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Abstract

Let G be a compact Lie group and E—B a G-fibration. We define a homomorphism
Wa¥(B)YDUE(B) into Wa¥(E)DUE(E) sending the pair of the finiteness obstruction of B and
the equivariant Euler characteristic of B to that of E. Here Wa€ is the functor from the G-
homotopy category of finitely dominated G-CW complexes into the category of abelian groups
given by W. Liick. By making use of this, we show that if H and K are closed subgroups
with H or K normal such that W(HK) is not finite, GX gX is K-homotopy equivalent to a
finite K-CW complex.

Introduction

Let G be a compact Lie group. Assume that B is a finitely G-dominated
G-CW complex. Liick [3] has given a functor Wa€ from the G-homotopy cate-
gory of finitely dominated G-CW complexes into the category of abelian groups
and has introduced the equivariant finiteness obstruction w®(B)& Waf(B) with
a geometrical approach to Wall’s finiteness obstructions. In the case when G
is the trivial group, WaS(B) is isomorphic to K,(Z[z,(B)]) and this isomorphism
sends wé(B) to the Wall’s finiteness obstruction O(B) [6].

Let G, denote the isotropy subgroup {g=G|g-b=b} at bB. A G-map
p: E—B is said to be a G-fibration [7], if it satisfies the G-homotopy lifting
property for any G-CW complexes. We say that p is a G-fibration with fibre
F if there is some action of G, on F satisfying that p~%(b) is G,-homotopy
equivalent to F for each b= B. In this paper, for a G-fibration p: E— B, it is as-
sumed that the base space B is a finitely dominated G-CW complex and that
the fibre of p is weakly finitely dominated. The notion of weakly finitely dom-
ination is introduced in the first section.
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One purpose of this paper is to describe the finiteness obstruction of E
by that of B and F for a G-fibration F—E— B, as the diagonal product formula
[3, Theorem 6.3].

This paper is organized as follows. In Section 1, we prepare for a con-
struction of a homomorphism from Wa€(B) into Wa®(E). We introduce the
equivariant Euler characteristic, given by Liick [3, 4], which is a functorial ad-
ditive invariant. In Section 2, we define a transfer p(Wa®) from Wa®(B) into
WaC(E) by making use of the properties of the equivariant Euler character-
istics. When G is the trivial group, this homomorphism coincides with the
transfer map defined by Ehrlich [1]. In Section 3, we obtain that G Xz X has
the K-homotopy type of a finite K-CW complex for some closed subgroups K
and H of G.

§1. Preliminaries

Let X and Z be G-spaces. We say that Z dominates X, if there exist G-
maps §: X—Z and r: Z—X such that ros is G-homotopic to the identity map
over X. In this case r is called a domination with section s. We call X finitely
dominated, if there exists a finite G-CW complex Z which dominates X. We
say that the fibre F of p is weakly finitely dominated (resp. weakly finite) if for
each bB, F is Gy-homotopy equivalent to a finitely G,-dominated (resp.
finite) G,-CW complex with respect to the given G;-action. The fibre of p is
weakly finitely dominated if it is finitely H-dominated for each maximal orbit
type (H) of G-V for any connected component ¥V in the G-CW complex B, since
B has finitely many orbit types. In particular if B has a fixed point of each
element of G (that is B®+@) and B/G is connected, the condition “finitely
dominated” implies the condition “weakly finitely dominated™.

Proposition 1.1. A G-space dominated by a G-CW complex has the G-
homotopy type of a G-CW complex.

Proof. Let X be a G-space dominated by a G-CW complex Z. Then there
exist G-maps s: X—Z and r: Z—X such that ros=ly. By G-approximation
theorem, there exist a G-CW complex Y and a weak G-homotopy equivalence
Jf: Y—X. Takea G-map ¢: Z—Y with fog==r. Clearly fogos==ros=idy and
f0¢cs0f%f. Since fy:[Y, Y]s—>[Y, X]¢ is a bijection, we have ¢osof—idy.
Then ¢os is a G-homotopy inverse of f and so fis a G-homotopy equivalence.

