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New R Matrices Associated with
Cyclic Representations of U,(A)

By

Etsuro DATE*, Michio JimBo**, Kei MIkr***
and Tetsuji Miwa****

Abstract

New R matrices are constructed as intertwiners of N-dimensional representations of
U/ (4%) at g =1. Analogous construction for U,(4$”) reproduces the chiral Potts model.

§1. Introduction

Let ¥ be a finite dimensional vector space and R(€, 7) a linear operator
acting on V'@V with parameters £, 7ES (to be called spectral parameters).
We call R(&, 7) an R matrix if the Yang-Baxter equation

(R(@, HDQDIQR(, M)RE, 1)R1)
= (IQR(E, MRE, M)QNUQR(®, 2)) (1.1)
holds.

A scheme of constructing R matrices is as follows [11]. Consider a Hopf
algebra U. Suppose that a family of representations (¥, z¢)ses of U is given in
such a way that

i) VRV, r:Qr,Qr,) is indecomposable for generic &, 7, 2, i.e., if
FeEnd(VQVQV) satisfies [F, (z:Q7,Q7,)(g)]=0 for any g U then
Fis a scalar,

(ii) there exists an intertwiner R: VQ V=3 V'@V such that
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R(E, 1)(7:®@7,)(¢) = (=, Q@7)(@RE, 1)  (g€EU)

for any &, 7€,
(iii) R(¢, &)=1.
Under these conditions R(&, 7) satisfies (1.1).
For example, take U=U,(4{"), V=C? S=C*=C\{0}. Using é=x as a
coordinate of S, we set

(00O (0 x7! (a7 O
ng(eo)—(x 0), n(fo)~(0 0), ng(ro)—(o q),
0 x

0 0 qg O
n'é(el) = (0 O) » ”&‘(fi) = (x_l 0) > ni(tl) = (0 q—l ) :

Here ¢;, f;, t; (i=0, 1) are the Chevalley generators. By this choice the con-
ditions (i), (ii), (iii) are satisfied and R(¢, #) gives the Boltzmann weights of the
6 vertex model.

Bazhanov and Stroganov [5] found that the Boltzmann weights of the
chiral Potts model [2], [4] are obtained by a certain algebraic procedure starting
from the R matrix of the 6 vertex model. In this paper we reformulate their
discovery in the above scheme by taking U to be a certain central extension of
U (A") with ¢ a root of 1. This Hopf algebra is known as the quantum
double of a ‘Borel’ subalgebra of U, (4{”) [6]. Let us denote it by U (A{).
In [8] we have shown that the Fateev-Zamolodchikov model, the trigonometric
limit of the chiral Potts model, is obtained by the scheme (i), (ii), (iii) for U=
U/A{"). The central extension enables us to reproduce the whole of the
chiral Potts model.

The story goes as follows. If g is a primitive N-th root of 1, U,(4,) =
U,8l(2, C)) admits a 3 parameter family of N-dimensional irreducible represen-
tations [12], [13]. (See [7], [9] for general results. See also [1], [3], [8].) It is
extended to a 6 parameter family of N-dimensional irreducible representations
of U,(A{"). The requirement (i) restricts the parameters &, 7 to be on an
algebraic surface S. In fact, S factorizes essentially into two identical curves:
S=C xC. Accordingly, R(&, n) factorizes into 4 pieces. They are the
Boltzmann weights of the chiral Potts model.

The main achievement of this paper is the construction of new R matrices
corresponding to the case A%, as opposed to A" for the chiral Potts model.
(For generic ¢ the intertwiner for U,(45”) gives the Izergin-Korepin model [10],
[11] in the simplest case.) We again start from the N-dimensional irreducible
representations of Uy(4;). In this case only those representations which send
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the Casimir element of U,(4,) to zero can be extended to the representations of
U,(A45?). This restriction effects that the set & is only a curve, given explicitly
by

eNbeN = Iy(aV+a7)

where I'; is a modulus. This is essentially the same curve as C for the chiral
Potts model. The R matrix is given in Theorem 3.4. Unlike the case A{",
however, we have not found a basis of ¥=C¥ for which the matrix elements of
R(&, 7) factorize.

