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Abstract

Let G be a compact Lie group and E->B a G-fibration. We define a homomorphism
Wafi(B)®U^JB) into Wa<*(E)@U®(E) sending the pair of the finiteness obstruction of B and
the equivariant Euler characteristic of B to that of E. Here Wa® is the functor from the G-
homotopy category of finitely dominated G-CW complexes into the category of abelian groups
given by W. Luck. By making use of this, we show that if H and K are closed subgroups
with HOT K normal such that W(HK) is not finite, GxBX is X-homotopy equivalent to a
finite K-CW complex.

Introduction

Let G be a compact Lie group. Assume that B is a finitely G-dominated
G-CW complex. Luck [3] has given a functor WaG from the G-homotopy cate-
gory of finitely dominated G-CW complexes into the category of abelian groups
and has introduced the equivariant finiteness obstruction w°(B)^WaG(B) with
a geometrical approach to Wall's finiteness obstructions. In the case when G

is the trivial group, WaG(B) is isomorphic to K^Z^^B)]) and this isomorphism
sends wG(B) to the Wall's finiteness obstruction O(B) [6].

Let Gb denote the isotropy subgroup {g^G\g>b=b} at b^B. A G-map
p: E-+B is said to be a G-fibration [7], if it satisfies the G-homotopy lifting

property for any G-CW complexes. We say that p is a G-fibration with fibre
F if there is some action of Gb on F satisfying that p~\b) is Gj-homotopy
equivalent to F for each b e B. In this paper, for a G-fibration p: E-*B, it is as-
sumed that the base space B is a finitely dominated G-CW complex and that
the fibre of p is weakly finitely dominated. The notion of weakly finitely dom-
ination is introduced in the first section.
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One purpose of this paper is to describe the finiteness obstruction of E
by that of B and F for a G-fibration F->E->B, as the diagonal product formula
[33 Theorem 6.3].

This paper is organized as follows. In Section 1, we prepare for a con-
struction of a homomorphism from WaG(E) into WaG(E). We introduce the
equivariant Euler characteristic, given by Luck [3, 4], which is a functorial ad-
ditive invariant. In Section 25 we define a transfer p(WaG) from WaG(B) into
WaG(E) by making use of the properties of the equivariant Euler character-
istics. When G is the trivial group, this homomorphism coincides with the
transfer map defined by Ehrlich [1]. In Section 3, we obtain that GxHX has
the J£-homotopy type of a finite K-CW complex for some closed subgroups K
and H of G.

§ 1. Preliminaries

Let X and Z be G-spaces. We say that Z dominates X, if there exist G-
maps s: X-*Z and r: Z-*X such that ro$ is G-homotopic to the identity map
over X. In this case r is called a domination with section s. We call X finitely
dominated, if there exists a finite G-CW complex Z which dominates X. We
say that the fibre F of p is weakly finitely dominated (resp. weakly finite) if for
each b^B, F is G6-homotopy equivalent to a finitely G^dominated (resp.
finite) Gb-CW complex with respect to the given Graction. The fibre of p is
weakly finitely dominated if it is finitely J^-dominated for each maximal orbit
type (H) of G- Ffor any connected component Fin the G-CW complex B, since
B has finitely many orbit types. In particular if B has a fixed point of each
element of G (that is BG3=0) and B\G is connected, the condition "finitely
dominated" implies the condition "weakly finitely dominated".

Proposition 1.1. A G-space dominated by a G-CW complex has the G-
homotopy type of a G-CW complex.

Proof, Let X be a G-space dominated by a G-CW complex Z. Then there
exist G-maps s: X-*Z and r: Z-*X such that ros—lx. By G-approximation

theorem, there exist a G-CW complex Y and a weak G-homotopy equivalence
/: Y-*X. Take a G-map 0: Z-»Fwith/o0^r. Clearly fo<pos^ros^idz and

fofasof^f. Since /*: [F, Y]G-*[Y, X]G is a bijection, we have

Then 0 o$ is a G-homotopy inverse of /and so /is a G-homotopy equivalence.

Let G-StDCW be the G-homotopy category of finitely dominated G-CW
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complexes.

Lemma L20 Let B be a finitely G-dorninated G-space. If a G-fibration
p: E-+B has a fibre which is weakly finitely dominated, then E is finitely G-
dominated.

Proof. Since a G-map obtained from the pullback of p with respect to
the domination of B is a domination of E, we can assume that B is a finite G-CW
complex. Let G/HxIn be an open w-cell of B and let i: G/HxIn-*B be an
inclusion map. Then Ei is G-homeomorphic to G XH Fxln. Since the pushout
construction is closed for the category G-'S^C^W, we can prove the lemma by
using induction on the number of cells in B.

