of V as
follows :

We fix the standard basis of V\ {et = d~l mod ffax}ieZ.

Definition 1.3. The universal Grassmann manifold of charge s UGMS is the
set of the linear subspaces 17 of Y such that

index of (U —+ i^/F1^) = s,

that is to say,



494 TAKASHI TAKEBE

dimCL/nJF1^) = dim(i^/(U + F1^)) + s < oo.

The Maya diagram associated to 17 is

The canonical frame of U is the basis {£k}k^s of 17 which is determined uniquely
by the following conditions: Assume & = ^z^e,-- Then

(1) k . k=l.

(2) tjk = 0ifj<ik.

(3) f ,k f l = 0 i f f c > / . •

Before recalling the theory of the KP hierarchy, we are going to recall the
correspondence between the universal Grassmann manifold and the pseudo
regular micro differential operators.

Definition 1.4. Let

W(x; d) = ds + w^x)^"1 + w2(x)ds~2 + --e^

be an ordinary micro differential operator of order s with rational
coefficients. W(x ; 3) is called pseudo regular, if there exist non negative integers
m and n such that

xmW(x; 8)9 W~l(x\ d)xne^^.

The set of all pseudo regular micro differential operators of order s is denoted as
w. m

Theorem 1.5. ([SN] Theorem 9.2) Let W(x\ d) be a pseudo regular micro
differential operator of order s and fix non positive integers m and n as in
Definition 1.4. Then

Defining the element of UGMS y0(W) by the above formula, we obtain the bijection
y0: W -> UGMS. y0(W) does not depend on the choice of m and n. •

Now we are in position of describing the parametrization of the solutions of
the KP hierarchy. Set # := C[[t2, t3,...]] and identify x with tx. Then 31
= C[[t]] and jr = C((t1))[[t2,t3,...]], where t = (tl9t29t3,...).

Definition 1.6. A micro differential operator

W(t; d) = ds +
is called the wave operator of the KP hierarchy, if it satisfies the bilinear residue
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formula :

for all t and t', where

w(t; A) = (W*Y\t; d)e~^», w*(t; X) =

We call w(t; X) the w0i;e function and w*(t; A) its dual i^^P denotes the set of
all wave operators of the KP hierarchy in Of*. M

Pseudo regularity of the wave operator is also described as follows : there
exist non negative integers m and n such that t1

mw(t; X) and ^"w*^; X) belong
to ^[[/l]]. In this case we call the wave functions pseudo regular.

One of the most remarkable claims of the Sato theory is the following
fundamental result.

Theorem 1.6. ([SN] Theorem 12.3) For any pseudo regular micro
differential operator

WQ(x; d) = ds + w^x)^-1 + w2(x)ds~2 + • • • ,

there exists one and only one pseudo regular wave operator of the KP hierarchy
W(t\ d)Ei^s such that W(tl9 0, 0,... ; d) = W°(t1 ; d). Hence there is the bijective
mapping y: WKp-* UGMS which sends W(t; d) to yQ(W(t^ 0, 0,...; d)). B

The so called i function of the KP hierarchy is introduced as follows.

Proposition 1.7. ([SN] §13) Let w(t; X) and w*(t; X) be a pseudo regular
wave function of the KP hierarchy and its dual. Then there exists t(t)e& such
that

w*(t; A) -

where

We can reconstruct the T and wave functions of the KP hierarchy from the
element of UGMS as follows.

Proposition 1.8. ([DJKM], [KNTY]) Let U be an element of UGMS and
M(U), {£k}k^s be as in Definition 1.3, and let the sequence is+l < is+2 < ••• be the
complement of M(U): M(U)\J {ik}k>s = Z. Let g be the matrix of Z x Z type
whose k-th column vector is £k if k ^ s and (oijk) if k> s. Then
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w*(t; A; [/) = <s

(For the definition of J+ see Definition 2.1.)

§2. Construction of T and Wave Functions

In this section we construct the T function and wave functions of the Toda
lattice hierarchy from an element of the virtual Bruhat decomposition of the A^
group. As in [Take] we use the following notations: ^4QO = n _ © I ) © n + is the
triangular decomposition of the infinite rank affine Lie algebra A^, which acts
on the Fock space 3F, and the action of n+ and I) can be lifted to that of N+
= expn+ and H = expf).

With these terms the T function and the wave functions are defined in the
same way as in [Take] §2.

