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Simple holomorphic vector bundles on compact complex manifolds admit
coarse moduli spaces which are only locally Hausdorff in general, cf. [N], (for
another approach in the more general setting of simple coherent sheaves on
compact complex spaces see [K-O]). A question which arises is to decide when
these moduli spaces are not empty., hence the question of existence of simple
vector bundles.

On the other hand one has a notion of irreducible vector bundles (cf. [E-F],
[B-L]). These are holomorphic vector bundles E which admit no coherent
subsheaf F with 0<rank F<rank E. In contrast with the algebraic case there
exist such bundles on some nonalgebraic manifolds by [E-F] and [B-L]. Even
vector bundles of stronger irreducibility type are shown to exist ([T]). Ir-
reducible vector bundles are always simple, while reducible ones have many en-
domorphisms in general.

The aim of this paper is to determine the range of Chern classes cl9 cz of
reducible simple rank 2 vector bundles on minimal complex surfaces of algebraic
dimension zero, extending the results for surfaces without divisors of [B-F2],
Apart from some precise exceptions this range will be the same as that of re-
ducible rank 2 vector bundles determined in [B-L] for nonalgebraic surfaces;
see the theorem for the exact statement. Here we illustrate the result by the

Corollary* Let X be a minimal surface with a(X)=Q. Then there exists a
simple reducible bundle of rank 2 on X with c1=0 and given c2^Z if and only if
c2>0, excepting exactly the following cases:
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— X is a torus and c2=Q,
— X is in class VII and c2=0, unless b2(X)=Q, X without divisors and c

2NS(X)
— X is a K3 surface with curves and c2=Q, 1, 2, 3.
—X is a K3 surface without curves and Q^c2<inf {— <?

Determining the above range is equivalent to determining which topological
rank 2 vector bundles admit simple reducible holomorphic structures, since by
a classical result of Wu topological vector bundles on surfaces are characterized
up to isomorphisms by their rank and Chern classes c1? c2.

I wish to thank Constantin Banica for the useful discussions concerning
this paper.

§ lo Preliminaries and Statement of the Main

We denote by X a compact complex connected nonsingular surface. If
Xis minimal and its algebraic dimension a(X)=Q, we have from the classification

of surfaces (cf. [B-P-V]) the following three situations :
1) X is a complex torus
2) X is in class VII i.e. kod(JT) = - oo and b£X) = I

3) X is a K3 surface i.e. KX=0X and q(X)=Q where K=KX is the canoni-
cal bundle.

When a(X)=09 X has at most hl'\X)+2 irreducible curves ([B-P-V]). If
moreover X is a complex torus it has none at all.

Let now E denote a holomorphic rank 2 vector bundle on X, henceforth
called simply "bundle". E is by definition simple if End(E)^C. E is called
reducible or filtrable if it admits a coherent subsheaf of rank 1. Equivalently3

E is filtrable if H°(E®L)3=Q for some L in Pic(Jf). It is worth noting that the
condition (C) in [I] says that the cotangent bundle is filtrable. One can prove
that E is filtrable if and only if it admits a devissage i.e. an exact sequence

0 -> 4 -i E £> L2®2Y -* 0 (1)

where L1? L2ePic(X) and Y is a 2-codimensional analytic subspaces of X or
empty (cf. [E-F]).

Conversely, one uses extensions of type (1) with L19 L2ePic(Z), Y a 2-
codimensional subspace of X in order to show the existence of reducible holo-
morphic structures on a given topological rank 2 vector bundle. These ex-
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tensions are parametrized by Ext1^®^, LJ. By Serre (cf. [O-S-S] Ch. I, §5),
the middle term of an extension (1) is locally free if and only if the image of the
corresponding element 6^Ext\L2®3Y, L^) through the canonical mapping

generates the sheaf £*d\L2®3Y, Lt).
Let L=L2®Ll. Since in our case <^&m(L2®3Y-> Ll)^L2®L1==L the

exact sequence of the first terms of the Ext spectral sequence becomes :

0 -^ H\X> L) -> Extl(3Y, L) -* H"(X, £*Jl(3Y, L)) -> IP(X, L) .