We introduce the equivariant Euler characteristics. Let X and Y be G-
CW complexes, (/-maps/: X-^B and g: Y->B are said to be equivalent, f~g,
if there is a G-homotopy equivalence h : X-*Ywitfaf~^g°h. We define TTO(G, B}

as the set of equivalence classes as follows.

xQ(G9 B) := {G/H-+ B a G-map | H < G} / ~

Let UG(B) be the free abelian group generated by the set TTO(G, B). We iden-
tify UG(B) with the group consisting of maps from TTO(G, B) into the set of inte-
gers. A G-map /: B-*B' induces a homomorphism /*: UG(B)->UG(3r) by

composition: for any a in UG(B)9 /#(«) ([x: G/H-*B'])= ^a([y])9 where the
sum is taken over all [y]^7cQ(G, B) withf°y^x.

Definition, (cf. Definition 5.3 [4]) Let D be a G-subcomplex of B. We
denote the connected component of BH containing x(H) by Vf. Let V^ =
G • V? and V>^ =G- V>H. We define XG(B, D) GE UG(B) by

XG(B, D) (x: G/H-+ B) := X(V™/G, (V^ U (D n V(
X

H)))/G) .

We call XG(B, D)^UG(B) the equivariant Euler characteristic.

Let i: D-^B be an inclusion map. Then i%XG(D) is the element represented
by the assignment y^ X ((V^ nD)/G, (V>w nD)/G).

Lemma 1,3. (cf. [4, Theorem 5.4]) Let the following diagram be a pushout

diagram for pairs of finitely dominated G-CW complexes with k a G-cofibration.

k
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Then we have

(1) ZG(B, D)=ZG(B)—i*%G(D), where i: D-*B is an inclusion.
(2) %G(B»D,)=%G(B2,B,)+k*%G(B,,DQ).

(3) XG(B, D)=j\^G(Blf A)+yi**G(*2, A)-Jo**GC&o, A)-

Definition, (cf. [3, Definition 2.1]) Let C be a small full subcategory of
the category of G-spaces containing 0 and {pt} . Let L be a functor from C to
the category of abelian groups and let / be an assignment associating to an
object X in C an element l(X) in L(X). If the pair (L, /) satisfies the following
condition (a), (b)5 and (c)5 we call (L, /) a functorial additive invariant for C.

(a) Homotopy invariance.
(i) If/: JT-H» Y is a G-homotopy equivalence in C, then
(ii) If /and g is G-homotopic, then L(f)=L(g).

(b) Additivity. Given a G=pushout in C with k a G-cofibration,

A:

then l(X)=

(c) /(0)=0.

For example, by Lemma 1.3, the pair (UG
9 %

G) is a functorial additive in-
variant for G-3<DC<W*

§2. Transfer of a G-fibration

For any G-map /: X-*B, we define /: Ef-*E as a map obtained from the
pullback of p with respect to/.

X ^ B

Lemma 2.L Let p: E-*B be a G-fibration with a weakly finitely dominat-
ed fibre F. Let B be obtained from D by attaching a finite number of cells and
i: D-*B an inclusion map. Then for any functorial additive invariant (L, I) for

'?, we have
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£(?)(/(£,-))+ 2 XG(B,D)(x)L(x)(l(ExD.
*ejr0C<?,.B)

For any functorial additive invariant (L, /), we often abbreviate L(/) to /#.

Proof. We prove it by induction on the number of cells in B—D. In the
case of B=D, it is trivial. In the case of B=G/HxSn we obtain that /(£)
equals (l+(—I)*)/* l(GxH F), since £ is G-homeomorphic to GxHFxS*.
Let B be obtained from M(z>D) by attaching one cell G/HxIn.

G/H ^ GIHxS*-1 ^ G/Hxl"

m
M -» B

By making use of the proof of Proposition 1 in [5], the following diagram is a
G-pushout.

k

m£. -* ^
Then we have

/(£) = m* /(£•„)+/* /(£,-)-M* /(£>.,)

where <p is the G-map from G/H into B.
On the other hand, it is easy to see that XG(B, M)=(—l)n <p* %G(G/H)9 that

is,

(-1)* if (L) = (H) and x = 9 ,

0 otherwise.

As the assumption of the induction, we suppose that

l(Em) = d* /(£,-)+ 1] XG(M, D) (y) y* l(Emoy),

where d\ D^>M is an inclusion map. Then

?,M)(9)?

