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Weak Equivalence and the Structures of
Cocycles of an Ergodic Automorphism

By

Sergey I. BEzuGLYI* and Valentin Ya. GOLODETS*

Abstract

Let (X, #) be a Lebesgue space, I' an approximately finite ergodic group of the auto-
morphisms, & a cocycle on X' x I' with values in an arbitrary abelian l.c.s. group G, and p the
Radon-Nikodym cocycle on XX I'. The concept of weak equivalence of the pairs (I, &) is
introduced and studied, which generalizes the concept of trajectory equivalence of automor-
phism groups. It is proved that the pairs (I';, a}) and (I';, a?) (ei=(e, p)) are (stably)
weakly equivalent iff the corresponding Mackey pairs Wy(Go) and Wy(G,) of the group G,=
G X R are isomorphic. It is proved that any ergodic action of GX R (or G) is isomorphic to
the Mackey action associated with a certain pair (I', o;). The structure of cocycles of ap-
proximately finite equivalence relations is studied. The relationship between the type of the
group I' and that of the corresponding Mackey action is considered.

§0. Introduction

The present paper is a study of the countable approximately finite (a.f.)
groups I" of automorphisms of measure spaces and the cocycles a for I" taking
the values in an abelian locally compact separable (l.c.s.) group G. Such
cocycles were thoroughly studied in the book by K. Schmidt [15]. He in part
considered the important classes of cocycles: transient, lacunary, etc. We shall
use the set of all pairs (I, @) to study an equivalence relation which is called
the weak equivalence (see Section 1). In the case where the cocycle @ is the
Radon-Nikodym cocycle o, weak equivalence of pairs (I';, o,) and (I'y, 0,) is
the same as the well-known orbital equivalence relation of the groups of auto-
morphisms I'y and I', [9]. The weak equivalence was introduced in [5] (see also
[6]) in the study of the pairs (I', @), where I" is a group of measure-preserving
automorphisms and @ a cocycle with the dense range in a l.c.s. amenable group
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G. It was also proved there that all such pairs are weakly equivalent for the
fixed G. Later the weak equivalence of the pairs (I", @) was studied in [1, 2, 7]
and elsewhere.

The main purpose of this paper is to describe the structures of cocycles of
a.f. groups of automorphisms with values in a l.c.s. group. It appears that any
cocycle is weakly equivalent to a cocycle which in a natural way composed of
simpler cocycles: a transient cocycle and a cocycle with a dense range. In
solving this problem, we introduced and studied measurable fields of cocycles
which have a dense range in an arbitrary subgroup of the group G,=G X R.

Every pair (I, ay), where ay=(a, p), defines in a natural way an action of
the group G, which is called the Mackey action (or refered to as associated with
the pair (I", @) [11]. As a consequence of the above result on the structures of
cocycles, we obtain the solution of the problem of finding the necessary and
sufficient conditions of weak equivalence of the pairs (I}, @g) and (I',, @f).
These conditions consists in the isomorphism of the corresponding Mackey
actions of the group G,. These studies are based on the methods developed
in [1, 5, 6]. Another approach to solution of a similar problem is proposed
by A.L. Fedorov [2].

Our results are easy to be extended to the case of the pairs (I', @), where
the cocycle a takes the values in an arbitrary l.c.s. amenable group G and the
Mackey action either is free or has a closed normal subgroup of G X & in the
capacity of the stabilizer.

The paper is organized as follows. Section 1 presents the information on
cocycles, needed for subsequent arguments and taken mainly from [15], and
introduced the concept of weak equivalence of the pairs (I", @). In Section 2
we study the transient cocycles defined for an arbitrary countable group of
automorphisms and taking values in a lLc.s. group G. In Section 3, cocycles
with a dense range are constructed for an arbitrary closed subgroup H,CGXR
and measurable fields of cocycles with a dense range in H, are studied. It is
found that such fields of cocycles are weakly equivalent to a constant field of
cocycles. The results of this section are applied to study the cocycles, for which
the Mackey action is transitive, in Section 4. Section 5 studies the lacunary
cocycles on a.f. groups of measure preserving automorphisms. They correspond
to the free Mackey actions of the group G, that generally speaking have a quasi-
invariant measure. In the subsequent two sections, the general case is con-
sidered where the group I' has the quasi-invariant measure and the Mackey

action of the group G,=G X & is non-free. In the last section we comsider
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results on the relation of the types of the Mackey actions and groups I'.

§1. Preliminaries. Weak Equivalence

1.1. In this section we shall provide the preliminary facts from the ergodic
theory that we shall need for the subsequent arguments. The definitions and
more detailed results can be found in [8, 9, 14, 15].

The set of all non-singular automorphisms of a Lebesgue space (X, B, &)
with a continuous measure # will be denoted by Aut(X, B, £). We shall identify
automorphisms differing on a measure 0 set. Let I" be a countable subgroup of
Aut(X, B, #). The set [I'={g=Aut (X, B, ): gx&I'x for p-a.a x& X}, where
I'x={rx: r&TI'} is the orbit of x, is called the full group of automorphisms
generated by I'. The set N[I'|={R<Aut (X, B, »): R[I'|R=[I']}, which
is also a subgroup of Aut(X, B, u) is called the normalizer of [I']. The group
of automorphisms I' is called approximately finite (a.f.), if there exists an
automorphism 7 € Aut(X, B, ») such that [I'|=[T], where [T]=[{T": ne Z}].

The two groups of automorphisms I'; C Aut(X;, B, #,) and I',C Aut(X,,
B,, r,) are called orbital equivalent, if there exists a one-to-one measurable
map 0: X;—X,, such that 6[I",]6"'=[I",] and the measures u, and 6oy, are equiv-
alent.

The ergodic group I'CAut(X, B, #) is called a type II, (Il..) group, if
there exists a measure v~ u, such that yov=v for all y&I"' and the measure
y(X) is finite (infinite). If there is no I'-invariant measure equivalent to the
measure £, then I' is said to be of type III. Type III may be further classified
(see below).

We shall also use sometimes the terminology and facts of the measurable
groupoid theory (see, e.g. [3, 12]). The result of this paper may also be fully
expressed in terms of this theory. However, as a rule, we use the standard
approach to the study of countable groups of automorphisms, since we proceed
from the definitions and facts of [8, 9, 14, 15, etc.].

1.2. We shall cite the definition of the array as in [10].
Let I" be an ergodic group of automorphisms of (X, B, #). The expression

€ =(4,58,4(), r(-, *)) (1.0)

will be called the I'-array of the set A CX (#4>0) provided that the following
conditions are fulfilled:
(1) & is a finite set of indices;
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@) U AG=4, ADNAD=D G ), #(A40)>0;
(iii) 7@, j) are non-singular maps such that (i, j) A(j)=4(), 7(i, H=L,
7, J) 7, i) =71@p1), {0, j)xEI'x for a.a. xE A(j).

Denote by G(¢) the finite group of automorphisms of A4 generated by
7@, j), i, jEE and P(€) the collection of sets of the form U ;c,A4(i), where 4
is an arbitrary subset in =.

The pairs (4(), 7(j, ), i, jEE will be called elements of &.

Let there be defined the two I'-arrays: &,=(4, &, A(+), 7(, °)) and &=
A@G), 2, B(+), 6(-, *)), where i,cZ. Define a new I'-array &, X&, which
will be called a refinement of &, with respect to &,, according to the equality

EyXE=(A4, EX82,C(c, *), (5 *35°5 ),

where C(i, n)=r(i, iy) B(n), t(iy, ny; i, n)=r(, iy) 0(my,n) ry, ), ip, i, HEE, n,my
e49.

If the I'-array (1.1) is defined, then it will be said to be defined over the
partition (4, &, A(-)).

1.3. Let, as earlier, I" be a countable ergodic group of automorphisms of
(X, B, u) acting freely and let G be an arbitrary l.c.s. abelian group.

Definition 1.1. A measurable map a: X X I'—G is called a cocycle, if for
any 1y, 7,1 and p-a.a x&X

a(x, 179 = a(ry%, 1) a(x, 1) . (1.2)
The set of all cocycles will be denoted by Z (X X I", G).

An example of a cocycle is the following cocycle p: X X I'->R

o(x, 7) =log

drtop
i (€]

which is called the Radon-Nikodym cocycle.

By R(I') we shall denote the measurable ergodic equivalence relation on
X generated by partition into orbits of the group I'. Then, any cocycle
asZY (X xI', G) defines the map u,: R(I")—G which is called an orbital cocycle
and is defined by the formula

u(y, x) = a(x, 7), 1.3)

where y=rx and 7 €I is found for x, y uniquely, because I" acts freely. From
(1.2) and (1.3) it follows that the orbital cocycle u: R(I")—G satisfies the re-
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lation u(z, x)=u(z, y) u(y, x), where (z, x), (z, ), (v, x)ERI"). The reverse
statement is also true: for any measurable orbital cocycle u: R(I")—G there
exists a cocycle a€ZY(X X I', G) such that a(x, 7)=u(rx, x) [15].

For the freely acting group I', any cocycle @ may be enlarged in a natural
way to the full group [I']. Therefore, wherever convenient, we shall believe
that e € Z{X x[I'], G).

The two cocycles @ and g from ZY(XxI', G) are called I'-cohomologous,
if there exists a measurable function f: X—G such that

a(x, r) =f(rx) BCx, 1) f(x) 7. (1.4)

A cocycle @ is called a coboundary, if it is I"-cohomologous to the unit
cocycle, ie. a(x, r)=f(rx)f(x)™* for a measurable function /> X—G.

1.4. Let the countable ergodic groups of automorphisms I';C Aut(X;,
B;, 1), i=1, 2 be orbital equivalent, i.e. let there exists a one-to-one map 6:
X,—X, such that §[I"}]07'=[I",] and fou,~u, Let there be defined a cocycle
BEZXX,X[I';)], G) then, by the map 6, the cocycle £ can be “transfered” to
the group [I,]:

070 B(xy, 11) = A(6xy, 07,077, (%, T) E X, X[T] . (1.5)

Relation (1.5) defines the one-to-one correspondence between the cocycles
from Z}X,x[I'|], G) and those from ZYX,X[I,], G). In this case, the I';-
cohomologous cocycles correspond to I',-cohomologous cocycles and conversely.
This is presented in more detail in [16].

We shall consider all the pairs (I, @), where I' is a countable ergodic group
of automorphisms of (X, B, ), e ZY(X X I', G) and define, on such the set of
pairs, an equivalence relation generalizing the orbital equivalence of the groups
of automorphisms. Then, we shall develop a complete system of invariants of
such the equivalence relation.

Definition 1.2. Let there be the two pairs (I';, «;), i=1, 2, where I'; is a
freely acting group of automorphisms of (X;, B;, #;) and a;&ZY(X; XT';, G).
We shall call the pairs (I'y, &) and (I',, a,) weakly equivalent, if there exists a
map 0: X,—X, which implies the orbital equivalence of I'y and I, and is such
that the cocycle 6 'oa, is I'-cohomologous to the cocycle a,.

If the cocycles 0~'oa, and «; are I';-cohomologous, then the cocycles foc,
and @, are I',-cohomologous. Thus, Definition 1.2 indeed suggests the equi-
valence relation on the set of pairs (I', @).
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If (I, @) and (I, a,) are weakly equivalent, then the cocycles ; and a,
will also be called weakly equivalent.

In the case a;(x;, 7;)=0;(x;, 7;) Definition 1.2 coincides with the definition
of the orbital equivalence of groups of automorphisms.

1.5. Consider on the group Z the Haar measure ¥4, i.e. 25(i)=1, i€ Z.
Denote by = the shift on Z: z(i)=i-+1. Let I'CAut (X, B, &) be a countable
ergodic group of automorphisms and consider the direct product I'=1I"x {z":
nEZy CAut (XX Z, pxxy). If acZ (XTI, G), then define the cocycle & for
I:ax, nr,)=a(x, r), where (x, ) EXXZ, k€ Z, rI'. Thus, @ac
Z\XxZxTI',G). The pair (I", & will be called the countable expansion of
T, @).

Definition 1.3. Call the two pairs (I'y, @) and (I',, a,) stably weakly equi-
valent, if their countable expansions (I"y, &) and (I',, &,) are weakly equivalent.

Let BCX(#B>0) and I'CAut (X, B, x). Then, there exists in [I'] a
countable group I'y, such that [I";]=[I"lz, where [I';={r €[I']: rx=x, x&X—
B} [9]. If I' is of type II, then I'; and I' are orbital equivalent and there exists
a one-to-one measurable map 0: X—B such that 6xe&I'x for #-a.a. x&X. If
asZY (X XTI, G), then a cocycle az& ZY (X X[I']5, G) can be defined as ay(x,
re)=a(x, 7), (x, 75)EX XTIy, where yr&I' can be found from the condition

TEX=TX.

Proposition 1.4. Let there be a pair (I', @), where I' C Aut (X, B, #) and
let BC X, u(B)>0. Then, (1) if I is of type III or I is of type II., and u(B)=
oo, then (I', &) and (I'y, @) are weakly equivalent; (2) if I' is of type II, or II.
and p(B)<<oo, then (I', &) and (I', ap) are stably weakly equivalent.

Proof. The proof is simple. []

Corollary 1.5. If I';, i=1, 2 are groups of automorphisms of type III or
II.., then the pairs (I'y, &) and (I, &) are weakly equivalent if and only if they
are stably weakly equivalent.

If the group I'C Aut (X, 4B, ») is of type I1I, i.e. has the nontrivial Radon-
Nikodym cocycle o(x, 7), then it is natural to consider, along with the cocycle
aeZY (X xI', G) the cocycle ay€ZY (X XI", GXR) defined by the formula
ay(x, r)=(a(x, ), o(x, 7).

Proposition 1.6.  The pairs (I'y, &;) and (I'y, a,), where I'; C Aut (X;, By, 1;),
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i=1, 2 are weakly equivalent if and only if the pairs (I'y, @, o) and (I, &,,) are
weakly equivalent.

Proof. The proof is simple. []

We notice that there is an example of the pairs, which are stably weakly
equivalent, but are not weakly equivalent [2].

1.6. Consider in more detail the properties of the cocycles with values in
an abelian l.c.s. group G. By G=GU {0}, we shall denote the one-point
compactification of G.

Definition 1.7. Let I' be a countable ergodic group of automorphisms of
(X, B, ) and aZ (X XTI, G). An element f G is called the essential value
of the cocycle e, if for any neighborhood V; of f in G and any set BE B, u(B)>0
we have

u(yéJp(B Nr'BN{xeX: a(x, r)EV}))>0.

The set of all essential values of the cocycle a will be denoted by r(I", ).
Put r(I", @)=r(I", )N G.

If r(I"', @)=G, then we shall say that the cocycle a has a dense range in the
group G.