For Fas above we set /(y)=A0((9y)=lengthc(Or).

Remarks.
1) Serre's condition is fulfilled in the following cases (cf. [B-L]) :
i) Y is a locally complete intersection (hence £*#• (3Y, L) ̂  OY) and

H2(X, L)=0.

ii) Fis a locally complete intersection, LV®K^O(D) with D an effective
divisor, and FcD as analytic spaces. (By duality we get that the map
H\X, Z*t\3Y, L))-*H\X, L) is zero).

iii) Y consists of simple points, 1(Y)>1, H2(X, L)4=0, LV®K=0(D) and
FRsupp D=0. (One can find sections in H\X, £*P(3Y9 LJ)^H\Y, OY)
mapped to zero in H2(X, L)=H\X9 Q(D)}V having nonzero components in each

2) Serre's condition is not fulfilled if /(F) = l (hence F is a simple point),
LV®K=O(D) and Fis not on supp D.

To see this note that the morphism H\X, £*t\3Y9 L))->H2(X, L) is the dual
of the restriction

, LV®K) -» #°(F, LV®KIY) .

Irreducible bundles are obviously simple. For a reducible bundle given

by (1) we have the

Lemma 1.
i) // E is simple then H\Ll®L^ -0.
ii) If H\Ll®Ll)=H\LX®L2®3Y)=Q and (1) doesn't split then E is

simple.
In particular if X has no divisors E is simple if and only if L^L2 and (1)

doesn't split.



536 MATEI TOMA

Proof, i) For a nonzero section 9 in H\Ll®L^ the composition

E -* L2 ® 3Y ^ L2 -£ L, -» E

would give a nonconstant endomorphism of E.
ii) It is enough to show that there are no nonzero noninvertible elements

in End(E).

Assume now eeEnd(E) is such an element. Since fioeoa=Q we have a

commutative diagram

a 8
0 -> L! ->£'-> L2®3Y -» 0

r\ I* I*
a

where r and d are homotheties or zero. Using the Ker-Coker Lemma one finds
that r and d cannot be simultaneously isomorphisms nor simultaneously zero.

If d=0, r4=0 there exists ifr: E-*!^ such that aoty=£. Hence aor=soa =

ao^oa which gives r=ffr°a and (1) splits.
In the same way we exclude the case r=05 fl=|=0.

We make the following notations: For ^eNSGT) and c2<=H\X,

= IE

if

if

Notice that m^X) by Kodaira's theorem (hence m'(c^>®). For a bundle
E one has 2(d(E)—m(cl(E)))^Z. One can immediately see that m(c^)=Q for
c1e2NS(Z) and m'(0) = oo when NS(Ar)=0. (For more examples see Remark
4) at the end of the paragraph).

In [B-L] Banica and Le Potier gave necessary and suficient conditions for
the existence of filtrable holomorphic structures on a topological vector bundle
on a nonalgebraic surface in terms of its Chern classes. In our particular case
this gives the following result:

There exists a filtrable bundle on X having Chern classes qeNS^), cz^Z
if and only if A^m(c^), excepting the precise case when X is K3, w(c1)=0 and



SIMPLE VECTOR BUNDLES ON SURFACES 537

4=1/2.
We can now state our main result.

Theorem. If X is a minimal surface with a(X)=Q there exists a simple re-

ducible rank 2 vector bundle on X having Chern classes c1^NS(X)9 c2^Z, if

and only if

excepting exactly the following cases:
1) if X is a torus

2) if X is in class VII

unless b2(X) =0, X without divisors and cl e c1(A
r)+2NS(Ar)

3) if X is a K3 surf ace

m(Cl) == 0 and 0< A(cl9 c2)<sup {JH'(A)» 2} ,

*(Ci, c2) = m(cy) = — ,

The proof will be given in the following paragraphs. In doing this we may
restrict ourselves to surfaces admitting divisors the other cases having been
dealt with in [B-F2]. In particular we do not consider here the case of tori.
We only note that for tori X with a(X)=Q the intersection form on NS(JT) is
negative definite (cf. [B-F1]). Hence mfo) —0 if and only if q e 2NS(JT). Thus
the only topological rank 2 vector bundles admitting reducible but not simple
reducible holomorphic structures are the twistings of the trivial rank 2 bundle
by elements in NS(X).