Definition 2.1. Let g = (#_, a, eu, g+) be an element of N- x £ x H
x N+ (we I)). The T function is the formal power series of the indeterminants t
= ( t + , t _ ) = (r1, t2,...'9 f _ l s t_2 , . . . ) defined by

(2.1) T(S; t; g):= <s|exp(J+(t+))0_<je"0+ exp(- J_(t_)) |s>,

where

J+(t+):= X JA, -Mt-):= Z Jnt*,
n>0 n<0

Note that the product g_aeug+ is not defined in general, and that the
expression (2.1) nevertheless makes sense. Hereafter we abbreviate g_aeug+ as

9-

Definition 2.2. The wave functions attached to g are the following four
series :

w<«»(s; t; A; g):= <s - l\er+™W)ge-J-«-^Sy/*(s', t; g),

w^^(s; t; A; g):= <s + ll^^^^W^^-^^ls)/^; t; g),

corresponding to the singularity at A = oo, and

w<0)(s; t; A; g):= <s - l^^^WWe^-^^ls)/^; t; ff),

w^*(5; t; A; g):= <5 + ll^^^W*^--'-^^^)/^; t; g),

corresponding to the singularity at A = 0. Here ^(!|e)(A)'s are the fermion field
operators
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It is easy to see that these wave functions are pseudo regular (with respect
to tl (in the case of w(oo) and w(00)*), t.l (in the case of w(0) and w(0)*)
respectively) in the sense of §1.2.

Proposition 2.4 of [Take] holds in this case also: The wave functions are
written in terms of the i function like

(2.2)

w<°°>(s; t; A; g) = <&-*+•» r*t(s'9 t+ + eCA'1), t_ ; g)/i(s; t; g),

w(oo)*(s; t; A; g) = ̂ t+ 'AUs+1r(S; t+ - e^1), t.',g)/i(s, t; 0),

w(0)(s; t; A; 0) = ^-'-'-'U-Tfe - 1 ; t+, t_ + e(A); 0)/r(s; t; g),

w(0)*(s; t; A; 0) = ̂ '-^A'*1^ + 1; t+, t_ - e(A); g)/i(s; t; g).

The main claim of this section is the following.

Proposition 2.3. The wave functions defined in Definition 2.2 satisfy the
bilinear relation of the Toda lattice hierarchy, i.e.,

; t; A; 0)w<0>*(s'; t'; A; ̂ ) = 0,

for all s, s', t, t'.

Proof. As in Proposition 2.5 of [Take], the above bilinear equation is
equivalent to

ieZ

for any Maya diagrams Me^ s_ l 9 NeJ£s, M'eJVs> + l, NfeJ^s>. By (1.1), (1.2)
and (1.3) of [Take], the proof of this equation is reduced to the cofactor
expansion (Lemma 2.6 [Take]) and the identity

<Af |(7

which follows immediately from (1.1).

§3. Recovery of the Initial Data

§3.1 Miura Transformation and the Flag

Here we recall about the Miura transformation in order to utilize the
information about the KP hierarchy for the parametrization of the solution of
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the Toda lattice hierarchy. In this context the Miura transformation means
extracting one component of a flag consisting of elements of the universal
Grassmann manifold.

Definition 3.1. A set of pseudo regular wave functions of Toda lattice
hierarchy is the quaternary of formal power series w = (w(QO), w(oo)*5 w

(0), w(0)*)
satisfying :

(i) They are of the following form:

w(oo)(s; t; X) = w(00)(s; t; X)^-se~^^\

w(oo)*(s; t; A) - w(oo)*(s; t; X)Xl+le^t+^9

corresponding to the singularity A = oo, and

w(0)(s; t; A) = w(0)(s; t; ;t);r'<r<(t-*~l),

w(0)*(s; t; A) = w(0)*(s; t; X)3f+leF*-*-l\

corresponding the singularity A = 0, where

j=o

; t; A) - £
j=o

(ii) w^^t), w^*j(s;t) belong to Ca^))^,^,-^-]], and ̂ >O = M><°°>*O

= 1. Similarly w^.(s; t), rt<°>*/s;t) belong to C((t_1))[[t+ ; t_ 2 , t_3,...]],
and the Laurent series expansions of w(0)

0 and w(0)*0 with respect to t^^ are

(iii) For each s there exists a sufficient large non negative integer m = m(s),
such that

(s; t; 1), tT

r ! w(°'(s; t; 1), ff ̂ "'•(s; t; A)eC[[t]] [[A]].

(iv) (The bilinear residue formula)

00
2aH

+ <f ̂ w«»(s; t; A; 0)w<°>*(S'; t'; A; 3) = 0,
Jo'

for all s, s', t, t'.
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Remark 3.2. The wave functions defined above are slightly different from
those defined in [UT] (1.2.19).