Lemma 1.8. [15] The following statements are true: (i) if the pairs (I'y, ;)
and (I'y, @,) are weakly equivalent, then r(I"y, a,)=r(I',, @,); (ii) (I, @) is a closed
subgroup of G; (iii) a cocycle a is a coboundary if and only if r(I", @)= {0}.

Applying Lemma 1.8 to the pair (I, p), where I' is a group of type III, we
conclude that r(I", o) can be only one of the following groups: {0}, {r logi: ne
Z} (0<2<1l) and R. Accordingly, I' is called a type III,, III, and III; group.
The group I' is said to be of type I, if the partition into its orbit is measurable.

Lemma 1.9. For any pair (I, @) we have r(I", @)=r(I", &).
Proof. Straightforward. []

Since r(I", @) is a closed subgroup of G, then the quotient group G=G/r(T",
@) and the cocycle d=Z (X xI", G) can be considered, setting

a(x,r) = e(x, r)+r(l, @) . (1.6)

Lemma 1.10. [15] For any pair (I', &) always r(I", &)= {6}, where 0 is the
identity in G.
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Lemma 1.10 is the basis of the following definition.

Defimition 1.11. 4 cocycle a € ZN (X X I, G) is called regular, if r(I", &)= {6}
and nonregular, if r(I", &)= {6, oo},

Lemma 1.12. [15] For any pair (I', a) the following conditions are equi-
valent: (i) a is a regular cocycle; (ii) (I', @) is weakly equivalent to (I", ), where
a cocycle a,(x, 7) takes values in r(I", &) for any r EI" and a.a. xEX.

Definition 1.13. Let I'" be a freely acting conservative (i.e. not of type I)
group of automorphisms of (X, B, n). A cocycle acZ X XTI', G) is called
recurrent, if for any set BE B, 1(B)>0 and any neighborhood V of the identity in G

,u(yLEJF(B NrBN {xeX: alx, NEVE))>0.

If a cocycle a is not recurrent, then it is called transient.

Lemma 1.14. If @ is a recurrent cocycle, then the cocycle & defined ac-
cording to (1.6) will also be recurrent.

Proof. Straightforward. [

The following statement may be regarded as another definition of the
transient cocycles.

Propesition 1.15. [15] 4 cocycle a=ZY (X xI", G) is transient if and only
if there exists a measurable set ByC X, u(By)>0 and there is a neighborhood
V, of the identity in G both such that

,u(ygr B,N7 BN {xEX: alx, NEV}) =0 Ln

It follows from (1.7) that for the group I'p C[I'] the cocycle ap, does not
take the values in V.
For a transient cocycle e Z (X X I', G) always r(I', @)={0, oo}.

Definition 1.16. A4 cocycle e ZY (X xT", G) is called lacunary, if there exists
a neighborhood V, of the identity in G such that

s U {xeX: alx, )eV,—{0}) =0.
Yer
Lemma 1.17. [15] A4 cocycle a=Z* (X xTI", G) is cohomologous to a lacun-

ary cocycle, if and only if there exists a neighborhood Vy of the identity in G such
that r(I", @) N V= {0} .
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§2. Associated Actions and Transient Cocycles

2.1. Everywhere in this section we shall assume that I" is a freely acting
ergodic group of automorphisms of a Lebesgue space (X, B, #), G an arbitrary
l.c.s. group, and a cocycle aZ(X X I', G). By ¥, the Haar measure on the
group G will be denoted.

Let I'l@)CAut (XX G, uXxe) be the skew product constructed by the
group I' and the cocycle a: for r(a)el'(a), (x, 5)EXXG

7(@) (x, 8) = (rx, e(x,7)g), rET. .1
Lemma 2.1. [15] I'(a) is conservative if and only if @ is a recurrent cocycle,

and I'(@) is of type I if and only if @ is a transient cocycle.

It follows from Lemma 2.1 that the properties of recurrence and transient-
ness of cocycles are invariants of weak equivalence.
Define an action V of the group G on (XX G, u#X2Xg):

V(g) (x, h) = (x, hg™), gE€G. (2.2)

1t follows from (2.1) and (2.2) that the groups of automorphisms I'(a) and
V(G) commutate elementwise. Let & be the measurable hull of partition into
the orbits of I'(@). Then, the group V(G) generates on the quotient space
(2, »=((XxXG)[E, (uxX%5)[€) a new action of G which will be denoted by
Wr (G or just W(G).

Definition 2.2. The action W(p ) (G) of the group G is called the action
associated with the pair (I', &) or the Mackey action.

Proposition 2.3. If the pairs (I'y, a;) and (I',, a;) are weakly equivalent,
then the associated actions Wir,, ,,(G) and W r,, ,(G) are isomorphic.

Proof. 1t follows from the above condition that there exists a one-to-one
measurable map ¢:X;—X, such that ¢[I')Jo™'=[I",], ¢ 'ou,~pu, and for y-a.a.
xeX;

aex, er197") =flrx) ey(x, ) f()™, n €N, 2.3)
where I'; CAut (X;, B;, 1), i=1, 2 and f: X,—G is a measurable map. Define
O(x, h) = (px, f()h) , (x, H)EX XG . 24)

Therefore, the quotient map ?: (2,, v)—(8,, v,) satisfies the equality
OWi(ryap() P =Wir,ap(8), gE€G. [
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Proposition 2.4. (1) Let (I", &) be a countable expansion of a pair (I", ).
Then, W 5y (G) is isomorphic to Wy ,s(G). (2) If the pairs (I'y, ;), and (I'y,
@,) are stably weakly equivalent, then the associated actions W(r, . (G) and
Wir,, «(G) are isomorphic.

Proof. Straightforward. []

2.2. Below we shall consider the situation, where a cocycle @ from a
pair (I, @) is transient and takes the values in the l.c.s. group G.

It follows from Lemma 2.1 that the partition into orbits of the group I'(e)
CAut (XXG, #X x;) is measurable. Then, the quotient space £ can be re-
garded as a measurable subset of positive measure in X X G, which intersect
with each orbit of I'(e) exactly at one point. Then, X X G=U yr7r(a)2 and
the measure v=(u X x¢)|,. The action W(G)=Wr ,,(G) associated with (I", @)
will be written as follows. Let (x, h)e £, g=G, then

(@) (x, h) = r(@) (x, hg™), 2.5)

where 7() is an element of I'(e) such that (x, g™ Er(e) 2.

The further arguments are convenient to be made in terms of the measura-
ble groupoid theory (see [3] and [12]). Denote by A a measurable groupoid
with discrete orbits which is defined by the action of I" on X. Any cocycle ae
ZN X xI', G) will define a homomorphism of the groupoid .4 into the group G.
Denote by G a measurable groupoid with continuous orbits generated by the
group W(G) of automorphisms of £.

According to Proposition 1.15, for a transient cocycle a there exists in X a
measurable subset B («(B)>0) for which a(x, rz)EV,, where x&EB, rzE[I'];5
and ¥V, is a neighborhood of the identity in G. Consider the pair ("5, @;) and
let G denote the measurable groupoid generated by the action Wy(G)=
Wir s, «(G) associated with (I3, @), which was defined on the quotient space
(25, v5), 2,CBXG.

Recall the definition of a return cocycle. Let U(H) be a group of Borel
automorphisms of (X, 9, #) (not necessarily countable), which is a free Borel
action of a l.c.s. group H. A set ECX is called a complete lacunary section
for U(H) if u(X—U(H)E)=0 and there is a neighborhood ¥V of the identity
of H such that U(V)x N E={x} for all x&E [3]. There arises on E a countable
measurable equivalence relation R and hence so does a group I' of automor-
phisms of the set E generating the equivalence relation R. Put u(y, x)=h for
(, x)ER, if Uh)x=y. Since U(H) acts freely, the orbital cocycle u is defined
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uniquely.

Definition 2.5. The cocycle u: R—H constructed in the above way is called
a return cocycle (or homomorphism) for the action U(H) with respect to the set
E (or in short, a return cocycle on E).

If G is a measurable groupoid and E a subset of its set of units, then G|,
will denote the reduction of the groupoid & on E.
The following lemma is a slightly modified version of Lemma 7.4 of [3].

Lemma 2.6. Let the groupoids G, ¥ and Gy be as above, a: H—G be a
transient homomorphism, and a, £V, where V, is a neighborhood of the identity in
G. There exists a canonical isomorphism of the groupoid H|z=BXI'y onto the
groupoid G| g, where E is a complete lacunary section of the action Wir, ,.(G)
=Wy(G) on 25, such that for this isomorphism the homomorphism agz: 9| z—
G transforms into the return homomorphism of the action Wy(G) on E,

Proof. Let us introduce a measurable map 6: B—£2; putting 0x=(y, h),
if there exists an automorphism 7z(az) &1 5(a;) depending on the point xE B,
for which 7rz(eg) (x, e)=(y, ). Prove that 6(B) is a complete lacunary section
for Wx(G) on (25, vg). Indeed, since B x {e} intersects every orbit of the group
V(G), then 6(B) will also intersects every orbit of the group Wjy(G), which
means completeness of the section 6(B). Describe now the equivalence relation
which generates on 6(B) the associated action Wy(G). If y=rx, where x, yEB,
7 €[I']z, then we shall show that

0(y) = Wy(ag(x, 7)) 0(x) . (2.6)
Let 0(x)=(ryx, a5(x, 11)), 0(»)=(r2y, @(y, 73), 71, 72E[']5. Then,
WB(aB(x, r)) 0(X) = 7’0(0‘3) (T]x, aB(xa rl) aB(xa T)—l)’ (2'7)

where the automorphism 74(a;) is chosen from the condition
rol@g) (rix, ag(x, 7)) az(x, r )82, Itis easy to see that the role r, can be
played by 7,771". Indeed,

171 (@5) (71X, @p(X,1y) @p(x, 7)) = (ryy, as(yy, 1)) = 0(¥),  (2.8)

By comparing (2.8) and (2.7), we conclude that (2.6) is true.
Vice versa, if Wy(h)0(x)=60(y), then similar arguments can show that
there exists an automorphism 7 €[I']; for which 7x=y and

h=agx,7). 2.9
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Thus, it is proved that the orbits of the equivalence relation on 8(B) are
countable, because the cocycle ez V,. Therefore, the section 6(B) of the ac-
tion Wg(G) is lacunary. Besides, it follows from (2.6) and (2.9) that it is the
cocycle a5 that corresponds to the return cocycle of the action Wy(G) on 6(B).
Consider the measure fox on 6(B), and let E be a Borel subset of 6(B) which
is full with respect to fox. Because the later is zero on sets from 6(B) if and
only if the measure u is zero on the respective sets from B, then fou is equiva-
lent to the projection of the measure (#Xxg)|o, on the section E along the
orbits of Wg(G). Therefore, the map (y, x)—(0(), 6(x)) is the desired isomor-
phism of the groupoids 4|z and G|z, O

Remark 2.7. Proposition 1.4, 2.3 and 2.4 imply that for any group I'C
Aut (X, B, 1y and any BCX (#(B)>0) the associated actions W, ,y(G) and
Wiry,, «5(G) are isomorphic. Therefore, everywhere in this section we shall
denote the associated action by W(G).

Lemma 2.8. Let W(G) be a free non-singular action of a l.c.s. group G on
(2, v). Let also E, and E, be complete sections of the action W(G) on 2 and G,
=8|z, ©=4|z, be the reductions of the groupoid G=2 X W(G) on E, and E,.
Assume that there exists an isomorphism yr: G,— G, and let +ry be the restriction
of the map  onto E,, i.e. yy: E;—E, If v, is an inner automorphism of the
groupoid G, i.e. the points x and +Jr((x) lie in one and the same orbit of W(G), then
the return homomorphisms =, G,—G and 'ox,: G—G are equivalent (or in
other words, the cocycles m; and ~‘ox, are cohomologous).

Proof. Define the homomorphism z: G—G with putting for (w, W(h))e
G(wef)

n(w, Wh) =h. (2.10)
Then the return homomorphisms z; and =, are related to = as follows
Ty, = n/gl, Ty = n/gz . (2.11)

By the condition of the lemma, the points x and yr(x), xEE, are related as
Yro(x)=WI(h)x, where h=h(x)=G. The measurability of the function A(x) fol-
lows from the measurability of the maps x—syr(x), (x, A)—=W(h)x. By the
definition of the cocycle v+ 'ox,, we have the following for (x, W(g))€ G,;:

Y romy(x, W(g)) = h(W(g)x) gh(x)™", (2.12)
because Y, W(g) vo'(¥o(x))EE,. Formula (2.12) can be written, according to
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(2.10) and (2.11), as ¥y omy(x, W(g)) =h(W(g)x)x,(x, W(g))h(x)™", whence follows
the statement of the lemma. []

2.3. If I' is a countable group of automorphisms of (X, B, #) and a co-
cycle e ZY (X xI', G), then the pair (I', @) corresponds to the pair (A, a),
where 4 is a measurable groupoid generated by the action I" on X and @ a
homomorphism from 4 into G. The two pairs (H,;, @;) and (H,, @,) will be
weakly equivalent, if there exists an isomorphism ¢ of the groupoids 4, and 4,
such that the homomorphisms &, and ¢~oa, are equivalent. (The definition of
equivalent homomorphisms see e.g. in [3]).

Theorem 2.9. Let there be defined the two pairs (H;, @,) and (H,, &,), where
H; is a discrete measurable groupoid generated by an action of the group I';C
Aut(X;, B;, 1;) and a; is transient homomorphism from H; into G, i=1,2. Then,
if the associated actions WI(G)=W( L, 0‘1)(G) and Wz(G)=W( Ly az)(G) are iso-
morphic, then the pairs (H,, @) and (Yl,, @,) are stably weakly equivalent.