We now make some remarks about the statement:

3) In the class VII there exist surfaces X without curves and with b2(X)=0
(Inoue surfaces for example, cf. [I]), which make the exception in 2) worth
noting. Since b2(X)=Q} for every such surface X there exists an unramified
covering X' such that c1(A

r/)=0, thus illustrating the corresponding exception
of the Corollary.
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4) For a K3 surface X5 H
l(X, 0)=0 hence Pic(X)^NS(X)^H\X, Z).

H2(X5 Z) is free and the intersection form is even. Moreover for L in Pic(X)9

L2=—2 implies L=O(±C) for some effective divisor C. On the other hand if
C is an irreducible curve then it is rational and C2=— 2. For these facts we
refer to [B-P-V]. We recall also that in our case (a(X)=G) the intersection form
is negative definite (cf. [B-L] §2.6).

We derive some consequences.

If m(c1)= — then X admits divisors.
4

When iw(cO=0 it follows c1e2NS(Ar) and mf(c1)<2 if and only if there
are curves on X (in this case m'(c1)=l).

When X is a special K3 surface of type g (i.e. NS(X) is cyclic generated by
L with L2=2g—2, cf. [L]) and g<Q, one gets

sup {m'(0)52} =„,'(<)) = l-g

One can get an even wider domain of exceptions when NS(Ar)=0. Since
in this case m'(Q)=oo9 there are no simple reducible bundles (this can also be

seen directly).

§) Comparing our result with the range of Chern classes given by the
existence theorem for irreducible bundles of [B-L], § 53 we find that there exist
topological vector bundles admitting simple holomorphic structures and re-
ducible holomorphic structures but not simple reducible holomorphic structures.
This happens for instance., on special K3-surfaces of type g with g<~l, for
<?!=() and 2<^f<l— g. It never happens if X is a torus with a(X)=0 (use
also [B-L] Proposition 4.7.).

6) On the other hand there exist topological vector bundles admitting
simple reducible holomorphic structures but not irreducible structures., on tori
and K3 surfaces of zero algebraic dimension.

This can be seen using Proposition 4.3. and 4.7. in [B-L] and our theorem.
The simplest examples one gets are on tori for ^=0, c2=l and on K3 surfaces
with curves for c^the class of a (— 2)-curve and c2=l or 2.

Before the proof of the theorem we shall make the following remark.
The tensor product of a devissage of E with a line bundle L gives a devis-

sage of E(S)L=E' and one has
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so we have to consider only the classes C!+2NS(Z) of cx modulo 2NS(Z). In
particular it will be enough for our problem to consider devissages with L2

trivial:

0->L->£->2 r->0 (2)

More precisely a topological rank 2-vector bundle characterized by (cl9 A)
admits simple reducible holomorphic structures if and only if there exists some
simple holomorphic bundle given by an extension of type (2) having the same
discriminant J, and first Chern class congruent modulo 2NS(Z) with cx.

From (2) one derives

Cl(E) =

c2(E) = 7(7) .

Finally note that if E is given by (2) and A(E)=m(cl(E))9 then Y=0 and

L2=-Sm(c1). Indeed A(E)=— (1(Y)-— L2)^ — - L2^m(c£E)\

§ 2. Proof of the Case : X in Class VII

Let now X be in class VII, qeNS^), c2eZ. Let ^=^(cly c2).

a) If A>m(c^ choose L^ in Pic(X) such that c1(L1)ec1+2NS(JT) and
1 1c^= ( — c ^ L ^ f f . Twist Lx by L0 in Pic0(Jf) in order to have for

H\I7®K) = H\L) = H\LV) = 0 .

This is possible since Pic0(^f)^C\{0} and the elements in Pic(X) admitting
nontrivial sections form a countable subset. As we have said, we can assume
c1=c1(L). The assumption ^I>m(c1) implies c2>0.

