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§ 1. Introduction

In [5], Nagumo defined the H°-stability in singular perturbations. Here
H°=H*(R%™) is the global Sobolev space with the norm

el = (o= faen i+ 1e e}

We shall generalize the notion of H *-stability in some sense.
Let us consider the following linear partial differential operator with con-
stant coefficients containing a small positive parameter ¢ (0=e<1):

L(D) = & P(D)+PyD) .

Denote by m the order of P,(D) with respect to D, and by m’ that of Py(D).
Put m"” =m—m' and assume that m>m'>0. Then the order of L, is less than
that of L, for é5=0. Such an operator as L, is called a singularly perturbed
operator.

We shall study the following so-called singulary perturbed Cauchy problem
for L,(D):

CP) {LE(D)u(x) =f(x), in [0, TIXRL™;

le—lu(o’ x’) = ¢E,]'(x,) s J = 1: e, m,

and the following so-called reduced Cauchy problem for (CP):
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(RCP) { L(Du(x) =fux), in [0, TIXRL";

Dlj_lu(os x’) = ¢0,J'(x') 5 ] = 19 °°° m'.
The following assumption on P, and P, will be required.

Assumption 1. (Al): The symbols of P,(D) and P,(D) are represented as

Py(€) = X250 Pl.j(fl)ﬁm_j >
Py(&) = 27;0 Pz,j(fl)flm/_j s

where p, o and p,, are non-zero constants.
(A2): (m”=2 and p,y/p,, is negative real number) or
(m"" =1 and the imaginary part of p, o/p, , is non-positive).

The following assumption on the Cauchy data and on the solvability of
(CP) and (RCP) will be required.

Assumption 2. There exist real numbers s and s’ such that (CP) is uniquely
solvable in C([0, T]; H®) and (RCP) is uniquely solvable in C([0, T]; H®) for
the Cauchy data ¢, ;j(x") and @, ;(x") belong to H* and f,(x) and f;(x) belong
to C([0, T1; H).

Nagumo defined the H'-stability of (CP) with respect to a particular solu-
tion #, of (RCP) in [3] as follows:

Definition 1. Let Assumption 2 be satisfied for s'=s.

The Cauchy problem (CP) is said to be H'-stable in 0<x, < T for ¢ | 0
with respect to a particular solution uy(x) of the reduced Cauchy problem
(RCP) in C"([0, T]; H®) if

(D1) sup [[ug(%y, *)—u(*y, <)lls—=> 0
nglgl’

whenever u,(x) are solutions of (CP) in C™([0, T']; H®) satisfying the follow-
ing three conditions:

(D2) sup ||fe(xy, ) —/olx1, <)lls — 0;
nglgl'
(D3) ||¢e,j_¢0,j||s_'> 0 s ] = 11 °%%y m,;
(D4) l¢e,i(:) =D w0, )l =0,  j=m'+1, -, m.

If fy(x) belongs to C=~»'([0, T1; H*') then the initial values D{~'u,(0, x’),
Jj=m'+1,+--,m are uniquely determined and represented as a sum of derivatives
of fo(x) and @, j(x"), j=1,--,m’. When (D4) is required, then the Cauchy data
¢, i(x"), j=m'+1, -, m are very restricted. For example, when f;=0 and
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$9,;=0, j=1, +=-, m’, (D4) implies that ¢, ;—0, j=1, .-, m. Hence another
definition of the stability whose convergence on the Cauchy data ¢, ;(x’),
j=m'+1, «--, m are different from Nagumo’s is needed.

Definition 2. Let Assumption 2 be satisfied.

The Cauchy problem (CP) is said to be (s, s')-stable in 0=x,<T for ¢ | 0
with respect to a particular solution #y(x) of the reduced Cauchy problem
(RCP) in C™([0, T]; H™=x(>) if

(D1 sup [[ug(xy, )=, *)ll; =0,
0=x =T

whenever u,(x) are solutions of (CP) in C™([0, T]; H™x(s)) satisfying the
following three conditions:

(D5) sup ||fe(xy, <) —/olx1> *)lly — 03
0z <T
(D6) H¢E,i——¢0,i”s’_>02 ]: 1, °°y m’;

(D7): There exists a positive number M, which may depend on the choice of
the initial data ¢, ;, 8, j, and f; such that

”¢E,i(')'—D{—1u0(0: ')”s’gM’ .] = m,+1: e, m.

The Cauchy problem (CP) is said to be (s, s'-+0)-stable in 0=x,<T for
¢ | 0 with respect to a particular solution u,(x) of (RCP) in C™([0, T]; H™x(s"))
if (D1) whenever u,(x) are solutions of (CP) in C™([0, T']; H™x(s<")) satisfying
(D5), (D6), and
(D8): There exist positive numbers 6 and M, which may depend on the choice
of the initial data ¢, ;, ¢, ;, and f; such that

“¢e,i(')‘~D{—1u0(09 ')”s’+8§M’ J = m,+1, e m.

Remark. For every positive number 0, the (s, s')-stability implies the
(s, s’+0)-stability, the (s, s"+0)-stability implies the (s, s'+0)-stability, and the
(s, s)-stability implies the (s—0¢, s")-stability.

It will be shown that requiring (A2) is natural when we deal with the
(s, s')-stability with respect to solutions of (RCP) for various Cauchy data.
Following to the definition of the C-admissibility of (CP) with respect to (RCP)
in [4], we shall define the C([0, T]; H")-admissibility of (CP) with respect to
(RCP).

Definition 3. Let Assumption 2 be satisfied. The Cauchy problem (CP)
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is said to be C([0, T1; H®)-admissible in [0, T} x B*~* with the Cauchy data space
(H*'Y" with respect to (RCP) if for every Cauchy datum (v, ==+, y¥,,) E(H*)", the
solutions u, of (CP) with ¢, ;=v;, j=1,---,m and f,=0 converge in C([0, T']; H")
to the solution u, of (RCP) with ¢y ;=v;, j=1, ---, m" and f,=0.

By looking into the proof of Theorem in [2] and §2 and § 3 in [3], we can
prove that (A2) remains a necessary condition for the C([0, T']; H°)-admis-
sibility with the Cauchy data space (H~)" when P, and P, satisfy (Al). We
do not give the proof in this paper.