Putting t- = t'_ =0 and s = sr in (iv) of Definition 3.1, we .obtain

w<°°>(s; t+, 0; A)w<°°>*(s; f + , 0; A)-^- = 0,
A=oo 27n/l

which is the residue formula of the KP hierarchy (cf. Definition 1.6). Therefore
W(si t+ ; d):= H>(QO)*(S; t+, 0; d) ds is a pseudo regular wave operator of the KP
hierarchy with respect to t+. Moreover these wave operators are related to
each other. Namely

Proposition 3.3. ([UT] p. 14) Set

b^-^w^^s+V + w^*^).

Then

(dtl - b0(s))w(oo)*(s; t; A) = w<°°>*(s + 1 ; t; X).

Hence

(dti - b0(s))W(s; t9d)=W(s+l;t,d). H

Corollary 3.4. From a set of wave functions of the Toda lattice hierarchy w
= (w(oo), w(oo)*, w(0), w(0)*) we get a flag

dim(Us+1/Us) = L

Proof. For each seZ, we fix a non negative integer m(s) as in Definition
3.1 (iii). Fix s and £eUs9 and set m:= 2m(s) + m(s + 1) + 1. Then, by
definition, £ satisfies

Now Proposition 3.3 implies

ffW(s + 1; tl9 0, 0,...; 3)5 = t[(d - b0(s))W(s; tl9 0, 0,...;

Since t^(3 — &0(s))*rm(s) belongs to ^, the right hand side of the above
equation is contained in 7*. This means UsaUs+1. As l^et/GM5, the last
statement of the corollary is obvious. •

The Miura transformation means originally a transformation which relates the
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solutions of the KdV equation, the MKdV equation (and the Sine-Gordon
equation) with each other. Therefore we may well call the projection from the
flag to the universal Grassmann manifold y(w)i— »y(W(s; t; 3)) the Miura
transformation.

Remark 3.5. It is easy to see that (w(0)(s + 1; t; A)/w(0)
0(s + 1; t), w(0)*(s

- 1 ; t; A)/w(0)*0(s - 1 ; t)) is also a pair of the pseudo regular wave functions of
the KP hierarchy.

§3.2 Reconstruction of the Initial Data

Let w = (w(oo), w(00)*, w(0), w(0)*) be a set of the pseudo regular wave
functions of the Toda lattice hierarchy, and T be the corresponding T function
which is determined by w up to the multiplicative constant as (2.2). In this
section we reconstruct from w and t the data g = (g_, a, eu, g+) which belong to
AT_ x I x H x N+ (net)) and are related to w and T as in Definition 2.1 and
2.2.

First we fix t_ = 0 and recover the data (0_, a, eu). As seen in §3.1, there
exists a flag y(w) = {Us}seZ, such that every component U8 corresponds to the
wave function of the KP hierarchy w(oo)(s; t+, t_ = 0; A), w(oo)*(s; t+, t_
= 0; A). We fix the base of ^ {£k}keZ

 as follows:

(i) {tk}k*, is a base of Us.

(ii) Let {£fc}fc^s-i be the canonical frame of Us-^ (Definition 1.3). Then
{£fc}fc^s-i U{<y is the canonical frame of Us up to the order.

The existence is obvious. Condition (ii) of the definition of the canonical
frame yields that there exists the charge conserving permutation a : Z -> Z such
that the matrix

g _ :=( . . . , <3ff(fc), W(jt+ ! )?•••)

is lower triangular with diagonal elements 1 (i.e. g. eN_). Here £k is identified
with the column vector by means of the base {ejfez of V.

When we identify a with its matrix representation (diff(j))ijez,

In view of Proposition 1.8 this leads to

(3.1) w(oo)(5; t+, 0; A) = *"•<* - l\eJ+(t+^Wg-a\Sy/T(s; t+, 0),

w<°°>*(s; t+, 0; A) = *"<s + lk /+(t+V*(%-^|s>/T(s; t+, 0).

The factor eVs arises from the multiplicative ambiguity of the i function of the
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KP hierarchy. It is easy to see that there exists we I) such that eu s>
= eVs\sy. Using this, we can write

and similar equations for w(00), w(oo)* hold.
So far we have constructed the data (g_,a , e"). In order to know the

remaining datum g+ we need the regularity property of the T function.

