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Weak Equivalence and the Structures of
Cocycles of an Ergodic Automorphism

By

Sergey I. BEZUGLYI* and Valentin Ya. GOLODETS*

Abstract

Let (X9 fji} be a Lebesgue space, J1 an approximately finite ergodic group of the auto-
morphisms, a a cocycle on ^x F with values in an arbitrary abelian l.c.s. group G, and p the
Radon-Nikodym cocycle on Xx F. The concept of weak equivalence of the pairs (.F, a) is
introduced and studied, which generalizes the concept of trajectory equivalence of automor-
phism groups. It is proved that the pairs (Fl9 aj) and (F2, a§) (a\>=(a, p)) are (stably)
weakly equivalent iff the corresponding Mackey pairs W-^G^ and W2(GQ) of the group G0=
G x R are isomorphic. It is proved that any ergodic action of G x R (or G) is isomorphic to
the Mackey action associated with a certain pair (F, o?0). The structure of cocycles of ap-
proximately finite equivalence relations is studied. The relationship between the type of the
group F and that of the corresponding Mackey action is considered.

§0. Introduction

The present paper is a study of the countable approximately finite (a.f.)
groups F of automorphisms of measure spaces and the cocycles a for F taking
the values in an abelian locally compact separable (l.c.s.) group G. Such
cocycles were thoroughly studied in the book by K. Schmidt [15]. He in part
considered the important classes of cocycles: transient, lacunary, etc. We shall
use the set of all pairs (r, a) to study an equivalence relation which is called
the weak equivalence (see Section 1). In the case where the cocycle a is the
Radon-Nikodym cocycle p, weak equivalence of pairs (Fly p^ and (r2, p2) is
the same as the well-known orbital equivalence relation of the groups of auto-
morphisms Fl and r2 [9]. The weak equivalence was introduced in [5] (see also
[6]) in the study of the pairs (JT, a), where F is a group of measure-preserving
automorphisms and a a cocycle with the dense range in a l.c.s. amenable group
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Go It was also proved there that all such pairs are weakly equivalent for the
fixed G0 Later the weak equivalence of the pairs (F9 a) was studied in [1, 29 7]
and elsewhere,,

The main purpose of this paper is to describe the structures of cocycles of
a.£ groups of automorphisms with values in a l.c.s. group- It appears that any
cocycle is weakly equivalent to a cocycle which in a natural way composed of
simpler cocycles: a transient cocycle and a cocycle with a dense range. In
solving this problem,, we introduced and studied measurable fields of cocycles
which have a dense range in an arbitrary subgroup of the group GQ=GxH.

Every pair (P9 a0), where aQ=(a9 p)9 defines in a natural way an action of
the group G0 which is called the Mackey action (or refered to as associated with
the pair (F9 <x0)) [11]. As a consequence of the above result on the structures of
cocycles., we obtain the solution of the problem of finding the necessary and
sufficient conditions of weak equivalence of the pairs (Fl9 aj) and (J^, a{j).
These conditions consists in the isomorphism of the corresponding Mackey
actions of the group GQ. These studies are based on the methods developed
in [1, 55 6]. Another approach to solution of a similar problem is proposed
by A.L. Fedorov [2].

Our results are easy to be extended to the case of the pairs (F9 a), where
the cocycle a takes the values in an arbitrary Lc.s. amenable group G and the
Mackey action either is free or has a closed normal subgroup of Gx R in the
capacity of the stabilizer.

The paper is organized as follows. Section 1 presents the information on
cocycles, needed for subsequent arguments and taken mainly from [15], and
introduced the concept of weak equivalence of the pairs (T, a). In Section 2
we study the transient cocycles defined for an arbitrary countable group of
automorphisms and taking values in a Lc.s. group G, In Section 3, cocycles
with a dense range are constructed for an arbitrary closed subgroup H0c:GxM
and measurable fields of cocycles with a dense range in H0 are studied. It is

found that such fields of cocycles are weakly equivalent to a constant field of
cocycles. The results of this section are applied to study the cocycles, for which
the Mackey action is transitive, in Section 4. Section 5 studies the lacunary
cocycles on a.f. groups of measure preserving automorphisms. They correspond
to the free Mackey actions of the group G3 that generally speaking have a quasi-
invariant measure. In the subsequent two sections9 the general case is con-
sidered where the group F has the quasi-invariant measure and the Mackey

action of the group GQ=GxE is non-free. In the last section we consider
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results on the relation of the types of the Mackey actions and groups F.

§ 1. Preliminaries. Weak Equivalence

1.1. In this section we shall provide the preliminary facts from the ergodic
theory that we shall need for the subsequent arguments. The definitions and
more detailed results can be found in [8, 9, 14, 15].

The set of all non-singular automorphisms of a Lebesgue space (X, IB, #)
with a continuous measure p. will be denoted by Aut(X, J3, ju). We shall identify
automorphisms differing on a measure 0 set. Let F be a countable subgroup of
Aut(X, <B, fj). The set [F] ={g^Aut (X933, v):gx(= Fx for ^-a.a xeX}, where
Fx={rx: r^F} is the orbit of x, is called the full group of automorphisms
generated by F. The set N[F]={R<=Aut (X, $, UL)\ R[F]R"l=[r^9 which
is also a subgroup of Aut(X, <B, ju) is called the normalizer of [F], The group
of automorphisms F is called approximately finite (a.f.), if there exists an
automorphism T(=Aut(X, J$, /«) such that [F]=[T], where [T]=[{Tn: ns=Z}].

The two groups of automorphisms F1<^Aut(X1, <Bl9 /^) and F2c:Aut(X2,

•$21 #2) are called orbital equivalent, if there exists a one-to-one measurable
map 6: Xl-^X2, such that 0[F^\6~l=[F^ an(i the measures #2

 and 0°<"i are equiv-
alent.

The ergodic group F(^Aut(X, IB, /*) is called a type IIj (IIoo) group, if
there exists a measure v^t*, such that r°v=» for all r^F and the measure
v(X) is finite (infinite). If there is no T-invariant measure equivalent to the
measure #, then F is said to be of type III. Type III may be further classified
(see below).

We shall also use sometimes the terminology and facts of the measurable
groupoid theory (see, e.g. [3, 12]). The result of this paper may also be fully
expressed in terms of this theory. However, as a rule, we use the standard
approach to the study of countable groups of automorphisms, since we proceed
from the definitions and facts of [8, 9, 14, 15, etc.].

1.2. We shall cite the definition of the array as in [10].
Let r be an ergodic group of automorphisms of (X, IB, /JL). The expression

t=(A,B,A(-),r(;-y) (1.1)

will be called the T-array of the set A<^.X(juA>0) provided that the following
conditions are fulfilled:

(i) 3 is a finite set of indices;
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(ii) U A(t)=A, A(i) D A(j)=0 (i *./), X^(0)>0;
ies

(in) rO",7") are non-singular maps such that r(i9j)A(j)=A(i)9 r(i, i)=i9

rfe 7) rCA h)=r(h,h)> r(ij)x&rx for a.a. x<=A(j).
Denote by .£?(<? ) the finite group of automorphisms of A generated by

rO°, 7*X i, 7'eS and £P(<f) the collection of sets of the form U|S^(0, where 4
is an arbitrary subset in 3.

The pairs (A(i)9 r(j, i)X i9 j^E will be called elements of £ .
Let there be defined the two F-arrays: ?i=(A9 S9 A(*\ r(% •)) an^ £2=

(A(i0), ®, B(*), 8(°, -)X where /Oe5. Define a new r-array f jXf 2 which
will be called a refinement of £ l with respect to £2> according to the equality

where C(/, /i)=r(/, W B(n), rft, ̂ ; /, 7i)=r(/i, IQ) ̂ (/ii,/i) r(/0, 0, fe t
8

If the F-array (1.1) is defined, then it will be said to be defined over the

partition (A9 3, -4(OX

1.3. Let, as earlier, F be a countable ergodic group of automorphisms of
(X, J39 ju) acting freely and let G be an arbitrary l.c.s. abelian group.

Definition 1.1. A measurable map a: Xxr~>G is called a cocycle, if for

and /i-a.a

a(x, n r2) = «(r2^? n) a(x, r2) . (1.2)

The set of all cocycles will be denoted by Z\XxF9 G).
An example of a cocycle is the following cocycle p:

which is called the Radon-Nikodym cocycle.
By 3i(T) we shall denote the measurable ergodic equivalence relation on

X generated by partition into orbits of the group F, Then, any cocycle
a&Z\Xxr, G) defines the map u^i Sl(r)-*G which is called an orbital cocycle
and is defined by the formula

K*( y> *) = «fe r) , (1.3)

where y=rx and r^r is found for jc, j uniquely, because r acts freely. From
(1.2) and (1.3) it follows that the orbital cocycle 11: .&(/>*<? satisfies the re-
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lation u(zy x)=u(z, y) u(y, x), where (z, x), (z, y), (y, x)^<R(F). The reverse
statement is also true: for any measurable orbital cocycle u: JR(F)->G there
exists a cocycle a&Zl(XxF, G) such that a(x9 r)=u(rxy x) [15].

For the freely acting group F, any cocycle a may be enlarged in a natural
way to the full group [F]. Therefore, wherever convenient, we shall believe

The two cocycles a and ft from Z\XxF, G) are called F-cohomologous,
if there exists a measurable function/: X->G such that

«(*, r) =f(rx) p(x9 r)/(*r. (1.4)

A cocycle a is called a coboundary, if it is F-cohomologous to the unit
cocycle, i.e. a(x, r)=f(rx)f(x)~l for a measurable function/: X-*G.

1.4. Let the countable ergodic groups of automorphisms
^i* &i)9 i=l, 2 be orbital equivalent, i.e. let there exists a one-to-one map 6:
Xl->X2 such that 0[Fl]6~1=[F2] and flo/^^/^. Let there be defined a cocycle

P^Z\X2X[r^9 G) then, by the map 6, the cocycle ft can be "transfered" to
the group [FJ:

O'loft(xl9 n) = ft(0xl9 6Tlo-l\ (x,9 rje^ixirj . (1.5)

Relation (1.5) defines the one-to-one correspondence between the cocycles
from Z^xtFJ, G) and those from Z^xfrj, G). In this case, the Fr

cohomologous cocycles correspond to F2-cohomologous cocycles and conversely.
This is presented in more detail in [16].

We shall consider all the pairs (F, a), where F is a countable ergodic group
of automorphisms of (X, 3$ , ju), a^Z\XxF9 G) and define, on such the set of
pairs, an equivalence relation generalizing the orbital equivalence of the groups
of automorphisms. Then, we shall develop a complete system of invariants of
such the equivalence relation.

Definition L2, Let there be the two pairs (Fh a-), i=l9 2, where F{ is a
freely acting group of automorphisms of (Xiy *Bi9 juf) and ai^Z\XixFh G).
We shall call the pairs (Fl9 a^ and (F2, a2) weakly equivalent, if there exists a
map 0 : X1->X2 which implies the orbital equivalence of Fl and F2 and is such
that the cocycle 6~loa2 is F^cohomologous to the cocycle av

If the cocycles 0~W2 and o^ are F1-cohomologous, then the cocycles OQ^

and «2 are F2-cohomologous. Thus, Definition 1.2 indeed suggests the equi-
valence relation on the set of pairs (F, a).
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If (F, aj) and (F, a^ are weakly equivalent, then the cocycles at and a2

will also be called weakly equivalent.
In the case o^fo, Ts)=Pj(Xi, Ti) Definition 1.2 coincides with the definition

of the orbital equivalence of groups of automorphisms.

1.5. Consider on the group Z the Haar measure %%, i.e. xz(i)=l,
Denote by T the shift on Z: r(i)=i+l. Let TcAut (X, IB, /O be a countable
ergodic group of automorphisms and consider the direct product f=Fx {rn:
n e Z} C Aut (X X Z, ju x *z). If a e Z^Z x F, G), then define the cocycle a for
.f : 3(x, n, r, rk) = a(x, r), where (x, ri)<=XxZ, k^Z, r^F. Thus, 5<=
Zl(XxZxF, G). The pair (F, 3) will be called the countable expansion of

(A «)•

Definition 13. Ca// the two pairs (Tl9 a^ and (F2, a2) stably weakly equi-

valent, if their countable expansions (fl9 51) and (F29 a2) are weakly equivalent.

Let BdX(juB>0) and TcAut(X9 ^, ^). Then, there exists in [F] a
countable group FBy such that [rB]=[F]B9 where [F]5 = {r e [J1] : r^=^9 .xeX—
^} [9]. If r is of type III, then FB and F are orbital equivalent and there exists
a one-to-one measurable map 6: X->B such that Ox^Fx for #-a.a. x^X. If

G), then a cocycle o^eZ^JSTxirL,, G) can be defined as aB(x,

7"), (^? r5)^^xr5, where r^-^1 can be found from the condition

Proposition 1.4. Let there be a pair (F9 a), where FcAut (X, IB, ju) and

let BdX, ju(B)>Q. Then, (1) if F is of type III or F is of type !!„ and ju(B)=
oo 5 then (F, a) and (FB, aB) are weakly equivalent; (2) if F is of type //j or 11^
and ju(B)<oo, then (F, a) and (FB, aB) are stably weakly equivalent.

Proof. The proof is simple. D

Corolary lA If Fi9 i=\9 2 are groups of automorphisms of type III or
J/oo, then the pairs (Fv a^ and (F2, a2) are weakly equivalent if and only if they
are stably weakly equivalent.

If the group Tc Aut (X, <B, ja) is of type III, i.e. has the nontrivial Radon-
Nikodym cocycle p(x, r), then it is natural to consider, along with the cocycle

xF, G) the cocycle a0GZ\Xxr, GxR) defined by the formula

r)=(<*(x, r), P(X, r)).

Proposition 1.6o The pairs (Fl9 a^ and (F2, a2)3 where rg-cAut (Xi9 <Bh #g),
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i=l 9 2 are weakly equivalent if and only if the pairs (Fl9 alf0) and (F2, a2>0) are

weakly equivalent.

Proof. The proof is simple. D

We notice that there is an example of the pairs, which are stably weakly

equivalent, but are not weakly equivalent [2].

1.6. Consider in more detail the properties of the cocycles with values in

an abelian l.c.s. group G. By G=GU {°°}, we shall denote the one-point

compactification of G.

Definition 1.7. Let F be a countable ergodic group of automorphisms of

(X, IB, jj) and a^Z\XxF, G). An element /eG is called the essential value

of the cocycle a, if for any neighborhood Vf of fin G and any set

we have

ju( U (B fl T~1B n {x^X: a(x, r)e•yer

The set of all essential values of the cocycle a will be denoted by r(F, a).