Proof. Since @; (i=1, 2) is a transient homomorphism, then there exists a
set B; and a neighborhood V; of the identity in G, such that e;(x;, r;) & ¥V, for (x;,
7)EH;| 5, i=1,2. We shall consider the pairs (|5, @;5,) and (I, 5,5 @23,),
Let Wi (G), H;il5, Gi|5, and (25, v5), i=1,2 be as in Lemma 2.6. It follows
from the condition of the theorem and Proposition 2.4 that there exists a one-
to-one measurable map y: 25 —&5, such that yrovy ~v;, and

Y Wi (8) = W 8V, gEG, (2.13)

where W;5(G) is the action of G associated with (J(;| 5, ;5), i=1,2. In view
of (2.13) the isomorphism ¥ of the groupoids G, |z =G5, and G|, =G, is de-
fined by the map

7. ((x, h)’ g) = (’l/’(x, h)r g) > (x’ h)E‘QBl . (2"14)

By applying Lemma 2.6, we find that there exist canonical isomorphisms j,:
| ;> G5, | 5, and jp: Yy 5,—> G5, | 5,, Where E; is a complete lacunary section
for W;5(G) such that jioa;p, is a return cocycle for restriction of Wz (G) on E;,
i=1,2. From relation (2.14) it follows that the map Z" also defines the isomor-
phism of the groupoids Gp |z, and Gy, |4z,

Put Jl;| 5,=I;|5,X Z, where Z=ZX Z is the transitive discrete groupoid
generated by the shift on Z. Consider two groupoids with the discrete orbits
G, |g,XZ and Gy, |4y XZ. In view of Theorem 4.12 of [3], there exists an
isomorphism z can be inner for the groupoid Gp,. Let J=J0, 1]X[0, 1] be tran-
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sitive groupoid with continuous orbits. It follows from [3, Corollary 4.4] that
the groupoid Gy, is isomorphic to the groupoid &y,|z,XZ X J and to keep the
notation simple, we shall assume the groupoids to coincide. Putting #=7 X1 X
1 enlarge ¢ to the automorphism # of &,. By Theorem 1 of [7], there exists an
automorphism ¢ inner for &p, and such that go¥=a x 1, where @ is an automor-
phism of the groupoid G,|z, xZ. With account of the equalities

q°?|ggzlyz><z = ‘I"lgszlﬂzxz =a

we find that ¢ maps &g, |y X Z into G, |z, X Z. Thus, it is proved that for
the groupoid &p, there are two lacunary sections such that the groupoids
G3,l 4 XZ and Gy, | g, X Z defined on them are isomorphic, this isomorphism
being inner with respect to G5,. It follows from Lemma 2.6, that the homo-
morphisms j,o&,p, and %o jiod, s are return ones for the groupoids &g, |z, X Z
and Gy, |y, X Z (here &, i=1, 2 is the countable expansion of the cocycle
@;p). According to Lemma 2.8, the homomorphisms j,o&,5, and vro jio&,, are
equivalent. It now remains to note that ¢=j;'ogo%oj, is the isomorphism of
the groupoids %, | 5, and H,| 5, and therefore the pairs (H;, @;) and (H,, a,)
are stably weakly equivalent. []

Remark. The isomorphism = (the subject of the proof of Theorem 2.9)
may be directly chosen to be inner, as is obvious from simple considerations.

Our proof of Theorem 2.9 is similar in the idea to that in [7]; another
proof was given in [2].

2.4, Here we shall consider the property of transientness for the cocycle
ay=(a, p).

Proposition 2.10. Let I" be a countable group of automorphisms of (X, B,
). A cocycle ay€ZN (XX I, GXR) is transient if and only if the cocycle a <
ZNXx T, G) is transient.

Proof. Let @ be a transient cocycle. Consider the group of automor-
phisms I'yC Aut (XX R, # X xg) dual to I', whose elements act as 7,(x, v)=(rx,
u+o(x, 7)), rETI ie. I'y=I(p). The cocycle « is enlarged to the cocycle a’ of
the group I'; by the formula a’'(x, u, 7;)=a(x, r). The transientness of ¢ means
transientness of @’. Therefore, by Lemma 2.1, the partition into orbits of the
group I'j(@)CAut (XXRXG, uXxgXxe) is measurable. As is easy to see,
I'y(a’) and I'(ey) coincide. By applying again Lemma 2 1, we find that « is
transient. Conversely, let a, be a transient cocycle. This means that I'(a,) is
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of type I group of automorphisms. It follows from the equality I'(e))=I"(e),
that the group I'(a), is also of type I; but then it is evident that in this case the
group I'(@) CAut (XX G, X xg) can only be of type I as well. Therefore, the
cocycle e is transient. []

Corollary 2.11. Let the pairs (H,, a;) and (H,, a,) be as in Theorem 2.9.
Then, for Gy,=G X R: (i) if the associated actions W( J{p(dl)o)(G°) and

Wi, (az)o)(GO) are isomorphic. then (H,, @) and (Y, ) are stably weakly
equivalent; (ii) if W( 5, al)(G) and W( o az)(G) are isomorphic, then so are the
actions W, (a)) (Co) and W, (a,))(Go)-

§3. Measurable Fields of Cocycles

3.1. In this and next sections we shall only consider the cocycles @ which
take values in an abelian l.c.s. group G. However the findings are valid in more
general situation (see the end of this section).

Now we shall construct, for any closed subgroup H, of Gy=G X R, an ap-
proximately finite (a.f.) ergodic group of automorphisms 4C Aut (¥,, p) and a
cocycle 4, both such that 8,=(8, p) takes the values in H, and r(4, 8,)=H,.

Let {h(n)}~-: be a dense sequence of group elements from H,, such that
every member of this sequence occurs in it an infinite number of times. Every
element /(n) can be represented as (hs(n), hg(n)), nEN. Choose {h(n)}s-1 to
belong in turn to a countable subgroup H§ (dense in H,). The projections of
the groups H, and H§ onto G and R will be denoted by Hg;, Hp and Ht, Hf
respectively. The group H, and its projections H; and Hy can be either discrete
or continuous. The closed H,, generally speaking, does not mean that H; and
Hp, are closed.

Put Y,={0, 1}¥ and 4,0)={yr€Y,: y,=0}, 4,()={EY,: y,=1}, nE
N, where yeY, is {y,}n=1- Then, 4,0)NA4,()=¢@ and 4,0)UA4,(1)=Y,,
neN. Consider on Y, the probability product-measure p, for which

P(4,(1)) = exp (hx(n)) p(4.(0)) , G.0)

where the sequence {hy(n)=(hs(n), hp(n))}r-1 has been chosen above. Introduce
the automorphisms J, € Aut (¥, p), nE N such that 6, {y,} ={ys}, where y;=
¥y, with k=£n and y;=y,+1 (mod 2). It follows from (3.1) that

o(y,8,) = hg(n), y€4,0), nEN. (3.2
Denote by 4 the group of automorphisms of (Y, p) generated by J,, nEN.
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As is known, 4 is ergodic and a.f. [9]. If H% is a dense subgroup of &, then 4
is of type II,; if Hp={nlog A: h& Z}, then 4 is of type III, (0<2<1); and if
H4={0} (ie. H)CG), then 4 is of type II;. Consider the case of the type III
group 4; type II group 4 is considered similarly.

Define the cocycle 8= Z(Y,x 4, H;) on the generators of the group 4:

fhem, 74,0

P> 00) = Jl—hc(n) , yed D), neN. G
From (3.2) and (3.3) it follows that

/90()’, 811) = ho(”) s yEAn(O) s neN. (34)

Lemma 3.1. Let 4, be the subgroup of [4] specified as 4,={r [4]: By, 1)
=0}. Then, 4, is the ergodic group of automorphisms of (¥y, p).

Proof. By the choice of the sequence {hy(n)}n-1, there are infinitely many
numbers 7 and n,, such that Ay(n)=hy(n,). Put for such n and n,

yﬂ13 k=n
GO Y=V » k=mn (3.5)
Yr > k 4: n,n.

From (3.2), (3.3), (3.4) and (3.5), we find that 8y(y, r(n, n))=0 for all y& ¥, i.e.
7(n, n)E4,. The group 4, is ergodic; it is proved in same way, as in [9, Exam-
plel]. [J

Theorem 3.2. The cocycle B, ZY(Y,x 4, Hy) speciefied by (3.4) has a dense
range in Hy, i.e. r(d, B))=H,.

The proof follows in a transparent way form Lemma 3.1.

Corollary 3.3. The action of the group Go=G X R associated with the pair
(4, By) is isomorphic to the transitive action of G, on the quotient space G,/H,,.

The proof follows from Theorem 3.2 (see also Theorem 4.1 below).

3.2. We shall use the following notation: (X,, B,, #,) and (¥, &, v) are the
Lebesgue spaces with probability measures and (X, B, #)=(X, X Y, By X F, 1, %
v); S is an ergodic automorphism of (Y, &, v) and S,=1XS&Aut (X, B, u).
Let, as previously, H, be a closed subgroup of Gy=G X R.

Assume that for #-a.a. x,E X, the cocycle a(x,)EZ (Y X[S], G) is defined.
We shall say that in this case a field of cocycles x;—a(x,) (x,EX,) with values
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in G is defined. To each field of cocycles x,—a(x,) corresponds a map @: X X
[Sol—G

a(xy, ¥, St) = a(x) (0, S7) (3.6)

which satisfies the identity for the cocycles.

Definition 3.4. A field of cocycles xy—>a(x,), xoEX, is called measurable,
if the cocycle a defined by (3.6) is measurable.

Definition 3.5. A measurable field of cocycles xy—>a(x,) has a dense range
in a group HC G (the notation r({a(-)})=H), if for a.a. x,€X, the cocycle
a(x,) has a dense range in H.

Each measurable field of cocycles x,—>a(x,) generates also a measurable
field xy—ay(x,) =(a(x,), 0) of cocycles taking values in the group H,.

Below we shall consider only measurable fields of cocycles and assume S
to be of type II, or III, (0<A<1).

Lemma 3.6. The following statements are equivalent:

(1) a measurable field of cocycles x,—ay(x,) has a dense range in H,;

@) for any hy& H,, any set ACXyX Y of positive measure and any neigh-
borhood V of the identity in G,, there exist a measurable field of automorphisms
So=(x—>5(x0)) E[So] and a set BC A, such that ssBC A and ay(x,) (v, s(xp)) E
hy+V for a.a. (xy, y)EB;

(iii) for any hy= H,, any two sets A and B in Xy X Y such that v(A(x))>0
@ V(B(xy)) >0 (where A(x,) and B(x,) are xy-sections of A and B) and any neigh-
borhood U of the identity in G, there exist a set A’ C A of positive measure and
an element s§=(xy—>5'(x,)) E[Sy] such that stA' C B and ay(x,) (v, s'(x)) Ehy+U
for a.a. (x, y)E4’.

The proof of this lemma is similar to that of Lemma 2.1 from [5].

Choose in the group G an invariant metric d compatible with the topology
of the group G.

Next lemma is formulated and proved for the case of S of type III; the
case of type II automorphism S is to be considered similarly.

Lemma 3.7. Let a measurable field of cocycles x,—ay(x,) be such that
r({ay(*)})=H; and hy=(hg, hgp)EH, Let A and B be subsets of X=X,XY,
such that v(A(xp))=v(B(x,))e"R, where A(x,) and B(x,) are x, sections of A and
B. Then, for any ¢>>0, there exists an automorphism s,&E[S,] for which s,A=B
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and
(%) (¥, 5(x0)) € (hg, k) +(V () X(—e, €)) , 3.7
where sy=(xy—>5(xy)) and V(e)={g=G: d(0, g)<e}.

Proof. Let us use statement (iii) of Lemma 3.6 and construct a map #,E
[Se] such that for a subset 4, C A of positive measure #,4,=B; CB and

ay(xo) (¥, {(x0)) Ehg+-Vo(e), (X0, ) E 4, (3.8)
where #, =(x,—1;(xp)) and Vy(e)=V{(e) X(—s, €). Choose here 4, so that
u(ty 4y) <e*Ru(4;) . (3.9

Consider now the set of pairs (4, t,) satisfying (3.8) and (3.9) and define on
this set a partial order relation, assuming (47, t{)<(41’, ¢t{’) if A{C A}’ and
t{=t{’ on A{. By Zorn lemma, there exists a maximal pair (4, %) with res-
pect to such the order relation. Therefore, we readily conclude that A4,=4
by mod 0 and the automorphism #,=(xg—>?(x,)) satisfies the relation

ay(Xo) (7, 1(xp)) E g+ V() (3.10)

for a.a. (x,, yY)=A4. Besides, u(t,4)<< «(B).
For the symmetry reasons, there exists an automorphism wy=(x—>w(xy)) E
[S,] such that weBC A4 and

(o) (7, W(xe) € —he+Vi(€) (3.11)

for a.a. (%, y)€B. From the maps %, and w,, as in [9] we shall construct the
Bernstein map s,=(x;—>s(xy)) €[S,] which is the one-to-one map from 4 onto
B:

tO(xO’ y)’ (xoa y) € igo [(Woto)iA _Wo(towo)iB] U ifjo (Woto)iA
So(X, ¥) = .
W0t ), (i )E U (#toe) B— (0, 19))"*4) .

From (3.10) and (3.11), follows (3.7). [

Further it will be convenient to believe the cocycle a, to take values in
the countable subgroup H; dense in H, (see Subsection 3.1). This assumption
is not restrictive [6].

Lemma 3.8. Let A be a measurable subset of positive measure in X, X Y and
{h()} -1 a set of elements of the group HY, where hy(i)=(hg(i), hg(i)) and let the
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range of a measurable field of cocycles x,—>ay(x,) be the group H,. Assume that
&=(4, [0, N—1], B(Q), (-, *)) is an Sy-array of A such that u(B(i))=exp (hg(i))
#(B(0)) and for certain >0 and a.a. (x,, y)E B(0)

ay(xo) (v, (i, ) Eh(D)+Vo(e) , i€[l, N—1], (3.12)

where Vy(e)=V(e)X(—¢, ). Then, there exists a measurable function fy: A—H}
such that fo(xg, y)=0 for a.a. (x,, y)E B(0) and

fo(xm y)E VO(E) ’ (xm y)EA (313)

and for the measurable field of cocycles

Bo(xo) (3, 8) = folXe, sY)+e(x0) (7, 8)—o(X0 ¥) »  SE[S] (3.14)

the following relations are true for a.a. (x,, y)EB(0):
ﬂo(xo) (ys ?"(i, 0)) - ho(i), i=1,2,--,N-1. (315)

Proof. Put for i=1, 2, -+, N—1 the following

0
So(xo, ¥) = { (3.16)

hO(i)_aO(r(is 0)-1 (xm y)a T(i’ 0))’ (xm y) EB(Z) H
where «, satisfies (3.6). Simple check shows that (3.13) and (3.15) follow from
(3.12), (3.14) and (3.16). [

In other words, Lemma 3.8 states that the cocycle @ may be replaced by
the S;-cohomologous cocycle A and the measure v by the measure v’ equivalent
to it, so that on the elements of the Sy-array & the cocycle g, should have con-
stant values, the Radon-Nikodym cocycle in particular also becoming constant
on such elements. In this case, the function f; performing the cohomologous
replacement takes values in the prescribed neighborhood of the identity in H,,.

3.3. Before starting to prove the uniqueness theorem for fields of cocycles,
let us consider the uniqueness theorem for individual cocycles with a dense
range in the prescribed group Hy,CG, The proof method of this theorem
will then be extended, in a transparent way, to the case of measurable fields
of cocycles.

Let I' be an ergodic a.f. group of automorphisms of (X, B, x), #(X)=1
and an automorphism 7 €Aut (X, B, #) be such that [I']=[T7]; let H, be a
closed subgroup of G,. Assume the cocycle a,=(e, p) to take values in H, and
Hy=r(I', ). As has been said, according to whether the group Hy (where H,
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=(Hg, Hy)) is trivial, or discrete of the form Zlog 2, or dense in R, the group
I' is of types II;, III, (0<2<1), or IIl,. The case of I" of type Il was con-
sidered in [6].