In [5], Nagumo gave a necessary and sufficient condition for the H ‘-sta-
bility for more general system in the form of inequalities which must be satisfied
by the solutions of (CP) with the initial conditions:

Dlj_lu(o, x') = 6i,i°6(x,) 5 i J =1, cee, M,

where d;; is Kronecker’s delta and d(x") is the Dirac measure. We have
succeeded in seeking a necessary and sufficient condition for the (s, s’+0)-
stability but a necessary and sufficient condition for the (s, s’)-stability is open.
Our condition for the (s, s'40)-stability which will be found in §2 is Nagumo
type. As a corollary, we can show that Nagumo’s H’-stability implies the
(s, s+0)-stability. In [6], Kumano-go applied Nagumo’s result to the following
operator:

¢-Dy*+q-D,+Q(D'),

where g is a complex number and Q(D’) is a polynomial of D’. Kumano-go
deduced conditions for the H°-stability on the complex constant g and on the
structure of the polynomial Q(¢'). In § 3, we shall give another example for
the H°-stability.
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§2. The (s, 8’-+0)-Stability

We shall use the notation and the result in Appendix. Denote the roots
of L,(£)=0 with respect to &; by z,(, &), j=1, --, m and those of Ly(&)=
Py(&)=0 with respect to &y by 0(&”), j=1, ---, m’, respectively. It is well known
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that 7;(¢, £"), j=1, -, m are continuous in (e, &) for ¢=0 and ¢;(£"),
j=1, «=-, m" are continuous in £’. Put
b(r)y =" jl1,-,m) and ¢; =0, k|1, m),

where 9;; is Kronecker’s delta. Other notation can be found in Appendix.
Denote by Yj(e, xy, £'), j=1, --+, m the fundamental solutions of the following
ordinary differential equation with parameter (¢, £):

Ly(D;, £)Y(e, x, ) =0
with initial conditions:

DI 'Y(e, 0,8 =8;,, Jhk=1,m.

Then Cramer’s formula implies that if ;97;, 1 <i <j=<m then

Yj(ea X1 E’)
det (b(zy), *++, b(T4-1); Cjp B(Thr), **5 (T )
det(b(ry), -+, b(z,)
— det’ (ta(o)’ ta(l)’ ot ta(j—Z), tea ta(j): ) ta(m’—l))
A, 1, -, m—1)
= (_l)j_l'D(O: L, e .]"'21 Ty m—l)(Tla s Ty xl) > j=1m.

= D=1 €Xp ity X

But the last representations remain valid without any restriction on rj,
j=1,--,m. Denote by / the maximum of the polynomial orders of the

coefficients p; j(¢’), j=0, «--, m in the symbol P,(§) and put
G = (L &2,

Then we have the following theorem whose proof will be found at the end of
this section.

Theorem 1. Let Assumptions 1 and 2 be satisfied. Then the following four
conditions are equivalent:
(C1) The Cauchy problem (CP) is (s, s'-+0)-stable in [0, T for € |, 0 with respect
10 a particular solution u(x) of (RCP) belonging to C™([0, T]; H™xs:"1+1),
(C2) The Cauchy problem (CP) is (s, s'-+0)-stable in [0, T for ¢ | O with respect
to every solution uy(x) of (RCP) belonging to C™([0, T]; H™ax(s:s1+}),
(C3) There exist positive numbers €, and C, such that

T /’
(E1) sup S LYo, 3, EKEY |dn =G,
0<eZe, E’ER*1J0 €
(E2) sup | Yi(e, %y, EKED| ZC,,

157w/, 0<eZ ey, 054, < T, &'’€R" 1
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and for every positive number O there exist positive numbers &5 and Cy such that

(E3) sup | Y, %, EKED | ZCo.
m +1=5j<m,0<e<e5 0=4, =T, {'c R 1

(C4) There exist positive numbers €;, R,, and C{ such that

T 4
(B4) sp [ L1 m, e lan=cy,
0<esel, Ry=<|&| Jo €
(E5) sup | Y(e, xy, EXEY| <C4,

1sjsm’,0<ese;, 0=, ST, Ry=|¢|

and for every positive number O there exist positive numbers e}, Ry, and C’
such that

(E6) sup | Y5(e, %, €KED™?| <Ci.
m+15j<m, 0<e=<es, 0=, <T, Rs<|&|
Remark. Nagumo studied the H*-stability in the following general situa-
tion:

L, = 370 Ly(e, DYDY,

where the symbols Z;(¢, £') are matrices of polynomials in &’ with constant
coefficients which depend continuously on the parameter ¢=0. He proved
the equivalence between the following two conditions:

(C5) The Cauchy problem (CP) is H°-stable in [0, 7] for ¢ | O with respect
to a particular solution uy(x) of (RCP) belonging to C™(|0, T]; H*™).

(C6) There exist positive numbers ¢, and C, such that

T

(E7) Sup g 1 ° l Ym(é', xl, El)ldx1§Co5
0<e=ep, &'ER*1J0 €

(ES) sup | Y&, 3, €) =G,
1<j<m, 0<e<éy, 0= £, < T, &'ER 1
Corollary 1. Let Assumptions 1 and 2 be satisfied and uy(x) be a solution of
(RCP) belonging to C™([0, T1; H**"). If the Cauchy problem (CP) is H*-stable
in [0, T for € | O with respect to a particular solution u,, then the Cauchy problem
(CP) is (s, s+0)-stable in [0, T for ¢ | O with respect to a particular solution .

Proof. Since Nagumo’s theorem can be applied to our problem and ob-
viously (E) implies (E2) for s=s' and (E3) for s=s". Q.E.D.

To prove Theorem 1 we need several steps. For the solution #, of the
reduced Cauchy problem (RCP), we shall consider the following singulary
perturbed Cauchy problem:
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L(Dyu(x) = f(x), in [0, TIXR*;
(CPI) Dlj_lu(o’ x’) = ¢a,j(x') s J = 13 oce, M
Dlj-lu(o’ x)= Dli—luo(o’ x), J= m'+1, e, m.

Here the initial values D;/"*u(0, x"), j=m’+1, ---,m are fixed. The reduced
Cauchy problem for (CP1) is (RCP). Denote by U, 1(x) the solution of (CP1).

Lemma 1 (due to Nagumo). Let (41) and Assumption 2 be satisfied. Then
the following two conditions are equivalent:

(C7) The Cauchy problem (CP1) is (s, s')-stable in [0, T for ¢ | O with respect
to a particular solution uy(x) of (RCP) belonging to C™([0, T]; H™2x(ss"1+1),
(C8) There exist positive numbers &, and C, such that

13) sup_ "L (e, m, EKE 10 <G
0<€S€o,€ eRnr-1

(E2) sup | Y;(e, 33, EKE >s_s I=GC.
1sjsw/, 0<e=6,, 0=x, =T, {'ER"1
Proof. First we shall show (C8) implies (C7). Put
Ve(x) = ue,l(x)_uo(x) >

8e(x) = Lo(D)uo(x) —Le(DYug(x)+1 e(x) —fo(x) -

Denote by #(x;, €’) the Fourier transform of u(x) with respect to x’ and by
GF 7L, » the inverse Fourier transformation. Then v,(x) is given by

ve(x) = Fs (0701 Yy, X1, )66, 560 —0,4(61)))
+gf_’£>x'<gz 1 ° Ym(53 xl_ts fl)gA'e(ta E,)dt) .