The plan of this paper is as follows. In Section 2 we construct a family of
representations of U,(45”). In Section 3 we solve the equation for the inter-
twiner and give new R matrices. We show also the indecomposability of V&
V@YV to prove the validity of the Yang-Baxter equation. The intertwiner for
(7,,(A§1)) and the chiral Potts model are discussed in Section 4.

§2. Algebra U (AP) and its Cyclic Representations

Let us first recall the definition of the quantized enveloping algebra of type
A$P. We consider only the case when the deformation parameter g is a root
of 1.

Throughout this paper we fix a positive odd integer N >3, and a primitive
N-th root of unity g. We set =g

Let (a;;) :( i *;> be the generalized Cartan matrix of type 4%, and
set go=q*, ¢;=q. The quantized enveloping algebra U, of type A% is a C-

algebra generated by e;, f;, ¢;, ti* (i=0, 1), subject to the following defining
relations.

t,'ti_l - tz_'_lti == 1 s t,tJ - tjt‘ Py (2.].a)
1 e I t;—t7

Lejtit = qtiie;, tfitit =qi%if;, len fil = 5:‘jq'__ = (2.15)

1-“,',' p l_aij , a1 . .

s -1 [ z ]_eie,-ei =0,  i%j, @.1¢)

T ! 1—a;; I £ fl—g,.—1 P s

5| (_1)[ l ]‘_f,-fj et =0, i) 2.1d)

Here we use the following notations.

[m]‘ N e Y R SR i

, =4t 1
n

[n); ---[1]; gi—qi*
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For our purposes it is necessary to enlarge this algebra by adding 2 central
elements z; (=0, 1). Let us denote the enlarged algebra by U,=UT(4?).

This algebra can be endowed with a structure of a Hopf algebra. We shall
need only the comultiplication 4: U,— U,Q U, defined by

A(e;) = ;@1 +z;;Qe; (2.2a)
A(f) =[i®ti+z7'® fi » (2.2b)
A1) = 1,Q¢;, 2.20)
4(z;) = z;Qz; . (2.2d)

Note that this comultiplication coincides with that of U, if we set z;=1. As
in the case of U, we form tensor products of representations via this comultipli-
cation.

Let us denote by U,(4;) the subalgebra of ﬁq generated by e, f;, t;, 7L
As g¥=1, the powers e, /T, t£" belong to the center of U,(4;). We consider
finite dimensional irreducible representations such that el and f¥ are non zero
constants. We call such representations cyclic representations.

The cyclic representation of U,(4,) is N-dimensional and depend on 3 con-
tinuous parameters [12], [13]. This is described as follows. Let ¥ be an N-
dimensional vector space over C. Choose two linear operators X, Z on V
satisfying

ZX =wXZ, XVN=2ZV=1.

Proposition 2.1. An N-dimensional cyclic representation
Tagayn, Ug(4y) — End (V) (ay, @, x;=C*)
is given as follows.
Topazy(€) = %X,

x7t (wa, a5 1 1 -1
Tgog = — A 74+ 7 —a@—— )X,
wnin) (@—a7\ a +wa1 e

a,;
7"'aoa,,-,1(t1) = h'z .
)

The Casimir element
gh+q 7 g —g7 Ve
takes the value aya,+(a,,)™" for this representation.