Here we shall prove the following uniqueness theorem for the group I’
of automorphisms of type III.

Theorem 3.9. Let the groups of automorphisms I';CAut (X;, B;, ;) and
the cocycles al, i=1,2 satisfy the conditions: el Z\X; X I';, Hy), r(I';, at)=H,,
i.e. let the associated actions Wir, .i(Gy) coincide with the transitive action of the
group Gy on Go/H,.  Then, the pairs (I'y, ag) and (I'y, a§) are weakly equivalent.

This theorem will be proved in several steps. Note now that Lemmas 3.6,
3.7, and 3.8 remain valid, if the field of cocycles in their formulations is re-
placed by one fixed cocycle.

Lemma 3.10. Let é=(X,[1,N], A(-), 7(-, °)) be a I'-array on the set X,
such that for ¢>0 and a set DCX of positive measure, the following is true:

u({xeX: Txegé)x})>1—e,
#(DAD;)<e (3.17)

where D, P(€) and I', T and a, satisfy the conditions enumerated above.
Then, there exists a I'-array &, such that

s({xeX: Txe G(E)x})>1—2¢,
u(DADY)<2e, (3.18)

where D1 P(E). Moreover, the cocycle ay is cohomologous to a cocycle af
which takes constant values on all elements of &, a function fy specifying the co-
homologous replacement takes values in the neighborhood V,(2e)=V(2¢) x(—2e,
2¢) of the identity in G,.

Proof. Since a, takes values in the countable subgroup H{C H,, then the
functions fi(x)=eay(x, r(, 1)), i=1, 2, ---, N, where x& A(1), are piecewise con-
stant. Let {E,: o =2} be the partition of A(1) into the sets on which f%(x),
i=1, 2, .-, N are constant. The set £ is finite or countable (we shall naturally
assume it countable). Let £’ be a finite subset of £, such that

“ U UG, 1) E)>1—+- (3.19)
s i=1

Let us believe for definiteness that fi(x)=(hi,al) for x€E,, 0 €2, i€[1, N].
Then, for the same values of @, i
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u(rG, 1) E,) = e®ou(E,) . (3.20)

Put g,=u#(E,), o=£2. The condition (3.19) then is
N : &
2 2le%g,>1——.
wEQ i=1 2

From the given numbers ¢>0 and {g.}.=0’, We can find the numbers g>0
and n,E N such that

n9<q,<@m,+1)q,

N .
1S (g, —nag) <~ (321)
i=1 vy 2

Let F,CE,, #(F,)=q, o=£2’. Inequalities (3.21) show that there exists a col-
lection of sets {F,(k)}72, from E, such that F,(1)=F,, F,(k,) N F (k)= (k=
ky), w(F(k))=q for k=1,2, -+, n,, o=2’. Put

4=y UFr®,
AW =Y EJUU E~T F@). (322)

Then, A(1)=A4'(1)UA”(1) and A'()NA"(1)=. From (3.19), (3.20) and
(3.22), it follows that

W0 7G, D A" () <e (323)

Let us number the sets F,(k) successively: F(1), F(2), -+, F(M), where M=
Secon,.  Also, denote the functions f%(x) on F(j) in a different way, putting
fi(x)=(gi, b%) for x&F(j). The collection {(gf, b¥): i=1,2, -+, N; j=1,2, -+,
M} obviously coincides with the collection {(ki,al): i=1,2,--,N; 0€2'}.
Therefore, (3.20) leads to x(r(i, 1) F(j))=q exp (b?).

By applying Lemma 3.7, consider over the partition (4'(1), [1, M], F(-)) a
I'-array 71, whose automorphisms (-, <) have the property

afx, 0(j, )EVe), j=1,2,.M (3.24)
for a.a. x&F(1). Denote by 7’ a refinement of the array £ by the array 7}
defined on the set A=U%.; 7(i, 1) 4’(1). The array 7’ consists of the sets 7(i,
1) F(j) with the measure ebsq, i=1, 2, +-+, N; j=1, 2, ---, M and the group 4(z)
consists of the automorphisms ¢'(+, ) defined by relations of the form 7(Z, 1)
o(-, )rG, )Y, i,je1,2,---, M. For convenience, let us number again the
sets of #’ successively: 7°=(4, [1, MN], C'(-), #'(+, +)). Let us find out what
the values are that the cocycle a, takes on elements of £’. Let for definiteness,
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C'()=F(1). If C'(m)cA'(1), then, in view of (3.24) a(x, t'(n, 1)) EV(e) for
xEC'(); if C'm)Cr@, 1) A'(1), then for x&C'(1)

ay(x, t'(n, ))=ay(x, r(i, 1) 3k, 1)) E(gk, bi)+Vo(e)

where k is specified by the equality F(k)=r(i, 1)"'C’(n). Therefore, put (g(n),
b(m)=(0,0) for C'(n)C4'(n) and (g(n), b(n)=(gi, b) for C'(m)=r(i, 1) F(k).
Thus, for a.a. x&C(1)

ay(x, t'(n, 1)) (g(n), b))+ Vy(e), n=1,2,-+,NM. (3.25)

Then, #(C'(n))=e""q=r,.
Using (3.23), calculate the measure of the set B= U, r(i, )4”(1):

NM NM
uB) =1-3e'®g=1-3r,<e.
n=1 n=1

Subdivide B into the nonintersecting subsets C"/(n), n<[1, NM] such that
#(C"(n)) = u(C'(n)) #(B) u(A)~". (3:26)

Since b(n)=log r,r1?, then for r,=p(C”(n)) it follows from (3.26) that b(n)=
log ry(rn)7% ie. raTi=ri(r{)™2. Since (g(n), b(n))H}, then, by Lemma 3.7,
over the partition (B, [1, NM], C”(+)) a I'-array 7"’ can be defined having the
automorphisms ¢”(-) such that for a.a. x&C”’(1)

ay(x, t"'(n, 1)) E(g(®), b(n))+V(e) , nE[l, NM]. (3.27)
Construct the I'-array &, =(X, [1, NM], C(-), t(+, +)) from the arrays 7’ and 7”,
putting

Cn)=C'm)UC"(n),

m,)x, xeC'()
th,Dx =1 , ,
t"n,D)x, x=C”’(1), n=1,2,,NM.

Then, it follows from (3.25) and (3.27) that
Clc(‘)(x’ t(l’l, 1))E(g(n)9 b(n))+ Vo(e) » = 1: 2, oty NM . (328)

Apply Lemma 3.8 to the array &,. Then, there exists a measurable func-
tion fy(x) taking values in Vy(¢) and such that the cocycle

ay(x, 1) = fo(tx)+ayx, )—fo(x), tE€[T] (3:29)
has the property
ay(x, tn, 1)) = (gn), b(n)), n=1,2,-, NM, (3.30)
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for a.a. x&C(1). Tt follows from (3.17) and (3.23) that the array &, satisfies
(3.18). Equalities (3.30) show that the cocycle @ cohomologic to «, takes
constant values on elements of &,.

To conclude the proof of the lemma, let us estimate the change of the
measure of X as a result of replacement of « by «#’ by formula (3.29) by means
of the function fg(x), where fy(x)=(fe(x),fr(x)). It follows from (3.29) that

e <u(0) = | _exp () dutx) <e. (331)

Normalize the measure x’, putting #{(E)=u#'(E) #'(X)™ for E€B. This
means that fg(x) is replaced by the function f%(x) such that exp (f&(x))=2'(X)"!
exp (fr(x)). It follows from (3.31) that f4(x)=(—2¢, 2¢). []

Lemma 3.11. Let (X, B, »), I', T, &, H, and H} be as above. Then, there
exists a sequence {€,}n-1 of I'-arrays and a cocycle af cohomologous to the
cocycle ay, both such that

() &,4q is the refinement of €,, nEN;

() {T% meZ=U;.,4(,)xforaa x=X;

(i) B=o(Uz.1 P(£.));

(iv) on any element of &,, nEN the cocycle a} takes a constant value.

Proof. Let a sequence of positive numbers {¢,},-; monotonically con-
verges to zero and >, ¢,<oo. Let {D,};., be a dense sequence of sets in B,
whose every element occurs in it an infinite number of times. Apply Lemma
3.10 and construct a I'-array &,=(X, [1, V], 4,(+), r:(+, -)) and a cocycle af"
cohomologous to @,, such that the group G(&,) approximates the orbits of T ac-
curate to ¢, and %(¢,) approximates the set D, also accurate to ¢, (i.e. inequali-
ties similar to (3.17) are true). The cocycle af takes constant values on ele-
ments of &, and is obtained from the cocycle «, by the cohomologous transition
defined by a transfer function f§”(x). This function has the properties: f§"(x)
e V,(€) and f§(x)=0 for x& 4,(1). Then, construct on 4,(1) a I'-array &{ such
that the array £,=¢&, x &1 approximates the orbits of T and the set D, accurate
to &,. Here, if £1=(4,(1), {1, N1], 41(-), 71(+, *)), then on the set 47(1) one can
define the function f{"(x) such that f§’(x)=0 on A%(1) and f§(x)E Vy(ey).
Denote by f§?(x) the G(&,)-invariant function obtained from f§(x) by shifts by
n@, 1), i=1,2, -+, N;. According to Lemma 3.10 £{"(x) and &/ can be chosen
to be such that the cocycle af®(x, t)=f{(tx)+af’(x, t)—f§?(x) takes constant
values on elements of the array &,, t [T].

Continuing the procedure let us construct the sequence of the arrays {€,}m-1



600 S.I. BEzuGLYI AND V.YA. GOLODETS

satisfying conditions (i)-(iii) of the present lemma and also the sequence of the
functions {f§”(x)}m1 such that the series 3} /§”(x) converges to a function
Jfo(x). Then, according to the choice of f§”(x), the cocycle af(x, t)=f(tx)+
ay(x, t)—fo(x), t €[T]=[I"] takes the constant values on all elements of the array
E,L,neEN. [

Remark 3.12. It follows from the construction of the function f, that,
generally speaking, f,e=H{. However, the cocycle af takes, as a, does, its
values in the group H} because the functions f§”(x) are invariant with respect
to automorphisms from the group G(¢)), i=1,2, -, n; n€N.

Proof of Theorem 3.9. Recall that the cocycles ai, i=1, 2 take the values
in the group H{CH, Let {e,}r.1 and {D,}; .. be sequences the same as in
proof of Lemma 3.11. Define for ¢, D, and aj a I'j-array &, and a I';-
cohomologous cocycle @j(1) satisfying Lemma 3.10. Then, @}(1) takes con-
stant values on the elements of &,, and &, approximates 7; ((73]=I[I";]) and D, ac-
curate to ¢,. Using Lemmas 3.6, 3.7 and 3.8, consiruct for @i a I'y-array 7,
with the same number of sets as in the array &, and define a cocycle ai(l), I',-
cohomologous to @, both such that on sets with the same indices the values of
ag(1) and a@3(1) coincide. That this construction is possible follows from the
facts that r(I"y, ag)=r{(I",, a3) and the groups I'; and I', are weakly equivalent.
Then, define a refinement 7, of the array 7, so that the approximations of
T, ([T5]=[I"y]) and of D, should have the accuracy to ,. Next, construct a co-
cycle @j(2) cohomologous to @j(1), so that the values of @2(2) should be con-
stant on elements of #,. From the proof of Lemma 3.11, it follows that aj(2)
takes constant values on elements of #, as well. Returning to the I'y-cocycle
ay(l) and the I'j-array &,, define a refinement &, of &, and a cocycle a}(2), so
that the array £, should have as many sets as 7, has and that on sets with the
same indices the values of a@§(2) (I";-cohomologous to @j(1)) should coincide
with the values of @j(2). In transition to cohomologous cocycles, as in
Lemma 3.11, the functions f§(1), £5(2) and f3(1), f3(2) are constructed that de-
fine cohomologous equivalence of cocycles and are such that f3(j)E V(e;),
i,j=1, 2.

By repeating the above procedure a countable number of times, we obtain
two sequences of the arrays {£,}i.1, {n.}i-1 two sequences of the cocycles
{@d(i)} 71, {@d(i)}7-:1 and two sequences of the functions {f3(k)}7=1, {f5(k)} 71
corresponding to the groups I'y and I',, respectively. The arrays £, and 7,
satisfy conditions (i)-(iv) of Lemma 3.11, and the functions fj(k) and the co-
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cycles aj(k), j=1, 2 are related as

ai(k) (x, 1) = é Fi6) () +ai(x, t)—g fi) ), telr)] (3.32)
and
FID) @ EVe). (3.33)

Besides, the cocycles @j(k) and a?(k) have equal values on elements of £, and 7,
that have the same indices. Since >3;.; €, < oo, then in view of (3.33), we can
assume f§(x)=37-1 f{() (x), j=1,2. Then, it follows from (3.32) that for j=
1,2 the cocycles ai(x, £)=f§(tx)+aj(x, t)—f{(x), t E[T';] are defined and their
values are constant on all elements of the arrays &, and 7, n&N. Besides, if
take elements of &, and 7, having the same indices, then the cocycles @} and af
take on them equal values (see Remark 3.12).

The above enumerated properties enable conclusion (as in [1]) that there
exists an automorphism 6 for which 6[I',]0"*=[I",] and ay(0x, 0t6~Y)=ai(x, t),
tE[I',]. Putting it otherwise, the pairs (I';, ag) and (I',, @f) are weakly equiva-
lent. [

3.4. Let us come back to considering the fields of cocycles which we
began in Subsection 3.2. To prove Theorem 3.9 and Lemmas 3.10 and 3.11,
we used the results of the said subsection (Lemmas 3.6, 3.7 and 3.8) that are
true for the fields of cocycles. Therefore, the proofs of the results of Subsec-
tion 3.3 formulated for individual cocycles can be extended without changes to
the case of the fields of cocycles. Then, we obtain validity of

Theorem 3.13. Let (Xy, By, 1) and (Y, F,v) be Lebesgue spaces, S an
ergodic automorphism of (Y, F, v), xq—>ai(x,), i=1, 2 measurables fields of co-
cycles with values in a group H, such that r({ai(-)})=r({ed(-)})=H, Then,
there exists a measurable field of automorphism Py=(x—>P(x,)) such that P(xy) =
N[S] and the cocycle Pyoayj is Sy-cohomologous to the cocycle a§, where Sy=1 X
S. In other words, (Sy. @) and (S,, a3) are weakly equivalent.

In Subsection 3.1, the cocycle g, with values in H; and a dense range in
H, was constructed. By 8, we shall also denote the constant field of cocycles,
each equal to B,.

Corollary 3.14. Let the conditions of Theorem 3.13 be fulfilled and
r({e(-)})=H, Then, there exists a measurable field of automorphisms Py=
(x—P(xy)) EN[S,] such that the cocycle Pyoa, is Si-cohomologous to the constant
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field of cocycles B,.

