Finiteness Obstructions of Equivariant Fibrations

Ву

Toshio Sumi*

Abstract

Let G be a compact Lie group and $E \rightarrow B$ a G-fibration. We define a homomorphism $Wa^{G}(B) \oplus U^{G}(B)$ into $Wa^{G}(E) \oplus U^{G}(E)$ sending the pair of the finiteness obstruction of B and the equivariant Euler characteristic of B to that of E. Here Wa^{G} is the functor from the G-homotopy category of finitely dominated G-CW complexes into the category of abelian groups given by W. Lück. By making use of this, we show that if H and K are closed subgroups with H or K normal such that W(HK) is not finite, $G \times_{\mathbb{H}} X$ is K-homotopy equivalent to a finite K-CW complex.

Introduction

Let G be a compact Lie group. Assume that B is a finitely G-dominated G-CW complex. Lück [3] has given a functor Wa^G from the G-homotopy category of finitely dominated G-CW complexes into the category of abelian groups and has introduced the equivariant finiteness obstruction $w^G(B) \in Wa^G(B)$ with a geometrical approach to Wall's finiteness obstructions. In the case when G is the trivial group, $Wa^G(B)$ is isomorphic to $\tilde{K}_0(Z[\pi_1(B)])$ and this isomorphism sends $w^G(B)$ to the Wall's finiteness obstruction O(B) [6].

Let G_b denote the isotropy subgroup $\{g \in G | g \cdot b = b\}$ at $b \in B$. A *G*-map $p: E \rightarrow B$ is said to be a *G*-fibration [7], if it satisfies the *G*-homotopy lifting property for any *G*-*CW* complexes. We say that p is a *G*-fibration with fibre *F* if there is some action of G_b on *F* satisfying that $p^{-1}(b)$ is G_b -homotopy equivalent to *F* for each $b \in B$. In this paper, for a *G*-fibration $p: E \rightarrow B$, it is assumed that the base space *B* is a finitely dominated *G*-*CW* complex and that the fibre of *p* is weakly finitely dominated. The notion of weakly finitely domination is introduced in the first section.

Communicated by K. Saito, May 16, 1990. Revised September 7, 1990. 1991 Mathematics Subject Classification: 57Q12.

^{*} Department of Mathematics, Kyushu University 33, Fukuoka 812, Japan.

One purpose of this paper is to describe the finiteness obstruction of E by that of B and F for a G-fibration $F \rightarrow E \rightarrow B$, as the diagonal product formula [3, Theorem 6.3].

This paper is organized as follows. In Section 1, we prepare for a construction of a homomorphism from $Wa^{G}(B)$ into $Wa^{G}(E)$. We introduce the equivariant Euler characteristic, given by Lück [3, 4], which is a functorial additive invariant. In Section 2, we define a transfer $p(Wa^{G})$ from $Wa^{G}(B)$ into $Wa^{G}(E)$ by making use of the properties of the equivariant Euler characteristics. When G is the trivial group, this homomorphism coincides with the transfer map defined by Ehrlich [1]. In Section 3, we obtain that $G \times_{H} X$ has the K-homotopy type of a finite K-CW complex for some closed subgroups K and H of G.

§1. Preliminaries

Let X and Z be G-spaces. We say that Z dominates X, if there exist Gmaps $s: X \rightarrow Z$ and $r: Z \rightarrow X$ such that $r \circ s$ is G-homotopic to the identity map over X. In this case r is called a domination with section s. We call X finitely dominated, if there exists a finite G-CW complex Z which dominates X. We say that the fibre F of p is weakly finitely dominated (resp. weakly finite) if for each $b \in B$, F is G_b -homotopy equivalent to a finitely G_b -dominated (resp. finite) G_b -CW complex with respect to the given G_b -action. The fibre of p is weakly finitely dominated if it is finitely H-dominated for each maximal orbit type (H) of $G \cdot V$ for any connected component V in the G-CW complex B, since B has finitely many orbit types. In particular if B has a fixed point of each element of G (that is $B^G \neq \emptyset$) and B/G is connected, the condition "finitely dominated" implies the condition "weakly finitely dominated".

Proposition 1.1. A G-space dominated by a G-CW complex has the G-homotopy type of a G-CW complex.