If r(F, a)=G, then we shall say that the cocycle a has a dense range in the

group G.

Lemma 1.8. [15] The following statements are true: (i) if the pairs (Fl9 a^

and (F2, a2) are weakly equivalent, then r(Fl9 a1)=r(jT2, a2); (ii) r(T, a) is a closed

subgroup ofG; (iii) a cocycle a is a coboundary if and only ifr(F, d)= {0} .

Applying Lemma 1.8 to the pair (F, p), where F is a group of type III, we

conclude that r(F, p) can be only one of the following groups : {0} , {n log /I : «e

Z} (0<^<1) and R. Accordingly, r is called a type III0, IIIA and IIIj group.

The group F is said to be of type I, if the partition into its orbit is measurable.

Lemma 1.9. For any pair (F, a) we have r(F, a)=r(F, a).

Proof. Straightforward. D

Since r(F, a) is a closed subgroup of G, then the quotient group G=G/r(F9

a) and the cocycle aeZ^Zx/1, G) can be considered, setting

&(x, r) = a(x, r)+r(F, a) . (1.6)
A A

Lemma 1.10. [15] For any pair (F, a) always r(F, a)={fy, where 0 is the

identity in G.
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Lemma 1.10 is the basis of the following definition.

Idle A cocycle a eZ\XxF 9 G) is called regular, if r(F5 a) = {6}
A

and nonregular, ifr(F9 a)={Q9 00}.

Lemma 1.12. [15] For any pair (F9 a) the following conditions are equi-
valent: (i) a is a regular cocycle; (ii) (F9 a) is weakly equivalent to (F9 o^), where
a cocycle a^x, r) takes values in r(F3 a) for any r&F and a.a.

..13. Let F be a freely acting conservative {i.e. not of type I)

group of automorphisms of (X, IB, #)• A cocyck a&Z\XxF9 G) is called
recurrent, if for any set B^^, ju(B)>0 and any neighborhood V of the identity in G

If a cocyck a is not recurrent, then it is called transient.

1.14. If a is a recurrent cocyck, then the cocyck a defined ac-

cording to (1.6) will also be recurrent,

Proof, Straightforward. D

The following statement may be regarded as another definition of the
transient cocycles.

Proposition 1.15. [15] A cocyck a^Zl(XxF, G) is transient if and only

if there exists a measurable set BQc:X9 ju,(BQ)>® and there is a neighborhood
FQ of the identity in G both such that

X U (BQ n r"% n {*£ X: a(x9 r)e F0})) = 0 (1.7)

It follows from (1.7) that for the group ^5oC[r] the cocycle aBo does not
take the values in VQ.

For a transient cocycle a&Z^XxF, G) always f(F, a)={Q, 00} .

1 1.16. A cocycle a^Z\XxF, G) is called lacunary, if there exists
a neighborhood F0 of the identity in G such that

ju( U {x^X: a(x, r)ever

Lemma 1.17. [15] A cocyck a^Z\XxF, G) is cohomologous to a lacun-

cocycle, if and only if there exists a neighborhood Vl of the identity in G such
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§2. Associated Actions and Transient Cocycles

2.1. Everywhere in this section we shall assume that F is a freely acting
ergodic group of automorphisms of a Lebesgue space (X, IB, /*)> G an arbitrary
l.c.s. group, and a cocycle aGZ\Xxr, G). By XG the Haar measure on the
group G will be denoted.

Let r(a)cAut (XxG9 JUXZG) be the skew product constructed by the
group F and the cocycle a: for r(<x)^F(a), (x9

r(<*) (x, g) = (rx, a(x9 r}g) , r er . (2.1)

Lemma 2.1. [15] F(a) is conservative if and only if a is a recurrent cocycle,
and F(a) is of type I if and only if a is a transient cocycle.

It follows from Lemma 2.1 that the properties of recurrence and transient-
ness of cocycles are invariants of weak equivalence.

Define an action V of the group G on (XxG, juX%G):

V(g)(X,h)=(x,hg-^, geG. (2.2)

It follows from (2.1) and (2.2) that the groups of automorphisms F(a) and
V(G) commutate elementwise. Let £ be the measurable hull of partition into
the orbits of F(d). Then, the group F(G) generates on the quotient space
(£, v)=((XxG)l£,(vXXG)IE) a new action of G which will be denoted by

W(G).

Definition 202. The action W(r^(G) of the group G is called the action
associated with the pair (F, a) or the Mackey action.

Proposition 2.3» If the pairs (Fl3 a^ and (F2, <x2) are weakly equivalent,
then the associated actions W(Flt ^(G) and W(r2t *2)(G) are isomorphic.

Proof. It follows from the above condition that there exists a one-to-one
measurable map ^p\Xl-^X2 such that 9[F1]^~1=[F2]y <p~l*>tJi2~~iJil and for /^-a.a.

} = f(r^} at(x, rO/W1, rl e [rj , (2.3)

where r,-cAut (Xi9 l£h jui), i=l, 2 and/: Xl-^G is a measurable map. Define

<Z>(x, h) = (9x, f(x)H) , (x.hJ^X.xG. (2.4)

Therefore, the quotient map <Z> : (Q19 v%) -> (iG2, ^2) satisfies the equality

D
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Proposition 2A (1) Let (r, a) be a countable expansion of a pair (F9 a).
Then, W(?^ (G) is isomorphic to W(r>tA)(G). (2) If the pairs (Tl9 a^, and (F2,
a2) are stably weakly equivalent, then the associated actions W^t^(G) and
W(r2s ^(G) are isomorphic.

Proof, Straightforward. D

2,2. Below we shall consider the situation, where a cocycle a from a
pair (I7, a) is transient and takes the values in the l.c.s. group G,

It follows from Lemma 2.1 that the partition into orbits of the group F(a)
cAut (XxG9 juxzc) is measurable. Then, the quotient space Q can be re-
garded as a measurable subset of positive measure in XxG9 which intersect
with each orbit of F(a) exactly at one point. Then, XxG= U-yerrfaO^ and
the measure V=(/JL x %G) \ Q. The action W(G) = W(rt06^(G) associated with (F5 a)
will be written as follows. Let (x, h)G@, g^G, then

W(g)(x,h) = r(a)(x9hg-1)9 (2.5)

where r(«) is an element of F(a) such that (x, hg~l)^r(a)~l@*
The further arguments are convenient to be made in terms of the measura-

ble groupoid theory (see [3] and [12]). Denote by M a measurable groupoid
with discrete orbits which is defined by the action of F on X. Any cocycle a e
Z\XxT9 G) will define a homomorphism of the groupoid M into the group G.
Denote by Q a measurable groupoid with continuous orbits generated by the
group W(G) of automorphisms of ^.

According to Proposition 1.15, for a transient cocycle a there exists in X a
measurable subset B (v(B)>G) for which a(x, rB)^^ where x^B9 TB^[r]B

and FQ is a neighborhood of the identity in G. Consider the pair (FB9 aB) and
let QB denote the measurable groupoid generated by the action WB(G)=
W(pBt aB)(G) associated with (F5, aB), which was defined on the quotient space

Recall the definition of a return cocycle. Let U(H) be a group of Borel
automorphisms of (X, J2, #) (not necessarily countable), which is a free Borel
action of a l.c.s. group H. A set EdX is called a complete lacunary section
for U(H) if jit(X-U(H)E)=Q and there is a neighborhood V of the identity
of H such that U(V)x fl E= {x} for all x<=E [3]. There arises on E a countable
measurable equivalence relation 31 and hence so does a group F of automor-
phisms of the set E generating the equivalence relation Si. Put u(y, x)=h for
(y, x)^3^, if U(h)x=y. Since U(H) acts freely, the orbital cocycle u is defined
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uniquely-

Definition 2.5. The cocycle u: 3i->H constructed in the above way is called

a return cocycle (or homomorphism) for the action U(H) with respect to the set

E (or in short, a return cocycle on E).

If Q is a measurable groupoid and E a subset of its set of units, then 3\ E

will denote the reduction of the groupoid Q on E.

The following lemma is a slightly modified version of Lemma 7.4 of [3].

Lemma 2.6. Let the groupoids Q, M and QB be as above, a: M-^-G be a

transient homomorphism, and aBt£VQ, where VQ is a neighborhood of the identity in

G. There exists a canonical isomorphism of the groupoid M \ B =B x PB onto the

groupoid SB \ E, where E is a complete lacunary section of the action W(rBt ^^(G)

= WB(G) on QB, such that for this isomorphism the homomorphism aB: M \ 5—>

G transforms into the return homomorphism of the action WB(G) on E,

Proof. Let us introduce a measurable map 0: B->QB putting 6x=(y,h\

if there exists an automorphism rB(aB)^^s(aB) depending on the point x^B,

for which rB(ae) (X e)=(y, h). Prove that 6(B) is a complete lacunary section
for WB(G) on («0B, VB). Indeed, since Bx {e} intersects every orbit of the group

V(G), then 6(B) will also intersects every orbit of the group WB(G), which

means completeness of the section 0(B). Describe now the equivalence relation

which generates on 6(B) the associated action WB(G). If y=rx, where x, y^B,

r e [r]B, then we shall show that

0(y) = WB(aB(x, r)) 0(x) . (2.6)

Let 6(x)=(rlx9 aB(x, rO), Q(y)=(r2y, <*(y, rj), ri9 r2^[r]B- Then,

WB(aB(x, r)) 8(x) = r0(«5) fax, aB(x, TI) <*B(x> r)'1), (2.7)

where the automorphism TQ(^B) i§ chosen from the condition

r0(<*B) (r\x9 aB(x, TI) <XB(X> r~l)}^®B- It is easy to see that the role r0 can be
played by r2rrT1- Indeed,

r2rrr
1(«B) (r^, aB(x,rd as(x9 r)"

1) = (r2v, aB(yl9 r2)) - 6(y), (2.8)

By comparing (2.8) and (2.7), we conclude that (2.6) is true.

Vice versa, if WB(h)6(x)=6(y)9 then similar arguments can show that

there exists an automorphism r ̂ \T}B f°r which rx=y and

h = <*B(x, r). (2.9)
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Thus,, it is proved that the orbits of the equivalence relation on 0(B) are
countable,, because the cocycle aB^VQ. Therefore,, the section 0(E) of the ac-
tion WB(G) is lacunary. Besides9 it follows from (2.6) and (2.9) it is the
cocycle aB that corresponds to the return cocycle of the action WB(G) on 0(S).
Consider the measure OQ/JL on 0(B\ and let E be a Borel subset of 6(E) which
is full with respect to QQ/JL. Because the later is zero on sets from 0(E) if and
only if the measure & is zero on the respective sets from B, then OQJU, is equiva-
lent to the projection of the measure (&XXG)\QS

 on the section E along the
orbits of WB(G). Therefore., the map (y9 x)-*(0(y), 0(x)) is the desired isomor-
phism of the groupoids M \ B and SB\E, D

Remark 2.7. Proposition 1.4, 2.3 and 2.4 imply that for any group PC.
Aut (JSf, .3, JM) and any BdX (ju(B)>G) the associated actions W(rt&}(G) and
W(rB,*B)(G) are isomorphic. Therefore^ everywhere in this section we shall
denote the associated action by W(G).

Lemma 2.8. Let W(G) be a free non-singular action of a Lc.s. group G on

(Q, v). Let also El and E2 be complete sections of the action W(G) on Q and Sl

=S\El, 32=S\E2 be the reductions of the groupoid S=@xW(G) on E1 and E2.

Assume that there exists an isomorphism ^: 3l-^Q2
 an(% tet i^o &e the restriction

of the map ty onto EI} i.e. ̂ Q: El->E2. If i^0 is an inner automorphism of the

groupoid S, i.e, the points x and ^Q(x) He in one and the same orbit of W(G), then

the return homomorphisrns ^: Ql-^G and ^""Wg: 31-^>G are equivalent (or in

other words, the cocycles ^ and i/r'1**^ are cohomologous).

Proof. Define the homomorphism m S-^G with putting for (o)5

*(<*>, W(hJ) = h . (2.10)

Then the return homomorphisms ^ and n% are related to K as follows

*1=*I319 x2 = n/£2. (2.11)

By the condition of the lemma, the points x and Vo(*)> ^^^i are related as
i/rQ(x)=W(K)x9 where h=h(x)^G. The measurability of the function h(x) fol-
lows from the measurability of the maps x-^^r^x), (x, A)-» W(h)x. By the
definition of the cocycle V"~W2, we have the following for (x,

^-ao^x, W(g)) = h(W(g)x} gh(xY\ (2.12)

because i^QW(g)^\^Q(x))^E2. Formula (2.12) can be written,, according to
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(2.10) and (2.11), as Itfonfc, W(g))=h(W(g)x)7Cl(x9 W(g)}h(*Y\ whence follows
the statement of the lemma. D

2.3. If r is a countable group of automorphisms of (X, £B, #) and a co-
cycle a^Z1(XxP3 G)9 then the pair (I7, a) corresponds to the pair (M9a),
where M is a measurable groupoid generated by the action F on X and a a
homomorphism from M into G, The two pairs (M^ ax) and (M2, a2) will be
weakly equivalent, if there exists an isomorphism 9 of the groupoids MI and M%
such that the homomorphisms a^ and <p~l°^ are equivalent. (The definition of
equivalent homomorphisms see e.g. in [3]).

Theorem 2»9e Let there be defined the two pairs (M19 a^) and (M2, a2), where
MI is a discrete measurable groupoid generated by an action of the group Fi c
Aut(Jf,-, 31 i, fJi-) and ai is transient homomorphism from Mi into G, i=l,2. Then,
if the associated actions Wl(G)=W^ ^a^(G) and W2(G)=W^ t(X)(G) are iso-

morphic, then the pairs (Mv a^) and (M2, <x2) ®
re stably weakly equivalent.