, Z>) 00
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Let y: G/H-*M and z: G/K-*M be any G-maps. If [y]= [z] in n0(G9 M)9 then
there is a G-homotopy equivalence a: Ey->Ez such that ZQG and y are G-
homotopic. Since (L, /) has the homotopy invariance, we get y*l(Ey) =

z#°a*I(EJ=2* I(EJ in £(£)• If b^xQ(G, B) is not in the image of m*9 we
easily obtain m*zG(M9 D) (b)=0. By Lemma 1.3 (1), we have

2 m^G(M, D) (6) 5* /(^)+
.B)

**G(M, JD)+zG(5J AQ) (6) 5

X G ( B , D ) ( b } b * l ( E b ) .

This completes the proof.

Liick has defined WaG(B) by the set of equivalence classes of the set of G-
maps /: X-+B with X finitely dominated and wG(B) by the equivalence class
containing the identity \B of B. Here two G-maps /0: X0-+B and/4: X^B are
equivalent, if there exists a commutative diagram

such that (Xl9 X0) and (X39 X4} are finite relative G-CW complexes, and Xl-^>X2

and X3-*X2 are G-homotopy equivalences. For a G-map /: Y-*X with Y
finitely dominated, we denote by [/: Y-+X} its represented element of WoP(X).
The additive structure on WaG(X) is given by a disjoint sum:

[/: F-> X]+[g: Z - X] = [/H g: Y II Z - X] .

The pair (WaG, WG) is a functorial additive invariant for G-^S^C^ ([3, Theo-
rem 1.1]). The element w°(X) is zero if and only if X has the G-homotopy
type of a finite G-CW complex.

Theorem 2020 Let (L, I) be a functorial additive invariant for
For a G-fibration p: E-*B, a map p(L): WaG(B}-*L(E) which sends [/: X->B]

to L(f) (l(Ef)}-^b^(G>B}f*XG(X) (b) L(b) (/(£,)), is a homomorphism.

Proof. We show that p(L) is well-defined. Let /: X->B and g: Y-*B be
G-maps, If there exists a G-homotopy equivalence h: X->Y such that /and
go// are G-homotopic, then we have obviously p(L) (f)=p(L) (g). Suppose
that Y is obtained from X by attaching finitely many cells and g is an extension



EQUIVARIANT FINITENESS OBSTRUCTIONS 633

of/. Let i: X^Y be an inclusion. For x, x'Gx^G, X) with /*(x)=/*(x')e

*&G,B\ we get /ix* /(£,.,) =A*V(£/.,'). Then

2 x°(X)(x)frc*l(E,.t)= 2 /**«(*) 0)5*
'

By applying Lemma 2.1 to the G-fibration Eg-^Y9 we have

= g*of* l(Ef) = £*(/(£,)- 2] *G(F, X) (y) y* /(£,.,)

s
)- 2

By the definition of p(L), we easily obtain the following.

Proposition 2.3.

(1) l(E)=p(L) (wc(5))+2,«0(G.« ^G(5) (x) £(*) (/(£,))•
(2) Le^ /?g- be G-fibrations and j}: Ei-^El U EQ ̂ 2 the natural inclusions.

(a) Suppose these are with the same fibre. Let p=pl U pQp2 be the pushout
G-fibration of the following commutative diagram. Then we have

p(L) (wG(B)) = j\*Pl(L) (w^B^+j^p^L) (wG(B2))-j0*Po(L) (wG(BQ)) .

(b) Suppose these are with the same base space. Let p=PiU p0p2- Then
we have

= A* Pi(L)+j2* p2(L) -;0* p0(L) .

Fl ^ FQ _> FZ

i I i
B1 <— BQ — > B2

Theorem 2 A. There exists a homomorphism from WaG(B)®UG(B) to L(E)
sending (wG(B), XG(B)) to l(E). In particular, there is a homomorphism from
WaG(B)@UG(B} to WaG(E)@UG(E) sending (wG(B), ZG(B)) to (wG(E), %G(E)).

Proof. For any ae UG(B), there exists a (/-map h: Z-*B such that wG(Z)
=Q and a=h*(xG(Z)). Then any element of WaG(B)® UG(B) can be written as
([/: Y-*B],f*xG(Y))=f*(wG(Y), %G(Y)). By the well-definedness of p(L\ a
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homomorphism WaG(B)@UG(B)-»L(E) which sends ([/: Y-+B],f*ZG(Y)) to
/# l(Ef) is the required homomorphism,

Corollary 2.5. Let B be a finite G-CW complex. If %G(B)=Q or F is
weakly finite, then E has the G-homotopy type of a finite G-CW complex.

Proof. If F is a finite H-CW complex, then G XSF is a finite G-CW com-
plex. Then if F is weakly finite, we have wG(Ex)=Q for any x^x0(G9 B). By
Proposition 2.3 (I), we have the result.

The following result is an equivariant version of Lai's theorem [2],

Corollary 2.6* Let B be a connected finite G-CW complex with a trivial
G-action. Then we have

where i: F-+E is an inclusion.