We will extend this representation to that of U,.
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Proposition 2.2. Let z,,,, be as in Proposition 2.1. There exists a repre-
sentation =: U (A$)—End (V) such that =| U4 =T agayz, If and only if (aga)’=
—1. In this case = is given by

7(eg) = ( o 4)2 — 5 @aZ+q a7 Z X, w(e) =xnX, (2.3a)
z(f) = x'X*, a(f) = — — l)z(qaZ—I—q“a“Z Hx-1,  (2.3b)
z(ty) = £a*Z7%, =z(t) =aZ, (2.3¢)
m(z)) = ¢, w(z)=¢p,5 (2.3d)

with some ¢y, ¢;, X, C*, and a=qa,|a,.
Proof. From the requirements t,e,t5'=g"*e,, [t,, ,]=0, we have
n(t(]) =bZ -2 s

where b&C* is to be determined. The conditions ffitii=¢'f;, tfots'=
q %, [e, fo]=0 fix the form of #(f;) to be

z(fy) = x31 X2,

where x,&C* is some constant. From fetr =q %, 25 =q%, we know
that z(e,) has the following form

7(ep) = 9(Z)X~*

with some function ¢. The condition [e,, fi]=(t,—%5Y)/(¢*—¢~*) implies that ¢
must have the form

o(Z) = ‘4)2 (@ *bZ*+¢'b7'Z%+0),
where c&C is to be determined. Finally the requirement [e,, ;]=0 fixes the
constants b and ¢. Namely we have

aa+aytar' =0,
2
b=+ (ﬂ) , ¢=(@"+q97.
94
The first relation means the Casimir element vanishes. By setting a=qa,/a,, we
have (2.3). The Serre relations (2.1c), (2.1d) can be checked by using the vani-

shing of the Casimir element and the fact that z(e;) and =(f;) are proportional
to =(f;)? and z(e;)?, respectively. []
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Hereafter we consider only representations (2.3) such that z(f,t5)=1. We
denote this representation by 7 where £ =(a, ¢,, ¢;, Xy, %) E(C*)°.

The following will be used in Section 3. Let us denote the representation
with a=c,=c¢,=1 and x,=x,=x by =,.

Lemma 2.3, Assume N=3. Let (V', ') be a representation of Uy A%),
and consider the equations for F(x)EEnd(V Q V")

[(=.®=)(/), F)] =0  (=0,1),

(7. Q")) F(x) = " F(x)(z,Q=")(1,) . @249
Then for generic x any solution has the form F(x)=Z"QF'(x), where F'(x)&
End (V') satisfies

[='(/), F()] =0 (=01,
7' (t)F'(x) = o"F'(x)='(1,) . 2.5)

Proof. Clearly Z"Q@ F'(x) with F'(x) satisfying (2.5) is a solution of (2.4).
The coefficients of the linear equations (2.4) are polynomials in x. There-
fore it is sufficient to prove the assertion for F(x) which are polynomials in x.
In terms of Z and X, the equations (2.4) are

[I‘s', F(x)] =0 9 (l = 19 2) 5 (26(1)
(ZR7'(W))F(x) = &"F(x) (ZQx'(1)) , (2.6)
where
T, = X’Qn (1, +x1Q7'(fy) ,
T, = YQ='(t)'+x1Q='(f) ,
and

Y =xr(f) = —qZ+q7Z )X (q—q7").
It follows from (2.6b) that F(x) commutes with 1Q='(#)Y. Then using
T1 = (1Qz'(t) )T, ™+

X @)+ % X @u (17 )+ 002,

@?+1

we find that F(x) commutes with

T, — — —th__l( T!T.—T.T!
3 — q 1 DL 1Ly 2 1)
q+q

=7Z'Q 1—}—x<co3Z—|——2wZ Z‘I)X“Z®7r’(t1_2fg)+0(x2)
@?+1
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and
T, = (0T, T3—T;T)/[x(w—1)

= 270w () + o TELL 25w (17100

Putting x=0, F(0) commutes with Z®1, XQ='(t,) and

Z-'Qx' (f)+ QGMiI_ZZZX—3®”’(t1_%) .
(g—q7)

The commutativity with the first two operators and (2.6b) show that F(0) is of
the form

F0) =Z"QF',
where F' €End (V") satisfies
z'(t)F = o"F'n'(ty) .