Proof. Since ai (i=l9 2) is a transient homomorphism, then there exists a
set BI and a neighborhood V0 of the identity in G, such that &i(xi9 TI) $ V0 for (xf,

Ti)^Mi\Bi, i=l,2. We shall consider the pairs (M^B^ a1%) and (M2\Bz, a2B2)3

Let WiB.(G), MI | B{, Si | B. and (QB.9 I>BI), i=l92 be as in Lemma 2.6. It follows
from the condition of the theorem and Proposition 2.4 that there exists a one-
to-one measurable map ̂ : ®BL->®BZ such that ^QvB^vBz and

•pWujjg) = W2B2(g)^ , g^G, (2.13)

where WiB.(G) is the action of G associated with (Mi\Bi, a,.B.), /=!, 2. In view
of (2.13) the isomorphism W of the groupoids Ql \ BI=£BI and S2 \ Bz=3Bz is de-
fined by the map

y:((*,A),g) = (^(*,A),g), (x,h)*=0Bl. (2.14)

By applying Lemma 2.6, we find that there exist canonical isomorphisms^:
MI\BI->SBI\EI andj2: M2\B2-*£Bz\EZ, where Es is a complete lacunary section
for WiB.(G) such that JiG^iB. is a return cocycle for restriction of WiB.(G) on Ei9

i=ly 2. From relation (2.14) it follows that the map W also defines the isomor-
phism of the groupoids 3Bl \ EI and QBz \ ^^^

Put Mi\B.=Mi\B.xZ, where Z=ZxZ is the transitive discrete groupoid
generated by the shift on %. Consider two groupoids with the discrete orbits

^B2\E2X^ an^ •S>B2U(51)
X^ In yiew °f Theorem 4,12 of [3], there exists an

isomorphism T can be inner for the groupoid <2Bz. Let /=[0,1] x[0,1] be tran-
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sitive groupoid with continuous orbits. It follows from [3, Corollary 4.4] that
the groupoid SBz is isomorphic to the groupoid SB2\EzxZxJ and to keep the
notation simple, we shall assume the groupoids to coincide. Putting r=rxlx
1 enlarge r to the automorphism f of Q2, By Theorem 1 of [7], there exists an
automorphism q inner for 3B2 and such that qoT=axl, where a is an automor-
phism of the groupoid QBz \EzxZ. With account of the equalities

we find that q maps ^J^^xZinto SBg\EaxZ. Thus, it is proved that for
the groupoid QBz there are two lacunary sections such that the groupoids

SB2\^(El)XZ and 3B2\EzxZ defined on them are isomorphic, this isomorphism
being inner with respect to QB^ It follows from Lemma 2.6, that the homo-

morphisms J2°^2B2
 an<^ ^r°Ji°^iBl

 are return ones for the groupoids £B2\EzxZ
and ^BjUc^xZ (here aiB., i=l9 2 is the countable expansion of the cocycle

«,-£,). According to Lemma 2.8, the homomorphisms72oa2B2
 and ^°7a°si51

 ar^
equivalent. It now remains to note that ^=j^1°q°^'0Ji is the isomorphism of
the groupoids Ml \ BI and M2 \ B# and therefore the pairs (*#19 a^ and (M2, <x2)
are stably weakly equivalent. D

Remark. The isomorphism r (the subject of the proof of Theorem 2.9)
may be directly chosen to be inner, as is obvious from simple considerations.

Our proof of Theorem 2.9 is similar in the idea to that in [7]; another
proof was given in [2].

2.4. Here we shall consider the property of transientness for the cocycle

«o==(a
s P)'

Proposition 20100 Let r be a countable group of automorphisms of (X, 3$,
ju). A cocycle aQ^Zl{Xxr, GxR) is transient if and only if the cocycle CKGE
Zl(Xxr, (?) is transient.

Proof. Let a be a transient cocycle. Consider the group of automor-
phisms rrf cAut (Xx R, MXXR) dual to r, whose elements act as rX*, u)=(rx,
u+p(x, r)X r^F i.e. rd=F(p). The cocycle a is enlarged to the cocycle a' of

the group Pd by the formula a'(x, u, rd)=®(x, r). The transientness of a means
transientness of a'. Therefore, by Lemma 2.1, the partition into orbits of the
group rrf(a')cAut (XxUxG, VXXRXXG) is measurable. As is easy to see,
rd(af) and F(a^) coincide. By applying again Lemma 2 13 we find that «0 is
transient. Conversely, let a0 be a transient cocycle. This means that -F(a0) is
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of type I group of automorphisms. It follows from the equality r(aQ)=r(a)d

that the group P(a)d is also of type I; but then it is evident that in this case the
group r(a)cAut (XxG, JUXXG) can only be of type I as well. Therefore, the
cocycle a is transient. Q

Corollary 2.11. Let the pairs (Mlf a^ and (M2, ^2) be as in Theorem 2.9.
Then, for G0 = G X R : (i) if the associated actions W,^ ,a ^ \(G0) and

WIM ta ^ x((j0) are isomorphic. then (Mlf aj and (M2, «2)
 are stably weakly

equivalent i (ii) if Wi^ a\(G) and Wi^ a\(G) are isomorphic, then so are the

actions WMa (G0) and

§3. Measurable Fields of Cocycles

3.1. In this and next sections we shall only consider the cocycles a which
take values in an abelian l.c.s. group G. However the findings are valid in more
general situation (see the end of this section).

Now we shall construct, for any closed subgroup HQ of GQ=GxR, an ap-
proximately finite (a.f.) ergodic group of automorphisms ^cAut (Y0,p) and a
cocycle ]39 both such that P0=(P, P) takes the values in HQ and r(J, J3Q)=H0.

Let {/z0(X)}£=i be a dense sequence of group elements from H09 such that
every member of this sequence occurs in it an infinite number of times. Every
element hQ(ri) can be represented as (hG(ri), hR(n)), n^N. Choose {/z0(X)}r=i to
belong in turn to a countable subgroup HQ (dense in HQ). The projections of
the groups HQ and H'0 onto G and R will be denoted by HG, HR and H'G, HR

respectively. The group H0 and its projections HG and HR can be either discrete
or continuous. The closed H0, generally speaking^ does not mean that HG and
HR are closed.

Put F0={<Ur and AM={y^Y0:yn==Q},An(l)={y^Y0:yn=l},n^

N, where y^Y0 is {yn}n=i. Then, ^(0)n^.(l)=0 and 4.(0)U4,(l)=r0,
Consider on Y0 the probability product-measure p, for which

= exp (/*») p(Aa(QJ) , (3.1)

where the sequence {hQ(n)=(hG(n)9 hR(ri)}}n=\ has been chosen above. Introduce
the automorphisms £MeAut (YQ9p), n^N such that dn {yk} = {y'k} , where yi=
yk with k^pn and yf

n=yn-\-l (mod 2). It follows from (3.1) that

P(y, dn) = hR(ri), yEiAM, n<=N. (3.2)

Denote by A the group of automorphisms of (YQ,p) generated by d
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As is known9 A is ergodic and a.f. [9]. If Hf
R is a dense subgroup of JK9 then A

isoftypein^ifjff^frlog^rAeZ}, then^isof typeHIA(0<^<l); and if
Hf

R={Q} (i.e. HQdG), then 4 is of type II1. Consider the case of the type III
group A\ type II group A is considered similarly.

Define the cocycle J3^Z\Y0xA, HG) on the generators of the group A\

(3.3)

From (3.2) and (3.3) it follows that

30lo Let AQ be the subgroup of [A] specified as AQ= {r^[A]i pQ(ys r}
=Q}. Then, ^0 & the ergodic group of automorphisms of(YQ,p).

Proof. By the choice of the sequence {h0(ri)}n~i9 there are infinitely many
numbers n and nl9 such that hQ(n)=hQ(nl). Put for such n and n%

\yni ' = H

(r(Ji,fli)jO* = jj>i. , k = n, (3.5)
iyk , A: 4= /i, /ix .

From (3.2), (3.3), (3.4) and (3.5), we find that /000>, r(/i, /ii))=0 for all j<E F0; i.e.
r(», w^e^o- The group J0 is ergodic; it is proved in same way, as in [9, Exam-

ple 1]. D

Theorem 3020 The cocycle ftQGZ\YQ X A, HQ) speciefied by (3.4) has a dense
range in HQ9 i.e. r(A9 J3Q)=HQ.

The proof follows in a transparent way form Lemma 3.1.

Corollary 3.3. The action of the group GQ=GxR associated with the pair
(A9 /?0) is isomorphic to the transitive action of GQ on the quotient space GQ/HQ.

The proof follows from Theorem 3.2 (see also Theorem 4.1 below).

3.2. We shall use the following notation: (X05 .S0, #0) and (F, £?? v) are the
Lebesgue spaces with probability measures and (X9 Sl, v)=(XQ x Y, J$Q x£F9 JUQ x
v)\ S is an ergodic automorphism of (F, £F5 v) and SQ=1 xS^Aut (X, IB, JJL).
Let, as previously3 HQ be a closed subgroup of GQ=GxM.

Assume that for /£0-a.a. x0^XQ the cocycle a(x^^Z\Yx[S^\9 G) is defined.
We shall say that in this case a field of cocycles xQ-*a(x0) (xQ^XQ) with values
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in G is defined. To each field of cocycles xQ-*a(xQ) corresponds a map a: Xx

n), (3.6)

which satisfies the identity for the cocycles.

Definition 3.4. A field of cocycles x0-*a(xQ), xQ^X0 is called measurable,

if the cocycle a defined by (3.6) is measurable.

Definition 3.5. A measurable field of cocycles X0->a(x0) has a dense range

in a group HC.G (the notation r ({&(•)}) =H), if for a.a. xQ^XQ the cocycle
a(xQ) has a dense range in H.

Each measurable field of cocycles xQ->a(xQ) generates also a measurable

field *0-*
ao(*o)=(a(*o)> P) of cocycles taking values in the group HQ.

Below we shall consider only measurable fields of cocycles and assume S
to be of type H or IIIA

Lemma 3.6. The following statements are equivalent:
(f) a measurable field of cocycles xQ-*aQ(xQ) has a dense range in HQ;
(ii) for any hQ^HQ, any set AdXQxY of positive measure and any neigh-

borhood V of the identity in GQ, there exist a measurable field of automorphisms
SO=(XQ-^S(X^)^[SQ] and a set Be: A, such that s&BdA and ^(xQ)(y9s(xQy)^
hQ+Vfor a.a. (x^y)^B\

(lit) for any h0^H09 any two sets A and B in XQx Y such that ^(^4(jc0))>0
**v(B(xJ)>Q (where A(xQ) and B(xQ) are xQ-sections of A and B) and any neigh-
borhood U of the identity in GQ, there exist a set A' d. A of positive measure and

an element ̂ ^(^-^A^aD^Kl su°h that sdA'dB and a0(*o) (j% s'(
for a.a. (

The proof of this lemma is similar to that of Lemma 2.1 from [5].
Choose in the group G an invariant metric d compatible with the topology

of the group G.

Next lemma is formulated and proved for the case of S of type III; the
case of type II automorphism S is to be considered similarly.

Lemma 3.7. Let a measurable field of cocycles xQ-*aQ(x0) be such that

r({a0(-)})= HQ and hQ=(hG,hR)^H0. Let A and B be subsets of X=XQxY,

such that ^(A(xQJ)=^(B(x0J)ek^9 where A(xQ) and B(xQ) are x# sections of A and

B. Then, for any e>0, there exists an automorphism s^[S^ for -which s^A=B
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and

Si «)) , (3.7)

and V(e)={g(=Gi d(0yg)<e}e

Proof. Let us use statement (iii) of Lemma 3.6 and construct a map ^
such that for a subset A1C.A of positive measure tlAl=BldB and

(3.8)

where ^=(#0^1 C*b)) and Fo(e) = F(e)x(— e, e). Choose here Al so that

(3.9)

Consider now the set of pairs (A19 tj) satisfying (3.8) and (3.9) and define on
this set a partial order relation, assuming (A{, ti)<(Ai'9 1{') if AidA" and
t{=ti' on A{. By Zorn lemma, there exists a maximal pair (AQ, tQ) with res-
pect to such the order relation. Therefore, we readily conclude that Ag=A
by mod 0 and the automorphism t$~ (xQ-^t(x^) satisfies the relation

(3.10)

for a.a. (xQ9 y)^A. Besides,
For the symmetry reasons, there exists an automorphism w0=(

[Sa such that wQBc:A and

^oK) (y, ^o))^ -hG+VB(s) (3.11)

for a.a. (XQ, y)^B. From the maps % and w0, as in [9] we shall construct the

Bernstein map Jo=(Jco~*iS(:x'o))e[5al which is the one-to-one map from A onto
B:

(x»y)e u Kw^yA-w^w^B] u n (wQtQ)lA
i=Q 1=0

, y), (XQ, ̂ )e U (w0(?ow0)^-(w0,r0))^^) .
8=0

From (3.10) and (3.11), follows (307)0 Q

Further it will be convenient to believe the cocycle aQ to take values in
the countable subgroup HQ dense in HQ (see Subsection 3.1). This assumption
is not restrictive [6].

Lemma 308. Let Abe a measurable subset of positive measure in XQ x Y and

£-1 * ^ of elements of the group H'Q, where hQ(i)=(hG(i), hE(i)) and let the
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range of a measurable field of cocycles x0-*aQ(xQ) be the group HQ. Assume that

£=(A, [0, N—l], B(i\ r(-, •)) is an Smarmy of A such that M(B(i))=exp (hR(i))

and for certain e>0 and a.a. (XQ, j)

«o(*o) (y, r(t, Ofle/^O+Kofc) , ie[l, N-l] , (3.12)

where F0(e)=F(e)x(— e, e). Then, there exists a measurable function fa. A-*H'Q
such thatfQ(xQ, y)=0for a.a. (*0, y)^B(0) and

(3.13)

and for the measurable field of cocycles

A(*b) (y. ^ =/o(*» sy)+*&ti (y, s)-ffc» y) , s^[S] (3.14)
the following relations are true for a.a. (XQ, y)^B(G):

P^(y,r(i,0»=h$), i = l,2,-,tf-l. (3.15)

Proof. Put for i=l, 2, — , N—l the following

(0

(/, 0)), (x0, ̂ )el?(i) , (3'16)

where CKO satisfies (3.6). Simple check shows that (3.13) and (3.15) follow from
(3.12), (3.14) and (3.16). D

In other words, Lemma 3.8 states that the cocycle a may be replaced by
the 50-cohomologous cocycle ft and the measure v by the measure i/ equivalent
to it, so that on the elements of the S^-array f the cocycle ]3Q should have con-

stant values, the Radon-Nikodym cocycle in particular also becoming constant
on such elements. In this case, the function f0 performing the cohomologous
replacement takes values in the prescribed neighborhood of the identity in H0.

3.3. Before starting to prove the uniqueness theorem for fields of cocycles,
let us consider the uniqueness theorem for individual cocycles with a dense
range in the prescribed group HQdGQ. The proof method of this theorem
will then be extended, in a transparent way, to the case of measurable fields
of cocycles.

Let F be an ergodic a.f. group of automorphisms of (X, IB, &), &(X)=1
and an automorphism JeAut (X, *B, ju) be such that [^]=[r]; let HQ be a
closed subgroup of G0. Assume the cocycle «O=(CK, p) to take values in H9 and
HQ=r(F, a). As has been said, according to whether the group HR (where HQ
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=(HG, Hj^)) is trivial, or discrete of the form Zlog X9 or dense in JB, the group
r is of types II15 IHA (0<^<1), or IIIj. The case of F of type II was con-
sidered in [6].