Let G-FDCW be the G-homotopy category of finitely dominated G-CW
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complexes.

Lemma 1.2. Let B be a finitely G-dominated G-space. If a G-fibration
p: E—B has a fibre which is weakly finitely dominated, then E is finitely G-
dominated.

Proof. Since a G-map obtained from the pullback of p with respect to
the domination of B is a domination of E, we can assume that B is a finite G-CW
complex. Let G/HXI" be an open n-cell of B and let i: G/HXI"—>B be an
inclusion map. Then E; is G-homeomorphic to G Xz FxI". Since the pushout
construction is closed for the category G-FDCIY, we can prove the lemma by
using induction on the number of cells in B.

We introduce the equivariant Euler characteristics. Let X and Y be G-
CW complexes. G-maps f: X—Band g: Y— B are said to be equivalent, f~g,
if there is a G-homotopy equivalence 4: X —Y with f=goh. We define z,(G, B)

as the set of equivalence classes as follows.
7y(G, B) := {G/H— B a G-map | H <G} [~

Let UC(B) be the free abelian group generated by the set z(G, B). We iden-
tify US(B) with the group consisting of maps from #(G, B) into the set of inte-
gers. A G-map f: B—B’ induces a homomorphism fy: US(B)—USB’) by
composition: for any a in U®(B), fx(a) ([x: G/H—B'])= >} a([y]), where the
sum is taken over all [y]ez(G, B) with foy~x.

Definition. (cf. Definition 5.3 [4]) Let D be a G-subcomplex of B. We
denote the connected component of B¥ containing x(H) by VZ. Let V¥ =
G-V# and V;=G-V>2. We define ¥¢(B, D)= U¢(B) by

28(B, D) (x: G/H — B) := 2 (V{®|G, (V;F U(DNVE)G).
We call x6(B, D)e U(B) the equivariant Euler characteristic.

Let i: D— B be an inclusion map. Then iy (D) is the element represented
by the assignment y+— ¥ (V" N D)/G, (V5% N D)/G).

Lemma 1.3. (cf. [4, Theorem 5.4]) Let the following diagram be a pushout
diagram for pairs of finitely dominated G-CW complexes with k a G-cofibration.

k
(B, Dy) & (By, Dy)

[N s

(B.D) 2 (8,D)
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Then we have

(1) *%(B, D)=x%(B)—ixXx®(D), where i: D— B is an inclusion.
@ x G(Bz’ Dy)=x G(Bz' By)+kyx G(Bo: Dy).

3 x G(B: D)=jixx G(Blt D) +jpseX G(Bz, Dz) —JoxX G(ch Dy).

Definition. (cf. [3, Definition 2.1]) Let C be a small full subcategory of
the category of G-spaces containing ¢ and {pt}. Let L be a functor from C to
the category of abelian groups and let / be an assignment associating to an
object X in C an element /(X) in L(X). If the pair (L, /) satisfies the following
condition (a), (b), and (c), we call (L, /) a functorial additive invariant for C.
(a) Homotopy invariance.

(i) Iff: X—Y is a G-homotopy equivalence in C, then L(f) (((X))=I(Y).

(i) If fand g is G-homotopic, then L(f)=L(g).

(b) Additivity. Given a G-pushout in C with k a G-cofibration,

k
Xy = X
Y
x, 2 x
then /(X)=L(j,) (! (X)+L(j) ([(X2)) — L(jp) /(X))
(© (p)=0.

For example, by Lemma 1.3, the pair (U¢, x€) is a functorial additive in-
variant for G-FDCHW .

§2. Transfer of a G-fibration

For any G-map f: X— B, we define f: E,~E as a map obtained from the
pullback of p with respect to f.

A

E, > E

1P.B.lp

x B
Lemma 2.1. Let p: E—B be a G-fibration with a weakly finitely dominat-
ed fibre F. Let B be obtained from D by attaching a finite number of cells and
i: D—B an inclusion map. Then for any functorial additive invariant (L, 1) for

G-FDCW, we have
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IE) = LO) (ED+ 33 | 2B, D) () LD ((E.)
e (6,
For any functorial additive invariant (L, /), we often abbreviate L(f) to fi.