Proof. Let X be a G-space dominated by a G-CW complex Z. Then there exist G-maps $s: X \to Z$ and $r: Z \to X$ such that $r \circ s_{\overline{G}} 1_X$. By G-approximation theorem, there exist a G-CW complex Y and a weak G-homotopy equivalence $f: Y \to X$. Take a G-map $\phi: Z \to Y$ with $f \circ \phi_{\overline{G}} r$. Clearly $f \circ \phi \circ s_{\overline{G}} r \circ s_{\overline{G}} i d_X$ and $f \circ \phi \circ s \circ f_{\overline{G}} f$. Since $f_*: [Y, Y]_G \to [Y, X]_G$ is a bijection, we have $\phi \circ s \circ f_{\overline{G}} i d_X$. Then $\phi \circ s$ is a G-homotopy inverse of f and so f is a G-homotopy equivalence.

Let G- \mathcal{FDCW} be the G-homotopy category of finitely dominated G-CW

complexes.

Lemma 1.2. Let B be a finitely G-dominated G-space. If a G-fibration $p: E \rightarrow B$ has a fibre which is weakly finitely dominated, then E is finitely G-dominated.

Proof. Since a G-map obtained from the pullback of p with respect to the domination of B is a domination of E, we can assume that B is a finite G-CW complex. Let $G/H \times I^n$ be an open n-cell of B and let $i: G/H \times I^n \to B$ be an inclusion map. Then E_i is G-homeomorphic to $G \times_H F \times I^n$. Since the pushout construction is closed for the category $G-\mathcal{FDCW}$, we can prove the lemma by using induction on the number of cells in B.

We introduce the equivariant Euler characteristics. Let X and Y be G-CW complexes. G-maps $f: X \rightarrow B$ and $g: Y \rightarrow B$ are said to be *equivalent*, $f \sim g$, if there is a G-homotopy equivalence $h: X \rightarrow Y$ with $f \simeq g \circ h$. We define $\pi_0(G, B)$ as the set of equivalence classes as follows.

$$\pi_0(G, B) := \{G/H \to B \text{ a } G\text{-map} \mid H \leq G\} / \sim$$

Let $U^{c}(B)$ be the free abelian group generated by the set $\pi_{0}(G, B)$. We identify $U^{c}(B)$ with the group consisting of maps from $\pi_{0}(G, B)$ into the set of integers. A *G*-map $f: B \rightarrow B'$ induces a homomorphism $f_{*}: U^{c}(B) \rightarrow U^{c}(B')$ by composition: for any *a* in $U^{c}(B)$, $f_{*}(a)([x: G/H \rightarrow B']) = \sum a([y])$, where the sum is taken over all $[y] \in \pi_{0}(G, B)$ with $f \circ y \sim x$.

Definition. (cf. Definition 5.3 [4]) Let D be a G-subcomplex of B. We denote the connected component of B^H containing x(H) by V_x^H . Let $V_x^{(H)} = G \cdot V_x^H$ and $V_x^{>(H)} = G \cdot V^{>H}$. We define $\chi^G(B, D) \in U^G(B)$ by

$$\chi^{G}(B, D) (x: G/H \to B) := \chi (V_{x}^{(H)}/G, (V_{x}^{>(H)} \cup (D \cap V_{x}^{(H)}))/G).$$

We call $\chi^{c}(B, D) \in U^{c}(B)$ the equivariant Euler characteristic.

Let $i: D \to B$ be an inclusion map. Then $i_* \chi^G(D)$ is the element represented by the assignment $y \mapsto \chi((V_y^{(H)} \cap D)/G, (V_y^{>(H)} \cap D)/G)$.

Lemma 1.3. (cf. [4, Theorem 5.4]) Let the following diagram be a pushout diagram for pairs of finitely dominated G-CW complexes with k a G-cofibration.

$$(B_0, D_0) \stackrel{K}{\hookrightarrow} (B_2, D_2)$$

$$\downarrow \qquad \searrow^{j_0} \qquad \downarrow j_2$$

$$(B_1, D_1) \stackrel{j_1}{\rightarrow} (B, D)$$

```
TOSHIO SUMI
```

Then we have

- (1) $\chi^{\mathcal{C}}(B, D) = \chi^{\mathcal{C}}(B) i_* \chi^{\mathcal{C}}(D)$, where $i: D \rightarrow B$ is an inclusion.
- (2) $\chi^{G}(B_{2}, D_{0}) = \chi^{G}(B_{2}, B_{0}) + k_{*}\chi^{G}(B_{0}, D_{0}).$
- (3) $\chi^{G}(B, D) = j_{1*}\chi^{G}(B_{1}, D_{1}) + j_{2*}\chi^{G}(B_{2}, D_{2}) j_{0*}\chi^{G}(B_{0}, D_{0}).$