Here we shall prove the following uniqueness theorem for the group F

of automorphisms of type III.

Theorem 3090 Let the groups of automorphisms I^-cAut (Xiy£Bi3 /ig-) and
the cocycles a^ /=!, 2 satisfy the conditions: a^Z^YgXF^ HQ)9 r(Fh ao)=HQ,
i.e. let the associated actions W(r.t tf« )((70) coincide with the transitive action of the
group GQ on GQ/HQ. Then, the pairs (7\, aj) and (A* ao) are weakly equivalent.

This theorem will be proved in several steps. Note now that Lemmas 3.6,
3.7S and 3=8 remain, valid5 if the field of cocycles in their formulations is re-
placed by one fixed cocycle.

Lemma 3.10. Let £=(X,[l,N], A(*\ r(% •)) be a F -array on the set X,
such that for e>® and a set DcJf of positive measure, the following is true:

9 (317)

where D^&tf) and F, T and ag satisfy the conditions enumerated above,
Then, there exists a F-array £ A such that

ju(D*DQ<2e, (318)

where DiG=&(E^). Moreover, the cocycle <XQ is cohomologous to a cocycle a$
which takes constant values on all elements of£lt a function /0 specifying the co-
homologous replacement takes values in the neighborhood V^le)=V(2s)x(~2e,
2s) of the identity in (?0.

Proof, Since aQ takes values in the countable subgroup HodHQ9 then the
functions fl(x)=aQ(x, r(i, 1)), i = l, 2, — , JV, where x^A(l), are piecewise con»
stant. Let {Eu: o>e^} be the partition of A(l) into the sets on which /z"(x)5

/=!, 2, •••, N are constant. The set Q is finite or countable (we shall naturally
assume it countable). Let Q* be a finite subset of Q^ such that

U Urftl)JEJ>l-^-. (319)
-

Let us believe for definiteness that/*(jc)=(Ai,fli) for
Then5 for the same values of o)9 i
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XKU)£J = eM£J. (3-20)

Put q(a=^(Eta), o>e£. The condition (3.19) then is

i J . « ff, „
1 2

From the given numbers e>0 and {?J-weix» we can find the numbers
and nm^N such that

j\r . e
S 2 ea*(q<a-n(aq')<—, (3.21)

Let F^dE^ ju(F(a)=q, o>e£'. Inequalities (3.21) show that there exists a col-
lection of sets iFJK)}Ki from £. such that ^(1)=^, Fta(kl)nF<a(k2)=0 (fc1=t=

)=q for fc=l, 2, — , «„, o> CE£'. Put

= U UFJfc),

(3.22)
»-i

Then, ^(1)=^'(1)U^"(1) and A'(l)nA"(l)=0. From (3.19), (3.20) and
(3.22), it follows that

/<UK/,1)'4'/(1))<«. (3-23)
J = l

Let us number the sets Fn(k) successively: F(l);F(2)9 •••, F(M), where M=
Swefl'Ho,. Also, denote the functions /f'(x) on FQ) in a different way, putting

/'(*)=(*}, 6J) for xeflC/)- The coUection {(g), 6ft: i=l, 2, -, AT; 7=!, 2, -,
M} obviously coincides with the collection {(/£, af,): i=l, 2, — , JV; a>e«0'}-
Therefore, (3.20) leads to XrO", 1) F(j))=q exp(6j).

By applying Lemma 3.7, consider over the partition G4'(l)> [1, M], F(-)) a
r-array 571, whose automorphisms £(-, -) have the property

«o(*> *a l))e Fi(5) , 7 = U 2, -., M (3.24)

for a.a. x^F(l). Denote by 77 ' a refinement of the array £ by the array 3?i

defined on the set -4= Uf.i r(z, 1) -4'(1). The array ??' consists of the sets r(f,
1) F(j) with the measure ^, /=!, 2, ••-, N; j=l, 2, — , Af and the group Sty')

consists of the automorphisms f'(-, •) defined by relations of the form r(i, 1)
a(s •) rft I)"1, i9j&!9 2, •••, M. For convenience, let us number again the

sets of 77 ' successively: 37/=(^ f1. M^l? C"(0> ?'(-9 •))•
 Let us find out what

the values are that the cocycle a0 takes on elements of f '. Let for definiteness,
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C'(l)=F(l). If C'(n)C.A'(l\ then, in view of (3.24) aQ(x, t'(n, l))eF0(e) for

jceC'(l); if C'(/i)cr(/, 1) ̂ '(1), then for

Oo(*, ffo l))=«o(*, rtt

where k is specified by the equality F(K)=r(i, l^C'fa)- Therefore, put (g(ri)9

*(*))=(0,0) for C'(»)c^'(i) and fe(n),6(*))=(gUi) for C'(ri)=r(i,
Thus, for a.a, Jc

, t'(n, l))e(g(«), 60i))+Ko(e), /i = 1, 2, ..-, JVM . (3.25)

Then, v(C'(n))=ebMq=rn.
Using (3.23), calculate the measure of the set B= Uf-i rO",

1-2 e»(s)? = 1 -2 r, <« •
w=l »=1

Subdivide ^ into the nonintersecting subsets C"(n), «e[l, NM] such that

. (3.26)

Since ^^logr^rr1, then for ri=ju(C"(ri)) it follows from (3.26) that 6(/i) =
log riCri)"1, i.e. rnrTl=r/

n(r
/
1)'

1. Since (g(ri),b(n))SEH'Q, then, by Lemma 3.7,
over the partition (B, [1, TVM], Cx/(e)) a T-array ^7/ can be defined having the
automorphisms *"(•) such that for a.a.

(3.27)

Construct the T-array Ei=(X, [1, JVM], C(-), K'» 0) from the arrays ??/ and v7/,
putting

t (n 1^ v 1'"' *x ~"7"(1) , n = 1, 2, "><-, JVM.

Then, it follows from (3.25) and (3.27) that

, /i = 1, 2, -, JVM . (3.28)

Apply Lemma 3.8 to the array fj. Then, there exists a measurable func-
tion fQ(x) taking values in VQ(e) and such that the cocycle

««*, 0 =Mtx)+aJ[x9 t)-f0(x) , r e[T] (3.29)

has the property

a'0(x, t(n, 1)) - (g(ri), b(n)\ n = 1, 2, •-*, JVM , (3.30)
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for a.a. x^C(l). It follows from (3.17) and (3.23) that the array Sl satisfies

(3.18). Equalities (3.30) show that the cocycle a'Q cohomologic to a0 takes
constant values on elements of <? x.

To conclude the proof of the lemma, let us estimate the change of the
measure of X as a result of replacement of IJL by ju' by formula (3.29) by means
of the function/^), where fQ(x)=(fG(x),fR(x)). It follows from (3.29) that

e-*<»'(X) = ( exp (/*(*)) d»(x)) <e\ (3.31)
JX

Normalize the measure /*', putting #,{(£)= v'(E) t*'(XYl for E^S. This
means thatfR(x) is replaced by the function f'R(x) such that exp (fR(xJ)=^f(X)~l

exp (/flCx)). It follows from (331) that/i(x)e(-2e, 2e). D

Lemma 3.11. L£tf (JT, 5, ^), r, T, aQ, H0 and H'0 be as above. Then, there
exists a sequence {fB}r=i of P -arrays and a cocycle a'Q cohomologous to the
cocycle a0, both such that

(i) f«+1 is the refinement of £n,
(ii) iT^:
(iii) 3=
(iv) on any element of£n,n^N the cocycle a'Q takes a constant value.

Proof. Let a sequence of positive numbers {en}n=i monotonically con-
verges to zero and SJT-i ^< °°. Let {Dn}^i be a dense sequence of sets in J3,
whose every element occurs in it an infinite number of times. Apply Lemma

3.10 and construct a T-array fI=(JJT, [1, JVJ, ̂ (O* ri(-, •)) and a cocycle aJ1;

cohomologous to a0, such that the group Q(£ ̂  approximates the orbits of T ac-
curate to e1 and 3?(£i) approximates the set Dl also accurate to ^j (i.e. inequali-
ties similar to (3.17) are true). The cocycle a^ takes constant values on ele-
ments of f ! and is obtained from the cocycle aQ by the cohomologous transition
defined by a transfer function f^\x). This function has the properties: ftf\x)
e VQ(e) and/i1)(^)=0 for x^A^l). Then, construct on ̂ (1) a T-array f J such
that the array £2= fi Xf i approximates the orbits of J and the set Z^ accurate

to e2. Here, if f {=(^(1), [1, Ni], A{(-)9 ri(-> •))» then on the set ^i(l) °^ can
define the function ffl(x) such that /i1}(A:)=0 on A{(1) and /^1)WeF0(£2).
Denote by/^2)(%) the S(g ̂ -invariant function obtained from ffl(x) by shifts by
ri(/, 1), /=!, 2, ••-, TVp According to Lemma 3.10 fol\x) and f { can be chosen
to be such that the cocycle a^(x9 t)=fP(tx)+atf\x, i)—ftf\x} takes constant
values on elements of the array <f2> t^[T].

Continuing the procedure let us construct the sequence of the arrays {$„} %al
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satisfying conditions (i)-(iii) of the present lemma and also the sequence of the
functions {/ow)(*)}£li such that the series 2~=i/oM)(*) converges to a function
fQ(x). Then9 according to the choice of f^n\x), the cocycle <XQ(X, t)=fQ(tx)+
ffio(X t)~fo(x\ t^[T]=[r] takes the constant values on all elements of the array

Remark 3.12. It follows from the construction of the function /0 that,
generally speaking, f0Q=Ho. However, the cocycle a$ takes, as ag does, its
values in the group H'Q because the functions fkn\x) are invariant with respect
to automorphisms from the group <?(<?,), i=l, 2, — , n;

Proof of Theorem 3.9. Recall that the cocycles aj, f=l, 2 take the values
in the group HQC.HQ. Let {en}n=i and {AJ^Li be sequences the same as in
proof of Lemma 3.11. Define for el9 Dl and a\ a rrarray fl and a rr

cohomologous cocycle «J(1) satisfying Lemma 3.10. Then, «J(1) takes con-
stant values on the elements of £„ and fx approximates 7\ dTJ=[7YI) and Ds ac-
curate to e1. Using Lemmas 3.65 3.7 and 3.8, construct for al a /Yarray ^
with the same number of sets as in the array El and define a cocycle «o(l)? A"
cohomologous to al, both such that on sets with the same indices the values of
<zj(l) and «o(l) coincide. Thai this construction is possible follows from the
facts that r(rl3 al)=r(r2, al) and the groups 7\ and F2 are weakly equivalent.
Then, define a refinement 3?2 °f the array ^ so that the approximations of
T2 ([T2]=[r2]) and of Dl should have the accuracy to s2- Next, construct a co-
cycle a2

Q(2) cohomologous to «o(l)3 so that the values of 0^(2) should be con-
stant on elements of rj2. From the proof of Lemma 3.119 it follows that «o(2)
takes constant values on elements of TJI as well. Returning to the lycocycle
«J(1) and the Frarray f 15 define a refinement f 2 of f i and a cocycle «o(2), so
that the array f 2 should have as many sets as 7?2 has and that on sets with the
same indices the values of <*o(2) (/Vcohomologous to aj(l)) should coincide
with the values of al(2). In transition to cohomologous cocycles, as in
Lemma 3.11, the functions /o(l)5/o(2) and /S(l), /o(2) are constructed that de-
fine cohomologous equivalence of cocycles and are such that /oO")e^o(e/)»
ij=l,2.

By repeating the above procedure a countable number of times, we obtain
two sequences of the arrays {f „}?.!, {^}"=i two sequences of the cocycles

{«o(0}r»i, {«o(0}r=i and two sequences of the functions {/ o(*0}T-i, Vo(fc)}r.i
corresponding to the groups F2 and r2, respectively. The arrays 5n and ??n

satisfy conditions (i)-(iv) of Lemma 3.11, and the functions fi(k) and the co-
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cycles ai(k), j=l, 2 are related as

»=i 1=1

and

fjff) (x\£z V(S") (3 33)

Besides, the cocycles a\(k) and al(k) have equal values on elements of £k and ijk
that have the same indices. Since S!T-i £»< °°, then in view of (3.33), we can
assume/i(jc)=2r.i/o'(0 (*), j=l9 2. Then, it follows from (3.32) that for j=
1,2 the cocycles ai(x,t)=fi(tx)+ai(x,t)--fi(x)9tG[rjl are defined and their
values are constant on all elements of the arrays fw and rjnn^N. Besides, if
take elements of £„ and rjn having the same indices, then the cocycles a\ and a\
take on them equal values (see Remark 3.12).

The above enumerated properties enable conclusion (as in [1]) that there
exists an automorphism 0 for which 0[r^0"1=[r^\ and al

Q(6x, 0t0"l)=al(x91)9

t^\T& Putting it otherwise, the pairs (Tl9 aj) and (r2, OQ) are weakly equiva-
lent, n

3.4. Let us come back to considering the fields of cocycles which we
began in Subsection 3.2. To prove Theorem 3.9 and Lemmas 3.10 and 3.11,
we used the results of the said subsection (Lemmas 3,6, 3.7 and 3.8) that are
true for the fields of cocycles. Therefore, the proofs of the results of Subsec-
tion 3.3 formulated for individual cocycles can be extended without changes to
the case of the fields of cocycles. Then, we obtain validity of

Theorem 3.13. Let (XQ, <BQ, /%) and (Y, £?, v) be Lebesgue spaces, S an

ergodic automorphism of (Y, 3f, v), Xf-^afoc^, *"=1» 2 measurables fields of co-

cycles with values in a group H$ such that r({aj(")})—r({ao(')})—^o- Then,
there exists a measurable field of automorphism P0=(x0->P(x0)) such that P(x0)e

N[S] and the cocycle P0°aJ is S$-cohomologous to the cocycle a\, -where S0=lx

S. In other words, (SQ, aj) and (SQ, CK§) are weakly equivalent.

In Subsection 3.1, the cocycle J3Q with values in H^ and a dense range in

HQ was constructed. By J99 we shall also denote the constant field of cocycles,

each equal to ftQ.

Corollary 3.14. Let the conditions of Theorem 3.13 be fulfilled and

r({a0(«)})=/f0. Then, there exists a measurable field of automorphisms PQ=

\ such that the cocycle P0°a0 is S^cohomologous to the constant
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field ofcocycks fa.