0 Pro°€

Since
[Pery, €)[KEDY S UM Y(e, %, ENED ™ || 8o, 56— o, 56N 1KED

] e m—t, EXEY 26
0 | pyol =€

it implies that

G

| Prol Jo

vt = Co» 27Z1l18e, j— 0,51l +

[t il

By (D6), we have 17|l ;—%,ill¢—0. Since u, belongs to C™([0, T];
H™axis.1+) it implies that
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sup ||Lo(D)ug(%;, =) —Le(DYu(xy, *)lly = 0.
0=z =T
Hence (D5) implies that sup ||g.(*x;, *)|ls—0. Thus we have
0<% <T
sup |[ve(x,, )lls— 0.
0% <T

Next we shall show (C7) implies (C8). Assume that (E2)is not satisfied.
Then, for a certain j with 1= j </, there exist sequences {e,} with ¢, | 0 and
{t,} with 0=<¢,<T and a sequence of open balls {S,}, S, ={|&"—&;| <r.}
such that

@1 | Yj(ens tar EXEY™|>n  for &inS,,
2.2) 2 < (KEDKED) <2 for & in S, .
Put

un(x) = cn'gf—’ix’(yj(em xla E,)”Y(E’; Sn)) 9
where ¢,=n"1- | S, | V24>, Then u,(x) satisfies L, (D)u(x)=0. Since
[0t EVIKET" = n72e | S, | VKED™ | Yi(ens tar €| 2(E"5 SKET
= 170 |8, | TVHLEDKED) | X (en 1 EKED™ 1265 S,),
(2.1) and (2.2) imply that
sup ”un(xls ')sg”un(tm °)”sg 1/2 .
0=z =T
Since
| D14,(0, EN[<ED" = ¢, 2(€"; S)KED
=17t | S, | V2 2(E; SKEDKED)

(2.2) implies that [|Dy'u,(0, -)||y <2/n—>0. For k=j, we have
[1D¢#",(0, *)|ly=0. Put u, (x)=u,(x)+u(x). Then we have a contradiction
to (D1), (D5), (D6), and (D7).

Assume that (E1) is not satisfied. Then there exist a sequence {¢,} with
€, | 0 and a sequence of open balls {S,}, S,={'&eR*™; |&/—¢&,| <r,} such
that

T ’
@3 [t Wty Ty, €K€Y L=,
0 [ Prol-eq

for & in S,. We choose ¢, ;(x")=D;uy0, x’), j=1,-,m’. Then the
solutions of (CP1) for {e,} are given by



H*-STABILITY IN SINGULAR PERTURBATIONS 559

xl 1

0 Pr,0°€n

(5) = G+ 7 ([ Yalew 1, €08,01, €41 ).

Put
1

Pro°€n

yn(x!,’ 6’) = ° Y,,,(é',,, T'—xp E,) o

As we shall show later by (2.5) in the proof of Lemma 3 that Y,(e, x;, ') is
continuous in (x;, £") for fixed ¢, it implies that y,(x;, £’) is continuous in
(%, &€") for every positive integer n. For E={(x;, £"); y,(x;, £")%=0}, denote
by x((x;, £"); E) the characteristic function of the set E. Put

Hn(xl’ EI) = z((xl’ E,); E)'yn(xl, E’)/l yn(xb el)l .
Then | H,(x,, €")| =1 and (2.3) implies
| 7, e B, €0 >,

for&’in S,. Approximate H,(x;, £') in the sense of LY([0, T']) valued in bounded
functions in &’ by the mollifier os(x,)* with respect to x;. Put

oo €)= [ oso—0)H,@, €0

Then A3 ,(x;, £') are continuous functions with respect to x; in [0, T7] satisfying
| hs,u(xy, )| =1. Since

L(T 4 r | T ’ ~s-s’ r

| [T e B, €9dx || [ 32, €0KE > b €|
. (T r ’
= sup Iyn(xla E’)l '<E'>s—s 'S Ihs,n(xl’ ¢ )_Hn(xh £ )ldxl >
0=z T 0

it implies that for &’ in S, there exist positive numbers 8,(¢") such that

T , ,
| 7aCos €0KE o, €,

for &' in S,. Put

>n,

hn(xl.’ E’) = ha,,(E'),n(xla E’) s
8e, () = Fh o™t S| ™V2hy(xy, EXKED(E'; S))

where |S,| denotes the measure of S, and %(¢’; S,) is the characteristic
function of the ball S,. We set f, =fy+g&.,. Then

1
”ge,,(xls ’)”{é; —0.



560 RyuicHr AsHiNO

Since
(an(T: E')_ao(Ta E’))<E’>s
- S: Valkyy ENWED < 8, (%1, EKED dx,y

T 4
= [ an €KED o, € on™] 5,1 V(e 5,

it implies that ||u,(T, <)—uy(T, -)||=1. This contradicts (D1), (D5), (D6),
and (D7). Q.E.D.

Put

Br = {|€'| =R}, p = PyolPros 0 =arg —p, 6 =expib/m”,
¢ = exp 2zi/m”, and ¢} = Y j=m/ -1, e m.

By the same argument as in Lemma 2.2 in [3], it implies the following lemma
whose proof is omitted.

Lemma 2. Let (A1) in Assumption 1 be satisfied. Then, for every positive

number R, there exist a positive number e, with e,<<1 and continuous functions
2pa(es €, =1, -+, m on [0, 4] x By satisfying

lim sup [z;, (5, D=0, for j=1,,m
ey0 g’eBR

such that for m' +1Zi<j<mand for 1=Zi=m’,m'+1=j=m

ti(e, §)Fri(e, &) on (0, egl X B,
and
ti(e, &) = 0j(€)t7u(e, &), Sfor j=1,-c,m';
eVm” oz (e, E') = O+ | p|¥™" +1;,(e, E), Jor j=m'+1, -, m.