Definition. (cf. [3, Definition 2.1]) Let C be a small full subcategory of the category of G-spaces containing \emptyset and $\{pt\}$. Let L be a functor from C to the category of abelian groups and let l be an assignment associating to an object X in C an element l(X) in L(X). If the pair (L, l) satisfies the following condition (a), (b), and (c), we call (L, l) a *functorial additive invariant* for C. (a) Homotopy invariance.

- (i) If $f: X \to Y$ is a G-homotopy equivalence in \mathcal{C} , then L(f)(l(X)) = l(Y).
- (ii) If f and g is G-homotopic, then L(f) = L(g).
- (b) Additivity. Given a G-pushout in C with k a G-cofibration,

$$\begin{array}{cccc} k & & X_1 \\ \downarrow & \searrow^{j_0} & \downarrow j_1 \\ X_2 & \xrightarrow{j_2} & X \end{array}$$

then $l(X) = L(j_1) (l(X_1)) + L(j_2) (l(X_2)) - L(j_0) (l(X_0)).$ (c) $l(\emptyset) = 0.$

For example, by Lemma 1.3, the pair (U^G, χ^G) is a functorial additive invariant for G- \mathcal{GDCW} .

§2. Transfer of a G-fibration

For any G-map $f: X \rightarrow B$, we define $\overline{f}: E_f \rightarrow E$ as a map obtained from the pullback of p with respect to f.

$$E_f \xrightarrow{\bar{f}} E$$
$$\bigcup P.B. \bigcup p$$
$$X \xrightarrow{f} B$$

Lemma 2.1. Let $p: E \rightarrow B$ be a G-fibration with a weakly finitely dominated fibre F. Let B be obtained from D by attaching a finite number of cells and $i: D \rightarrow B$ an inclusion map. Then for any functorial additive invariant (L, l) for G-FDCW, we have

630

$$l(E) = L(\overline{i}) (l(E_i)) + \sum_{x \in \pi_0(G,B)} \chi^G(B, D) (x) L(\overline{x}) (l(E_x))$$

For any functorial additive invariant (L, l), we often abbreviate $L(\bar{f})$ to \bar{f}_* .

Proof. We prove it by induction on the number of cells in B - D. In the case of B = D, it is trivial. In the case of $B = G/H \times S^n$ we obtain that l(E) equals $(1+(-1)^n) \overline{j}_* l(G \times_H F)$, since E is G-homeomorphic to $G \times_H F \times S^n$. Let B be obtained from $M(\supset D)$ by attaching one cell $G/H \times I^n$.

By making use of the proof of Proposition 1 in [5], the following diagram is a G-pushout.

Then we have

$$l(E) = \overline{m}_* l(E_m) + \overline{j}_* l(E_j) - \overline{j \circ k}_* l(E_{j \circ k})$$

= $\overline{m}_* l(E_m) + \overline{\varphi}_* l(E_\varphi) - (1 + (-1)^{n-1}) \overline{\varphi}_* l(E_\varphi)$
= $\overline{m}_* l(E_m) + (-1)^n \overline{\varphi}_* l(E_\varphi) ,$

where φ is the G-map from G/H into B.

On the other hand, it is easy to see that $\chi^{c}(B, M) = (-1)^{n} \varphi_{*} \chi^{c}(G/H)$, that is,

$$\chi^{G}(B, M) (x: G/L \rightarrow B) = \begin{cases} (-1)^{n} & \text{if } (L) = (H) \text{ and } x = \varphi, \\ 0 & \text{otherwise.} \end{cases}$$

As the assumption of the induction, we suppose that

$$l(E_m) = \overline{d}_* \, l(E_i) + \sum_{y \in \pi_0(G, M)} \chi^G(M, D) \, (y) \, \overline{y}_* \, l(E_{m \circ y}) \, ,$$

where $d: D \hookrightarrow M$ is an inclusion map. Then

$$l(E) = \bar{m}_* \, l(E_m) + \chi^G(B, M) \, (\varphi) \, \bar{\varphi}_* \, l(E_\varphi) \\ = \bar{l}_* \, l(E_i) + \sum_{y \in \pi_0^{(G, M)}} \chi^G(M, D) \, (y) \, \overline{m \circ y}_* \, l(E_{m \circ y}) + \chi^G(B, M) \, (\varphi) \, \bar{\varphi}_* \, l(E_\varphi) \, .$$