Corollary 3J5o Let a measurable field of cocycles xQ-*aQ(xQ) (x0e Jf0) has
a dense range in HQ and takes values in H0. Then, it can be replaced by a co-
homologous field of cocycles x0-^a^(x^ (thereby, the measure on Y will also be
replaced by an equivalent one), so that the group {s^[S]i a'0(x^) (y9 s)=Q9 j>e Y}
will be ergodicfor a.a, XQ& XQ.

Remark 3.16. Analysis of Theorems 3.9 and 3.13 shows that they remain
true also when the cocycle a^=(a} p) takes values in a closed normal amenable
subgroup HQ of GxR so that the group H0 is dense range of a0 and G is an
arbitrary amenable l.c.s. group.

§4e Transitive Associated Actions

4.1. Let F be an arbitrary countable ergodic group of automorphisms
of (X9 <B9ju);GB. nonabelian Lc.s. group and a^Zl(XxP9 G).

Theorem 4.1. Let the associated action W^^G) for a pair (T9 a) be
isomorphic to the transitive action of the group G on a quotient space G/H, where
H is a proper closed subgroup of G. Then, the cocycle a is F-cohomologous to
a cocycle ft taking all its values in H, IfG is abelian, then r(F9 a)=r(F9 fi)=H.

Proof. As in Section 29 we shall consider the skew product F(a)cAut
(Xx G, vXZG) and the action V of G which are defined by (2.1) and (2.2). Let
f be a measurable hull of partition into orbits of the group r(a). By the con-

dition of the theorem9 the quotient space (&9v)=((XxG)IE9(jjixzG)IE) i§ iso"
morphic to the quotient space G/H9 on which the measure is the projection of
the Haar measure %G. Therefore, we shall believe that £=G/H. Denote by q
the quotient map from XxG into G/H. From the definition of the associated
action W(r^(G) = W(G) it follows that

(4.1)

Besides,

(<*) (x9 h)) = q(x, h) , r(«)eF(a) (4.2)

for a.a. (x,h)^XxG. Thus, it follows from (4.2) that there is g0e(j such
that for a.a. x&X

q(rx, a(x, f) g0) = q(x9 ft) , r e T . (4.3)
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Relations (2.1), (2.2) and (4.1)-(4.3) show that for a.a.

q(rx, a(x9 r) go) = W(g,Yl W(a(x, rT

where e is the identity in G. Therefore,

W(a(x, r)} q(x, e) = q(rx, e) , r*=F . (4.4)

Let ct)0^G/H be the point in the quotient space into which the group H is

projected. Then,

H = {g^G: W(g) a>Q=a>Q} . (4.5)

By the theorem on the measurable choice, there exists a measurable map

0: G/H-+G such that W(d(o))) o>Q=o) since W(g) (g^G) is the shift into G/H.

For x^X we put f(x)=6(q(x,ej) and define the cocycle /?, which is F-

cohomologous to a, by the formula: 0(x, r)=f(rx)~1 a(x, r)f(x). Let us check

that all values of ft lie in H:

r)} o>0 = W(6(q(rx, e))-1) W(a(x, r)) q(x, e)

= W(0 (q(rx, e)))-1 q(rx, e) = a>Q . (4.6)

Here we have used equalities (4.4) and (4.5). Relation (4.6) means that ft(x, r)

&H for a.a. x^X and all r er.
Thus, r(F, a)=H (assuming now G to be an abelian group). From results

of Section 5 (see Theorem 5.9) it immediately follows that indeed r(F, a)=H. D

4.2. Below the group G is assumed to be abelian.

Theorem 4.2. Let FdAut(X, IB, jj) be an arbitrary ergodic group and

a^Z^XxF, G). The action W(rt06)(G) associated with the pair (F, a) is transi-

tive if and only if the cocycle a is regular.

Proof, It follows from Theorem 4.1 and Lemma 1.12. D

Proposition 4.3. Let there be defined a pair (F, a), where F c Aut(Z, J$, #),

a^Z\XxF, G) and r(F, aQ)=HQc:GQ. Then, regularity ofaQ means regularity

of a. The reverse is wrong.

Proof. Since aQ is regular, all values of the cocycle aQ may be thought

to lie in H0. Use, as in Section 3, the notation HQ=(HG9HR). Show that

r(F, a)=HG, where HG is the closure of the group HG in G. As all values of a
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are in the group HG, then evidently r(F9a)dHG. Let U be an arbitrary
neighborhood of the identity in G and hQ^HGa Then, there is an element h% G/JTG

such that h^hg+U, For a certain t^^H^ the element (A15 i^)€fT0. There-
fore, for any ^CX and Ug=Ux(— e9 e) there is a subset J?C/4 of positive
measure and an automorphism r^fT] such that rBc.A and a0(x, r)^(Als %)+
UQ, x&R Thus, a(^3 r)eA1+C/cA0+2C/ for a.a. ^e^, i.e. A0er(F9 a),
Therefore, we obtain that the cocycle a is regular.

An example showing that regular a does not necessarily mean regularity
of a0 will be provided in Section 7. D

Corollary 4A £e* £/ze /w»>j (Flf aj) a«rf (J^, a?) &e swc/i /to /Ae cocydes
a^9i=\9 2 are regular and the associated actions W(rlt0&^(G^ and
isomorphic. Then, so are the actions W(rlt^(G) and

The proof follows from Theorem 4.2 and Proposition 4.3.
The statement reverse to Corollary 4.4 is wrong.
Using the results of Section 3 (see Theorem 3.9)? one can prove the unique-

ness theorem for regular cocycles defined on a.f. groups of automorphisms.

Theorem 450 Let there be the pairs (Fl9 aj) and (F29 al) such that the
cocycles aj, i=l, 2 are regular and let r(Fl9 aJ)=r(Jf

g3 a$)=Hq (i.e. the associated

actions W(plttti)(GQ) and ^(r8,*§)(^o) be isomorphic). Then, the pairs (Tl9 aj) and
(F2, «o) ore weakly equivalent.

Proof. The statement of the theorem follows from Theorem 3.9, because
ajg i=l, 2 may be thought to take values in HQ. D

Remark 460 In [4], for an arbitrary Lc.s, group G an analogy of the set
r(r, a) was introduced, viz. the set o(F9 a), where the cocycle a^Zl(XxF9 G)
and F is an arbitrary countable group of automorphisms. The set a(F9 a) is a
closed normal subgroup of G and has the same properties as r(F9 a) (see Section
1). Theorems 4.1, 4.2 and 4.5 are true also in the assumption that H is an
amenable normal subgroup of G (or H^ of (?0). In this case, r(F9 a) should be
replaced by a(F9 a). Note also that in all the theorems of this section9 the
group F can be of any type.

§5. Free Associated Actions- Type Iff

5.1. Recall our standard notation: F is an ergodic a.f. countable group
of automorphisms of (Z5^9/«); G a Lc.s. abclian group, and a cocycle
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Zl(XxF9 G). It will be assumed that the cocycle a is recurrent and nonregular
(see Definitions 1.11 and 1.13), because the cases of the transient and regular
cocycles were considered in Sections 2 and 4. It will also be assumed that F
is a type II group of automorphisms. Without loss of generality it may be
thought that F is of type H and Fojui=juL9 ju,(X)=i.

Let r(F9 a)=Hc:G. The case, where the group H= {0} , will be considered
simultaneously with the general case. Section 3 treats the situation of H=G
and therefore H will be assumed to be a closed proper subgroup of G. As ear-
lier in Section 1, we shall define the cocycle &(x9 r)=<x(x, r)+H, r^[F]9 which
takes values in the group G=G/H. By Lemma 1.14, & is recurrent, as a. By
the Definition 1.11 r(F9 &)= {6, 00} , where 6 is the unit in G%

Lemma 5.1. The pair (F9 a) is weakly equivalent to (F9 a^ for which the
cocycle a^Z^xF, 6) is lacunary.

Proof. It follows from Lemma 1.17 that the cocycle a is r-cohomologous
to a lacunary cocycle a^Z\Xxr9 G): dx(x, r)=f(rx)+a(x9 r)—f(x), where
/: X-+G is a measurable map. According to the theorem on measurable
choice, there exists a measurable map tyiX-^G such that f=i/r+H. Put

x9 r)-iK*)- D

On the basis of this lemma, we shall always believe the cocycle a to be
lacunary. In other words, there exists a neighborhood F0 of the identity in G9 for
which &(x, r)$F0-{6}, x^X9 re[r].

Consider the orbital cocycle &k=fi corresponding to a. Let 3L(F} be the
measurable equivalence relation on X defined by partition of X into orbits of F.
Put S>= {(*!, ;c2)e5l(r): ti(xl9 x2)=-0}. Obviously, 3! is also a measurable
equivalence relation and 3?C.3l(r). It follows from the results of [4] that
in [F] there exists an freely acting automorphism SQ such that 5l(*S'Q)=5>.
Denote the cr-algebra of measurable S0-invariant subsets in X by J30. Then, J30

corresponds to the partition <? of X into ergodic components of S0. Put X$=
X/£9 JUQ=V£ and let n: X-*XQ be the natural projection onto Jf0.

Lemma 5.2 [15]. Let v=\ ^XQd^Q(xQ) be the expansion of the measure
JXo

fji, into the canonical system of measures with respect to the partition £ . Then,

the recurrence of a means that the measure JUQ and the measures {vx^ XQ^XQ are

probability and nonatomic for ju0-a.a. xQ^XQ. Besides, the automorphism SQ

is conservative (i.e. not of type /), and VXQ is S$-ergodic and SQ-invariant for
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We consider the Lebesgue space (^"K-^o)? v*d f°r everY fixed x^XQ. It
follows from Lemma 5.2 that for #0-a.a. xQ^XQ the space (K~\xJ, VXQ) is isomor-

phic to certain standard Lebesgue space (F, v), *>(F)=1. Let S(xQ) be the re-

striction of the automorphism SQ onto n~~\x^. According to Lemma 5.2, for

#0-a.a. ;t0£:JSf0, the automorphism S(xQ) is ergodic, of type II10 From Theorem

2.5 of [10] it follows existence of a measurable field of isomorphisms xQ-*P(xQ)

(*0GEX0) such that P(xQ): Y-»*-\xj, P(xj°v=»So and P(xQ)-1[S(xQ)] P(xQ)=[S]

for %-a.a. xQ^XQ9 where S is an ergodic type l\ automorphism of (F, v). E.g.,

the space (YQ,p) and the automorphism group A of Subsection 3d may be taken

as (F, v) and S assuming P to be J-invariant

Each point x^X can be represented as x=(n(x\ y)9 where y^n~l(n(x)).

Then, the transformation P: x-*(n(x), P(^(x))~~1 y) maps X into XQx Fand the

measure /« into /«0x^. We have the automorphism group PFP"1 and the

cocycle Poa, both defined on the space (l^X F, ^0X^)= Thus, the pair (T, a)

transforms into (PFP'1, Poo). For simplicity, we shall believe that on

(XQx F, #0XiO the automorphism group F acts with the cocycle a&Z\XQx Fx
J1, G), and these have the following properties: SQ: (xQ9 y)->(xQ,Sy) belongs to

Lemma 5.3 [15]e On the Lebesgue space (X$, £8$, /e0), there exists an a.f.

countable ergodic group PQ of automorphisms such that

= XQ x F , (5.1)

and there exists an orbital transient cocycle UG: 5i(/^0)->(j such that for any

(5.2)

Relations (5.1) and (5.2) imply the following. The orbits of T0 is formed

by the projection x of the orbits of r onto XQ, The cocycle UQ has the same set

of values as the cocycle A. Therefore, there exists a neighborhood F0 of the

identity in G for which UQ(TQ *0, *0) $
 v& ?Q e tro] <7o =1= 1), XQ e Z0. From Lemma

5.3 it follows that there exists an ergodic automorphism Q^A.ut(XQ, *B$, j^) for

which [rj=[fi]. Put

Lemma 5.4. In the full group [F] there exists an automorphism R, such that

A(x9R)=tfx(xy)9 XGX. (5.3)

Proof. Since all elements of ro result from projection of F onto Z0, then
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for the automorphism Q^[FQ] there exists an automorphism ^^t/1] such that

(5.4)

By using equality (5.2), we obtain it that a(x, R)=UQ(K(R x), 7c(x))

*(*))=?(»(*))• n
Consider the automorphism

R(Q-1xl):(xQ9y)-»(xQ9y')9 (5.5)

which for a.a. xQ^XQ defines a measurable one-to-one map U(xQ): y — yr. Rela-
tion (5.5) shows that xQ-+U(xQ) (xQ^XQ) is the measurable field of automor-
phisms of (F, v).

Lemma 5.5. The following statements are true: R^N[SQ] and
for jLiQ-a.a.

Proof. By using (5.3), (5.4) and (5.5), we obtain that a(x,
Therefore, RS0R-l<=[S0]. Then, R(Q-lxl)^N[SQ], which, together with (5.5),
leads to U(xjGN[S], xQ<=XQ. Q

Introduce the notation: QQ(xQ9 y)=(QxQ9 U(xQ)y). Unite now the above
proved results in the following theorem on the structure of the cocycles a.

Theorem 5.6. Let a pair (T9 a) be as above. The full group [F] is generat-
ed by the action of two automorphisms QQ and SQ on (XQ x Y, /% x v) as follows
QQ(xQ,y)=(QxQ, U(xQ)y), SQ(xQ9y)=(x0,Sy) with Q0SEN[SQ]. The cocycle
Z\Xxr, G) has the properties: a(xQ, y, Q0)=<p(x)9 a(xQ9 y, S0)=Q9 where
VQ (V0 is a neighborhood of the identity in G). The set of values of & coincides
with that of the orbital cocycle UG.

Proof. We have to prove only the equality

{rx: r*=r} = {Q% Sk
0(xQ9y): m, k^Z}f x = (xQ,y) , (5.6)

since all the other statements of the theorem follow from Lemmas 5.2-5.5.
Assume (5.6) to be wrong; i.e. the set

A = U {xE^X: rx<£ {Q% Six: m,

has a positive measure. As has been said, the cocycle a (and thus a) may be
thought to take on only a countable number of values. The condition of the
theorem means that for any fixed r^r there exists a measurable function
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m=m(n(x)) for which

&(x, T) = n(fi»(€W> *(*), *(*) = A(x, fi?^») . (5.7)

Then, there is an automorphism ri=ri(*)e[r] such that r*=ri 2?^ anc* for

, r) = A(QS ^ rO+Afo 2om) - (5.8)
A

Comparing (5.7) and (5.8)? we conclude that &(QS x9 ri)=0, i.e. 7*1 ̂ [5^; this
is contradiction to the above assumption and thus proves (5.6). D

5.2. Here it will be assumed that the cocycle a^Z\XxP9 G) is lacunary
(it is also recurrent and nonregular). This means that /•(/*, a)= {0,oo} . There-
fore, all the results formulated and proved for a in Subsection 5.1 are also
true for a because a=a for the group H ={()}.