Lemma 3. Let Assumption 1 be satisfied and ¢y be the same as in Lemma 2.
For every positive number R, there exists a positive number C, p such that

24 0<eSen 0SS T l£/|SRe_maxw_M/)'Wm” | Yi(e, 31, €)| =Ces
=¢R, V=A1= 4, =
Jor j=1,-,m.

Proof. Fix an arbitrary positive number R and assume that 0<<e<ep.
For arbitrary roots 7;=1(¢, £’), j=1, -+, m, which do not need to be distinct,

(2.5) Y'.i(e, Xp» E/) — (_I)j'l.D(O, 1’ u-n’j-——z, j, oo, m—l)(T]_, ceey Tpyy xl) ,
j=1,c,m.
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As we have already shown in Theorem in [2], (A2) in Assumption 1 implies
that the imaginary parts of Oz}, j=m’-1,-+,m are non-negative. Put 7=e"»",
2p=ex", zj=1;(6, &), j=1, -, m, and w;=e"""oz;(e, £'), j=1, -, m.
Then Assumption 1 implies that for every positive number R, there exist posi-
tive numbers My, M% and ¢ such that (A.8) in Lemma A.3 in Appendix is
satisfied for M=Mp, M'=M%, c=cg, and 7,=7,. Hence Lemma A.3 can
be applied to (2.5). Since D(o(1), o(2), +*+, o(m’'—1))(z’, xy), p in &S, are entire
in z’ and continuous in x, for 0=<x, <7, it implies that there exists a positive
number G, j such that

maxlD(p(l), 9(2)1 B p(m'_l))(rb s Tw's xl)l éCZ,R >
PES,

on [0, ex] X[0, T]X Bg. Since E(w) is holomorphic for w;==w;, 1=<i<m’ and
m'+1=j<m, Lemma 2 implies that there exists a positive number C; , such
that for j=1, «--, m’

ID(O’ Loy j=2, j, oo, m'—l)(Th "0y Tty X1)
X (V™" et pyryy)eeee e (6" ’Tm)m,‘E(ellm” "ty e, €, ) [ SCog s

on [0, €g] X[0, T]X Bg. Then

I DO, 1, <+, j—2, j, =y m—1)(Ty, ++, Tppy X1)| < Cs g--(Ci+-Cpe Cp ) €V,
for j=1, «--, m' and

| D, 1, =+, j—2, j, =+, m—1)(ty, ***, Ty X1)| g(CI-{-Cz-Cz,R)-e(j"”')’"‘" ,

for j=m'+1, +++, m. Put C z=C; z+C,+Cy+ C, g, then we have (2.4).
Q.E.D.

Denote by y;(x;,€"), j=1, --+, m’ the fundamental solutions of the following
ordinary differential equation with parameter £’:

Ly(D,, £y(%, ) =0
with initial conditions:
D0, £) =08;4, Jhk=1,e,m",
where 0; ; is Kronecker’s delta. As we have already shown

(26) yi(xla E,) = (_l)j—l'D(O’ 13 "',j—2, j’ "%t m’_l)(ala > O/ xl) >
j = 1, .'.’ m, 2

where 6;=0;(¢"), j=1, -+, m’ are roots appearing in Lemma 2.
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Lemma 4. Let Assumption 1 be satisfied and ¢y be the same as in Lemma 2.
Then

(27) Yi(es X1 E') - yj(xl’ E') s ] = 1, °°% m’;
(2'8) Yj(es X1s EI)—*OS ] =m’+19 cee, M,
uniformly on [0, T]1X Bg when ¢ | 0.

Moreover, Yi(e, xy, £"), j=1, ==, m satisfy

(E8) sup | Yi(e, x, €| =Gy
1=57<m, 0<e=<ey, 02,7, &'eRn-1

then yi(x,, €, j=1, «==, m" satisfy

(E9) | yi(x, €D =G

sup

1Sjsml, 0S5, T, &'cR-1

Proof. By Lemma 3, (2.8) is obvious and it suffices to show that for
j=1’ ooe, m'

(—I)j-1°D(0’ 1’ °°°9j_2, j; °%% m’_l)(‘rls s Tm’s xl)

X" Tgpar)eoeeo (17 ) B 1y, o £ o7, > 335, 7).
Since z;(¢, £')—>0;(¢"), j=1, <>+, m’ uniformly on By when ¢ | 0 by Lemma 2,
it implies that for j=1, +--, m’

(_l)j_1°D(09 1, °“',j—-2, ja 2% m,_l)(rb % T’y xl) _>yj(x1’ E,) .
On the other hand,
(CLEE NI RN CLE S S CRA L BN C RN P L
and
E(eVm” ogy, ooo, ¥m” oz,
g E(Os °°% 09 (6°T1,ﬁ'+1° |P|V"’”), %% (9°T:n° lpl Ilm”))
= 1B+ Thrsr = | p|Ym")eeee (@ hye | p|Vm ) .

Thus we have (2.7).
Since R is arbitrary, (2.7) and (E8) imply (E9). Q.E.D.

Let us consider the following singulary perturbed Cauchy problem:
L(Dyu(x) =0, in [0, TIxXR%;

(CP2) DI (0, x') =0, j=1,,m
D/u(0, x") = Pe, (%) 5 j=m'+1, o m,
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and its reduced Cauchy problem:

( Ly(D)u(x) =0, in [0, TIXR%1;

RCP2 .
(RCP2) | Di'u(0, x) =0, j=1,em.

Denote by u, ,(x) the solution of (CP2) and by u,,(x) the solution of (RCP2).
Then u, o(x)=0.

Lemma 5. Let Assumption 1 be satisfied and €y be the same as in Lemma 2.
Assume that every support of the datum ¢, ;(&), j=m'+1, -, m in (CP2)
is contained in the closed ball B,. Then, for arbitrary real numbers s and s’
there exists a positive number K, which is independent of ¢ such that for
0<e=<ep,

(29) sup ”us,z(-xla ')HaéKR'Z?,-m’H. EU_”")/'””'Hfﬁe,t”-' .
0=z =T
Remark. Here we do not use any conditions on the fundamental solu-

tions Y; but use (A2) in Assumption 1. Lemma 4 shows that (A2) ensures the
boundedness of ¥; on [0, 7] X Bg when ¢ | 0.

Proof of Lemma 5. It is well known that the solution #,4(x) of (CP2)
satisfies

B 2(x1; €) = Xfeman Y6, 31, €7)6¢,5(¢") -
Lemma 3 implies
lfle,z(xh 5’)] §C1,R'2'1"=m/+1 g=mm? , lée.ll >

on [0, T]X B;. Thus

@ [t €KE e
1E/1=R
SC &2 m s (2m) ™ Sw - | eU=m"m" . 5 (E)KE"|2dE" .
/ISR
Put Kp=C, -m/?- sup<&">*~". Then we have (2.9). Q.E.D.
1EI1<E

The following corollary shows us that the stability is very strong when the
Cauchy problem is amdissible.