In the case N=£3, Z! and Z%X ~? are linearly independent. From the com-
mutativity with the last operator, it then follows that F’ commutes with
z'(f}) (=0, 1). Therefore (F(x)—F(0))/x satisfies (2.4). By repeating this we
have the conclusion. []

Proposition 2.4. Assume N=3. For generic x;, if F €End (V'®") satisfies
[(”x1®"'®ﬂ:x,‘)(.ﬂ')’ F] =0 (1 = 0: 1) s
(”x1®"'®”x,,)(tl)F = me(”n@"'@”x,,)(tl) s
then F is a scalar. Moreover, if m==0 mod N then F=0.

Proof. Thanks to the Lemma 2.3, the problem reduces to the case n=1.
In this case, the equations are

[X%, F1=[Y, F]=0, ZF=w"FZ.
From this, the assertion follows. []
We have also proved the following directly by using computer.

Lemma 2.5. Suppose that N=3 and consider the representation n¢ such that
Xo=x;=1, c,=c"? and ¢,=c. For generic a, c the tensor product (VQVQYV,
7 Qn: Q@) is indecomposable.

§3. The Intertwiner for U (A$)

Now we shall solve
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RE, E)m:@77)(g) = (@iQme)(RRE, ) (€T, (4P).  (3.))

As a result we obtain a new R matrix whose spectral parameters live on a curve.
Firstly we derive necessary conditions for the existence of a solution. The
following will be used frequently.

Lemma 3.1. Let ¢ be a primitive N-th root of unity. If A, B are elememts
of a C-algebra satisfving AB=¢cBA, then we have (A+B)N =AY B".

For convenience we shall call an expression invariant if it remains the same
under the exchange of & and €£.

Proposition 3.2. Let a®¥==—1 and set c=c,, d=cyci. For the existence
of an intertwiner (3.1), it is necessary that the following are invariants:

1—a¥c¥

=St p, @ —WdNy, Ty— 32
l—aN—l—a"N, 2 = Xo (@ —c )> 3= o s (3.2a)
. cZNd—N+c—2NdN+2 _
r,= @ 1a Ty , I's=d+d™. (3.2b)

For generic values of the parameters, the Jacobian of the map G: (a, ¢, Xy, X,, d)
= (I")1<i<s 1S nonzero.

Proof. If R(z:Q7F)(g) =(@iQme)(g)R (g€ U, (4$)) and R is invertible,

then tr (7;Q7g)(g)=tr (r®=¢)(g). Apply this to g=el, /T, e;el and fof%.
Using (2.2) and Lemma 3.1, we obtain the following invariants 7;.

py= 1—a™ e 7y = x0(@ —cg™)
17 NN —n\2? 2 — 9

xd (aN+a N)z
— 1—a¥c¥ XV @V —ch)

3~ T > T . - °
x¥ a¥+a v

_ 1—cyc? _ Xpxi(1—cycd)

TS - 2 ° 7’6 - 2 M
Xo X2 ¢y C?

The I'; are obtained by setting I'y=1—rr,, I',=7, I's=13, I'y=1—r,7, and
I's=rgrg+2. The Jacobian of the map G is found to be

AN 1—d®> a"—a™¥ (@¥—1)(c*N+dV)

r,r,.
acxox;d? (@V+a V)t cNav

This completes the proof. []

In view of the above proposition, we must impose some condition on &
and ¢ in order to obtain an R matrix depending continuously on them. Here-
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after we shall assume
coet =1

and denote the parameters (a, ¢, Xx,, ;) E(C*)* by the same letter &. This
choice makes I'y trivial and I',)=(I";)>. Now (3.2a) reduces to the following
invariants:

N +c—N

r=-——- Fzzxév(am"cw)a I,

_1—a"cN
- 2 - N
aN—I—aN

x¥
This defines a family of algebraic curves C,C {=(q, ¢, X5, X;) =(C*)*} param-
etrized by I'=(I"y, T,, T'5).