TOSHIO SUMI

Let $y: G/H \to M$ and $z: G/K \to M$ be any G-maps. If [y] = [z] in $\pi_0(G, M)$, then there is a G-homotopy equivalence $\bar{\sigma}: E_y \to E_z$ such that $\bar{z} \circ \bar{\sigma}$ and \bar{y} are Ghomotopic. Since (L, l) has the homotopy invariance, we get $\bar{y}_* l(E_y) = \bar{z}_* \circ \bar{\sigma}_* l(E_y) = \bar{z}_* l(E_z)$ in L(E). If $b \in \pi_0(G, B)$ is not in the image of m_* , we easily obtain $m_* \chi^G(M, D)$ (b)=0. By Lemma 1.3 (1), we have

$$\begin{split} l(E) &= \bar{i}_* \ l(E_i) + \sum_{b \in \pi_0(G,B)} m_* \chi^{\mathcal{C}}(M, D) \ (b) \ \bar{b}_* \ l(E_b) + \chi^{\mathcal{C}}(B, M) \ (\varphi) \ \bar{\varphi}_* \ l(E_{\varphi}) \\ &= \bar{i}_* \ l(E_i) + \sum_{b \in \pi_0(G,B)} (m_* \chi^{\mathcal{C}}(M, D) + \chi^{\mathcal{C}}(B, M)) \ (b) \ \bar{b}_* \ l(E_b) \\ &= \bar{i}_* \ l(E_i) + \sum_{b \in \pi_0(G,B)} \chi^{\mathcal{C}}(B, D) \ (b) \ \bar{b}_* \ l(E_b) \ . \end{split}$$

This completes the proof.

Lück has defined $Wa^{G}(B)$ by the set of equivalence classes of the set of Gmaps $f: X \rightarrow B$ with X finitely dominated and $w^{G}(B)$ by the equivalence class containing the identity 1_{B} of B. Here two G-maps $f_{0}: X_{0} \rightarrow B$ and $f_{4}: X_{4} \rightarrow B$ are equivalent, if there exists a commutative diagram

such that (X_1, X_0) and (X_3, X_4) are finite relative *G*-*CW* complexes, and $X_1 \rightarrow X_2$ and $X_3 \rightarrow X_2$ are *G*-homotopy equivalences. For a *G*-map $f: Y \rightarrow X$ with *Y* finitely dominated, we denote by $[f: Y \rightarrow X]$ its represented element of $Wa^G(X)$. The additive structure on $Wa^G(X)$ is given by a disjoint sum:

$$[f: Y \to X] + [g: Z \to X] = [f \coprod g: Y \coprod Z \to X]$$

The pair (Wa^{G}, w^{G}) is a functorial additive invariant for G- \mathcal{FDCW} ([3, Theorem 1.1]). The element $w^{G}(X)$ is zero if and only if X has the G-homotopy type of a finite G-CW complex.

Theorem 2.2. Let (L, l) be a functorial additive invariant for G- \mathcal{FDCW} . For a G-fibration $p: E \rightarrow B$, a map $p(L): Wa^{G}(B) \rightarrow L(E)$ which sends $[f: X \rightarrow B]$ to $L(\overline{f})(l(E_{f})) - \sum_{b \in \pi_{0}(G, B)} f_{*} \chi^{G}(X)(b) L(\overline{b})(l(E_{b}))$, is a homomorphism.

Proof. We show that p(L) is well-defined. Let $f: X \rightarrow B$ and $g: Y \rightarrow B$ be G-maps. If there exists a G-homotopy equivalence $h: X \rightarrow Y$ such that f and $g \circ h$ are G-homotopic, then we have obviously p(L)(f)=p(L)(g). Suppose that Y is obtained from X by attaching finitely many cells and g is an extension

of f. Let $i: X \to Y$ be an inclusion. For $x, x' \in \pi_0(G, X)$ with $f_*(x) = f_*(x') \in \pi_0(G, B)$, we get $\overline{f \circ x_*} l(E_{f \circ x}) = \overline{f \circ x'_*} l(E_{f \circ x'})$. Then

$$\sum_{\alpha \in \pi_0(G,X)} \chi^G(X)(x) \overline{f \circ x}_* l(E_{f \circ x}) = \sum_{b \in \pi_0(G,B)} f_* \chi^G(X)(b) \overline{b}_* l(E_b).$$