Corollary 2. Let Assumption 1 be satisfied and ¢y, be the same as in Lemma 2.
Then, for every positive number ¢ with € Zep, there exist Cauchy data ¢, ;,
j=m'+1, -+, m belonging to H* such that for arbitrary real numbers s and s’,
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”¢E,i”a’_> o, j = m'+19 cee, M

sup ”ue,z(xls °)“s -0,
0<% <T

where u, , are the solutions of (CP2) for these data ¢ ;, j=m'+1, -, m
Proof. Choose non-trivial C7(Bg)-functions v;(£"), j=m'41, «=-,m and
a positive number @ with a<<1/m”. Put
¢z..1‘(x’) =e&"% E’—m’(w:(f )) s J = m’—|—1, cec, M,

which are rapidly decreasing functions. If s’<<0, then

llBe,illo= e LRNF W llo § o0
when ¢ | 0. If s/>0, then

160 e 21180 e = e -<RIF )l 1 o0
when ¢ | 0. By (2.9),
S0P, llote 20r1 = e¥m" % Ko B famrss IF 7 W lly L O,
when ¢ | 0. Q.E.D.

Lemma 6. Let the same assumption as in Theorem 1 be satisfied. Con-
sider the singulary perturbed Cauchy problem (CP2) and the reduced Cauchy
problem (RCP2) for (CP2). Assume that for the Cauchy data ¢, ;, j=1, -, m
there exist positive numbers 6 and M such that ) 212”’ l1ge,jlly+s=M. Then
the following two conditions are equivalent: o
(C9) The Cauchy problem (CP2) is (s, s'-++0)-stable in [0, T] for e | 0 with
respect to a particular solution u, ;=0 of (RCP2).

(C10) For every positive number O there exist positive numbers €5 and Cys such
that

(E3) sup | Yie, xp, EKED~'3| <C;.
m+1<j<m,0<eses, 054, =T, £'eR?1

Proof. First we shall show (C10) implies (C9). We have only to show
that if Sup [|e,jlls7+s=M then sup [|ue o(%1, =)ll;—>0. As we have already

shown in the proof of Lemma 1, the solutlon u, o(x) of (CP2) satisfies
ae.z(xh 5’) = Ejm=m’+1 Yi(e’ X1» E’)’$e,i(5’) .

Denote by X(£'; By) the characteristic function of the ball B;. Put
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ﬁ!,z(xla £") =y o(xy, £7)-%(§"; By),
w!,Z(xla &) = ae,z(xls £-(1 ~—X(E’; By)).

Then v, o(x) =F &% (Pe o(x1, €')) is the solution of (CP2) with the initial condi-
tions:

D0, x)=0, j=1,-,m';
Dy u(0, x") = FtiBe ;) 2(€'; Br)), Jj=m'+1,-,m.

Since the supports of the Fourier transforms of these Cauchy data are con-
tained in the ball B, we can apply Lemma 5 to v, ,(x). Obviously

IF %A e i6)-2(E"; By =I|Pe,ills »
(2.9) and 0<e=<¢,<1 imply that
2.10) ésggrHve,z(xp-)lléKR-6""‘” et |F @50 (fe () 2(E"; BRIy
SKe ™ S w1 |l ey -
Choose a positive number 0" satisfying 6’ <8 and put 6"/ =6 —4'. Since

M’e,z(xn £ =>ewar | Y,-(e, X15 5')'<5>s_s/_8/l
1 Ges(E)<EDH - |1—2(6"; BR)| <€D,
the estimate (E3) for 6=0" implies that
M’e,z(xn E')'<5’>s| §2?=W+1 Cyr+ lfﬁe,j(fl)‘<5'>s,+sl ° | 1—1(5’§ BR)l ‘R,

Hence

2.11) sup ”Ws,z(xn ‘)”sécs"R_M S fema1 ”¢E.J‘”s’+8 .
o<z <T

Thus

(212) sup ”ue.z(xb ')Hsé(KR - gl/m” + CS’ * R—s”) “M-m".
o<z <T

First take the upper limit of ¢ in (2.12) and next let R { co, then

H sup ”ue,z(xla ')”s =0.
840 0<r =T

Next we must show (C9) implies (C10). Assume that (C10) is not satis-
fied. Then there exists a positive number 0 such that (E3) is not satisfied.
Replacing s’ by s'+0 in (2.2) and (2.3) in the proof of Lemma 1, we have a
sequence of solutions u,(x) of (CP2) such that
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Sup ”un(xli °)”s;1/2 ]
0< 2 <T
“Dlj_lun(os °)”a’+8 -0, ] =1,,m.
This contradicts (D1), (D5), (D6), and (D7). Q.E.D.

Proof of Theorem 1. First we shall show the equivalence between (C1)
and (C3). Denote by u,,(x) the solution of (CP1) and by u, ,(x) the solution
of (CP2) with the initial conditions:

D/'u(0,x") =0, j=1,,m';
D0, ') = ¢ ;(6) D70, X),  j=m'F1, e m

Then the solution #,(x) of (CP) is given by u,;(x)+u, ,(x). Apply Lemma 1
and Lemma 6. The condition (C3) is equivalent to the (s, s’)-stability of (CP1)
with respect to a particular solution u, of (RCP) and the (s, s'+0)-stability of
(CP2) with respect to a particular solution u,,=0 of (RCP2). By the defi-
nition, the (s, s')-stability implies the (s, s"+0)-stability. Hence we can easily
show that (C3) is equivalent to the (s, s’ 0)-stability of (CP) with respect to
a particular solution u, of (RCP).

Since (C3) is independent of the choice of a particular solution u, of
(RCP), it implies that (C2) is equivalent to (Cl1).

Finally we shall show the equivalence between (C3) and (C4). We have
only to show that (C4) implies (C3). Apply Lemma 3 for R=R,. Then we
have (E1) and (E2) for e,=min{e{, e} and

Co = max{l, T} -max {C}§, Cy g, (1+RH™=s=sD.002)
Apply Lemma 3 for R=R,;. Then we have (E6) for e;=min {e}, ¢g,} and
Cy = max {C}, Cy gy (14 RH™=(6"-D012}
Q.E.D.

By the same argument as Theorem 1 we have the following theorem whose
proof is omitted.