We shall show that (3.1) has a solution under (3.3). First we prepare
a lemma. Let ¢ be a primitive N-th root of unity, and let 9/, be the C-algebra

(3.3)

generated by z and x satisfying zx=exz.

Lemma 3.3. Let o be a representation of 9Y, on a vector space V such
that o(z)" =a, o(x)=>b, a, beC. Set Z=o0(z) and X=0(x). Let @, 8, r, 0 be
complex numbers satisfying a¥a+ ¥ =rNa-+0Y. Then if we define P(Z) by

PR =SpZ, p=MCr—ea) T (-0, (4
it satisfies
P(Z)aZ+p)X = (rZ+0)XP(Z) . (3.5)

Let P(Z)=30=¢ puZ* be P(Z) with @ and r, and B and O being interchanged.
Then

P(2)P(Z) =0,
with

B—o ab—pr

Proof. Without loss of generality we may assume that ab==0 and that
o is an N-dimensional irreducible representation. Then Z*X' (0<k, I<N—1)
are linearly independent. Therefore (3.5) is equivalent to
Pin(e* f—0) = pyler —e*'e)  (0<k<N-2), 3.6)
Po(B—0) = py-1a(er —a).

This recursion relation is satisfied by (3.4). Since P(Z)P(Z) satisfies (3.5) with
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a=r and =0, (3.6) implies that it is proportional to the identity. There-
fore, using the formula

Sy W

Sebx—y  xVN—pN

we find P(Z)P(Z)=p with
N-1
o =poPota 2 PePy-+

3 N N—k N
B S er—cta) T (140 T (ca—e'p) 1T, (3—)

(ﬁ 5)2 =0 1=1 1=E+1
7= —rV)(BY—57) El et
B—o =0 (eta—7)(e*f—0)
_ T alNoN _ gNyN
p—8 ad—pr

Theorem 3.4. For generic values of the parameters & and E satisfying
(3.3), the equation (3.1) has a unique invertible solution up to a scalar multiple.

It is explicitly given by

R(E, &) = P(C)PHC)PY(C;) = PXCy)PH(C)PXC) 3.7)
where
= X*QZ%Xx 2, C, = ZX'QX,
C; = (7 @7%)(e)*(m: Q7E)(fo) ™Y/ %o »
C = (7’5®”s)(ex)z(ﬂz®”s)(fo)"/xofco,
Pi(C) = Zka’” (i=1,2,73),
ph = I (o'ar—o%) TI (o¥cixy—E%)
I=1
k
pi = II-=11( @EEX, —co’acil),=1111(w’x1—21) s
N—-1
P = f[ (acxy—w?dcz) 1 o(o®d@Ext—ack?),
=1 I=k+1
Proof. Set
—1QX?, 2,—X®1, 2,= W2 _glYQZzZxX™!,
Note that

C; = ((@%Cy+x0)21) " W(acx, Cy4-%,) 2,7

and that
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~N ~N,.2N N N 32N
a'c'x; —a'c'x
cy = 1 1 (3.8)

aVeNx) —aNeNz)

We have the following commutation relations.

Cllgl == CU45QIC1 ) Czhgz = wngz s C3AQ3 == w2g3C3 > (3-9“)
[Ci, Cjl =2, 2,1 =[C;, 2] =0 (1<£i+j<L2), (3.9b)
[Cs, CHH2C,) =0, [, C]=[2;, C)l]=0. (3.9¢)

Thanks to Lemma 3.4 P¥(C;) (i=1, 2, 3) satisfies

PYC)(@%,Cy+x0) 2, = (@x,C, %) 2, PH(CY) (3.10a)
PYCy)(acx,Cyt-x1)2, = (@6x,Cy+%)2,P*(C)) , (3.108)
PY(Cac(%,Cot+wox3)2; = ac(x,Cy+wxi)2,P(C,) . (3.10¢)

Now we shall show that R=R(¢, f;:) given by (3.7) satisfies (3.1) for g=¢;
(#=0,1), fo and e;. In terms of C; and £; (i=1, 2), the equations become

RCI(N“)/ZCz — C1<N+1)/z CZR s

R(@%%,Cy+C%x) 2, = (@%x,C,+E%) 2R ,

R(acx,Cy+x,)2, = (@cx,Cp+%)2,R .
They follow immediately from (3.9), (3.10a), (3.10b).