Lemma 3.6. The i function for the pseudo regular wave function of the
Toda lattice hierarchy belongs to

Proof. The proof of the Theorem 1.7 of [UT] tells that the i function is
the solution of the consistent system

log *<"»(»; t; A) = (eip(£(?+, r')) - l)logt(s; I),

log w(0)
0(s + 1 ; t) = logT(s; t) - logT(s + 1 ; t),

where d + = (<3 t±1, 8t±2/2, 5f±3/3,...). Each of the first two equations says that i
is the T function of the KP hierarchy with respect to t+ and t_
respectively. Because w(oo) and w(0)/w{0)

0 are pseudo regular wave functions of
the KP hierarchy (cf. §3.1), Proposition 1.7 assures the regularity of T. •

Since the Schur functions {Zy(t+)xr(t-)}y,r form the basis of C[t], T can
be expanded as follows:

(3-2) T(S;t) = X Xn,(t+)Xrw(t-)<#,
M,NeJts

for all seZ. Here YM denotes the Young diagram associated to the Maya
diagram M. Substituting (3.2) and (2.2) in the bilinear residue formula
(Definition 3.1) and using formulae like

(See § 1.2 of [Take] for the meaning of the notations.) we obtain another form of
the bilinear relation

(3.3) £e(M, i)e(M', i)fl£uW£#'uo = £e(tf, i)e(N'9
ieZ ieZ

for any Maya diagrams
Setting t_ = 0, we have from (3.2)
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t(s; t+ ,0) = X Xjtf(t+)oJIc
Me^s

where vac(s) = Z^s, and comparing this with (3.1),

In particular,

(3.4) 0%$ = e1* * 0.

Set

(3.5) t'(s;t):=

Then (3.3) implies that tff is automatically the T function of Toda lattice
hierarchy and due to (3.4), T(S; 0) / 0. Hence the wave functions w(oo)ff, w(oo)*ff

constructed from Tff are regular (eC[[t]]). Therefore, as is shown in [Take],
there exists (#'_, eu', 0 + )eAT_ x H x N+ such that

(3.6) T f f(s;t):=<s|exp(J+(t+))^_^+exp(-J_(t_))|s>, seZ.

This together with (3.3) and (3.5) yields

seZ.

Now we obtain the data (0_, a, eu, g+) at last.

Remark 3.7. Setting t_ = 0 in (3.6) and comparing this with (3.1), we easily
see that

In fact, owing to the condition (iii) of the definition of the canonical frame (§ 3. 1)
and the condition (ii) imposed on {^k}, a~lg-G also belongs to JV_,j .e . ,

§4. Concluding Remarks

Thus we have obtained bijective mappings

{T functions}/C*

/ \
Y\Na x aH x N+ < {wave functions}.

Here / is Definition 2.1, \ is (2.2) and <- is what we have done in §3.2.
We end this paper with additional comments.
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1. The Toda lattice hierarchy is known to be embedded in the 2
component KP hierarchy ([UT]). So the relation between the parametrization
of the Toda lattice hierarchy which we have constructed in this paper and that of
the 2 component KP hierarchy should be further investigated.

2. It is expected that the Toda lattice hierarchy associated to the other
type of affine Lie algebra (e.g., B^, Cao9 and so on) has also the similar
parametrization by the Bruhat decomposition.

3. The reconstruction of the data (#_, a, eu, g+) in §3.2 makes use of the
Miura transformation and resorts to the Sato theory of the KP hierarchy. But
as the T function contains all the informations about the solution, there must be
a (possibly combinatorial) method by which those data are obtained directly
from the coefficients of the T function a^'s (3.2).

References

[DJKM] Date, E., Jimbo, M., Kashiwara, M. and Miwa, T., Transformation groups for solition
equations, Proceedings of RIMS Symp. Nonlinear integrable systems-classical theory
and quantum theory (Kyoto 1981), (1983), 39-119.

[JM] Jimbo, M. and Miwa, T., Solitons and Infinite Dimensional Lie Algebras, Publ RIMS,
Kyoto Univ., 19 (1983), 943-1001.

[KNTY] Kawamoto, N., Namikawa, Y., Tsuchiya, A. and Yamada, Y., Geometric realization of
conformal field theory, Commun. Math. Phys., 116 (1988), 247-308.

[SN] Sato, M. and Noumi, M., Soliton equation and universal Grassmann manifold, Sophia
University Kokyuroku in Math., 18 (1984). in Japanese.

[Taka] Takasaki, K., Initial value problem for the Toda lattice hierarchy, Adv. Stud, in Pure
Math. 4 Group Representation and Systems of Differential Equations (1984), 139-163.

[Take] Takebe, T., Representation theoretical meaning of the initial value problem for the
Toda lattice hierarchy I, Lett. Math. Phys. 21 (1991), 77-84.

[UT] Ueno, K. and Takasaki, K., Toda Lattice Hierarchy, Adv. Stud, in Pure Math. 4
Group Representation and Systems of Differential Equations (1984), 1-95.