Theorem 2. Let Assumption 1 and 2 be satisfied for s’=s. Then the fol-
lowing three conditions are equivalent:
(C5) The Cauchy problem (CP) is H'-stable in [0, T] for € | O with respect to a
particular solution uy(x) of (RCP) belonging to C™([0, T]; H**).
(C11) The Cauchy problem (CP) is H°*-stable in [0, T] for ¢ | 0 with respect
to every solution ux) of (RCP) belonging to C™([0, T]; H**).
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(C12) There exist positive numbers ¢}, R,, and C} such that

T
(E10) sup S 1
0<eseq, Ry<Z (&) Y0

(Ell) sup I Yj(e’ X15 E,)l §C6 .
1<j<m, 0<e<e, 0%, < T, RyZ | &|

l Ym(ea X15 E’)ldx1§C6 H

&

§3. An Example for Nagumo’s H*-Stability
Let P,(¢) and P,(¢) satisfy Assumption 1 and
ord p, ;(EN<j, j=0, =, m; ord p, (ENV<j, j=0,,m".
Then P,(D) and P,(D) are Kowalewskian operators. Put
L(E, 2) = Py(&)+2"" - Py(£),

N'=(1, 0) in REIXRZ,", and N=(N’, 0) in R;xR,. Denote by i(E, 2) the
principal symbol of L(£, 2) with respect to (&, 2) and by 15,-(5), i=1, 2 those of
P(#), i=1, 2, respectively. Then

LE, B = PO+ - P©).
It must be remarked that i(N )=p,,,=50 and 1;2(N "Y=p,;,,E0. Kevorkian and

Cole’s suggestive example in §4.1.2. in [7] is as follows.

Example 1 (Kevorkian and Cole).

Let Py(¢,, £,)=¢£2—&;%, which is the simple wave operator, and Py(&,;, )=
v —1-(a-€,+b-£,), where a and b are real numbers. Let us consider the
solutions u,(x,, x,) through a fixed point P(x,’, x,°) of the following equation:

&+(Py(Dy, Dy)+PyDy, Dp))u(x;, x5) = 0.

If there exists a convergent sequence of u,(x;, X,), then the limit uy(x;, x,)
must satisfy the reduced equation

Py(Dy, DpJu(xy, x5) = 0.

Since the general solution of the reduced equation has the form: uy(x;, xp)=
f(b+x;—a-x,) and the subcharacteristic of the reduced equation has the form:
b-x,—a-x,=constant, if |a/b|>1 then the subcharacteristic to P lies outside
the usual domain of dependence of P for the simple wave operator. Hence
uy(x,, x,) can not be approximated by u.(x;, x,) when |a/b|>1.

Thus even when 131 and 152 are strictly hyperbolic, we need some additional
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assumption on the propagation speeds. Therefore we require the following
assumption.

Assumption 3.
(A3): The polynomial L(&,+, &', ) has only simple real zero for every (&, )
in R xR—{(0, 0)}. That is, L(£, 2) is a strictly hyperbolic polymonial in
(¢, ) with respect to N.
(A4): There exists a positive number 7; such that if Im < —17; then
Py(&,+7, €')=0 for all € in B". That is, P,(£) is a hyperbolic polynomial in &
with respect to N’ in the sense of Gérding.

Remark. Since

i(O—I-‘L', 0, 2) = py o+ " +2"" 'Pz,o‘fm,
= Tm,(Pl,o'Tm”‘i‘lm” *P20) 5

(A.3) implies that m'<1.

Theorem 3. Let Assumption 1 and 3 be satisfied and s be an arbitrary real
number. Then the Cauchy problem (CP) is H'-stable (and therefore (s, s+-0)-
stable) in 0<x, < T for ¢ |, 0 with respect to every solution u, of (RCP) belonging
to C™([0, T]; H*™™).

Proof. By Theorem 2, it suffices to show that Assumption 2, which is
the assumption on the unique solvability, and (Cl12) are satisfied. First we
shall show (C12). Denote by #;(¢’, 2), j=1, ---, m the roots of L(£, 2)=0
with respect to £,. When e"1=2"", we may write

(CN)) . HE, D) =1, &), j=1m
for e==0 by choosing the suffixes {j} of #;(§’, 2) properly. The strict hyper-

bolicity of L(&, 2) implies that there exist positive numbers R,, ¢,, and M, such
that

. 3 inf lt]'(EI: x)_'tk(g” '{)l/l(g’a z)l ;Cl;
J*k’ léjv kém"(f,r A)I g-Rl.

3.3) __ sup 16", DI/IE D<M,
1<7=m, (&, N =R,

(3.2)

(For example, if we look carefully into the proof of Theorem 4.10 in [8], we
can find this fact easily.) Hence the roots z;(e, '), j=1, -, m of L(§)=0
with respect to &, are distinct for €30 and R, <|&’|. The hyperbolicity of
L(&, 2) implies that there exists a positive number C; such that
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(3.4 sup |Im 26", )| <C; .
1=j<m(¢’, )ER"1XR
Put p=|(§’, )|. Then (A.4) in Appendix implies that for %0, R, < |€'],
0=x,=<T, and j=1, -+, m,
l Yi(es X15 E,)l = ]("l)j—l'D(O, 1, "'sj—z’ ja R m_l)(tla s by xl)l
=M@Q, 1, -, j—2, j, -+, m—1)- I(th ttey tm)lm—j
X 2371 exp (—Im £,)/ T pr 15pm | 11— 11|
épl_j'M(Oy 1: ""j—2s js "ty m_l)' I(tl/pn °ty tm/p)lm—j
X 237=1 exp (—Im £,%)/ I] pr,150m | il 0 — il 2|
gpl—i_c4 ’
where
C4 = M(09 1: '"sj~2a ja "ty m_l).m(m—f)IZ.Mlm—i.m.(exp C3T)‘C'11—m .
Since R, =<|&'|<p and A=p, it implies that o'~/ < R!'™, j=1, ---, m, and

5"1-,01""’=Z”’” ,pl—mélmllﬂ—m_ Hence

sup lY,—(E, X1s fl)lécdn ]= 1, -, my
0seser, 0Sm<T, R<|¢|

1
sup —|Y(e, %, EN| =C,.
0SeSer, 0SnST, R[] €

Next we shall show that the unique solvability. Since (C12) and Lemma
3 imply (C6), Lemma 4 can be applied. It is well-known that (E8) and (E9)
imply the unique solvability. Q.E.D.