Let us first consider the case where the action W(pt^(G) associated with the
pair (T, a) preserves measure.

Lemma 50?0 Let F be an ergodic a.f. type J/j group of automorphisms of
(X, IB, /JL\ let aGZ\XxF, G) be a lacunary cocycle, and the action W(r^(G)

preserves measure. Then, in the condition of Theorem 5.6 the automorphism QQ

may be chosen to be Q x 1.

Proof. We shall calculate the associated action W(r^(G). From the
ergodicity of S on (F, y) and the triviality of a on 50, it follows that the action
W(rt0l)(G) is defined on the quotient space of (X0xG5 #0XxG) by the partition
into orbits of the automorphism Q(uQ): (xQ9 g)-^(QxQ, g+uQ(QxQ9 xQJ). This par-
tition is measurable, because the cocycle w0 on Q$ is transient and a(x, QQ)=
UO(QX& x*)—9(x^^Vty where F0 is a certain neighborhood of the identity in G,
Hence, W(rt06)(G)=W(QtU^(G), The action W(QtU^(G) preserves measure if and
only if Q preserves measure JUQ. Now, since the probability measure v on F is
S-invariant and ^-ergodic, then the condition U(xQ)^N[S] means that U(xQ)ov
=v for /«0-a.a. xG^XQ. Applying the cohomology theorem [10] (see also [1]),
we obtain existence of a measurable field of automorphisms Xtf-*P(x^GN[S\
such that P(Q x^)'1 U(XQ) P(x0)e[S], x0GX0. This means that the transforma-
tion P: (x0, y)-*(xQ, P(x^) y) maps [J1] into the group generated by 2x1=20
and 1 xS=SQ. This does not change the cocycle a. D

The proofs of Lemma 5.7 and Theorem 2.9 lead to

Proposition 5«,8e Let the pairs (Ti9 a$)9 i=lg 2 satisfy the following condi-
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tions: ri is an a.f. countable ergodic type II group of automorphisms of

(Xh<Bh V;), ̂ eZ^xTg., G) is a lacunary cocycle, and the action Wi(G)=

W(r.t(6;)(G) preserves measure. The actions W^G) and W2(G) are isomorphic if

and only if the pairs (Q1, UQ) and (Q2, UQ) are stably weakly equivalent, where

(Ql, WQ), i=l,2 are defined by (Fif af)t as in Theorem 5.6.

Theorem 5.9. (theorem of uniqueness). Let the pairs (Ti9 a,-), *=1, 2 be the

same as in Proposition 5.8 and the associated action Wi(G)=W(rit06.^(G) preserves

measure. The pairs (F19 ax) and (F2, a2) ore stably weakly equivalent if and

only if W^G) and W2(G) are isomorphic.

Proof. Obviously, we may take X1=X2=X. Then, it follows from Theo-

rem 5.6 that Ql=Q2=Q, Xl
Q=Xl=XQ9 #1=$=^, Y, = Y2=Yy ^=^=v9 Sl=S2

=S. The pairs (Fl9 aj and (F2, a2) differ only in the values of ax and a2 on

QQ=Qxl. The pairs (Fl9 a^) and (F2, a2) are stably equivalent if and only if

so are (Q, UQ) and (Q, UQ). Indeed, it follows from the structure of av and az

that if T^O: X0 x Z-^>XQ x Z is a map responsible for weak equivalence of the co-

cycles ul and 0%, then the map ^: (x0, n, jO"~>(Vro(*> n^ y) wiU define weak equiva-
lence of the pairs (fl9 a^ and (F2, «2) (recall that UQ and ai are the countable

expansions of UQ and ai9 i=l, 2). Therefore, by Proposition 5.8, the isomor-

phism of W^G) and W2(G) means stable weak equivalence of (Tl9 a^ and

(7^2, «2). The reverse statement was proved in Proposition 2.3. D

Let us show now that any free measure-preserving action W(G) of G may

be regarded as associated with a pair (J7, a), where F is a type II group and

a a lacunary cocycle. Namely, we shall prove

Theorem 5.10 (theorem of existence). Let W(G) be an ergodic free action

of G on a Lebesgue space (Q, p) preserving the probability measure p. Then,

there exists an ergodic countable a.f. group TcAutpf, J2, #), ju(X)=--l, preserv-

ing the measure p., and there exists a lacunary cocycle a^Z\XxT9 G), both

such that the action W(G) is isomorphic to the action W(pt^(G) associated with

the pair (F, a).

Proof. Choose a complete lacunary Borel section JT0c£ of the action

W(G). The measure JUQ on XQ will be defined as the image of the measure p.

There exists on X0 a countable ergodic equivalence relation jR, and let Q be

such an automorphism of XQ that 3l(Q)=3l [4]. Clearly, Q preserves the

measure #0, and ^0Cr0)=1. Define the return cocycle u^Zl(XQx[Q], G) for

the action Q on X0, assuming u0(Q xQ9 xQ)=g, where g^G satisfies the equality
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XQ=Q XQ. Since the action W(G) is free, then g=g(xg) is defined unam-

biguously.

Let (Y, v), v(Y) = l be a Lebesgue space, and 5eAut(r, v) be an ergodic
automorphism preserving vm Define on (X, ju)=(Xgx Y9 #0X*0 an group F of
automorphisms of type IIa generated by 20 and 50:

The group F is ergodic and a.f. Put

«(*b, 7? 60) = w0(2 *0, *0) , afo, y, SQ) = 0 . (5. 10)

Since the section XQ is lacunary, then the cocycle w0 is transient and the cocycle
a is lacunary. It is now transparent that the associated action W(p3^(G) is
isomorphic to W(G) (see e.g. [3] and also Section 2). D

There exists an example of a type II group F and a lacunary cocycle
a^Zl/(XxF, G) such that the associated action W(r^(G) is non-singular (i.e.
of type III). Moreover, such a pair (F, a) may be constructed by any non-
singular action W(G) of G,

Theorem 5.11. Let W(G) be an ergodic free action of G on an Lebesgue

space (@,p)9p(£)=l with a non-singular measure p. Then, there exists a piar
(F, a), where F is an ergodic a.f. group of automorphisms of(X, J39 /*) preserv-
ing a o-finite measure p. and a^Zl(XxF, G) is a lacunary cocycle, and this
pair is such that W(r^(G) and W(G) are isomorphic.

Proof. As in the proof of Theorem 5.10, let us define the following ob-
jects : (XQ, /%), 2, 31 and UQ. The automorphism Q has, generally speaking, the

non-trivial Radon-Nikodym cocycle P(XQ, 0=log ^° °^°fa)° Consider a

Lebesgue space (F, ^) with a-finite measure v and an ergodic automorphism S
of (F, v) preserving v. Let xg-*U(xQ) (xQ^X0) be a measurable field of auto-
morphisms of (F, v) such that U(x^^N[S\ and

= log = _^fl? 0 .

Put (X,»)=(XgxY, /*0X*0 and QQ(x0, y)=(Q x0, U(x0) y\ S,(xQ9 y)=(x@, Sy).
Then, Q^N[SQ], Denote by F the a.f. type !!«, group of automorphisms
generated by QQ and 50. Define the cocycle a for F9 according to formulae
(S.IO). The pair (JT, a) will satisfy the conditions of the theorem. Q
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Let us prove now the uniqueness theorem for the pairs (F, a), whose as-

sociated actions are non-singular.

Theorem 5.12. Let Fi be an ergodic a.f. type II group of automorphisms of

(X;, <Bh Vi), and a^Z^XiXFf.G) be a lacunary cocycle, i=l, 2. Assume

^cr,-,*,-)(^) associated with (Fh at) to be non-singular, i=l, 2. The pairs (Fl9 <Xj)
and (r2, a2) are stably weakly equivalent if and only if W(rii(t^(G) and W^^G)
are isomorphic.

Proof. Since we are interested in the stable weak equivalence relation,
then we may consider the pair (Fg, a,-) instead of (Fi9 a,-), j=l, 2, i.e. believe
that Fi is of type 11^ and juf is rrinvariant and infinite. Theorem 5.6 naturally
remains valid in this case as well, and the measure v on the space Y is also
infinite (see Subsection 5.1). The automorphism QQ(XQ, y)=(Ql xQ9 Uf(xQ)y)

preserves the measure jui=ju.i0x^9 therefore, 0(E/j(*^)= — ̂ (*o» GO (here (x0, y)
eX). Based on the isomorphism of W(Flte6l)(G) and W(r2t^(G), it may be as-
sumed, as in Theorem 5.9, that F1=F2=F9 Ql=Q2=Q, a1=a2=a, (Xl9 ^)=

(X2> V2)=(X, ju). Thus, ^(t/iOco)) =®(U2(xQ)). By the cohomology theorem [10]
there exists a measurable field of automorphisms x0->P(x^) (x0eZ0) such that
P(xQ)&N[S] and for a.a. xQ<=XQ

P(Q x^TlUl(x^P(x^ = U2(xQ) S(XQ) , (5.12)

where ^:0->^(x0)e[*S']. Equality (5.12) shows that the transformation P: (xQ,y)
->(x09 P(xQ)y) belongs to N[F] and Poa=a, because the cocycle a is completely
defined by the action of Q on XQ. Thus, P maps the generators (gj, SQ) of [F]

into the generators (Ql, S) without a being replaced. This proof is concluded,
as that of Theorem 5.9, by consideration of the corresponding transient
cocycles. D

Corollary 5.13. Let a^Zl(XxF, G) be a lacunary cocycle, where F is of
type II. There exists a cocycle alt which is stably weakly equivalent to a and
such that a1 is trivial on SQ and a1 is a transient cocycle on QQ, where QQ and SQ

are the generators of[F].

§6. Non-free Associated Actions. Type II

6.1. Let F be an ergodic a.f. group of automorphisms, G0=GxR, and
a cocycle aQ^Zl(XxF, GQ). Assume a0 to be nonregular and r(F,aQ)=HQ9

and F to be of type III. If F is a type II group, then the proofs below, will be
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simplified.

Recall that, according to Theorem 5.6, F is generated^by gn and SQ which

act on the Lebesgue space (XQ x Y5 #0 x *>) as follows

The cocycle a&Zl(XQX YxF, GQ)9 GQ=Gg/HQ takes on g0 and SQ the following

values

>, fio) = K*o) , <*o(*b, J, So) = 5 (6.2)

where <p(x0)$= VQ and F0 is a neighborhood of identity in GQ.

It follows from (6.2) that the cocycle a0 takes the values on S0 from the

group HQ . Thus, QJO on [SQ] defines a measurable field of cocycles XQ-*<XQ(XQ)

(y, s), sG[S0]9 xQGXQ with values in HQ.

Lemma 60L The range of the field of cocycles x0-*aQ(xQ) (y, s)> s&[S] is

the group H0.

Proof, It follows from (6.2) that there exists such a neighborhood V of the

identity in GQ that the values of a0 on J1 do not belong to the set (HQ+V)— HQ.

Let hQ be an arbitrary element of HQ and W an arbitrary neighborhood of the

identity in G0. The condition r(r, aQ)=HQ means that for any set AdX0x Y,

-4)>0 there exist a subset BdA, (jttQXv) (5)>0 and an automorphism

such that rBdA and aQ(x0, y, r)^hQ+W for a.a. (XQ, y)GB. Since

T(XQ, y)=S™ QQ(XQ, y\ where m=m(xQ, y), n=n(xQ, y)9 then we obtain for (XQ, y)

Since CKO on g0 takes values in JJ0, then a0(^o5 J5 60)^-^0+ ̂  Let FFc F; we

obtain that a0(^o? Jj 60)^^0- ^ follows from (6.2) that in this case n=Q and
then r(x09 y)=S$(xQ, y). Hence, the field of cocycles xQ-*a0(xQ) (xQ^X0) has the

property r( {a0( • )} ) =HQ. Q

The above properties of F and aQ show that the ergodic automorphism

Se Aut(F, £F9 y) may be only either of type II or of type IIIA (0<^< 1). This

depends on the group HR9 where HQ=(HG, HM) (see Subsection 3.1). In Section

3 we introduced the standard cocycle $, defined on the a.f. group of automor-

phisms, its range coinciding with HQ. Application of Theorem 3013 yields the

following result: there exists a measurable field of automorphisms ^0-»^(x0)e

N[S] such that the cocycle RoaQ is So-cohomologous to a constant field of cocy-
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les fa, where R(x0,y)=(xQ9 R(x0) y). In other words, there exists a measur-

able function/: X0 x Y-*H0 such that for s0e[S0], (x0,

-f(xQ, y) = #>( y, s(x0J) , (6.3)

where SQ(XQ, y)=(x09s(x0) y). Under the action of R the group r will trans-

form into the group F'=RFR~l generated by 50 and go, where QQ(XO, y)=

(QxQ9 U'(xQ)y), U'(xQ)=R(Q x0) U(xQ) R(x0)~
1. Since R preserves the measure

v (see Section 3), then for a.a. x0^X0, ®(U(xo))=®(U'(xQ)). The cocycle aQ

will be replaced by a'Q denned on r':

a'o(x0, y, r') =f(r'(x0, y))+R°a0(xQ, y, r')-f(xQ, y) , (6.4)

where /is the same as in (6.3), i.e. «o coincides with /?0 on [SQ]. Thus, we have

proved the following

Lemma 6.2. The pair (r, a0), where r(r, aQ)=HQ, is weakly equivalent to

the pair (F', aftfor which a$(x0, y, S0)=pQ(y, S0).

Consider first the value of af
Q on Q'Q. Let o; G0/HQ-^GQ be a measurable

section of GQ over 6^0/^0. This means that a(g)^G0 and n(G(gJ)=g, where

ge G0 and TC: GQ-*GQ is a natural projection. Thus, any element gQ^GQ can be

represented as

£o = *(£o)+/?ofeo) > (6.5)

where hQ(gQ)<=H0. We have, in view of (6.2) and (6.5) <XQ(XQ, y, Qo)=o(<p(xQ))+

hQ(xQ9 y), where /70(x0, y) is a measurable function from XQ x Y into HQ. The val-

ue of Roa0 on Q'Q is easy to calculate: RoaQ(xQ, y, Qo)=o((p(x^)+hQ(x^ R(xQ)'1y).

Then, according to (6.4),

0)-
1j;)-/(^0,^). (6.6)

Lemma 6.3. Let /(*0, ^)= -/(g x0, Uf (x0) y)-hQ(xQ, R(xQrl y)+f(xQ, y).