§30 Applications to Some Equivariant Fibrations

We use the following lemma to give some equivariant fibrations.

Lemma 3.1. ([8]) Let K and H be closed subgroups of G with
The component of (G/H)K which includes H is precisely (C(K)jC(K) fl H)Q, where
C(K) is the centralizer of Kin G.

Proposition 3.2. Let X be a H-CW complex. Then p: GxHX-»G/H is a
G-fibration with fibre X.

Proof, It is sufficient to show the homotopy lifting property for G-maps
a: G/KxIn+1-*G/Htmd p: G/KxIn-*GxHXwithp°p=a over G/KxIn.

G/KxIn ^ GxHX

i . i'
G/KxIn+1 -^ G/H

We may suppose that a(K, 09 G)=H. Then we have K<H. By Lemma
3.1, there exist continuous maps a: In-^C(K) and ft: In-*X such that p(K91)=
[a(t), ft(t)]. Since C(K)-+C(K)IC(K)nH is a fibration, there exists a map r:
In+1-*C(K) such that the following diagram commutes.
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- C(K)

We define p : G/KxItt+1-^GxHXby p(gK, t, s)=[g-r(t, s), p(t)]. Since the
isotropy group of ft(t) in H contains K for any t^f\ it is well-defined and is
the required (/-map.

We also have examples of equivariant fibrations.

Proposition 3.3. Let H and K be closed subgroups of G with K<H and
X a H-CW complex. Then GxKX-*GxHX is a G-fibration with fibre H/K.

Proposition 3.4. Let H and K be closed subgroups of G with K<,H and
X a H-CW complex. Then G X KX-*G/H is a G-fibration with fibre HxKX.

For H<G and a finitely dominated H-CW complex X, define a homomor-
phism Indf(JT): WaH(X)-*WaG(GxHX) by

X]) = [idxHf: GxffY-> GxHX] .

, we denote by gX a gHg^-spzce gHxHXczGxHX and define a map
F(g): WaH(X)-*WasHs~\gX) by

F(g) ([/: Y-+ X]) = [gf: gY-> gX] .

Let Y be a G-CW complex. To consider G-maps as //-maps induces a homo-
morphismRes£(F): WaG(Y)-*WaH(Y}.

For x^X, we denote by Vx^nQ(X) an element which represents the con-
nected component of X which includes x.

Theorem 3.5. Let H and K be closed subgroups of G with H or K normal
and let X be a H-CW complex. Then Res£ olnd£ has the following decomposi-
tion.

Resf(Gx^)Ind^)

Indf ,HS(gX) Resfn ^(gAT) F(g)

Here Hg =gHg~l and ig : K x K n Hg gX-* G x HX are canonical inclusions. Further
if G/KH is connected we have

Resf(Gx^) Indg(Z) = X(G/KH) /* Indf n
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Proof. Let [/: Y-*X] be an element of WaH(X). If K is normal, we have
G/KH=K\G/H. If H Is normal, then K/K fl # acts freely on G/H and so G/ff
-*K\G/H Is a J£-fibration. Then in either cases GxHY->K\G/H is a K-
fibration. By Proposition 2.3 (1), we obtain

2 y

idxHf
KgHxHY - GxHY ^

vKga

It Is not hard to show that KgH xHY-^KxK(]Hs gY sending [kgh,y] to
[k, g(hy)] Is a J^-homeomorphism. Hence we have

2

This completes the proof.

We set #(G) = {(#)! |FF^|<oo}0 Suppose (.fiT) is not In 0(G). Since
(GjH)K carries a free J^ff-action, and so has a free S^-action, we have x((GjH)K)
=0 for any K<G. From this and Theorem 3.5 we have the following result.

Theorem 3060 Let X be a finitely dominated H-CW complex. Let H and

K be closed subgroups with H or K normal such that (HK) is not in <f>(G). Then
GxHX is K-homotopy equivalent to a finite K-CW complex,

Corollary 3o70 Let X be a finitely dominated H-CW complex. If (H) is

not in $(G), then GxHX has the homotopy type of a finite CW complex,

Let Y be a finitely dominated H-CW complex. The assignment /: X^>
YxK tof/K: X/K-*Y Induces an Isomorphism from WaHxK(YxK) to WaH(Y),

This proof Is similar to [3, Theorem 5.4]. For example let G=HxK and let X
be a finitely dominated If-space which is not JJ-homotopy equivalent to a finite
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H-CW complex. It is easy to see that GxHX is G-homeomorphic to XxK,
where HxK acts on the first (resp. second) factor via the projection HxK->H

(resp. HxK-*K). Then GxHX is not G-homotopy equivalent to a finite G-
CW complex.
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