By applying Lemma 2.1 to the G-fibration $E_g \rightarrow Y$, we have

$$\begin{split} \bar{f}_{*} \, l(E_{f}) &= \bar{g}_{*} \circ \bar{i}_{*} \, l(E_{f}) = \bar{g}_{*} (l(E_{g}) - \sum_{\substack{y \in \pi_{0}(G,Y)}} \chi^{G}(Y, X) \, (y) \, \bar{y}_{*} \, l(E_{g \circ y})) \\ &= \bar{g}_{*} \, l(E_{g}) - \sum_{\substack{y \in \pi_{0}(G,Y)}} (\chi^{G}(Y) - i_{*} \chi^{G}(X)) \, (y) \, \overline{g \circ y}_{*} \, l(E_{g \circ y}) \\ &= \bar{g}_{*} \, l(E_{g}) - \sum_{\substack{b \in \pi_{0}(G,B)}} (g_{*} \chi^{G}(Y) - f_{*} \chi^{G}(X)) \, (b) \, \bar{b}_{*} \, l(E_{b}) \, , \end{split}$$

and so p(L)(f)=p(L)(g).

By the definition of p(L), we easily obtain the following.

Proposition 2.3.

- (1) $l(E) = p(L)(w^{G}(B)) + \sum_{x \in \pi_{0}(G,B)} \chi^{G}(B)(x) L(\bar{x})(l(E_{x})).$
- (2) Let p_i be G-fibrations and $j_i: E_i \rightarrow E_1 \cup_{E_0} E_2$ the natural inclusions.
 - (a) Suppose these are with the same fibre. Let $p=p_1 \cup_{p_0} p_2$ be the pushout *G*-fibration of the following commutative diagram. Then we have

$$p(L)(w^{G}(B)) = j_{1*} p_{1}(L)(w^{G}(B_{1})) + j_{2*} p_{2}(L)(w^{G}(B_{2})) - j_{0*} p_{0}(L)(w^{G}(B_{0})).$$

(b) Suppose these are with the same base space. Let $p=p_1 \cup_{p_0} p_2$. Then we have

$$p(L) = j_{1*} p_1(L) + j_{2*} p_2(L) - j_{0*} p_0(L) .$$

$$\begin{array}{c} I_{1} \leftarrow I_{0} \rightarrow I_{2} \\ \downarrow \qquad \downarrow \qquad \downarrow \\ E_{1} \leftarrow E_{0} \rightarrow E_{2} \\ \downarrow p_{1} \qquad \downarrow p_{0} \qquad \downarrow p_{2} \\ B_{1} \leftarrow B_{0} \rightarrow B_{2} \end{array}$$

Theorem 2.4. There exists a homomorphism from $Wa^{G}(B) \oplus U^{G}(B)$ to L(E)sending $(w^{G}(B), \chi^{G}(B))$ to l(E). In particular, there is a homomorphism from $Wa^{G}(B) \oplus U^{G}(B)$ to $Wa^{G}(E) \oplus U^{G}(E)$ sending $(w^{G}(B), \chi^{G}(B))$ to $(w^{G}(E), \chi^{G}(E))$.

Proof. For any $a \in U^{G}(B)$, there exists a *G*-map $h: Z \to B$ such that $w^{G}(Z) = 0$ and $a = h_{*}(\chi^{G}(Z))$. Then any element of $Wa^{G}(B) \oplus U^{G}(B)$ can be written as $([f: Y \to B], f_{*}\chi^{G}(Y)) = f_{*}(w^{G}(Y), \chi^{G}(Y))$. By the well-definedness of p(L), a

TOSHIO SUMI

homomorphism $Wa^{c}(B) \oplus U^{c}(B) \rightarrow L(E)$ which sends $([f: Y \rightarrow B], f_{*}\chi^{c}(Y))$ to $\overline{f}_{*} l(E_{f})$ is the required homomorphism.

Corollary 2.5. Let B be a finite G-CW complex. If $\chi^{c}(B)=0$ or F is weakly finite, then E has the G-homotopy type of a finite G-CW complex.