The condition H°(LV®K)=0 ensures the existence of an extension (2)
with E locally free having the wanted Chern classes if Y is the union of cz dis-
tinct simple points. The other two vanishings ensure the simplicity of E by
Lemma 1.
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b) If 4=m(cd>0 take L as before, and 7=0. One has J = — -c1(L)2

m(cj). Then, by Rlemann-Roch's formula

h\Lv) = M-- L«K+h\L®K)

and at least one of these numbers is positive,,
Consider a corresponding nontrlvial extension

or

which will give a bundle E of the wanted type.

c) Let now J =m(cl) =0.
First we shall show that If £ is a simple reducible vector bundle of rank 2

having these Chern classes., then necessarily b2(X)=09 X has no divisors and
c1^c1(X)+2NS(X). We can assume that E has a devissage of type (2). The
hypothesis implies Y=0 and c^L)2 =0. Thus E is the middle term of a nontrl-
vial extension

0-»Z,->£-»<9-»0 (3)

with L2=0, h\L)=Q (as E is simple) and h\Lv®K)=L For this last fact,
first deduce L°K= 0 from L2= 0 (examine (K+nL)2, n^Z), then apply Rie-
mann-Roch for L0

£
Thus K=L( 2 f| Q) with rg- nonnegatlve Integers and Cf- irreducible curves

«=i
on X If K° £7g- <0 then C? <0 (examine again (K+nC$)2) hence Q Is exceptional

which is absurd. It follows that K2=K»L+ 2 r, ̂ ° Q>0. But for our sur=
faces i2(X) = -K2, hence &2(X) -0.

If X has no curves, one has K=L (h\Kv®L}=\ !), hence cl=cl(X) and the
statement is proved.

Assume now X admits divisors. Well show that this leads to a con-
tradiction.

Since a(X)=Q, bl(X) = l9 b2(X)=Q9 X must be a Hopf surface (i.e. Its uni-
versal covering manifold Is C2\{0}) by theorem 34 In Kodaira's paper [K].
Hence one has the following form for the canonical bundle:
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>(—C1—C2)9 if X admits two irreducible curves Cl9 C2 9

>(—(m+l)C), if X admits only one irreducible curve C

where m is a positive integer depending on the transformation group on C2\ {0}

giving X. Denote Dl= S ri C$^Q9 so that L=K(—D1). There are divisors

D2>Q9 D3>0 such that K=O(—D2—DZ). We have a commutative diagram

L >O
\ /

where all the arrows are natural inclusions. Passing to cohomology in
dimension one, since H\0(—D2))=Q by Riemann-Roch (recall b2(X)=G)9

one finds that the natural map

H\L) -» H\O)

is zero.
Since (3) is nontrivial the connecting homomorphism in

0 -* H\L) -> H\E) -> H\O) -> H\L) -* H\E) (4)

is nontrivial and H°(E)=H°(L)=0. Twisting (3) by 17 one finds

with vertical arrows given by functoriality by the natural inclusion

O ^ LV=O(D1+ D2+D3). Hence

0 -> H°(G)

is commutative. (Counting dimensions shows that 5 and the first vertical map
are isomorphisms). Since the second vertical map is zero we obtain

h\Ev) = h\0)+h\Lv) = 2

Any element in H°(EV) induces twisting (3) by Ev a commutative diagram
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0-*!,-* E -»0

Hence

I I (5)
0 -

is commutative. We want to prove that the arrow HQ(EV)-*H\E) in (5) is zero
thus finding h\E®Ev)=2, a contradiction.

Let al3 <*2 linearly independent in H\EV) with o^ induced by the morphism

L-*E of (3). By (4) the morphism H\L) ^H^E) is zero. Denote by &
the morphism E-*Q appearing in (3). Then ftloa2^Q hence ^!°a2 must be
proportional to the natural inclusion L-*Q. We denoted also by a2 the mor-
phism L->£" inducing az^H°(Ev). Thus Jarl(/91oa2)=0 as we have already seen.