Proof. We prove it by induction on the number of cells in B—D. In the
case of B=D, it is trivial. In the case of B=G/HXS" we obtain that /(E)
equals (1+(—1)") j4 I(GX y F), since E is G-homeomorphic to G Xy FXS".
Let B be obtained from M(D D) by attaching one cell G/H X I".

k
G/H — G/HxS"! < G/HXxI"

pon

By making use of the proof of Proposition 1 in [5], the following diagram is a
G-pushout.

k
Ejok <

V3

—
o — ‘Ef]
o

Then we have
I(E) = ity I(Ep)+ jx 1(Ej)—joks I(Ej.s)

= Mg [(Eg)+0s% (Ep) —(1+(—=1)"") @ I(Ey)

= iy [(Eg)+(—1)" o 1(Ey) ,
where ¢ is the G-map from G/H into B.

On the other hand, it is easy to see that ¥9(B, M)=(—1)" ¢4 x°(G/H), that

is,
(=" if (L)=(H) and x =9,

X%(B, M) (x: G/L — B) =
( )(: 6L~ B) {0 otherwise.

As the assumption of the induction, we suppose that
I(Ey) = dx [(E)+ 353 28(M, D) (») 7% I(Epoy) »
yeny (@,

where d: DM is an inclusion map. Then

I(E) = iy I(E,)+%°(B, M) (9) 7 [(Ey)
= l(E)+ 33 o S(M, D) (y) moys I(Ep.,)+25(B, M) () x I(Ey) .
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Let y: G/H—M and z: G/K—M be any G-maps. If [y]=[z] in #(G, M), then
there is a G-homotopy equivalence &: E,— E, such that Zog and jy are G-
homotopic. Since (L,/) has the homotopy invariance, we get yy/(E,) =
Zxo04l(E,))=24 I(E)) in L(E). If bez(G, B) is not in the image of my, we
easily obtain myx°(M, D) ()=0. By Lemma 1.3 (1), we have
I(E) = ix IE)+, %B)m*ZG(M, D) (b) b I(E,)+%(B, M) (9) P 1(Ey)
Erto N _
L HE)+ >3 (myx%(M, D)+x%(B, M) (b) by I(E)
NS

=iy (E.-)+ben%,mlc(3, D) (b) by I(E;) .

I

This completes the proof.

Liick has defined Wa®(B) by the set of equivalence classes of the set of G-
maps f: X— B with X finitely dominated and w¢(B) by the equivalence class
containing the identity 1; of B. Here two G-maps f;: X;— B and f,: X,—B are
equivalent, if there exists a commutative diagram

X, C XX T X, = X; DO X
(a2

such that (X}, X;) and (X;, X,) are finite relative G-CW complexes, and X;—X,
and X;—X, are G-homotopy equivalences. For a G-map f: Y—X with ¥
finitely dominated, we denote by [ f: ¥—X] its represented element of Wa®(X).
The additive structure on Wa®(X) is given by a disjoint sum:

1 Y= XI+[g:Z—=X]=[flIlg: YII Z— X].
The pair (Wa€, w®) is a functorial additive invariant for G-FDCI ([3, Theo-

rem 1.1]). The element wé(X) is zero if and only if X has the G-homotopy
type of a finite G-CW complex.

Theerem 2.2. Let (L, 1) be a functorial additive invariant for G-FDCIW .
For a G-fibration p: E—B, a map p(L): Wa®(B)—L(E) which sends [f: X— B]
to L(f) U(Ep)—Zrenyie,n [x28(X) (b) L(B) (I(Ey)), is a homomorphism.