Corollary 3.15. Let a measurable field of cocycles xy—>a(xy) (X, EX,) has
a dense range in Hy and takes values in Hy. Then, it can be replaced by a co-
homologous field of cocycles x—>al(x,) (thereby, the measure on Y will also be
replaced by an equivalent one), so that the group {s €[S]: af(x,) (¥, s)=0,yEY}
will be ergodic for a.a. x,EX,.

Remark 3.16. Analysis of Theorems 3.9 and 3.13 shows that they remain
true also when the cocycle a,=(«, o) takes values in a closed normal amenable
subgroup H, of G X R so that the group H, is dense range of @, and G is an
arbitrary amenable l.c.s. group.

8§4. Tranmsitive Associated Actions

4.1. Let I' be an arbitrary countable ergodic group of automorphisms
of (X, B, #); G a nonabelian l.c.s. group and e=€Z}(X x I', G).

Theorem 4.1. Let the associated action W ,(G) for a pair (I', @) be
isomorphic to the transitive action of the group G on a quotient space G/H, where
H is a proper closed subgroup of G. Then, the cocycle a is I'-cohomologous to
a cocycle f taking all its values in H. If G is abelian, then r(I", a)=r(I", B)=H.

Proof. As in Section 2, we shall consider the skew product I'(e) CAut
(X X G, uXXg) and the action ¥ of G which are defined by (2.1) and (2.2). Let
& be a measurable hull of partition into orbits of the group I'(a). By the con-
dition of the theorem, the quotient space (&2, v)=((X X G)/&, (# X x¢)/€) is iso-
morphic to the quotient space G/H, on which the measure is the projection of
the Haar measure x;. Therefore, we shall believe that 2=G/H. Denote by g
the quotient map from X X G into G/H. From the definition of the associated
action Wp ,(G)=W(G) it follows that

q(V(g) (x, ) = W(g)q(x, h), gEGC. 4.1
Besides,
q(r (@) (x, b)) = g(x, h), r(@)EI(e) 4.2)

for a.a. (x, )EXXG. Thus, it follows from (4.2) that there is gg=G such
that for a.a. x€X

q(rx, a(x, 7)) g) = q(x,8), 7ETI. 4.3)
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Relations (2.1), (2.2) and (4.1)-(4.3) show that for a.a. x€X
q(rx, a(x, 7) &) = W(g)™ W(a(x, r))q(rx, €) ,
q(x, 8) = W(ga')q(x, e) ,
where e is the identity in G. Therefore,
W(a(x, 7)) qg(x,e) =q(rx,e), rEl. 4.4)

Let wy=G/H be the point in the quotient space into which the group H is
projected. Then,

H = {g€G: W(g) vg=wy} . @.5)

By the theorem on the measurable choice, there exists a measurable map
0: G/H—G such that W (0 (v)) w,=w since W(g) (g<EG) is the shift into G/H.
For x€X we put f(x)=0(q(x,e)) and define the cocycle g, which is I'-
cohomologous to «, by the formula: 8(x, 7)=f(rx)"* a(x, ) f(x). Let us check
that all values of £ lie in H:

W(B(x, 1)) @ = W(0(q(rx, e))™) W(a(x, 7)) q(x, e)
= W(O(q(rx, e)™" q(rx, e) = o, . (4.6)

Here we have used equalities (4.4) and (4.5). Relation (4.6) means that A(x, r)
€H fora.a. x&Xand all rETI.

Thus, r(I', @)=H (assuming now G to be an abelian group). From results
of Section 5 (see Theorem 5.9) it immediately follows that indeed r(I", &)=H. []

4.2. Below the group G is assumed to be abelian.

Theorem 4.2. Let I'CAut(X, B, 1) be an arbitrary ergodic group and
acZ X XTI, G). The action W ,\(G) associated with the pair (I, &) is transi-
tive if and only if the cocycle a is regular.

Proof. It follows from Theorem 4.1 and Lemma 1.12. []

Proposition 4.3. Let there be defined a pair (I', &), where I' C Aut(X, B, u),
acZ\X XTI, G) and r(I', a))=H,CG,. Then, regularity of o, means regularity
of a@. The reverse is wrong.

Proof. Since a, is regular, all values of the cocycle @, may be thought
to lie in Hy, Use, as in Section 3, the notation Hy=(Hg, Hg). Show that
r(I", a)=H,, where H is the closure of the group H; in G. As all values of
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are in the group H, then evidently r(I", @) CH;. Let U be an arbitrary
neighborhood of the identity in G and 4y H;. Then, there is an element 4, € H,
such that A €hy+U. For a certain u, & Hy, the element (4, ) EH, There-
fore, for any 4CX and Uy=UX(—e¢,¢) there is a subset BC A4 of positive
measure and an automorphism 7 €[I'] such that y BC 4 and ay(x, ) E(hy, u)+
Uy, x€B. Thus, a(x, r)E+UCh+2U for aa. xEB, ie. herl, a).
Therefore, we obtain that the cocycle @ is regular.

An example showing that regular @ does not necessarily mean regularity
of a, will be provided in Section 7. []

Corollary 4.4. Let the pairs (I'y, ag) and (I',, @) be such that the cocycles
aj, i=1, 2 are regular and the associated actions Wi, ,1(Go) and Wr, .2(G,) be
isomorphic. Then, so are the actions W, ,4(G) and Wiz, .2(G).

The proof follows from Theorem 4.2 and Proposition 4.3.

The statement reverse to Corollary 4.4 is wrong.

Using the results of Section 3 (see Theorem 3.9), one can prove the unique-
ness theorem for regular cocycles defined on a.f. groups of automorphisms.

Theorem 4.5. Let there be the pairs (I'y, ag) and (I'y, @f) such that the
cocycles af, i=1, 2 are regular and let r(I'y, af)=r(I";, a3)=H, (i.e. the associated
actions Wir,,.1(Gy) and W, .2(G,) be isomorphic). Then, the pairs (I'y, a}) and
(T, @f) are weakly equivalent.

Proof. The statement of the theorem follows from Theorem 3.9, because
af, i=1, 2 may be thought to take values in Hy, []

Remark 4.6. In [4], for an arbitrary l.c.s. group G an analogy of the set
r(I', @) was introduced, viz. the set o(I", @), where the cocycle e Z} (X X I", G)
and I' is an arbitrary countable group of automorphisms. The set o(I", @) is a
closed normal subgroup of G and has the same properties as r(I", @) (see Section
1). Theorems 4.1, 4.2 and 4.5 are true also in the assumption that H is an
amenable normal subgroup of G (or H, of G,). In this case, r(I", ) should be
replaced by o(I", @). Note also that in all the theorems of this section, the
group I' can be of any type.

§5. Free Associated Actioms. Type II

5.1. Recall our standard notation: I'" is an ergodic a.f. countable group
of automorphisms of (X, B, #); G a l.c.s. abclian group, and a cocycle &
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ZY\XxI',G). It will be assumed that the cocycle « is recurrent and nonregular
(see Definitions 1.11 and 1.13), because the cases of the transient and regular
cocycles were considered in Sections 2 and 4. It will also be assumed that I"
is a type II group of automorphisms. Without loss of generality it may be
thought that I' is of type II, and INou=p, #(X)=1.

Letr(I", @)=H CG. The case, where the group H= {0}, will be considered
simultaneously with the general case. Section 3 treats the situation of H=G
and therefore H will be assumed to be a closed proper subgroup of G. As ear-
lier in Section 1, we shall define the cocycle &(x, r)=ea(x, r)+H, r [I'], which
takes values in the group G=G/H. By Lemma 1.14, & is recurrent, as @. By
the Definition 1.11 #(I", c‘z)={6, oo}, where 0 is the unit in G.

Lemma 5.1. The pair (I', @) is weakly equivalent to (I', &) for which the
cocycle &€ ZNX XTI, G) is lacunary.

Proof. Tt follows from Lemma 1.17 that the cocycle & is I'-cohomologous
to a lacunary cocycle &, €Z XX T, G): &(x, r)=F (rx)+4(x, r)—f(x), where
f : X—G is a measurable map. According to the theorem on measurable
choice, there exists a measurable map v : X—G such that f =y+H. Put
ay(x, )=y () +alx, )—y@). O

On the basis of this lemma, we shall always believe the cocycle & to be
lacunary. In other words, there exists a neighborhood ¥, of the identity in G, for
which &(x, r)&V,— {0}, xEX, r [T

Consider the orbital cocycle #3 =% corresponding to &. Let R(I") be the
measurable equivalence relation on X defined by partition of X into orbits of I".
Put P={(x;, xp € R(I): h(x,, x,)=0}. Obviously, &L is also a measurable
equivalence relation and PCR(I"). It follows from the results of [4] that
in [I'] there exists an freely acting automorphism S, such that R(Sp) =<P.
Denote the o-algebra of measurable Sy-invariant subsets in X by ,. Then, B,
corresponds to the partition & of X into ergodic components of S, Put X,=
X/&, ny=un¢ and let n: X— X be the natural projection onto Xj.

Lemma 5.2 [15]. Let u=g V., Aig(Xg) be the expansion of the measure
X,

0
u into the canonical system of measures with respect to the partition &. Then,
the recurrence of & means that the measure iy and the measures {v,} , ex, are
probability and nonatomic for uya.a. xyX,. Besides, the automorphism S,

is conservative (i.e. not of type I), and v, is Syergodic and Syinvariant for
ya,.a. Xy E X
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We consider the Lebesgue space (z~%(xp), v,,) for every fixed x,€X,. It
follows from Lemma 5.2 that for #-a.a. x,E X, the space (z~X(x,), v,,) is isomor-
phic to certain standard Lebesgue space (Y, »), »(¥Y)=1. Let S(x,) be the re-
striction of the automorphism S, onto #~Y(x,). According to Lemma 5.2, for
4-a.a. Xy E X,, the automorphism S(x,) is ergodic, of type II;. From Theorem
2.5 of [10] it follows existence of a mvasurable field of isomorphisms x;—P(x)
(%€ Xy) such that P(x,): Y—z"*(x,), P(xp)ov=v,, and P(xp) "Y[S(xp)] P(x)=[S]
for yp-a.a. Xy E Xy, where S is an ergodic type II, automorphism of (¥, »). E.g.,
the space (Y, p) and the automorphism group 4 of Subsection 3.1 may be taken
as (7, v) and S assuming P to be 4-invariant.

Each point xEX can be represented as x=(z(x), y), where y Ex~Y(z (x)).
Then, the transformation P: x—(z(x), P(z(x))~! y) maps X into X; X Y and the
measure # into #,Xv. We have the auwomorphism group PI'P~! and the
cocycle Poa, both defined on the space (X, X Y, #,x»). Thus, the pair (I', @)
transforms into (PI'P7L, Poa). For simplicity, we shall believe that on
(X, X Y, ¢y xv) the automorphism group I" acts with the cocycle e € Z( Xy X ¥ X
I', G), and these have the following properties: Sy: (xg, ¥)—>(%,Sy) belongs to
[I'], and é(x,, y, S,)=6.

Lemma 5.3 [15]. On the Lebesgue space (Xg, By, 1), there exists an a. f.
countable ergodic group I'y of automorphisms such that

w(ly) = Iya(x), xEX = X, XY, 6.1
and there exists an orbital transient cocycle uy: .(R(I"o)——>é such that for any
rEll

a(x, 1) = u(=(rx), =(x)), xEX. (5.2

Relations (5.1) and (5.2) imply the following. The orbits of I'y is formed
by the projection z of the orbits of I" onto X;,. The cocycle #, has the same set
of values as the cocycle & Therefore, there exists a neighborhood ¥ of the
identity in G for which uy(ro Xg, Xo) €& Vo, 70 €[] (roF1), X,€X,. From Lemma
5.3 it follows that there exists an ergodic automorphism Q& Aut(X,, B,, 4,) for
which [I"]=[Q]. Put ¢(xo)=u(Q Xo, Xo), X E Xy

Lemma 5.4. In the full group [I'] there exists an automorphism R, such that
&(x, R) = ¢(z(x)), xEX. (5.3)

Proof. Since all elements of I' result from projection of I" onto X;, then
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for the automorphism Q €[I'|] there exists an automorphism R&[I'] such that
R: {x} XY= {0 x} XY, xEX,. (5.4

By using equality (5.2), we obtain it that @(x, R)=uy(z(R x), =(x))=uy(Q =(x),
z(x))=¢(=(x)). [

Consider the automorphism

R(Q7'x1): (%0, ) = (X0, ¥) (5.9

which for a.a. x,& X, defines a measurable one-to-one map U(xg): y—y’. Rela-
tion (5.5) shows that x;—U(xy) (x,EX,) is the measurable field of automor-
phisms of (¥, »).

Lemma 5.5. The following statements are true: REN[Sy] and U(x) =N[S]
for vya.a. xyEX,.

Proof. By using (5.3), (5.4) and (5.5), we obtain that &(x, RS,R™)=0.
Therefore, RS,R™E[S,]. Then, R(Q~*x1)EN[S,], which, together with (5.5),
leads to U(x)) EN[S], xo€X,. O

Introduce the notation: Qy(xg, ¥)=(0x,, U(xy) ¥). Unite now the above
proved results in the following theorem on the structure of the cocycles a.

Theorem 5.6. Let a pair (I', @) be as above. The full group [I'] is generat-
ed by the action of two automorphisms Qg and Sy on (XyX Y, 1y Xv) as follows
O(xo, »)=(Q%,, U(x0) ¥), So(x0, ¥)=(x0, S¥) with QyEN[S,]. I; he cocycle ¢ &
ZY X XTI, G) has the properties: &(xy, ¥, Qg)=0(X), &(xy, ¥, Sg)=0, where ¢(x,) &
V, (V, is a neighborhood of the identity in G). The set of values of & coincides
with that of the orbital cocycle u,.

Proof. We have to prove only the equality
'{Tx: TEP} = {Q"Jn S’é(xo,y):m,kEZ},x=(xo,y), (5'6)

since all the other statements of the theorem follow from Lemmas 5.2-5.5.
Assume (5.6) to be wrong; i.e. the set

A =ygp xeX: rxg {QF Skx: m, ke Z}}

has a positive measure. As has been said, the cocycle @ (and thus &) may be
thought to take on only a countable number of values. The condition of the
theorem means that for any fixed y &I" there exists a measurable function
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m=m(z(x)) for which
a(x, r) = uy(Q"™ a(x), z(x) = d(x, Q7). (.7

Then, there is an automorphism 7;=7,(x)E[I'] such that rx=r; Of'x and for
xE4

é(x, r) = Q%' x, ry)+aé(x, OF) - (5.3

Comparing (5.7) and (5.8), we conclude that &(QF x, r,)z(), ie. 7, €[S,]; this
is contradiction to the above assumption and thus proves (5.6). []

5.2. Here it will be assumed that the cocycle e € ZY(X X I', G) is lacunary
(it is also recurrent and nonregular). This means that 7(I", @)={0,00}. There-
fore, all the results formulated and proved for & in Subsection 5.1 are also
true for @ because ¢=a for the group H={0}.