/FteSince by (4), Iptfj is injective we find that ^(L) — >H\E} is zero,
As al9 a2 generate H\EV), it follows from (5) that the arrow H\EV)-*H\E)

must be null and E is not be simple: a contradiction.

d) When A=m(c^=®, X in class VII without divisors, bz(X)=Q and c^
+2NS(X) one derives the existence of simple reducible holomorphic structures
out of a non-trivial extension

(use hl(K)=l and Lemma 1).

§ 3. Proof of the Case : X a K3 Surface

For X a K3 surface with a(X)=Q we shall use the properties already men-
tioned in Remark 4) of paragraph 1. We also use the fact that in this case
(a(X)=0) an isomorphism (?(A)=O(A) implies D1=D2 for two divisors D1?

A-
Let cl^NS(X\ c2^Z and ^=^(cl5 c2). One sees that 4m(A)3 4J and

2(^— m(c^() are integers. We shall subdivide the proof into cases depending
on the values of wfo) and A. These cases cover the interesting range in the
following way:
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1 and J3_
2

-1 e d
2

fandg

l_
4

J^
2

a or b

a OT b

a or b

a or b

We can choose LePic(Z) such that c1(L)ec1+2NS(Z) and L2=—
Then L is not trivial hence at least one of H°(L), H°(LV) must be zero. Assume
H\L)=Q9 otherwise replace L by 17. Take Y a set of 2(J — mfo)) simple
points on X. If ^(Z/^O one has LV=O(D) for some divisor D>0 and we
can assume the points of Y do not belong to supp D. When H°(LV)=0 we have
no more restrictions on the choice of Y.

In both cases an extension of type (2) produces a locally free sheaf E by
Remark 1 in paragraph 1 (note that H\L)^H\LV) by duality).

Moreover E has the wanted Chern classes and it is simple by Lemma 1.

b)
4

We choose L in Pic(X) such that c1(L)^c1+2NS(X) and L2=—
We shall show that this choice can be made such that H°(L)=H°(Lv)=Om

9 this is
clearly true when L is not divisorial. Then taking Y the union of 2(d—m(c1J)
simple points on X, the extension (2) produces a simple locally free sheaf E with
the requested Chern classes by Remark 1 i) and Lemma L

The existence of an element L in Pic(Z) with the properties we need is a
consequence of the following facts:

Lemma 2. Let R be a reduced irreducible root system in the R-vector space
V> of type A, D or E, let $=(a8-)| be a basis for R and Q(R) the subgroup of V
generated by the vectors in R.

Then for any x^Q(R) there is some y^x+2Q(R) such that ify=
with y^Z the following conditions are satisfied:
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ii) y is a root or one of its coordinates y$ is zero.

Corollary If D is a divisor on X with D2=—Sm(D)<—2 then there exist
some divisor C on X with C(ED+2NS(X), C2=D2 and HQ(O(C))=H°(O(-CJ)
=0 (i.e. C is neither positive nor negative).

Proof of the Corollary. One can assume supp D connected and D positive
otherwise it's easy. For example if D=Dl+D2 with D^D2=09 Dj>0, D2>0
we can choose C=D—2D2=D1—D2.

Since the intersection form on Div(X) is negative definite supp D is an
A-D-E curve (see [B-P-V] p. 74 for this notion). Let RD be the root system of
the type given by supp D, the roots corresponding to the irreducible components
of D forming a basis B, with the opposite of the intersection form as scalar
product.

Now Lemma 2 produces some divisor D'^D+2NS(X) with D'2>D2, such
that D' is a root or supp D' is strictly contained in supp D. The equality
D2=—Sm(D) and the definition of m(D) imply D'2=D2. It follows that D' is
not a root (in the A-D-E case all roots have the same length), hence supp D' is
strictly contained in supp D.

If supp D' is not connected we are over. If it is, one repeats the same
argument starting with D' and so on. Finally we get a divisor with a non-
connected support. (Otherwise we get a divisor of the form kC with C a(— 2)-

curve which implies m(D)=0 or — ).
4

Proof of Lemma 2. First we can assume that x is minimal in the following
sense: for every x'Gx+2Q(R) <#', x'y ^ (x, x>.