Then, in [$Q\ there exists a measurable field of automorphisms SQ= (xQ-*s(x^i) such

that for a.a. (XQ, y)^XQxY

^(2$(*o,j),*o)^(*o,X). (6.7)

The proof of the lemma is transparent enough, so we shall only provide a

sketch of it. As earlier, taking into consideration the results of [6], the cocycle

«0 may be assumed to take values in a countable group H '0 which is dense in
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H$. In this case the function / can be chosen so that «o should be aslo take

values in H'Q (see (6.4) and Remark 3.12). Therefore, f(r '(*0, y))—f(xg, y) be-
longs to HQ. These observations enable conclusion that the function / is pie-
cewise constant and has values in HQ. Since the group [*Srp]={5re[5], PQ(y,s)
=0, y^Y} is ergodic on (F, v), then equality (6.7) is easy to obtain for any
fixed XQ&XQ. Because /(x0, y) is the measurable function, the corresponding
field of automorphisms s9=(x0-^>s(x^) may be chosen to be measurable. D

Put QQ(xQ,y)=(QxQ,s(QxQ)U'(xQ)y)=sQQ()(xQ,y), where SQ is the
as in Lemma 6.3. Then, it follows from (6.6) and (6.7) that ai(x99y9 Qo)=

a(<p(xQJ)=^(xQ). Thereby the following result is proved.

Theorem 6,4 For a pair (F, CKO) having the properties described in the
beginning of Subsection 6.1, there exists a pair (F', CKQ) weakly equivalent to

(F, a0) and such that F' is generated by Qo and SQ, so that

, y, 60 = tfxj , «5(xb, y, SQ) = fay, S) . (6.8)

6.2. We shall calculate the associated action W^^^G^) of GQ, where
(F, «0) is the same as in Subsection 6.1.

Proposition 6.5* For a pair (F, a0), r(r,aQ)=HQ, the associated action

FF(/%a}o)((j0) has the group H0 as a stabilizer, i.e. W^^^GQ/HQ) is isomorphic to
the free action ofG0=GQ/HQ associated with (Q, w0), where uQ(Q x0, XQ)=<P(XQ).

Proof. The proof follows from Theorem 6.4, Lemma 6.1 and Proposi-
tion 5.8. D

After the preparations made, let us consider the existence and uniqueness
theorems (analogous to the theorems of Section 5) for the case, where F is an
ergodic a.f. type II group of automorphisms and a a nonregular cocycle from
Z*(XxF, G) such that r(F, a)=H.

Let there be defined two pairs (Fg-3 <xg-), /=!, 2, and let r(F1? ai)=r(F2J «2)=
H. According to Theorem 6.4, we can transfer to weakly equivalent pairs
which has the following properties F1=F2^F, a^x^ y, S0)=a2(xQ, y, SQ)=
]3(y, S) (in the case where F is of type II, /?0 coincides with /9).

Theorem 6.6. Let F be an ergodic a.f. type //j group of automorphisms of

(X, $, M) and a^Z\Xxrt G), i=l, 2. Let W(r^(G) and W(r^(G) be iso-

morphic and preserve measure; then r(F, al)=r(F, a2)=H and the pairs (F, a^)

and (F, a2) are stably weakly equivalent.
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Proof. As has been mentioned, the group r can be believed to be gener-

ated by go and SQ and the cocycles ai9 f=l, 2 to satisfy relations (6.8). The

isomorphism of Wl(G)=W^r^)(Cf) and W2(G) = W(rt^(G\ and Proposition 6.5,

and (6.8) lead to the equalities: Ql=Q9=Q9 9i(*o)=P^)=9(*o)» o^fo, y, gj)=

«2(*o,J>, Go), where Q^(x^y)=(Qx^Si(xQ} Ui(xQ}y\i=l,2. Note that gj,
/=!, 2 and g preserve measure, since also so do F and Wf(G) (see Proposition

6.5). Therefore, we obtain that ^>(Ul(xQJ)=0(U2(xQ))=l for a.a. xQ^XQ. Thus,

we can consider the weakly equivalent pairs for which U1(x^)=U2(xQ)=l. Then,
it is sufficient (as in Section 5) to consider the automorphism g0=gxl instead

of gJ5 defining OI^XQ, y, QQ)=y(x0)=o(<p(x0j), where a: G/H-+G was denned in

Subsection 6.1. If the statement of the theorem is proved on this assumption,

then it will obviously be valid in the general case as well. Thus, the generators

of [F] are chosen in two ways: (g0, S0) and (g0, SQ), where Q0=sQQ09 and o^
and a2 coincide on S0 and are related as follows :

0, y) (6.9)

on g0, where h(x0, y) is a measurable function with values in H.

Let {£*}?=! be a sequence of positive numbers monotonically converging to

0 and {2̂ } ?=,! a sequence of sets, which is dense in £B, each term occuring an
infinite number of times in it. Construct a /"-array Cj such that the cocycle ax

takes constant values on each of its elements. Besides, the group of automor-

phisms £(£i), approximates the orbits of P with error el9 and in ^(f x) there is a

set D{ which approximates D1 with the error elm Such the array exists because the

function y(xQ) may be thought to be piecewise constant. Since at on {go : n e Z\

is transient, then the array f j is globally nontransitive and consists of a finite

number of transitive components. According to (6.9) and the condition of the

theorem, there exists a T-array ^ such that: (1) ^ has as many transitive

components as Cj ; (2) every transitive compnent of 2^ contains as many sets as

the corresponding component of Cl ; (3) the sets of ^ can be numbered so that

for the sets E{i) and F(j) of Cj and ql9 respectively, having identical numbers,

K£(0 (*o)HK^(0 (*o)) for a.a. xQGX0, where E(i) (x0) and F(i)(xQ) are x0-
sections of E(t) and F(i); (4) the values of «1 and a2 on elements of C1? and ^

with identical numbers coincide. E.g., rjl can be constructed over the partition

which defines £l on X. Then, refine the T-array TJI and construct a -T-array rj2

such that the cocycle a2 takes constant values on its elements and Q(ri^) ap-

proximates the orbits of I1 with the error £l and ^(^ also approximates the set

Dl with the error elm To do so, let us consider a set A consisting of the union
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of fundamental sets of transitive components of rjl and construct the F-array rj{
on A in such a way that the refinement of ^ by 271, which we denote by rjz,

should have the above properties. Then, construct a refinement Cx of C2 so that
the above conditions (1)—(4) should be fulfilled for the arrays C2, ?72. By repea-
ting the said procedure a countable number of times, construct two sequence of

F-arrays {fjjT-i and {?*}?= i> which approximate the cr-algebra J3 and the or-
bits of F. On elements of these arrays having the same numbers, the cocycles
ojj and a2 have the same values. Therefore, as in the proof of Theorem 2.3 of
[1] and Theorem 3.9, we conclude that there exists a measure-preserving auto-
morphism 0^N[F] such that 6oa2=av Note that the automorphism 6 repre-
sents a measurable filed of automorphisms x0-*6(xQ)&N[S]. This follows from
the fact that for any k^N there exists an automorphism ^e[S0] such that C^
is mapped by sk into rjk (see property (3) above). Since 6 is the limit in the
metric d on N[F] of the automorphism sequence {sk}^i, then 6 has the above
form (the metric d was defined in [9]). Thus, it is proved that the pairs (F1? a^

and (F2, «2) (under the above assumptions) are stably weakly equivalent. D

Consider the problem of existence of a pair (F, a) for which the associated
action is isomorphic to a given action of G. We shall consider in particular non-
free actions.

Theorem 6.7, Let an ergodic action W(G) of the group G on a Lebesgue

space (&,p),p(Q) = \ be defined -which preserves p and has a stabilizer HdG.
Then there exists a pair (F, a), where F is a type 77i ergodic a.f. group of auto-
morphisms of (X, fJL] and a cocycle a^Z\XxP, G), such that r(F, a)=H and

the associated action W(r>a})(G) is isomorphic to W(G).

Proof. The plan of the proof is the same as that of Theorem 5.10. Define
for the free action W(G) of G=G/H on (&,p) the following objects as in
Thoerem 5.10: (XQ, ^0), Q, w0, (F, v) and SeAut(F, v). Let ft^Z\Yx[S\9 H)
be the standard cocycle defined in Subsection 3.1 such that H=r(S, ft). Let F

be a group of automorphisms of (X, M)=(X0 X F, #0 X *0 generated by 60=2 X1
and ^o — lx^. Define a cocycle a for F: a(xQ9y9Q0) = a(vQ(QxQ9x0))9
a(*05 y> S0)=ft(y9 S), where G: G-+G is a measurable section of G over G. As
in Theorem 5.10, we see that the pair (F, a) is sought-for one. D

The following theorem shows that the action associated with (F, a) does
not necessarily preserve measure, though F is a type II group of automorphi-
sms.
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Theorem 6.8. Let W(G) be an ergodic non-free non-singular action of G on

a space (@, p), p(Q)=l and let H be the stabilizer of the action of G. Then, there

exists an ergodic a.f. group F acting on a Lebesgue space (X, &}, ju(X)=o° and

preserving the measure jn and there exists a cocycle a^Z\XxF, G), and both

are such that r(F, a)=H and W(r^(G) is isomorphic to W(G).

Remark. If EdX, /*(E)<oo9 then for the pair (FE, aE) the associated ac-

tion W(rjs^E-)(G) is isomorphic to W^^G). Therefore, it is unessnetial that r

in Theorem 6.8 is of type IL,.

Proof. Define the objects (X0, /*0), g, t/0, G, W(G) as in Theorems 5.10 and

6.7. The automorphism Q has a nontrivial Radon-Nikodym cocycle p(xQ, Qn)

=log — ̂  — -^- (JCQ). Let S1 be an ergodic automorphism of a Lebesgue space

(Y1,v1),v1(Y1)=°° preserving the measure vv Construct a measurable filed

1] (x0^XQ) of automorphisms of (Yl9 Vj) such that

W . (6.10)

Let S, (Y, v) and ft be the same as in Thoerem 6.7. Define the automorphism

group F generated by commutating automorphisms 1x5 and Sl X 1 on the space

(7X x Y, vl x J>) and the cocycle fteZ^Yi X YxF, H), assuming that ft(y, Sm)=

Pi(yi, y, Si, Sm}- Now it is obvious that r(F, J31)=H.

Let us consider the following automorphisms on the space (X, #)—

(X0xY1xY, ju^x^xv):

Qo(x0, yi, y) = (Q x0, u(*o) yi9 y) ,
Si.oOo, Ji, y) = (^o, ̂ i yl9 y) ,

SO(XQ, yi, y) = (XQ, yi, Sy) .
These automorphisms generate the ergodic a.f. group F, which, by (6.10), is of
type IIoo. Define the cocycle a on F:

, 60) = <* MQ ^
5 r

l f 0 )=0 , (6.11)

It is easy checked that formulae (6.11) define the cocycle a on r correctly. The

ergodicity of Si on Y and of S(fi) on YxH means that the associated action

W(r^}(G) of G has the stabilizer H and is defined on the quotient space XQ x G/H

by the measurable partition into orbits of (^0, g)-*(Q x0, g+u0(Q XQ, x0)). Since
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uQ is a return cocycle for W(G/H)a then W(r>^(G) is isomorphic to W(G). D

Prove now the uniqueness theorem for pairs whose associated actions are
non-free and non-singular.

It follows from Theorem 6.4 that, if a weakly equivalent pairs are considered,
any pair (F, a) can be assumed to have the following properties: the group F is

of type II and is generated by the automorphisms g0: (x0, y)-*(Qx& U(xo)y),

*$o: (*o> jO~K*o> Sy) acting on (XQx 7, juQXv)s and the cocycle a is given by the
formulae :

> Go) =
), (6.12)

where /# is the standard cocycle from Section 3, the function (pi XQ-*G is out-
side a neighborhood of identity in G and a is a section of G over 6.

Theorem 6.9, Let there be defined the pairs (Flt a^) and (F2, a2) satisfying
the above conditions and relations (6.12). Then, if the associated actions

W(rliC6l)(G) and W(r2i06^(G) are isomorphic, then (Fl9 o^) and (F2, %) are stably
weakly equivalent, and r(Fl9 a^=r(F2, ag).

Proof. Obviously, it may be believed that Fl and F2 act on the same space
(Jo x Y, JUQ X^) and moreover [r^\=[r^=[r]. In view of the results of Section
5 and Proposition 6.8, by changing to stably weakly equivalent pairs, we can

provide that Qi=Q2=Q, 9i(xv)=<Pt(xQ)=<p(x^' Thus, we are now to construct
an automorphism P=(jCQ->P(x0))eJV[r], where P(x^GN[S] and P~1oal=a99

P~lQlP=QoSQ, It follows from the conditions of the theorem and the fact that

the automorphisms gj? *=19 2, preserve measure, that for a.a. *0eJf0,

0(ffi(*o)) = ®(Ut(xQ)) . (6.13)

The values of tfj and az on Qj and go differ by a function taking values in the

group H=r(S9 ft). We may multiply the element Ql by an automorphism

Jo^Sy, so that the values of a2 and a2 on gj and go ^o should become equal.
Now we shall do as in the proof of Theorem 6.6. Using the above

properties of ax and az and the property (6.13), construct two sets of /"-arrays,

{fjr-i and fejr.1 satisfying the conditions: (1) UT.i^(O^= U7.
^rx; (2) u(UT.i 5>(f .))="( UJ.1 5>(O)=^; (3) the arrays fM and
have an equal number of sets and v(E(i) (x$)=v(F(i) (xjj) for a.a. x0^XQ} where
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E(i) and F(i) are sets from fn and rjn\ (4) on elements of Sn and -r\n having the

same serial numbers the cocycles o^ and «2 assume equal values. Therefore,

there exists an automorphism P=(xQ->P(x^)^N[F]9 which transforms the ge-

nerators (Ql, S0) of r into (go, S0) and is such that P'loal=al. Q

§7. Associated Actions for Type in Groups T

7.1. In this section we shall consider the existence and uniqueness theo-

rems for the pairs (F, <%), where r1 is a type III a.f. ergodic group of automor-

phisms. In Subsection 7.2 we shall construct an example of (F9 a0) for which

r(F9 a)=G, r(F9 p)=R (i.e. r is of type III^, but r(F9 a0)={0}. In Subsec-

tion 7.4 we shall study the interrelation between the type of F and that of an

associated action.

We shall use essentailly the results of the two preceding sections. First,
we shall consider free associated actions of GQ=GxR, where G is an arbitrary

l.c.s. abelian group. Recall that we deal here with nonregular recurrent co-

cycle a0.