Let us first consider the case where the action W ,,(G) associated with the

pair (I', @) preserves measure.

Lemma 5.7. Let I' be an ergodic a. f. type II, group of automorphisms of
X, B, n), let ecZN(X XTI, G) be a lacunary cocycle, and the action W .)(G)
preserves measure. Then, in the condition of Theorem 5.6 the automorphism Q,
may be chosen to be Q X 1.

Proof. We shall calculate the associated action W ,)(G). From the
ergodicity of S on (Y, v) and the triviality of @ on S, it follows that the action
Wir,»(G) is defined on the quotient space of (XX G, #Xxs) by the partition
into orbits of the automorphism Q(uy): (xg, £)—(0xo, g-+4s(Q%Xg, X;)). This par-
tition is measurable, because the cocycle 4, on @, is transient and a(x, Q)=
(O, Xo) =0 (xy) € Vy, Where Vj, is a certain neighborhood of the identity in G.
Hence, W ,)(G)=W(Q,4,)(G). The action W(q,,(G) preserves measure if and
only if Q preserves measure #,. Now, since the probability measure v on Y is
S-invariant and S-ergodic, then the condition U(x,) € N[S] means that U(xy)ov
=y for yya.a. x,€X,. Applying the cohomology theorem [10] (see also [1]),
we obtain existence of a measurable field of automorphisms xg—P(x,) = N[S]
such that P(Q xp)™* U(x,) P(xp) €[S], x,X,. This means that the transforma-
tion P: (X, y)— (%, P(x) y) maps [I'] into the group generated by Q X1=Q,
and 1 xS=S, This does not change the cocycle @. []

The proofs of Lemma 5.7 and Theorem 2.9 lead to

Proposition 5.8. Let the pairs (I';, @;), i=1, 2 satisfy the following condi-
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tions: I'; is an a.f. countable ergodic type II group of automorphisms of
X;, By, 1), @;€EZYX; X Ty, G) is a lacunary cocycle, and the action Wy(G)=
Wir,,s(G) preserves measure. The actions W,(G) and WyG) are isomorphic if
and only if the pairs (Q*, ug) and (Q% uj) are stably weakly equivalent, where
(Q%, ub), i=1, 2 are defined by (I';, &;), as in Theorem 5.6.

Theorem 5.9. (theorem of uniqueness). Let the pairs (I';, @;), i=1, 2 be the
same as in Proposition 5.8 and the associated action Wy(G)=W, ,,(G) preserves
measure. The pairs (I'y, @) and (I'y, a,) are stably weakly equivalent if and
only if W(G) and WG) are isomorphic.

Proof. Obviously, we may take X;=X,=X. Then, it follows from Theo-
rem 5.6 that Q'=0%?=0, Xs=Xi=X,, th=ui=ty, Y1=Y,=Y, v;=v,=v, §'=5?
=S§. The pairs (I'y, ;) and (I',, @,) differ only in the values of @; and @, on
0y=0x1. The pairs (I';, ;) and (I',, @,) are stably equivalent if and only if
so are (Q, ud) and (Q, ud). Indeed, it follows from the structure of e; and a,
that if ¢ry: Xy X Z— X, X Z is a map responsible for weak equivalence of the co-
cycles i} and #2, then the map ¥ (x,, 1, ¥)—>(¥ro(x, n), ) will define weak equiva-
lence of the pairs (I}, &) and (I',, &,) (recall that @} and & are the countable
expansions of u) and «;,i=1,2). Therefore, by Proposition 5.8. the isomor-
phism of Wy(G) and W,(G) means stable weak equivalence of (I'}, @;) and
(I'y, @;). The reverse statement was proved in Proposition 2.3. []

Let us show now that any free measure-preserving action W(G) of G may
be regarded as associated with a pair (I, @), where I" is a type II group and
a a lacunary cocycle. Namely, we shall prove

Theorem 5.10 (theorem of existence). Let W(G) be an ergodic free action
of G on a Lebesgue space (2, p) preserving the probability measure p. Then,
there exists an ergodic countable a. f. group I' C Aut(X, B, ), m(X)=1, preserv-
ing the measure p, and there exists a lacunary cocycle e €ZNX XTI, G), both
such that the action W(G) is isomorphic to the action Wr .,(G) associated with
the pair (I', ).

Proof. Choose a complete lacunary Borel section X;C £ of the action
W(G). The measure #, on X, will be defined as the image of the measure p.
There exists on X, a countable ergodic equivalence relation R, and let Q be
such an automorphism of X, that R(Q)=R [4]. Clearly, Q preserves the
measure #,, and #(Xy)=1. Define the return cocycle u,&Z (X, x[Q], G) for
the action Q on X,, assuming #)(Q x,, X,)=g, where g& G satisfies the equality
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W(g) xo=0 x,. Since the action W(G) is free, then g=g(x,) is defined unam-
biguously.

Let (Y, v), »(Y)=1 be a Lebesgue space, and S <Aut(Y, v) be an ergodic
automorphism preserving v. Define on (X, #)=(Xy;X Y, #,Xv) an group I" of
automorphisms of type II, generated by Q, and Sg:

0%, ¥) = (@ X4, ) 5 S, ) = (%, SY) . (5.9)
The group I' is ergodic and a.f. Put
a(xg, ¥, Qo) = ug(Q X, %), @(Xp, ¥, Sp) = 0. (5.10)

Since the section Xj is lacunary, then the cocycle , is transient and the cocycle
a is lacunary. It is now transparent that the associated action W ,.)(G) is
isomorphic to W(G) (see e.g. [3] and also Section 2). []

There exists an example of a type Il group I' and a lacunary cocycle
aeZY(XXT, G) such that the associated action W ,y(G) is non-singular (i.e.
of type III). Moreover, such a pair (I', @) may be constructed by any non-
singular action W(G) of G.

Theorem 5.11. Let W(G) be an ergodic free action of G on an Lebesgue
space (2, p), p(2)=1 with a non-singular measure p. Then, there exists a piar
(I", @), where I' is an ergodic a.f. group of automorphisms of (X, B, r) preserv-
ing a o-finite measure p and e €Z X XI', G) is a lacunary cocycle, and this
pair is such that Wr ,(G) and W(G) are isomorphic.

Proof. As in the proof of Theorem 5.10, let us define the following ob-

jects: (X, #4), O, R and u,. The automorphism Q has, generally speaking, the
-1

non-trivial Radon-Nikodym cocycle o (x,, Q)=logd—Qd°—°’fi’(xo). Consider a
H

Lebesgue space (Y, v) with o-finite measure v and an ergodic automorphism S

of (¥, v) preserving v. Let x4—U(x,) (x,EX,) be a measurable field of auto-
morphisms of (¥, v) such that U(x,) = N[S] and

O(U(xp)) =1log ﬂj%f_‘i

= —p(xp, O) . (5-11)
Put (X, £)=(XyX Y, #yXv) and Qy(xp, ¥)=(Q X, U(x0) ¥)> So (%05 ¥)=(xp, S¥).
Then, Q,&NI[S,]. Denote by I' the a.f. type II. group of automorphisms
generated by Q, and S,. Define the cocycle @ for I', according to formulae
(5.10). The pair (I, @) will satisfy the conditions of the theorem. []
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Let us prove now the uniqueness theorem for the pairs (I", @), whose as-
sociated actions are non-singular.

Theorem 5.12. Let I'; be an ergodic a. f. type II group of automorphisms of
X;, By, 1), and a;€ZNX;XTI';, G) be a lacunary cocycle, i=1,2. Assume
Wr,.«(G) associated with (I';, a;) to be non-singular, i=1,2. The pairs (I'y, &)
and (I'y, a,) are stably weakly equivalent if and only if Wi, ,)(G) and Wir,, .,(G)
are isomorphic.

Proof. Since we are interested in the stable weak equivalence relation,
then we may consider the pair (I';, &) instead of (I';, @;), i=1, 2, i.e. believe
that I'; is of type II,, and g; is I';-invariant and infinite. Theorem 5.6 naturally
remains valid in this case as well, and the measure v on the space Y is also
infinite (see Subsection 5.1). The automorphism Qi(xp, ¥)=(Q’ Xo, Us(x0) ¥)
preserves the measure u;=u§ X v, therefore, @(U(xy))=—0(xy, Q) (here (xo, ¥)
€X). Based on the isomorphism of W, . (G) and Wy, ,,)(G), it may be as-
sumed, as in Theorem 5.9, that I',=I",=I", Q'=0*=0Q, a,=a,=a, (X}, )=
Xy, #)=(X, #). Thus, O(U;(x,))=P(Uy(x,)). By the cohomology theorem [10]
there exists a measurable field of automorphisms x,—P(x,) (%, X,) such that
P(xy)EN[S] and for a.a. x,EX,

P(Q x0) " Uy(xg)P(x0) = Uy(xo) (o) (5.12)

where x,—>s(x) €[S]. Equality (5.12) shows that the transformation P: (x,, y)
—>(xg, P(x,) y) belongs to N|I'] and Poa=ea, because the cocycle a is completely
defined by the action of Q on X,. Thus, P maps the generators (Q3, Sp) of [I']
into the generators (Q3, S) without & being replaced. This proof is concluded,
as that of Theorem 5.9, by consideration of the corresponding transient
cocycles. [

Corollary 5.13. Let ac€Z X X T, G) be a lacunary cocycle, where I' is of
type II. There exists a cocycle a,, which is stably weakly equivalent to « and
such that e, is trivial on Sy and @, is a transient cocycle on Q,, where Qq and S,
are the generators of [T'].

§6. Non-free Associated Actions. Type II

6.1. Let I be an ergodic a.f. group of automorphisms, Go=G X R, and
a cocycle ¢yeZ X xTI', G)). Assume e, to be nonregular and r(I", ) = H,,
and I" to be of type III. If I' is a type II group, then the proofs below, will be
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simplified.
Recall that, according to Theorem 5.6, I' is generated by Q, and S, which
act on the Lebesgue space (X, X Y, #,Xv) as follows

Qo(xO’ y) = (on: U(xo) y) H So(xo, y) = (xo, Sy) . (6'1)

The cocycle ¢ Z (X, x Y X T, G,), G,=G,/H, takes on Q, and S, the following
values

&o(xo’ Vs QO) = ?’(xo) s &O(xo’ s SO) = 6 s (62)

where o(x,) €= V, and ¥, is a neighborhood of identity in G,

It follows from (6.2) that the cocycle a, takes the values on S, from the
group H, . Thus, @, on [S;] defines a measurable field of cocycles xg—>ay(x)
(y, 5), sE[S], x, X, with values in H,.

Lemma 6.1. The range of the field of cocycles x,—>ay(x,) (¥, s), s E[S] is
the group H,.

Proof. It follows from (6.2) that there exists such a neighborhood ¥ of the
identity in G, that the values of @, on I do not belong to the set (H,+V)—H,.
Let 4, be an arbitrary element of H, and W an arbitrary neighborhood of the
identity in G,. The condition r(I", ¢,)=H, means that for any set ACX;X Y,
(X v) (A)>0 there exist a subset BC A4, (#,Xv) (B)>0 and an automorphism
r€[I'], such that yBCA and ey(x,, y, r)Eh,+ W for a.a. (x,, y)EB. Since
7 (%0, ¥)=8% Qt(x0, ¥), Where m=m(x,, y), n=n(x,, ¥), then we obtain for (x,, )
EB

ao(Qg(xm y)a St')”)‘i‘ao(xo, s Qs) Eh0+ w °

Since @, on @, takes values in H,, then a,(x,, y, Q5)=H,+W. Let WCV; we
obtain that ay(x,, y, @5)=H,. It follows from (6.2) that in this case »=0 and
then 7(x,, ¥)=St'(x,, ¥). Hence, the field of cocycles x,—ay(x,) (x,E X,) has the

property r({e,(-)})=H,. [J

The above properties of I" and «, show that the ergodic automorphism
SeAut(Y, &, v) may be only either of type I or of type III, (0<<A<1). This
depends on the group Hp, where Hy=(H,, Hp) (see Subsection 3.1). In Section
3 we introduced the standard cocycle 8, defined on the a.f. group of automor-
phisms, its range coinciding with H,. Application of Theorem 3.13 yields the
following result: there exists a measurable field of automorphisms x,— R(x,) E
NIS] such that the cocycle Roa, is S;-cohomologous to a constant field of cocy-
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les By, where R(xp, ¥)=(xp R(x,) ¥). In other words, there exists a measur-
able function f: X, X Y— H, such that for s,E[S;], (xp, V) EXy XY

S(so(xos ¥))+Roe(Xq, ¥, 50)—F (%0, ¥) = Bo(5 5(X0)) » (6.3)

where sq(xy, ¥)=(x,, S(x;) ¥). Under the action of R the group I' will trans-
form into the group I'’=RI'R™! generated by S, and Qf, where Qf(x,, y)=
(O x5, U'(%0) ¥), U'(%0)=R(Q x,) U(xy) R(x,)". Since R preserves the measure
v (see Section 3), then for a.a. x,€X,, O(U(x))=P(U'(x,)). The cocycle «,
will be replaced by af defined on I"":

af(xo, ¥, 7") = f(r'(xo, ¥))+Roa(xo, ¥, 7)—f (%, ¥) 6.9

where f is the same as in (6.3), i.e. @ coincides with 8, on [Sy]. Thus, we have
proved the following

Lemma 6.2. The pair (I", &), where r(I", ay)=H,, is weakly equivalent to
the pair (I'', at) for which a{(x,, y, Sp)=PFo¥, So)-

Consider first the value of @f on Qf. Let o: Go/H;—G, be a measurable
section of G, over G,/H, This means that ¢(§)EG, and =(o(£))=¢, where
ﬁeéo and z: G‘,——>GA0 is a natural projection. Thus, any element g,& G, can be
represented as

g0 = (o) +ho(g0) » (6.5)

where h(g,) €H,. We have, in view of (6.2) and (6.5) &y(x,, ¥, Qo)=0(p(xy))+
ho(xq, ¥), Where hy(x,, ) is a measurable function from X, X Y into H,. The val-
ue of Roa, on Qf is easy to calculate: Roay(x,, ¥, O6) =0(@(x))+hg(%e, R(3p)71Y).
Then, according to (6.4),

ag(xg, ¥, Q0) = f(Q xo, U'(x0) )+ 0(9(x0))
(%0, RO0)™ 1) —f (05 ¥) - (6.6)
Lemma 6.3. Let (x5, ¥)=—/(Q X0, U’ (xg) ¥)—ho (X0, R(Xe)™* ¥)+f(x0, ¥).