Let x=^ Xf &;. Assume also that all xg- are nonzero and x is not a root,
otherwise one can take y=x.

In particular supp x is connected (supp x has the meaning which can be
adapted to divisors as above) and x or — x is positive (i.e. all its coordinates are
positive). Indeed, if x=x+—x_9 where x+ (resp x,) are its positive (resp. nega-
tive) part, then

__ — x+ — x_, #+— *_

But <x+, x_y <0 and we have even equality by minimality of x. Then x+ or
x^ must be null by connectedness.

We shall use the following modulo 2 reduction:
(R): replace the coordinates of x by 0 or 1 according to their parity.
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If R is of type An the reduction (R) solves our problem. Indeed, in this

case

and one immediately sees that by (R) we obtain at most — <X x> connected

components, each such component being a root.

Let now R be of type Dn :

o — o

If ^K_2 is odd or one of xn-l9 xn are even one applies (R) and reasons as

above.

If xn-2 is even and xn_l9 xn are odd apply the following reduction (#'): re-

place all odd xf by 1 and all even ones by zero excepting xn_2 and all chains
of even coordinates connected to xn_2 which are replaced by 2. For example

1 2 2 1

is reduced in this way to

Looking at the quadratic form <x, x> one sees that (Rr) solves the problem

in this case since it doesn't increase <X x> and all the connected components

obtained will be roots.

The Encase:

Since after (R) one obtains at most 3 connected components the only

difficult case is <^3 x>=4. Noting that

<*, %> = (— x1+x2—x3)
2+( — —
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one can verify that (R) solves the problem in this case too. We omit the com-
putations. In order to make them shorter one can also assume that

where Si is the sum of the neighbouring coordinates of xi on the Dynkin diagram
of R9 otherwise one can contradict the minimality replacing Xi by some Xt of the
same parity and leaving all the other coordinates unchanged.

The Encase i

This time the difficult cases are <x, x>e {4, 6}

x7y+(-~
If x6=x7 one gets the same quadratic form as for ^6 and in this case we

know the lemma is true. Similarly one can reduce the cases X5=x6 and X5=x4.
The remaining situations can be solved by (R) or (Rf) relative to x4 instead of

*»-3«

The Encase:

As before we can restrict ourselves to the cases
<x, x>e {43 6} and x8^FX7^x6^=x5^=x4. This time beside the situations

solved by (R) or (Rf) we obtain the following solutions

1 2 3 2 2 1 0 1

O
1 or 2

c) J=m(cj)



SIMPLE VECTOR BUNDLES ON SURFACES 547

In this case any extension (2) giving a bundle E with the corresponding Chern
classes, must have Y=0 and L2=—

When m(q)> — we can choose as in case b) an element LePic(Z) such

that L2=-%m(cl\ H°(L)=H\LV)=Q and c1

Hence L2< —6 and by Riemann-Roch's formula

2 -- L2> 1. Thus there exist nontrivial extensions

(3)

Moreover the middle term E is simple by Lemma 1.

When ^(cjX — we show that all extensions (3) with L2=—Sm(c1) give a

non simple bundle E. Indeed, from Riemann-Roch's formula for

Z(X, £*J(E)) = 4 Z(X, Ox) -8

we get

2 A°(£«/OE))>8-4=4, and £ cannot be simple.

d)
4

First we state:

Lemma 3. If

Q-*L->E-*3Y-*Q

is an extension with L=O(—D), D an effective divisor, Y a simple point belonging
to supp D and E locally free, then:

i) Y e Reg D=^E is simple
ii) D2= -8 and D(=2NS(X)==>E is not simple.

Before the proof we'll show the existence of simple reducible bundles with

corresponding Chern classes.
Choose L^c1+2NS(X) such that L2=-2.
If some irreducible component of D appears with multiplicity 1 in D then

Reg D^p0. Taking Y a simple point on Reg D and using Remark 1 and
Lemma 3, one obtains the simple reducible bundles we're after out of exten-
sions of the type

0->0(-Z))->E->£rr-^0.