Proof. If F is a finite H-CW complex, then $G \times_{\mathfrak{A}} F$ is a finite G-CW complex. Then if F is weakly finite, we have $w^{c}(E_{x})=0$ for any $x \in \pi_{0}(G, B)$. By Proposition 2.3 (1), we have the result.

The following result is an equivariant version of Lal's theorem [2].

Corollary 2.6. Let B be a connected finite G-CW complex with a trivial G-action. Then we have

$$w^{G}(E) = \chi(B) \cdot i_{*} w^{G}(F)$$

where i: $F \rightarrow E$ is an inclusion.

§3. Applications to Some Equivariant Fibrations

We use the following lemma to give some equivariant fibrations.

Lemma 3.1. ([8]) Let K and H be closed subgroups of G with $K \leq H$. The component of $(G/H)^{K}$ which includes H is precisely $(C(K)/C(K) \cap H)_{0}$, where C(K) is the centralizer of K in G.

Proposition 3.2. Let X be a H-CW complex. Then $p: G \times_H X \rightarrow G/H$ is a G-fibration with fibre X.

Proof. It is sufficient to show the homotopy lifting property for G-maps $\sigma: G/K \times I^{n+1} \rightarrow G/H$ and $\rho: G/K \times I^n \rightarrow G \times_H X$ with $p \circ \rho = \sigma$ over $G/K \times I^n$.

We may suppose that $\sigma(K, 0, 0) = H$. Then we have $K \leq H$. By Lemma 3.1, there exist continuous maps $\alpha \colon I^* \to C(K)$ and $\beta \colon I^* \to X$ such that $\rho(K, t) = [\alpha(t), \beta(t)]$. Since $C(K) \to C(K)/C(K) \cap H$ is a fibration, there exists a map $\tau \colon I^{n+1} \to C(K)$ such that the following diagram commutes.

634

We define $\tilde{\rho}: G/K \times I^{n+1} \to G \times_{H} X$ by $\tilde{\rho}(gK, t, s) = [g \cdot \tau(t, s), \beta(t)]$. Since the isotropy group of $\beta(t)$ in *H* contains *K* for any $t \in I^{n}$, it is well-defined and is the required *G*-map.

We also have examples of equivariant fibrations.

Proposition 3.3. Let H and K be closed subgroups of G with $K \leq H$ and X a H-CW complex. Then $G \times_K X \rightarrow G \times_H X$ is a G-fibration with fibre H/K.

Proposition 3.4. Let H and K be closed subgroups of G with $K \leq H$ and X a H-CW complex. Then $G \times_K X \rightarrow G/H$ is a G-fibration with fibre $H \times_K X$.

For $H \leq G$ and a finitely dominated *H*-*CW* complex *X*, define a homomorphism $\operatorname{Ind}_{H}^{G}(X)$: $Wa^{H}(X) \rightarrow Wa^{G}(G \times_{H} X)$ by

$$\operatorname{Ind}_{H}^{G}(X)\left([f\colon Y\to X]\right)=\left[id\times_{H}f\colon G\times_{H}Y\to G\times_{H}X\right].$$

For $g \in G$, we denote by gX a gHg^{-1} -space $gH \times_H X \subset G \times_H X$ and define a map $F(g): Wa^H(X) \rightarrow Wa^{gHg^{-1}}(gX)$ by

$$F(g)\left([f\colon Y\to X]\right)=\left[gf\colon gY\to gX\right].$$

Let Y be a G-CW complex. To consider G-maps as H-maps induces a homomorphism $\operatorname{Res}_{H}^{G}(Y) : Wa^{G}(Y) \to Wa^{H}(Y)$.

For $x \in X$, we denote by $V_x \in \pi_0(X)$ an element which represents the connected component of X which includes x.

Theorem 3.5. Let H and K be closed subgroups of G with H or K normal and let X be a H-CW complex. Then $\operatorname{Res}_{K}^{G} \circ \operatorname{Ind}_{H}^{G}$ has the following decomposition.

$$\operatorname{Res}_{K}^{G}(G \times_{H} X) \operatorname{Ind}_{H}^{G}(X) = \chi((G/KH)_{0}) \sum_{V_{KgH} \in \pi_{0}(K \setminus G/H)} i_{g*} \operatorname{Ind}_{K \cap H^{g}}^{K}(gX) \operatorname{Res}_{K \cap H^{g}}^{H^{g}}(gX) F(g)$$