Remark. 1If ¢, ;, j=1,++, m and @, ;, j=1, ---, m’ belong to H*(R*™*) and
f. and f, belong to H*(R") then u, belong to C™([0, T1; H*) and u, belongs
to C™([0, T]; H**™).

Appendix

Let z=(z;, z,, ***, 2z,) be complex variables. For a non-negative integer
J, denote

a)z) = ((zj)'; j—> 1, -+, )
and for non-negative integers 1, /,, -+, /, satisfying 0=/, </,< -+ <1, denote
A(ll’ lza A l,,)(Z) = det (a(ll)(z); i i 1, ttty n) .

In particular, A0, 1, ---, n—1)(z) is the Vandermonde determinant and repre-
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sented as the difference product I[;<;<j<q (z;—2;). Let i=y/—1 and x; be a
real parameter. Denote

e(z, xl) = (exp izixl;j - 1, °% n)

and for non-negative integers 4, l, «--, [,-; satisfying 0= <[, <o <[y,
denote

B, by =5 ly-2)(z, X;) = det ‘(‘e(z, xy), *a(1)(2), »++, *a(ly-1)(2)) -

Expand the determinant B(J;, I,, <=+, [,-4)(z, x;) Wwith respect to the first row.
Then

(Al) B(lls IZa 7%y ln—l)(z’ xl) = ?=1 (—'1)1+j°A(lla lz, °%Cy ln—l)(z(j))'eXp izixl 5
where z(j)=(2), Z3, ***5 Zj-15 Zj41 ***» Z4). Denote
C(lls lz, °°% l”)(Z) = A(lls 12’ °°%y l,,)(Z)/A(O,l, ey n—l)(Z)
and
-D(lls 129 °°% ln—l)(zn xl) = B(lls ZZa 0%y ln—l)(z, xl)/A(Os 19 °°%s n—l)(Z) .
Then C(l, I,, -+, [,)(2) is a homogeneous symmetric polynomial in Z[z] of
order L, +I,+ -+ +1,—(m—1)n/2, which is called a Schur function. Since
B, I, +>+, 1,-1)(z, x;) is an entire function of z and vanishes on the zeros of
irreducible polynomials z;—z;, 1<i <j=<n, Nullstellensatz implies that
B(ly, 1y, *++, 1,_1)(z, %) is divided by A(0, 1, -+, n—1)(z) in the ring of entire
functions. Hence D(h, I, -+, [,;)(z, ;) is an entire function. If z; =z,
1<i<j<n, then (A.l) implies that
(A2) D(ly, Iy, +==5 1,-1)(z, x,)
= a1 (=) Cly, Ly, +o+, 1,o)(2(7)) exp iz;%, - E(2)
where Ej(2)=1/{(—1)*"+ Tl4sj,1585s (z;—22)}. Put
My, b, -+, 1,) = max|C(ly, I, -+, 1,)(2)].
lz]=1
Then
(A3) |C(ll’ lz’ °"% l,,)(Z)I éM(ll’ 129 % In)° lzl L’
where L=I,+1,+---+1,—(n—1)n/2 and

(A4) ID(ll’ 12’ °°%s ln—l)(zs xl)l
M, Iy, o5 L) | 2] L,°27=1 exp (—Im z;%)/ 1 44,1050 IZj—Zkl s
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where L' =+ 1+ +1,_  —(n—2)(n—1)/2.

Let m, m’, and m” be positive integers such that m=m'+m’’. Denote
2’ =(zy, 2y, ***, Zp)y 2 =(Zopt 115 Zutrns ***5 Zm), a0d z=(2, 2""). Let I, b, -+, Iy4
be non-negative integers satisfying 0=/ <</,<-:-<l,_;. Let &, be the set of
all bijections o from {1, 2, -+-, m—1} onto {l, I,, -++, [,,_,} satisfying

o()<o(2)< -+ <o(m’);
o(m’'+1)<o(m'4-2) < -+ <p(m—1)
and &, be the set of all bijections p from {1, 2, .-, m—1} onto {4, L, -+, [,,1}
satisfying
o(1)<o(2):+ <o(m'—1);
o(m)<o(m' +1)< - <p(m—1) .
There are one-to-one correspondence between the bijections in S; and the selec-
tions of m—1 objects taken m’ at a time and between the bijections in S, and
the selections of m—1 objects taken m’—1 at a time, respectively. Define the
bijection = from {4, b, -, [,,_,} onto {2, 3, ---, m} as
z(l;) = j+1, j=1,,m—1.
Denote
I(o) = X721 m(o(j)+m’ (m'+1)/2
and
J(p) = 1+3375" a(o(j)+m'(m'+1)/2 .
For z;=z;, 1<i=m’, m'+1= j <m, denote
E(z) = 1/ILisisw, wsisn (2;—2) -
Lemma A.l. For z;=z;, 1Zis=m', m'+1=j<m,
(A.5) D, by =+, ly-1)(2, X1)
=310e8,(—=1)'®-C(o(1), £(2), -+, p(m"))(z")
X D(p(m’+1), p(m'+2), +-, o(m—1))(z", x,)- E(2)
+30es; (—1)/®-D(o(1), £(2), +--, o(m’—1))(z’", x;)
X Clo(m"), p(m’'+1), «++, o(m—1))(z"")- E(z) .
Proof. Apply the Laplace expansion theorem to B(l, L, «--, [,,_)(z, x)).

The minors of order m’ of the original matrix {(e(z, x,), ‘a(l,)(2), -+, *a(l,,_)(z))
of order m are
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A(p(1), £(2), =+, o(m"))(2"),  for pin Sy,
B(p(1)5 p(2), ) p(m’—l))(z”, xl) > for p in ’32 s
and those cofactors of order m’/ are

(—=1)"®-B(o(m'+1), o(m'+2), ==+, o(m—1))(z’, %),  for pin Sy,
(=1)/®-A(p(m"), o(m'+1), -+, o(m—1))(z"),  for pin S,,

respectively. Hence

(A.6) B, by, o5 In-1)(z, x1)
= 3lpes, (1P A(o(1), £(2), -+, p(m))z")
X B(o(m’+1), o(m’'+2), -+-, o(m—1))(z", x,)
+23pes, (—1)7®-B(o(1), 0(2), *++, o(m’—1))(z", x;)
X A(o(m'), p(m'+1), -+, o(m—1))(z") .