Then, in [S,] there exists a measurable field of automorphisms sy=(xg—>s(x,)) such
that for a.a. (X, V) EX, XY

a(’)(Q(’)(xm ), 80) = 1(xg, ) - (6.7)

The proof of the lemma is transparent enough, so we shall only provide a
sketch of it. As earlier, taking into consideration the results of [6], the cocycle
a, may be assumed to take values in a countable group Hj which is dense in
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H,. In this case the function f can be chosen so that a§ should be aslo take
values in Hj (see (6.4) and Remark 3.12). Therefore, f(r'(xg, ¥))—f (%, ¥) be-
longs to H§. These observations enable conclusion that the function / is pie-
cewise constant and has values in H{. Since the group [Sg]={s €[S], Ao(¥, 5)
=0, yEY} is ergodic on (Y, v), then equality (6.7) is easy to obtain for any
fixed xy€X,. Because /(x,, y) is the measurable function, the corresponding
field of automorphisms s,=(x,—>s(x,)) may be chosen to be measurable. []

Put Q{)(xo, 1)=(Q xq, S(Q xo) U'(xg) ¥)=5¢ Q6(xo, ), Where s, is the same
as in Lemma 6.3. Then, it follows from (6.6) and (6.7) that ag(x,, v, oh)=
a(p(xp))=@(xy). Thereby the following result is proved.

Theorem 6.4. For a pair (I', @y) having the properties described in the
beginning of Subsection 6.1, there exists a pair (I'', @) weakly equivalent to
(I", @) and such that T'' is generated by Qb and S,, so that

(%o, y, 08) = @(x0) »  @i(¥e, ¥, So) = Bul¥, S) . (6.8)

6.2. We shall calculate the associated action W ,,(G;) of G,, where
(I, @) is the same as in Subsection 6.1.

Proposition 6.5. For a pair (I', ay), r(I', ¢))=H,, the associated action
W r,«e(Go) has the group Hy as a stabilizer, i.e. Wr ., (Go/H,) is isomorphic to
the free action of éo=Go/Ho associated with (Q, uy), where u(Q x,, X5) =@(x,).

Proof. The proof follows from Theorem 6.4, Lemma 6.1 and Proposi-
tion 5.8. [

After the preparations made, let us consider the existence and uniqueness
theorems (analogous to the theorems of Section 5) for the case, where I' is an
ergodic a.f. type II group of automorphisms and a a nonregular cocycle from
ZNXx T, G) such that r(I", @)=H.

Let there be defined two pairs (I';, &;), i=1, 2, and let r(I'y, @) =r(I"y, @)=
H. According to Theorem 6.4, we can transfer to weakly equivalent pairs
which has the following properties I'y=I,=TI", a,(Xy ¥, So)=0c(X,, ¥, So)=
B(y, S) (in the case where I is of type II, B, coincides with ).

Theorem 6.6. Let I' be an ergodic a.f. type II, group of automorphisms of
X, B, 1) and ¢;€ZN(X XTI, G), i=1,2. Let W ,,(G) and W(r ,,)(G) be iso-
morphic and preserve measure; then r(I', a))=r(I", a))=H and the pairs (I', a,)
and (I', a,) are stably weakly equivalent.
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Proof. As has been mentioned, the group I' can be believed to be gener-

ated by 0} and S, and the cocycles @;, i=1, 2 to satisfy relations (6.8). The
isomorphism of W(G)=Wr,,,(G) and W,(G)=Wr,,(G), and Proposition 6.5,
and (6.8) lead to the equalities: Q;=0,=0, @,(xo) =@x(x0)=2(xo), @ (X0, ¥, Q)=
(%0, ¥, OF), where Qf (%o, )=(Q Xo, 5(%o) Ui(%o) ), i=1, 2. Note that 0,
i=1, 2 and Q preserve measure, since also so do I" and W;(G) (see Proposition
6.5). Therefore, we obtain that @(U,(x,))=0(Uy(x,))=1 for a.a. x,&X,. Thus,
we can consider the weakly equivalent pairs for which U;(x,)=U,(x,)=1. Then,
it is sufficient (as in Section 5) to consider the automorphism Q,=Q X1 instead
of 0}, defining a,(xy, ¥, Q0)=a(xp)=0(p(x,)), where ¢: G/H—G was defined in
Subsection 6.1. If the statement of the theorem is proved on this assumption,
then it will obviously be valid in the general case as well. Thus, the generators
of [I'] are chosen in two ways: (Q,, S,) and (s S,), where Q,=s5,0,, and a,
and a, coincide on S; and are related as follows:

@y(%o, > Qo) = &3(X, ¥, Qo) +h(xo, ¥) (6.9)

on Q,, where h(x,, ¥) is a measurable function with values in H.

Let {e,} 7-1 be a sequence of positive numbers monotonically converging to
0 and {9,}7.: a sequence of sets, which is dense in B, each term occuring an
infinite number of times in it. Construct a I'-array {; such that the cocycle
takes constant values on each of its elements. Besides, the group of automor-
phisms G(£;), approximates the orbits of I" with error ¢;, and in L({)) there is a
set D{ which approximates D, with the error ¢,. Such the array exists because the
function &(x,) may be thought to be piecewise constant. Since @, on {Q;: n= Z}
is transient, then the array ¢, is globally nontransitive and consists of a finite
number of transitive components. According to (6.9) and the condition of the
theorem, there exists a I'-array 7z, such that: (1) 7, has as many transitive
components as ¢;; (2) every transitive compnent of 7, contains as many sets as
the corresponding component of {;; (3) the sets of #, can be numbered so that
for the sets E(i) and F(i) of ¢, and #,, respectively, having identical numbers,
V(E@) (x)=v(F(@) (xp)) for a.a. x,=X,, where E(@) (x,) and F(i)(x,) are x,
sections of E(f) and F(i); (4) the values of @, and a, on elements of {;, and 7,
with identical numbers coincide. E.g., 7, can be constructed over the partition
which defines {; on X. Then, refine the I'-array #, and construct a I'-array 7,
such that the cocycle @, takes constant values on its elements and G(»,) ap-
proximates the orbits of I" with the error ¢, and %(7,) also approximates the set
D, with the error ¢;. To do so, let us consider a set 4 consisting of the union
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of fundamental sets of transitive components of 7, and construct the I'-array 7}
on 4 in such a way that the refinement of 7, by 7{, which we denote by 7,,
should have the above properties. Then, construct a refinement ¢, of ¢, so that
the above conditions (1)—(4) should be fulfilled for the arrays ¢,, 7,. By repea-
ting the said procedure a countable number of times, construct two sequence of
I-arrays {¢,} .1 and {7} 7.1, which approximate the c-algebra B and the or-
bits of I'.  On elements of these arrays having the same numbers, the cocycles
a, and a, have the same values. Therefore, as in the proof of Theorem 2.3 of
[1] and Theorem 3.9, we conclude that there exists a measure-preserving auto-
morphism 0 N[I'] such that foa,=a,. Note that the automorphism 6 repre-
sents a measurable filed of automorphisms x,—0(x,) € N[S]. This follows from
the fact that for any k= N there exists an automorphism s,&[S,] such that ¢,
is mapped by s, into 7, (see property (3) above). Since 6 is the limit in the
metric d on N[I'] of the automorphism sequence {s,} 71, then 6 has the above
form (the metric d was defined in [9]). Thus, it is proved that the pairs (I, @)
and (I'y, @,) (under the above assumptions) are stably weakly equivalent. [

Consider the problem of existence of a pair (I, @) for which the associated
action is isomorphic to a given action of G. We shall consider in particular non-
free actions.

Theorem 6.7. Let an ergodic action W(G) of the group G on a Lebesgue
space (82, p), p(2)=1 be defined which preserves p and has a stabilizer HCG.
Then there exists a pair (I', &), where I' is a type II, ergodic a.f. group of auto-
morphisms of (X, &) and a cocycle a€ZNXXT", G), such that v(I', &)=H and
the associated action W ,\(G) is isomorphic to W(G).

Proof. The plan of the proof is the same as that of Theorem 5.10. Define
for the free action W(G) of G=G/H on (2, p) the following objects as in
Thoerem 5.10: (Xg, ), O, 4y, (Y, v) and S€Aut(Y,v). Let F=Z (Y X[S], H)
be the standard cocycle defined in Subsection 3.1 such that H=r(S, 8). Let I
be a group of automorphisms of (X, #)=(X, X Y, #,Xxv) generated by Q,=0 x1
and S;=1xS. Define a cocycle a for I': a(x,y, Q) =0cW(Q Xy X)),
a(xy, ¥, So)=A8(y, S), where a: G—G is a measurable section of G over G. As
in Theorem 5.10, we see that the pair (I, @) is sought-for one. []

The following theorem shows that the action associated with (I, ) does
not necessarily preserve measure, though I" is a type II group of automorphi-
sms.
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Theorem 6.8. Let W(G) be an ergodic non-free non-singular action of G on
a space (2, p), p(2)=1 and let H be the stabilizer of the action of G. Then, there
exists an ergodic a.f. group I' acting on a Lebesgue space (X, #), M(X)=oco0 and
preserving the measure 1 and there exists a cocycle aEZY X XTI, G), and both
are such that r(I', @)=H and W ,\(G) is isomorphic to W(G).

Remark. If ECX, #(E)<oo, then for the pair (I'g, @) the associated ac-
tion W, »p(G) is isomorphic to W, ,)(G). Therefore, it is unessnetial that I”
in Theorem 6.8 is of type IL..

Proof. Define the objects (X,, #o), O, %, 0, W(G) as in Theorems 5.10 and

6.7. The automorphism Q has a nontrivial Radon-Nikodym cocycle o(x,, Q")

d Q™ "ou,
d 1

=log (x,). Let S; be an ergodic automorphism of a Lebesgue space

(Y, vp), vi(Yy)=oc preserving the measure »;,. Construct a measurable filed
x—>U(x)EN[S] (%, X,) of automorphisms of (Y3, »;) such that

D(U(x)) = —log d—%—:‘%"o (x0). (6.10)

Let S, (Y, v) and B be the same as in Thoerem 6.7. Define the automorphism
group F generated by commutating automorphisms 1 XS and S; X1 on the space
(Y, X Y, v, xv) and the cocycle g, ZY (Y, X Y X F, H), assuming that A(y, S")=
Bi(y1, y, 81, 8™). Now it is obvious that r(F, 8,)=H.

Let us consider the following automorphisms on the space (X, #)=
XX Yy XY, g X vy XV):

QO(xO’ Y15 y) = (Q X0, U(xo) yl’ y) >
S1,o(x0a yl: y) = (x(!a Sl yl’ y) B
So(xo, Y1 y) = (x()s Y1 Sy) .

These automorphisms generate the ergodic a.f. group I', which, by (6.10), is of
type II... Define the cocycle @ on I':

a(x(b Y1 Vs QO) = ”(uo(Q Xo5 xo)) >
a(xo,yv% SI,O) :09 (611)
a(xo, Y1, ¥, So) = B(», S) .

It is easy checked that formulae (6.11) define the cocycle @ on I' correctly. The
ergodicity of S; on Y and of S(8) on Y xH means that the associated action
W r.»)(G) of G has the stabilizer H and is defined on the quotient space X, x G/H
by the measurable partition into orbits of (x,, £)—(Q x,, &+u(Q x,, X,)). Since
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u, is a return cocycle for W(G/H), then W(r ,(G) is isomorphic to W(G). [

Prove now the uniqueness theorem for pairs whose associated actions are
non-free and non-singular.

It follows from Theorem 6.4 that, if a weakly equivalent pairs are considered,
any pair (I, @) can be assumed to have the following properties: the group I" is
of type II and is generated by the automorphisms Qy: (xp, ¥)—(Q Xy, (%) ¥),
So: (%, ¥)—>(xp, Sy) acting on (X, X Y, #,Xv), and the cocycle « is given by the
formulae:

@ (%, 5 Q) = P(xg) = 0(9(xy) 5
a(XOa Vs SO) = ﬁ(ya S)a (6.12)

where £ is the standard cocycle from Section 3, the function ¢: X;—G is out-
side a neighborhood of identity in G and o is a section of G over G.

Theorem 6.9. Let there be defined the pairs (I'y, @,) and (I'y, @) satisfying
the above conditions and relations (6.12). Then, if the associated actions
Wir,,x,(G) and Wir, .,(G) are isomorphic, then (I'y, @;) and (I'y, @) are stably
weakly equivalent, and r(I'y, a,)=r(I,, ).

Proof. Obviously, it may be believed that I'y and I', act on the same space
(X, X Y, #y xv) and moreover [I';]=[I",]=[I"]. In view of the results of Section
5 and Proposition 6.8, by changing to stably weakly equivalent pairs, we can
provide that Q,=0,=0, ¢,(x))=¢,(x))=¢(x,). Thus, we are now to construct
an automorphism P=(xq—P (x,))EN[I'], where P(x,)EN|[S] and P oa;=a,,
P'IQ(‘,P:QESO. It follows from the conditions of the theorem and the fact that
the automorphisms Qé, i=1, 2, preserve measure, that for a.a. x,E X,

(%)) = O(Ty(x,)) - (6.13)

The values of @, and @, on Q} and Q2 differ by a function taking values in the
group H=r(S, ). We may multiply the element Q3 by an automorphism
stE[S,), so that the values of ; and @, on O} and Q3 5§ should become equal.
Now we shall do as in the proof of Theorem 6.6. Using the above
properties of @, and @, and the property (6.13), construct two sets of I'-arrays,
{,}5.1 and {n,} - satisfying the conditions: (1) U;-1G(€,) x=Um1 G(@,) x
=I'x; (2) o(Upa1 P ))=0(Uma1 P (2,))=9B; (3) the arrays &, and 7,, nEN
have an equal number of sets and »(E () (x,)) =v(F (i) (x,)) for a.a. x,E X,, where
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E({) and F(7) are sets from &, and 7,; (4) on elements of £, and 7, having the
same serial numbers the cocycles @; and @, assume equal values. Therefore,
there exists an automorphism P=(x,— P(x,)) € N[I'], which transforms the ge-
nerators (Q}, Sp) of I' into (Q3, S,) and is such that P~ea,=a, []

§7. Associated Actions for Type III Groups I"

7.1. In this section we shall consider the existence and uniqueness theo-
rems for the pairs (I, @), where I" is a type III a.f. ergodic group of automor-
phisms. In Subsection 7.2 we shall construct an example of (I', &,) for which
r(I', @)==G, r(I", p)=R (i.e. I' is of type III;), but r(I", ¢))={0}. In Subsec-
tion 7.4 we shall study the interrelation between the type of I" and that of an
associated action.

We shall use essentailly the results of the two preceding sections. First,
we shall consider free associated actions of G,—=G X R, where G is an arbitrary
l.c.s. abelian group. Recall that we deal here with nonregular recurrent co-
cycle a,.