Proof. We show that p(L) is well-defined. Let f: X—B and g: Y—B be
G-maps. If there exists a G-homotopy equivalence /#: X — Y such that f and
goh are G-homotopic, then we have obviously p(L) (f)=p(L) (g). Suppose
that Y is obtained from X by attaching finitely many cells and g is an extension
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of f. Leti: X—Y be an inclusion. For x, x'Ex(G, X) with fiu(x)=f(x)E
7(G, B), we get foxy I(Es.,)=fox s I(Es.,»). Then

52000 0 foxi M) =, 3 Fir®(X) (0B 1(E).

z€7y(¢, X

By applying Lemma 2.1 to the G-fibration E,—Y, we have

Sa I(Ey) = G0l I(Ef) = g*(l(Eg)“yEﬂ%’y)ZG(Y» X) (») y« I(E,.,))
S B E) 3 )l () §oe (5, )

=B lE) 3] (& () ~fxt°X)) () b (5D,

and so p(L)(f)=p(L) (8).
By the definition of p(L), we easily obtain the following.

Proposition 2.3.
(1) I(E)=p(L) W(B))+ X senyic,» X(B) (x) L(X) (I(E,)).
(2) Let p; be G-fibrations and j;: E;—~E, U g, E, the natural inclusions.
(a) Suppose these are with the same fibre. Let p=p, U , p; be the pushout
G-fibration of the following commutative diagram. Then we have

P(L) (W¥(B)) = juxe P1(L) (WH(BL) o PAL) (W(BR)) —ox P L) (W¥(By)) -

(b) Suppose these are with the same base space. Let p=p; U p,. Then
we have

P(L) = jix (L) +Jox PoL)—~jox PoL) -

< F— hK

Lol

Ele—EU—)EZ

In | |n

B, <~ B, — B,

Theorem 2.4. There exists a homomorphism from Wa®(B) UC(B) to L(E)
sending (We(B), X%(B)) to I(E). In particular, there is a homomorphism from
Wab(BYPD UC(B) to WaS(E)PUC(E) sending (wé(B), 26(B)) to WH(E), x°(E)).

Proof. For any a= US(B), there exists a G-map 4: Z— B such that wé(Z)
=0 and a=h(x°(Z)). Then any element of Wa®(B)P U®(B) can be written as
(f: Y= B, fx2°(Y)) =f+0W(Y), 2°(Y)). By the well-definedness of p(L), a
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homomorphism Wa€(B)P U¢(B)—L(E) which sends ([f: Y—B], fxx%(Y)) to
S+ I(E;) is the required homomorphism.

Corollary 2.5. Let B be a finite G-CW complex. If x°(B)=0 or F is
weakly finite, then E has the G-homotopy type of a finite G-CW complex.

Proof. If Fis a finite H-CW complex, then G X gF is a finite G-CW com-
plex. Then if F is weakly finite, we have w®(E,)=0 for any xE=(G, B). By
Proposition 2.3 (1), we have the result.

The following result is an equivariant version of Lal’s theorem [2].

Corollary 2.6. Let B be a connected finite G-CW complex with a trivial
G-action. Then we have

Wi(E) = %(B)-ixw°(F),

where i: F—E is an inclusion.

§3. Applications to Some Equivariant Fibrations
We use the following lemma to give some equivariant fibrations.

Lemma 3.1. ([8]) Let K and H be closed subgroups of G with K<H.
The component of (G/H)* which includes H is precisely (C(K)/C(K) N H),, where
C(K) is the centralizer of K in G.

Proposition 3.2. Let X be a H-CW complex. Then p: GXgX—>G/H is a
G-fibration with fibre X.

Proof. 1t is sufficient to show the homotopy lifting property for G-maps
0: G/IKxI"'—>G/H and p: G/KXI"—G X z X with pop=0 over G/KxI".

. P
G/IKXI" — GXgX

l l»

GIKxI" 5> GIH

We may suppose that (X, 0,0)=H. Then we have K< H. By Lemma
3.1, there exist continuous maps a: I"—>C(K) and f: I"—X such that o(K, t)=
[e(2), A(#)]. Since C(K)—C(K)/C(K)NH is a fibration, there exists a map z:
I""'—C(K) such that the following diagram commutes.
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n @
" —— C(K)

| 7

A C(K)/C(K)NH

We define 5: G/K X I**'—G X z X by 5(gK, t, s)=[g-z(t, 5), #(¢)]. Since the
isotropy group of 4(¢) in H contains K for any t&I", it is well-defined and is
the required G-map.