It follows from Theorem 5.6 that, if (F, «0) is such that W(r>(A^(G^ is free,

i.e. r(F9 aQ)= {0} , then F acts on the space (X0 X Y, JUQ xv), and (F, a0) has the

following properties: (1) r is generated by the automorphisms QQ and S0 (see

(6.1)); (2) CKO is defined on Q0 and S0 by the formulae: aQ(x0, y, QG)=<p(x0)9

a0(jc0, y, S0)=Q, where the function <p(x0) is separated from the identity in G0 by

a neighborhood VQ.

Property (2) implies that aQ9 when considered on {Ql\ n^Z}, is there tran-

sient, and the ergodic automorphism S is of type II, i.e. S<*v=v . Assume for

convenience the measure v to be infinite. Besides, since <p(xQ)=(<pG(xQ)9

then

<pR(xQ) = log

The above properties of (F, a0) suggest validity of the following lemma

(which is proved in the same way as Lemma 5.8).

Lemma 7.1. The free action W(rt^(G^ of G associated with (F, a0) is iso-

morphic to the associated action of GQ constructed by the pair (Q,

Theorem 7.2. Let there be two pairs (Flf al
0) and (F2, al), which satisfy the

above conditions and are such that r(Fl9 a\)=r(F2, a§)={0} . Then, the isomor-

phism of the associated actions W^^G^) and W(r2 tfg)(G0) means that (F19 aj)
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and (F25 0%) are weakly equivalent.

The proof is essentially the same as that of Theorem 5,9.

Theorem 13« Let W(GQ) be a free ergodic action ofGQ on a Lebesgue space

(@,p). Then, there exists a pair (T, a0), where F is an ergodic a.f. group of

automorphisms of (X, .3, JUL) and a0^Z\XxFy G0) both such that the associated

action W(Ft€tQ)(G^ is isomorphic to W(G0).

Proof. We introduce, as in Theorem 5.11, the following objects: (XQ,

, wb, (Y, v\ 8. Denote

)) • (7-1)

Choose a measurable field of automorphisms xQ-*U(x0)^N[S] such that

Let F be the group of automorphisms with the generators Q0 and S0, where

Q0 and S0 are defined by (6.1). The cocycle a is defined by the formulae:
a(x&y> QQ)=<PG(XQ)> a(*Q, y, So)=Q- The action W{r^(G^ is isomorphic to
W(G). D

In Subsection 7.4 we shall consider the problem of the type of the group

F whose existence was proved in Theorem 7.3.

7.2. Let us construct an example of a type 11^ automorphism group F and

a cocycle a^Z\Xxr, G), which are such that the ranges of the components a

and p of a0 are G and JS9 respectively, while aQ=(a, p) is lacunary in GQ,

Example 7A Let there be defined a Lebesgue space (X9 ju)=(XQx Y,

^0X^)3 VO(XQ)=»(Y)=°°, an ergodic automorphism geAut(Jr0, JUQ), Q°VQ=JUO)

an ergodic automorphism S eAut(F, i^)5 ̂ 0^=^, and an automorphism C/eAut

(F, v)9 the latter such that U^N[S\ and U°v=lv, where /le(0, 1). Put as

usual QQ(XQ, y)=(Q XQ, Uy), SQ(xQ,y) =(x^Sy). Since Q is of type IL, then

there exists an action l(G) of G on (XQ, ,«0)3 which preserves the measure JUQ and

is such that l(g)GN[Q], g^G and l(g)$[Q], g*e (see e.g. [6]). Put /0(g) (x0, y)

=(l(g)*o, U(g)y\gELG, where U(g)^N[S] and 0(U(g))=log %), the num-
bers log /I, log ^(g)3 g^G being rationally independent, and assume that there

exists an element g^G such that ^(gi)^!. Consider equivalence relation 8

with continuous orbits, which is generated on (X, ju) by the action of g0, S0 and

)> g^G. The above properties of ^(g) show that the equiva-
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lence relation 8 is of type IIIp Consider the cocycle a defined on the gener-
ators of S as follows: a(xQ, y, Qo)=a(xQ, y, S)=Q, a(xQ9 y, I0(g))=g, g^G. Ob-
viously, r(8, a)=G. Calculate now the range of a0=(a, p). Show that the
associated action W(g^(G^ is free, whence it will follow that r(8, ^Q)={0}.

The orbits of the equivalence relation £(a0)
 are generated by the automorphisms:

2o(O (*o> y, h, u) = (Q0(x0, y), h, w+Iog <*) ,

SoK) (*o, y, h, u) = (x0, Sy, h, u) , (7.2)

) (*o, y, h, u) = (l(g) XQ, U(g) y, h+g, w+log t(g))

(recall that S(aQ) defines the partition into equivalence classes on the space

XQX YxGxR). Let us find now the quotient space by the measurable hall of
partition into orbits of the equivalence relation S(aQ) on XQx YxGxR. Since
S acts ergodically on Y and in view of (7.2), this quotient space should be
sought for in the set X0xGxR, i.e. in "the plane perpendicular to F". Put
E=XQx {0} x[0, —log ^). It follows from (7.2) that the set E intersects the

orbits of (?o(ao) an(i 4(#) (ao) exactly at one point. Therefore, E can be identified
with the desired quotient space, and W(g^(G^ can be thought to be defined
on E. Let (g0, u0) e (?0, (*0, 0, u) ̂ E; then

)(g09 w0) (**, 0, u) = Qn
Q(a0) (I (-gQ) XQ, 0, w+w0

where the number n is chosen by the condition u+u0— log /I(g0)+«log ^e
[0, —log X\. Therefore, the automorphism W^i(X^(g0, w0) acts identically if and
only if Qn /(— g0) ^o^-^o- However, since l(G) was chosen to be strictly outer
to [Q], the latter equality is not true.

Let us construct the countable group F of type IIIj in the following way.
Let Ql be the measurable groupoid generated by [Q] and /(g), g^G. Then Q±
is isomorphic to the groupoid X' X TxFx T, where a countable automorphism
group F acts on the Lebesgue space X' [3, 17]. The cocycle a defined on Sl

can be replaced by the cohomologous cocycle a' so that it should become trivial
for the action of the circle T on itself, i.e. a1 should be concentrated on X'xP

(simple arguments omitted). The pair (F, a') will have the properties: r(F, a')

=G,r(r,a$)={0}. D

The latter example suggests that regularity of a does not imply regularity
of CEO.

7.3. Consider the uniqueness and existence theorems for (r, a0) for the
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case of type III group P and a non-free associated action W(r,
Recall the results of Theorem 6.4. By changing to the weakly equivalent

pair, one can provide the following properties of any (P9 <z0) such that r(F, aQ)=

HQ: (1) the group P is generated by QQ and S0 acting on (XQxY9 /%x*0 as

2o(*o> J0=(fi*b, U(xQ)y), S0(xQ,y)=(x0,Sy), U(x0)<=N[S], (2) aQ is defined on
P as

, 60) = 9(*b) = (
<>^x*,y,SJ = pl>(y9S), (7.3)

where $, is the standard cocycle from Section 3, for which r(S9 P0)=HQ. For S
there are two alternatives: it is either of type II or of type IIIA (0</t<l), ac-
cording to the form of HQdG x R.

Theorem 7,5. Let the pairs (Pi9 aj)? z=l, 2 have the above properties and

r(Fl9 al)=r(F2, al)=HQ. Then, if the associated actions W(ritC6i^(GQ) and W(r2,*§)
(G0) are isomorphic, then (Pl9 aj) and (F2, al) are weakly equivalent.

Proof. It follows from the conditions of the theorem and relations (7.3)
that for both the pairs (Pl9 a\) and (F2, al) it can be believed that the Lebesgue
spaces coincide in which the groups Pl and T2 act5 and also Sl=Sl. Since S

is of type II or IIIA (0<^<1), then there exists in [S] an ergodic subgroup on
which the cocycle #, is trivial (see Corollary 3.15). Thus, as in Lemma 6.5, the

associated action W(r.>e6^(GQ) is isomorphic to the action of GQ on the quotient

space of X0 X GQ by the measurable partition into orbits of (XQ, gb)~K2' xo> &+<?'
(XQ)), i=l9 2, where ^'(^o) is separated from zero. By changing mentally to
weakly equivalent pairs, we find that Ql=Q2=Q and $1=<p2=<p. The latter
equality, combined with (7.3), means that <pl and <p2 differ by an element of H&

and thus,

) = hM(xQ) . (7.4)

Since ^R(x0) = P(XO, Q)+^>(Ui(x0))i i=l, 2, then (7.4) leads to

= 0(U2(xQ))+hM(xQ) . (7,5)

Relation (7.5) means that by multiplying Ql by an element ^ef^o] (as in the

proof of Theorem 6.4), we shall obtain that aj on Q\ and al on 20=^060
coincide. Now, in view of Theorems 6.6 and 6.9, there exists a transformation
p=(xQ-»P(xQ)) with the following properties: P^N[SQ]9 ®(P(xQ))=l, P Q\ P"1

=SQ Ql9 P"1oaJ:=«o. By repeating the arguments of Theorem 6.9, we find that
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(F19 ai) and (r2, ao) are weakly equivalent. D

The proof of Theorem 7.5 shows that its conditions provide for orbital
equivalence of rl and r2.

Theorem 7.6. Let W(GQ) be an ergodic non-free action of G0 on a Lebesgue
space (&,p), for which p is non-singular, and HQ the stabilizer of W(GQ). Then,
there exist an ergodic a.f. group F acting on (X, jj) and a cocycle CKOG
Z\XxF,GQ), and both are such that r(F9aQ)=HQ and the associated action

is isomorphic to W(G0).

Proof. This one is partly similar to those of Theorems 6.8 and 7.3. D

7.4. In conclusion, let us consider several results on the relationship
between the types of F and W(rt06^(G^. Let the group F be generated, as
before, by QQ and SQ and the cocycle a0 satisfy relations (7.3).

Proposition 7.7. Let F be an arbitrary countable ergodic group of auto-
morphisms of (X, IB, ju) and a a transient cocycle from Z\XxF, G), where G
is an arbitrary l.c.s. group. The type of F coincides with that of the associated
action W(r^(G) (and also with that of W(r

The proof follows from the results of Section 2. D

Corollary 7.8. The type of the associated action W(rtt*o)(Go) for the group
F generated by QQ and SQ and for the cocycle a0 having the properties mentioned

in the beginning of this section coincides with the type of the automorphism Q.

Proof. The statement follows from Proposition 6.5. D

Consider the following problem: let an action W(GQ) be defined on a

Lebesgue space (&9p); then, what type may F be of, if W(r,#Q)(Go) *s isomorphic
to W(G0)1 Let us first dwell on some particular cases.

Lemma 7.9. For any pair (F, a0), we have r(F, a0)cr(jP, d)xr(F9 p).

Proposition 7.10. Let the pair (F, a0) be such that F is of type II or IIIQ

and the associated action W(rta0^o) & non-free, i.e. r(F9 aQ)=H^ {0}. Then,
the group H0 is HG x {0} where HG is a closed subgroup of G.

The proof immediately follows from Lemma 7.9. Q

Theorem 7.11. Let F be an arbitrary ergodic a.f. group of automorphisms
of (X, IB, fji) and G an arbitrary l.c.s. abehan group. There exists a cocycle
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, G) such that the associated action W(r>(A^(G^ is of an arbitrary

type, i.e. the type of W(r^(G^ does not depend on the type of P.

Proof. (1) Let F be of type II. It can be thought of as generated by g0

and SQ preserving measure on (X0xY9 ^Ox^) where QQ(x0, y)=(Q XQ, U(x0)y').>
SQ(xQ, y)=(xQ, Sy)9 U(x0)<=N[Sl ®(U(x0J)=-p(xQ9 0. Let the cocycle aQ be
a transient on QQ and be zero on S0. Then, the statement of the theorem fol-
lows from Corollary 7.8 and Theorem Soil, because Q can be of an arbitrary

type.
(2) Let r be of type IIIA (0<^<1) or III^ Then P is orbitally equivalent

to F xPl9 where Fl is of type II group. Let a cocycle a^Z\XxPxP19 G) be
zero on P and be concentrated on Pv Then the associated action ^(rxrlftfo)(G0)
is isomorphic to W(r^(R) X W(rlt€t)(G). For the cases under consideration,

W(rtP)(R) is either a transitive, or a trivial flow. Thus, the type of ^crxr1,a5o)(G
!o)

is determined by that of W(rt ^(G) which, by (1), can be arbitrary.
(3) Let P be of type III0. It can be shown, by the same method as in (2),

that if W(rtfi(R) preserves measure, then W(FI(&Q}(GQ) may be of an arbitrary
type. Consider the case where W(r^(R) is non-singular. Use the Krieger
representation of a type III0 group I1 as a group S(Q, <p) generated on
(X0 x r, ^0 x*0, v(Y) = oo by the automorphisms QQ(x0, y)=(Q XQ, U(x0) y)9 S0

(x<*,y) = (^o, Sy) such that p(x&y9 QQ}=P(XQ, Q)+®(U(xQ))=<p(xQ)>C>Q and
P(XO, y9 S0)=Q [10]. The flow W(r^(R) is a special flow constructed from the
basis automorphism Q and the ceiling function ?>(x0). Replace Q(Q, <p) by an
orbitally equivalent group. Consider on (XQx Yx Yl9 fj^xvxv^ an automor-
phism group T' whose generators act as follows

2o(*o, y, Ji) = (6 XQ, U2(x0) y9

So(ab, J5 yi) = (**, Sy, y^ ,

S'*(xi9 y, J0) = Oo, J, Sl yd ,

where S^ = vl9 U^ e JV[SJ, U2(x0) e N[S]9 0 (U2(x0)) = 9(x,\ 0 (U, (XQ)) =
—p(xQ, 0. It is easy to calculate that W(r^^(R) = W(r^(R). Define a cocycle
a^Z\X0x Yx FjX/^, G) assuming a to be zero on Q'Q and So to be equal to g

on *S'o/ where g^G (G is assumed non-compact). Calculate W^^^GQ). The

cocycle a0 is zero on S'Q. Let (T0x Y, j"0X^1)=(-3To, Ao) and the full automor-

phism group [Q'] of Jra* be generated by (*0, ^i)->(6 ^o? Z/i(^o) J) and (^o, ^i)-^
The automorphism g' obviously preserves the measure /*£. Since

f°r a-a- XQ^XQ, the cocycle a0
=(aJ ^°) i§ transient
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on go: (XQ, y)-*(Q' XQ, V(x^y)9 where V(xQ)^N[S] and is constructed from
U2(xQ). Because Q' preserves measure, then W^^^G^ will also be of type II
(see (7.8)).

(4) By combining the methods of (2) and (3), we can provide that the
action W(r^(G^ (for r of type III0) should have type IIIA (0<^< 1). Q
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