It follows from Theorem 5.6 that, if (I, @) is such that W, ,,(G,) is free,
ie. r(I", @)= {0}, then I" acts on the space (X, X Y, #,xv), and (I, ¢,) has the
following properties: (1) I" is generated by the automorphisms @, and S, (see
(6.1)); (2) @, is defined on Q, and S, by the formulae: ay(xy, ¥, Qo)=¢(x,),
ay(xo, ¥, So)=0, where the function ¢(x,) is separated from the identity in G, by
a neighborhood V.

Property (2) implies that a,, when considered on {Q%: nE Z}, is there tran-
sient, and the ergodic automorphism S is of type II, i.e. Sov=y . Assume for
convenience the measure v to be infinite. Besides, since p(x)=(p(xy), Pa(*0)),
then

Palxe) = log T27°% () + (U ()
d 1,

The above properties of (I', @,) suggest validity of the following lemma

(which is proved in the same way as Lemma 5.8).

Lemma 7.1. The free action W ,,(G,) of G associated with (I", a,) is iso-
morphic to the associated action of G, constructed by the pair (Q, ¢(x,)).

Theorem 7.2. Let there be two pairs (I';, &) and (I, a2), which satisfy the
above conditions and are such that r(I'y, ag)=r(I, a8)={0}. Then, the isomor-
phism of the associated actions Wir, .2(Go) and Wir, 42(Gy) means that (I';, ap)
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and (I',, af) are weakly equivalent.
The proof is essentially the same as that of Theorem 5.9.

Theorem 7.3. Let W(G,) be a free ergodic action of G, on a Lebesgue space
(£2,p). Then, there exists a pair (I', a,), where I' is an ergodic a.f. group of
automorphisms of (X, B, u) and ay&Z (X xTI', Gy) both such that the associated
action W p, ,,(Gy) is isomorphic to W(G,).

Proof. We introduce, as in Theorem 5.11, the following objects: (X, ),
0, uy, (Y, v), S. Denote

u(Q X, Xo) = 9(x0) = (pc(%0)s Pr(X0)) - (1.1)

Choose a measurable field of automorphisms x,— U(x,) € N[S] such that
d -1
O(Ux) = eatxo)—log L2 x).
,uo

Let I be the group of automorphisms with the generators Q, and S,, where
0O, and S, are defined by (6.1). The cocycle @ is defined by the formulae:
a(xp, ¥> Qo)=c(X0), &(xg, ¥, S)=0. The action W ,(G,) is isomorphic to
w(G). O

In Subsection 7.4 we shall consider the problem of the type of the group
I" whose existence was proved in Theorem 7.3.

7.2. Let us construct an example of a type III, automorphism group I" and
a cocycle e € ZY(X xI', G), which are such that the ranges of the components a
and p of @, are G and R, respectively, while ¢,=(e, 0) is lacunary in G,.

Example 7.4. Let there be defined a Lebesgue space (X, #)=(X;X7Y,
o X V), t(Xg)=v(Y)=0c0, an ergodic automorphism Q& Aut(X,, 1), Qouy=1,,
an ergodic automorphism S & Aut(Y, v), Sov=v, and an automorphism U & Aut
(Y, v), the latter such that U N[S] and Uov=2v, where A&€(0, 1). Put as
usual Qy(xq, ¥)=(Q xy, Uy), Se(xy, ¥)=(%p, Sy). Since Q is of type IL., then
there exists an action /(G) of G on (X,, #,), which preserves the measure #, and
is such that /(g)EN[Q], g=G and I(g)k[Q], g=e (see e.g. [6]). Put [(g) (x5, )
=(l(g) X9, U(g) ), gEG, where U(g)EN[S] and O(U(g))=log A(g), the num-
bers log 2, log 4(g), g G being rationally independent, and assume that there
exists an element g; G such that A(g;)=#1. Consider equivalence relation &
with continuous orbits, which is generated on (X, #) by the action of @y, S, and
(g)=I(g)xU(g), g€G. The above properties of A(g) show that the equiva-
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lence relation &£ is of type III,. Consider the cocycle @ deffned on the gener-
ators of & as follows: a(x,, ¥, Qp) =a(xy, ¥, S)=0, a(x,, y, [(g))=g, g€G. Ob-
viously, (&, @)=G. Calculate now the range of ay=(a, o). Show that the
associated action W(g q4,)(Go) is free, whence it will follow that r(&€, ay)={0}.
The orbits of the equivalence relation £(a,) are generated by the automorphisms:

Qo(ao) (%0 ¥ hyu) = (Qo(xm ¥), h, u+log 2),
So(ao) (xO: Y, h, u) = (x(): Sya h’ u) s (72)
Io(8) () (%o, ¥, b, u) = (I(8) xo, U(8) ¥, h+g, u+log 4(g))

(recall that &(a,) defines the partition into equivalence classes on the space
XX YXGXR). Let usfind now the quotient space by the measurable hall of
partition into orbits of the equivalence relation () on X, X ¥ X G X R. Since
S acts ergodically on Y and in view of (7.2), this quotient space should be
sought for in the set X;X G X R, i.e. in “the plane perpendicular to Y. Put
E=X,x {0} x[0, —log ). It follows from (7.2) that the set E intersects the
orbits of Qy(a,) and /(g) (a,) exactly at one point. Therefore, E can be identified
with the desired quotient space, and W(g 4,)(Gy) can be thought to be defined
on E. Let (g, uy) EGy, (%, 0, u) EE; then

W(8,ao)(gw Up) (%o, 0, ) = Qo) (I(—go) X0, 0, u+u,—log A(gy)) ,

where the number 7 is chosen by the condition u-+u,—log A(g,)+nlogle
[0, —log A]. Therefore, the automorphism W )8, %) acts identically if and
only if 0" I(—g,) x,=x,. However, since /(G) was chosen to be strictly outer
to [Q], the latter equality is not true.

Let us construct the countable group I' of type III; in the following way.
Let G, be the measurable groupoid generated by [Q] and /(g), g&G. Then G,
is isomorphic to the groupoid X' x T'XI' X T, where a countable automorphism
group I' acts on the Lebesgue space X’ [3,17]. The cocycle a defined on G,
can be replaced by the cohomologous cocycle @’ so that it should become trivial
for the action of the circle 7" on itself, i.e. @’ should be concentrated on X’ XI"
(simple arguments omitted). The pair (I", «") will have the properties: r(I", @")
=G, (I, ef)={0}. O

The latter example suggests that regularity of @ does not imply regularity
of ay.

7.3. Consider the uniqueness and existence theorems for (I, ¢;) for the
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case of type III group I" and a non-free associated action W ,,)(Gj).

Recall the results of Theorem 6.4. By changing to the weakly equivalent
pair, one can provide the following properties of any (I, &,) such that r(I", ay)=
Hy: (1) the group I' is generated by Q, and S, acting on (X;X Y, #,Xv) as
Qo0 ¥)=(Q Xo, U(x0) ), So(x0, ¥)=(x0, S¥), U(x) EN[S], (2) @, is defined on
I' as

ay(xo, ¥ Qo) = P(x0) = (Pc(x0), Pr(%0)) 5
(X, ¥, So) = Bo(¥> S) » (7.3)

where j, is the standard cocycle from Section 3, for which r(S, 8,)=H, For S
there are two alternatives: it is either of type II or of type III, (0<A<1), ac-
cording to the form of HyCG X R.

Theorem 7.5. Let the pairs (I';, a}), i=1,2 have the above properties and
r(I'y, ag)=r(I'y, ai)=H,. Then, if the associated actions Wir,,.(G,) and Wir, .2
(G,) are isomorphic, then (I'y, a3) and (I'y, @) are weakly equivalent.

Proof. 1t follows from the conditions of the theorem and relations (7.3)
that for both the pairs (I'y, @) and (I, @) it can be believed that the Lebesgue
spaces coincide in which the groups I'; and I', act, and also S§=S%. Since S
is of type II or III, (0<<2<1), then there exists in [S] an ergodic subgroup on
which the cocycle B, is trivial (see Corollary 3.15). Thus, as in Lemma 6.5, the
associated action Wy, ,i)(G,) is isomorphic to the action of G, on the quotient
space of X, X G, by the measurable partition into orbits of (xo, £,)—>(Q' X,, §+¢*
(x0), i=1, 2, where ¢%(x,) is separated from zero. By changing mentally to
weakly equivalent pairs, we find that Q'=Q*=Q and ¢'=¢?=¢. The latter
equality, combined with (7.3), means that ¢! and ¢? differ by an element of H,,
and thus,

P6(%0) = Pe(xp)=he(x)) , Pr(X)) = PR(Xe) = hg(xo) . (74
Since pk(x,) = o(x,, Q)+ O(U'(xy)), i=1, 2, then (7.4) leads to
O(U(xp)) = O(U(x0))+hg(xo) - (7.5)

Relation (7.5) means that by multiplying Q3 by an element s,&[S,] (as in the
proof of Theorem 6.4), we shall obtain that e} on Q} and a2 on Q3=s, Q3
coincide. Now, in view of Theorems 6.6 and 6.9, there exists a transformation
P=(x,—P(x,)) with the following properties: P EN[S,], (P (x,))=1, P Qs P!
=s4 Q3, P~loaj=ai. By repeating the arguments of Theorem 6.9, we find that
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(I'y, @;) and (I, af) are weakly equivalent. [

The proof of Theorem 7.5 shows that its conditions provide for orbital
equivalence of I'; and I'y.

Theorem 7.6. Let W(G,) be an ergodic non-free action of G, on a Lebesgue
space (2, p), for which p is non-singular, and H, the stabilizer of W(G,). Then,
there exist an ergodic a.f. group I' acting on (X,u) and a cocycle o,
ZN\XxT,G,), and both are such that r(I', a))=H, and the associated action
Wr,s)(Go) is isomorphic to W(G,).

Proof. This one is partly similar to those of Theorems 6.8 and 7.3. [

7.4. In conclusion, let us consider several results on the relationship
between the types of I' and W(; ,,(G,). Let the group I" be generated, as
before, by Q, and S, and the cocycle ¢, satisfy relations (7.3).

Proposition 7.7. Let I' be an arbitrary countable ergodic group of auto-
morphisms of (X, B, 1) and a a transient cocycle from Z\X xI', G), where G
is an arbitrary l.c.s. group. The type of I" coincides with that of the associated
action Wir, ,(G) (and also with that of Wir, .,(Gy)).

The proof follows from the results of Section 2. []

Corollary 7.8. The type of the associated action W(r ,.(G,) for the group
I" generated by Q, and S, and for the cocycle a, having the properties mentioned
in the beginning of this section coincides with the type of the automorphism Q.

Proof. The statement follows from Proposition 6.5. []

Consider the following problem: let an action W(G,) be defined on a
Lebesgue space (£, p); then, what type may I" be of, if W, ,)(Go) is isomorphic
to W(Gy)? Let us first dwell on some particular cases.

Lemma 7.9. For any pair (I, &), we have r(I", a))Cr(I", &) Xr(I", p).

Proposition 7.10. Let the pair (I', ay) be such that I' is of type II or III,
and the associated action Wir ,(Gy) is non-free, i.e. r(I', ag)=H,=+ {0}. Then,
the group Hy is Hg X {0} where Hy is a closed subgroup of G.

The proof immediately follows from Lemma 7.9. []

Theorem 7.11. Let I" be an arbitrary ergodic a.f. group of automorphisms
of (X, B, 1) and G an arbitrary l.c.s. abelian group. There exists a cocycle
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a,EZNX XTI, G) such that the associated action W .(Gy) is of an arbitrary
type, i.e. the type of Wr, ,(Gy) does not depend on the type of I'.

Proof. (1) LetI be of type II. It can be thought of as generated by Q,
and S, preserving measure on (X, XY, g, xv) where Qy(x,, ¥)=(0 x,, U(xy) »),
So(X0, ¥)=(xg, SY), U(xp) EN[S], O(U(xy))=—0(xy, @). Let the cocycle a, be
a transient on Q, and be zero on ;. Then, the statement of the theorem fol-
lows from Corollary 7.8 and Theorem 5.11, because Q can be of an arbitrary
type.

(2) Let I' be of type III, (0<<A<1) or III,. Then I" is orbitally equivalent
to I' xI',, where I'; is of type II group. Let a cocycle e ZY (X xI"' xTI';, G) be
zero on I" and be concentrated on I';.  Then the associated action W xr,,4(Go)
is isomorphic to Wr (B)X W(r, »(G). For the cases under consideration,
W.r,»(R) is either a transitive, or a trivial flow. Thus, the type of Wirxr,,.(Go)
is determined by that of W(r ,(G) which, by (1), can be arbitrary.

(3) Let I" be of type III,. It can be shown, by the same method as in (2),
that if Wiy . (R) preserves measure, then W ,)(G,) may be of an arbitrary
type. Consider the case where W, ,,(E) is non-singular. Use the Krieger
representation of a type III; group I' as a group Z(Q, ¢) generated on
(XyX Y, tyxv), »(Y)=o00 by the automorphisms Qy(xo, ¥)=(Q x,, U(x;) ¥), So
(0> ¥) = (%o, Sy) such that o(xo, ¥, Go)=0(xs, Q)+ P(U(x0))=0(x)>C>0 and
0(xy, v, So)=0[10]. The flow W ,(R) is a special flow constructed from the
basis automorphism Q and the ceiling function ¢(x;). Replace G(Q, ¢) by an
orbitally equivalent group. Consider on (X;X Y X Y;, ¢, Xv Xv;) an automor-
phism group I"’ whose generators act as follows

Q4(%0, ¥, 1) = (Q xo, Up(0) ¥, Uy(x0) 1) »
Sé(xo’ s yl) = (x09 Sy’ yl) H
S(,),(xoa Y, J’o) = (xOs Y, Sl yl) s

where S0, =, Uy(xo) € NIS)], Uy(xy) € NIS], 0 (Ulxe)) = 9(xo), B (U (xp)) =
—o(xy, Q). Itis easy to calculate that W ,)(R)=W . (£). Define a cocycle
aeZY Xy X Y X Y, xI"”, G) assuming a to be zero on 0§ and S} to be equal to g
on S¢’ where g&G (G is assumed non-compact). Calculate W ,)(Gy). The
cocycle @, is zero on S§. Let (XyX Y, #y X v)=(X{, #¢) and the full automor-
phism group [Q'] of X§ be generated by (Xy, y)—(Q X,, Uy(xp) ¥) and (x, y,)—
(x> Sy ¥1)- The automorphism Q' obviously preserves the measure x§. Since
U (%) € N[S,] and @(Uy(x,)) 1 for a.a. x,E X, the cocycle ay=(e, o) is transient
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on Q%: (x4, ¥)—(Q' x4, V(x,) y), where V(x,)ENI[S] and is constructed from
Uy(xy). Because Q' preserves measure, then W ) (G,) will also be of type 1I
(see (7.3)).

(4) By combining the methods of (2) and (3), we can provide that the
action Wir ,,)(Gy) (for I' of type IIIy) should have type III, (0<2<1). []
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