Divide (A.6) by

(A7) A(O! 13 ey m—l)(Z)
= A(O, I, oo, m'_l)(z,)'A(Os I, -, m”——l)(z")/E(z) >

we have (A.5). Q.E.D.
Denote

o(1)+p(2)+-+-+o(m)—(m —1)m'[2, for p in &S,

L'(p) = { p(1)+p(2)+_,,__l_p(m’_l)_(m’—l)m'/Z s for p in Sz ’

and
L”( p) — {

Put

o' +1D)+p(m' +2)+ - +om—1)—m"’ —1)m” |2, for o in &,
o(m")+om'+1)+ -+ p(m—1)— (" —)m”’/2, forpinS,.

M(ll: lz; °°%y lm—l)

= max{max M(p(1), o(2), :*+, o(m")),
PES;

max M(o(m'+1), o(m’'+-2), -+, o(m—1)),

PES;

max M(o(m’), o(m’+1), -+, o(m—1))} .
0ES,

For a positive parameter 7, put w;=7-z;, j=1, ==+, m.

Lemma A.2. Assume that z;%z;, for 1Zis<m/, m'+1<j<m and for
m+1=Zi<j<m. Then
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IC(p(l)’ p(2)a R p(m’))(z’)
X D(o(m’+1), o(m’+2), «++, o(m—1))z", x)- E(z)|
SH(, by oy Ipa)?e 2| F' O [ W7 |27 O D | E ()|

X 7]’”””” —Lre, (Xfemsrexp(—Im ij1/77)/Hl:q':j. m’+1§ksm| Wi_wkl ),
for pin S, and
[ D(o(1), £(2), +++, p(m’—1))(z’", xy)
X C(o(m’), p(m'+1), -+, o(m—1))(z")- E(2) |
= [ D(o(1), (2), *++, o(m'—1))(z", X)) |
XM(ID 12: R} Im-l)' IWIIIL"(P)_ IE(W)l ,ﬂm’m” —L7® ’

Sor o in S,

Proof. Since

Clhy, L, -+, L)2) = 272 Clly,ly, -+, 1)(2+2) ,
where L=L+1,+++1,—(n—1n/2,
D(h, Ly, +++5 1-1)(z, %)) = 77" *D(ly, by =+, L)) 2, x4[7)
where L” =l I+ +1,_,—(n—1)n/2, and E(z)=7"""" - E(w), it implies that
C(o(1), £(2), +++, o(m"))(z")
X D(o(m'+1), o(m’+2), -+, p(m—1))z", x;)+ E(2)
= C(o(1), £(2), +++, o(m"))(z")
X D(o(m'+1), o(m'+2), -, o(m—1)W", x)/7)+ E(w)-7" " ~L" )
for o in &, and
D(e(1), £(2), ==+, o(m'—1))(z", x1)
X C(o(m"), o(m’+1), ++, o(m—1))(z") E(2)
= D(o(1), £(2), *++, p(m’—1))(z", x,)
X C(o(m'), p(m’+1), +++, p(m—1))(W")+ E(w)-7"=" L")
for pin S,. By using (A.3) and (A.4), we come to the conclusion. Q.E.D.
Lemma A3. Assume that z;%z;, for 1=i<m', m’'+1<j<m and for
m+1<i<j=m. Let
g by oorylpi} =10, 1, eoe, k—1, k+1, o, m—1} .

Assume that there exist positive numbers M, M’, ¢, and 7, with 7,=1 such
that for every 7 satisfying 0<n=1,, the following estimates are satisfied:
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(A8) 2| <M; W' |=M;
D famrar €xp(—Im wix, /7)) S M5
inf _[wi—wjlZe; inf [wi—wyl=e.
' +1<i<j<m 1<i<m! ;m’ +1<j<m
Denote

M = max MQ,1, -, k—1, k+1, «--,m—1),

0<k<m-1

A /(mjll)! o % M m? —ktm? =1, p=m'm” —m” +1, frt ,
m'i(m' —1)!

and
G = —M=DL_ g pgnimngomtm
(m'—1)Im’"!
Then
(A.9) |D@, 1, <=, k—1, k+1, <=, m—1)(z, x;)

—D(O, 1, -+, k—1, k41, o, m'—1)(Z', %)
><(wm'+1°Wm’+2' °ee °W,,,)m,°E(W)I

=(C+C,- max | D(o(1), o(2), -+, o(m'— 1))z, x)|)-7,
0ES,

for k=0, ---, m'—1 and

(A.10)  |D@, 1, -, k—1, k+1, o, m—1)(z, x;)]|

§(C1+Cz° max ID(,O(I), p(Z), “oe, p(m’___l))(zl, x1)l)°77k_’”,+1 ’
pES,

for k=m', ---,m—1. Here p in S, are bijections from {1, 2, ---, m—1} onto
{0, 1, o+, k—1, k+1, =<, m—1} satisfying

o(N)<pR)< =< p(m’—1);
o(m)<om' +1) <> <p(m—1).

Proof. First it must be remarked that
m'm!’ —L"(p)=m'm’ —m/ —(’ +1)— - —(m—1)+-(m"" —1)m’”’/2 =0,
where the equality holds if and only if

(A.11) k=0,1,c,m—1,
PES,,
(J=1, =1 k;
j=k+1, -, m—1.

Since
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Cn', m'+1, =+, m—1)(2") = Curs1°Zut42° " *Zu)" >
it implies that for p satisfying (A.11),
(—=1)/®-D(o(1), £(2), =*+, p(m'—1))(z’, x1)
X C(p(m"), o(m'+1), -+, p(m—1))(z"")- E(2)
= (___1)m’(m'+1).D(0, 19 20y k_19 k+la o0y m’—l)(z’, xl)

X (W' 41° Wt 42°** 'Wm)m,°E(W) .
For p not satisfying (A.11), Lemma A.2 implies that

| C(o(1), £(2), -+, 0(m"))z") D(p(m’+1), p(m'+2), -, o(m—1))(z", x1)- E(2)|
éﬂz.ML,(p)+L”(P)+m”—1, lE(w)] ,,]m’m”—L/'(P).M/.c-m"+1 ,
for p in &, and

| D(o(1), £(2),+++, o(m’—1))(z’", X1)+ C(o(m’), o(m’+-1), =+, o(m—1))(z")- E(2)|
< | D(e(1), p(2), ==+, o(m' =)', x)| - B - M@ | E(w)| g’ m" =17 ®),

for p in &, If (A.11) is not satisfied, then m'm”’ —L(p)=1. If k=m’, -,
m—1, then

m'm” —L"(p)=m'm" —(m’' —1)—m' —--« —(m—1)+k+(m" —Dm" |2

=k—m'+1.
Since |E(w)|<c ™" and L'(0)+L"(0)=m'm"”’—k, for pin S;, Lemma A.1
implies the conclusion. Q.E.D.
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