We also have examples of equivariant fibrations.

Proposition 3.3. Let H and K be closed subgroups of G with K< H and
X a H-CW complex. Then GX zX—>G X zX is a G-fibration with fibre H/K.

Proposition 3.4. Let H and K be closed subgroups of G with K< H and
X a H-CW complex. Then G X xX—>G/H is a G-fibration with fibre H X ¢ X.

For H <G and a finitely dominated H-CW complex X, define a homomor-
phism Ind§(X): Wa¥#(X)— Wa®(G X g X) by
Ind§(X) ([f: Y = X]) = [idX g f: GXg¥ = G xzX].
For g€ G, we denote by gX a gHg '-space gH X ;X CG X zX and define a map
F(g): Wa¥(X)—Wa*25 " (gX) by

F@@(f: Y — X]) = [gf: gY — gX].
Let Y be a G-CW complex. To consider G-maps as H-maps induces a homo-
morphism Res§(Y): WaC(Y)— Wa?(Y).
For x& X, we denote by V,Ex(X) an element which represents the con-

nected component of X which includes x.

Theorem 3.5. Let H and K be closed subgroups of G with H or K normal
and let X be a H-CW complex. Then Res§oInd§ has the following decomposi-
tion.

Resg(G X zX) Ind§(X)

= 2((G/KH),) > ip% Indf o 7a(gX) Resk: 1:(gX) F(g)
VienEnoK\G/H)

Here H*=gHg " and i,: KX e §X—>G X zX are canonical inclusions. Further
if G/KH is connected we have

Res§(G X zX) Ind§(X) = %(G/KH) iy Ind%, a(X) Res§,a(X) .
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Proof. Let[f:Y—X]be an clement of Wa#(X). If K is normal, we have
G/KH=K\G/H. If H is normal, then K/K N H acts freely on G/H and so G/H
—K\G/H is a K-fibration. Then in either cases GX,Y—K\G/H is a K-
fibration. By Proposition 2.3 (1), we obtain

wS(GxgY) = 2 ((G/KH),) > Jgu WS(KgH X gY) .
VienEnoK\G/H)

idXgnpegf
KXgnpe 8Y ————> KXgnpegX

l i

i idx
KgHxzY £ GxzY af G XX

| l l

Veerw < K\GIH ————— K\G/H

It is not hard to show that KgH X zY—>KX xnze gY sending [kgh, y] to
[k, g(hy)] is a K-homeomorphism. Hence we have

Resg(G x zX) Ind5(X) ([f])
= ({dXgf)x W(GXgY)
= x((G/KH)y) X3 i, (idX gnge &f)sx W (KX gnpe gY)

= 2 ((GIKH),) %Hig* Ind%, z# (gX) ResZh ze(eX) (ef]) -

KgH
This completes the proof.

We set ¢o(G)={(H)| | WH|<oo}. Suppose (H) is not in ¢(G). Since
(G/H)¥ carries a free WH-action, and so has a free S™-action, we have 2((G/H)X)
=0 for any K<G. From this and Theorem 3.5 we have the following result.

Theorem 3.6. Let X be a finitely dominated H-CW complex. Let H and
K be closed subgroups with H or K normal such that (HK) is not in ¢(G). Then
G X z X is K-homotopy equivalent to a finite K-CW complex.

Cerollary 3.7. Let X be a finitely dominated H-CW complex. If (H) is
not in ¢(G), then G X z X has the homotopy iype of a finite CW complex.

Let Y be a finitely dominated H-CW complex. The assignment f: X—
YxK to fI|K: X/K—Y induces an isomorphism from Wa?*5(Y x K) to Wa®(Y).
This proof is similar to [3, Theorem 5.4]. For example let G=H X K and let X
be a finitely dominated H-space which is not H-homotopy equivalent to a finite
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H-CW complex. It is easy to see that G X X is G-homeomorphic to X' XK,
where H X K acts on the first (resp. second) factor via the projection H X K—~H

(resp. HXK—K). Then G XX is not G-homotopy equivalent to a finite G-
CW complex.
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