Here $H^g = gHg^{-1}$ and $i_g: K \times_{K \cap H^g} gX \rightarrow G \times_H X$ are canonical inclusions. Further if G/KH is connected we have

$$\operatorname{Res}_{K}^{G}(G \times_{H} X) \operatorname{Ind}_{H}^{G}(X) = \mathcal{X}(G/KH) i_{*} \operatorname{Ind}_{K \cap H}^{K}(X) \operatorname{Res}_{K \cap H}^{H}(X)$$

TOSHIO SUMI

Proof. Let $[f: Y \to X]$ be an element of $Wa^{H}(X)$. If K is normal, we have $G/KH = K \setminus G/H$. If H is normal, then $K/K \cap H$ acts freely on G/H and so $G/H \to K \setminus G/H$ is a K-fibration. Then in either cases $G \times_{H} Y \to K \setminus G/H$ is a K-fibration. By Proposition 2.3 (1), we obtain

It is not hard to show that $KgH \times_H Y \rightarrow K \times_{K \cap H^g} gY$ sending [kgh, y] to [k, g(hy)] is a K-homeomorphism. Hence we have

$$\operatorname{Res}_{K}^{G}(G \times_{H} X) \operatorname{Ind}_{H}^{G}(X) ([f]) = (id \times_{H} f)_{*} w^{K}(G \times_{H} Y)$$

= $\chi ((G/KH)_{0}) \sum_{V_{KgH}} i_{g_{*}}(id \times_{K \cap H^{g}} gf)_{*} w^{K}(K \times_{K \cap H^{g}} gY)$
= $\chi ((G/KH)_{0}) \sum_{V_{KgH}} i_{g_{*}} \operatorname{Ind}_{K \cap H^{g}}^{K} (gX) \operatorname{Res}_{K \cap H^{g}}^{H^{g}} (gX) ([gf])$

This completes the proof.

We set $\phi(G) = \{(H) \mid |WH| < \infty\}$. Suppose (H) is not in $\phi(G)$. Since $(G/H)^{\kappa}$ carries a free WH-action, and so has a free S¹-action, we have $\chi((G/H)^{\kappa}) = 0$ for any $K \le G$. From this and Theorem 3.5 we have the following result.

Theorem 3.6. Let X be a finitely dominated H-CW complex. Let H and K be closed subgroups with H or K normal such that (HK) is not in $\phi(G)$. Then $G \times_H X$ is K-homotopy equivalent to a finite K-CW complex.

Corollary 3.7. Let X be a finitely dominated H-CW complex. If (H) is not in $\phi(G)$, then $G \times_{H} X$ has the homotopy type of a finite CW complex.

Let Y be a finitely dominated H-CW complex. The assignment $f: X \rightarrow Y \times K$ to $f/K: X/K \rightarrow Y$ induces an isomorphism from $Wa^{H \times K}(Y \times K)$ to $Wa^{H}(Y)$. This proof is similar to [3, Theorem 5.4]. For example let $G=H \times K$ and let X be a finitely dominated H-space which is not H-homotopy equivalent to a finite *H-CW* complex. It is easy to see that $G \times_H X$ is *G*-homeomorphic to $X \times K$, where $H \times K$ acts on the first (resp. second) factor via the projection $H \times K \rightarrow H$ (resp. $H \times K \rightarrow K$). Then $G \times_H X$ is not *G*-homotopy equivalent to a finite *G*-*CW* complex.

References

- [1] Ehrlich, K., Fibrations and a transfer map in algebraic K-theory, J. Pure Appl. Algebra, 14 (1979), 131-136.
- [2] Lal, V.J., Wall obstruction of a fibration, Invent. Math., 6 (1958), 67-77.
- [3] Lück, W., The geometric finiteness obstruction, Proc. London Math. Soc., 54 (1987), 367–384.
- [4] —, Transformation groups and algebraic K-theory, Lecture Notes in Math., 1408, Springer-Verlag, 1989.
- [5] Stasheff, J., A classification theorem for fibre spaces, Topology, 2 (1963), 239-246.
- [6] Wall, C.T.C., Finiteness conditions for CW complexes, Ann. of Math., 81 (1965), 56–69.
- [7] Waner, S., Equivariant fibrations and transfer, Trans. Amer. Math. Soc., 258 (1980), 369-384.
- [8] Willson, S.J., Equivariant homology theories on G-complexes, Trans. Amer. Math. Soc., 212 (1975), 155–171.