Since D can be seen as a root in the A, D, E root system corresponding to
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supp D one easily sees that D admits an irreducible component of multiplicity
1 in the cases An, Dn9 E69 E7, n^l (just look at the highest roots!; [H] p. 66)0

This is also true in the i^-case unless D corresponds to the highest root:

(it is the only root having both Q and C8 of multiplicity 2), Here Ci denote
the irreducible components of D.

In this case (D the highest root in Eg) we consider Dr=C$—C5—C7&D+
2NS(X). D'2=—6 and by Lemma 15 a nontrivial extension

provides a simple reducible holomorphic bundle E admitting corresponding
Chern classes.

Proof of Lemma 3. i) The long cohomology sequence of

gives hl(3T)=0, t?(3r)=l.
Using this in the long cohomology sequence of

one finds A°(E)=0, h1(E)=h\L)9 h\E)=2.
Passing to sections in

0 -> E -> E®EV -* Ev® 3Y -> 0

we obtain

We want to show that the subspace of H\EV) of sections vanishing on F
is onedimensional (in fact we'll show that this subspace is the image of i in the
exact sequence (6) below).

Let Y={p}a From

one derives the exact sequences
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0 -* H°(O) -^ H\EV) -» H°(3Y(D)) -* 0 (6)

for suitable local coordinates zl9 z2.
A nonzero section a in H\3Y(Dy) can be seen as a section in H°(0(DJ)

since we have natural inclusions 0<L-*3Y(D)C->O(D). Thus a vanishes of order
exactly one on Reg(D)9 hence a lifting of it to H°(EV) cannot vanish in p, other-
wise from (7) we'd get that a. vanishes twice In^eReg(D).

ii) D> 0, D2 = — 8, D e 2NS(X) imply there exists some divisor C such that
D=2C, Then taking sections in

0 -> 0(-C) -> E(C) -*2Y(C) -> 0

one finds that h°(E(C))=l.
A nonzero morphism O(—C)->E induces a devissage

0 -> (5(

with C' effective and Lemma 1 tells us that E is not simple.

e) ifi(Cl)=0, ^=X

In this case not even holomorphic bundles can be found with these Chern
classes by the quoted result of [B.L] (cf. § 1).

f) /w(Cl) =0,4 = 1.

m(Cl) = 0 implies c1e2NS(Z) .

Then m'(cj) is an integer ^l with equality exactly when X admits divisors.
Two kinds of extensions (2) can appear: either L=O and l(Y)=2 or L2 = — 8
and l(Y)=Q. As usual L is taken in 2NS(Ar). Lemma 1 and an argument
parallel to case ii) of Lemma 3 show that both cases give only nonsimple bun-
dles.

g) m(Cl)=Q,A=^.

As before two kinds of extensions can appear: either with L=O and
l(Y)=3 or with Lz = — 8 and l(Y) = l. The first gives only nonsimple bundles
by Lemma 1. For the second we remark that L^0(±2C) with C effective
hence we must choose the situation L=0(— 2C), otherwise E is not simple by
Lemma 1. Then by Remark 2, Y must be a simple point lying on C and case
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ii) of Lemma 3 shows that also in this case E is not simple.

fa) m(c1)=05J>2.
When X admits divisors one can choose an irreducible curve C5 Y a union

of 2(A — 1) simple points on X\C, the extensions

0 -* O(-2C) -»E-*3Y-»Q

give simple holomorphic bundles E with the expected Chern numbers by Remark
1 and Lemma 1.

When X admits no divisors one can show as before that there are no simple

bundles E with c1(^)e2NS(Z) and J(£)<iw'(0) (in (2) we should have L=0).
When J(Is)>m'(0) we can choose a holomorphic line bundle L in 2NS(3f), with
L2=— 8m'(0)5 Y a union of 2(J— m'(0)) simple points and extensions

give simple holomorphic bundles admitting the expected Chern classes by
Remark 1 and Lemma 1.

The theorem is proved.
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