Next we shall turn to (3.1) for g=f;. It is sufficient to check (3.1) for
g=f1e;. After some calculations we obtain

~(—4"Y @@ fe)
= g(r@TAE)+ 4w RmDET)
+ L (Lactoder SEeroten)). G
c a

X1%,
Note that
PYCYPAC,)C; = CPYCYPY(C) . (.12)
Using (3.9¢), (3.10c), (3.11) and (3.12) we obtain
R(z:Q=F)(fie)) = (rzQ@7e)(fre)R .

Finally we shall consider (3.1) for g=e,. This equation can be checked
directly. In the case N==3, it can be shown also by the following argument.
Let

F = R™Y((=1Q¢)(e) R—R(x:Q7F)(ey)) -
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We can easily show that F satisfies (2.4) with m=—2. From Proposition 2.4,
it vanishes. Therefore R satisfies (3.1) for g=e,. Clearly R satisfies (3.1) for
g=z; (i=0, 1). This completes the proof. []

Remark. If we set
k= @R LN x) = gVx) -7,
then £R(€, £) is holomorphic on the curve Cj.

Remark. When I''=1 and I',=I';=0, C, degenerates to a rational
curve. Letting a, c—1 we find that xy/x; is an invariant. The R matrix
becomes a polynomial in the single variable x=x,%,/x,%,. We call this the
trigonometric case.

Proposition 3.5. The obtained R matrices satisfy the following inversion
relation

where
~ 2 A2 A % N NN FN AN N
- A N-10 Xg—8°Xg GCx;—ack, a’c”xy +a" ¢V X
,0(6, E) —w 2N3(acac)N 1 ~ 0 ~2~0 1 = 1 0 —— 0
C°Xg—CXy  X—% acxy+acx,
y (d” CNXEN _gN el 33N )2 xyx3N xRN

dexi—acx: XgX2 —X, X3

Proof. Let P’ be P with & and & being interchanged. Thanks to
Lemma 3.3, P(C;)Pi(C;) (i=1, 2, 3) are proportional to the identity. There-
fore, noting [C;, C,]=0, we find

RE, E)RE, &) = PYC)PYC)PUCP(C)PHCYPHC)
= PY(C)P(CYP(CYPHCHPACHP(Cy) -
Using (3.8) and Lemma 3.3 we obtain the expression for o(¢, E). O
In order to show that the R satisfies the Yang-Baxter equation, it remains

to prove the indecomposability of the tensor products of three cyclic represen-
tations of U (4%). Let (V= UCrXCpxCrCC"

Proposition 3.6. For generic (I', €, 7, )€Y, if FEEnd(VQVQV)
commutes with (@, m,)(g) for any g U, o then F is a scalar operator.

Proof. Since Cr is irreducible for generic I', the variety C/ is irreducible.
Therefore we can show the assertion by specialization argument. This is
already done in Proposition 2.4 and Lemma 2.5. []
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Remark. From the R matrix of Theorem 3.4, one can get a local Hamil-
tonian >3; H;;,, by a standard procedure. More precisely, set

H = —tg‘ log R(E’ E)IE=0 ’
de

where € 25(6)—»6 as e—>0. Asusual let X;, Z; be the operators acting as X,
Z on the j-th component in the tensor product of V'®%, and similarly for Hj;y,.
Up to a scalar multiple and a term proportional to the identity,we have

- 1 2 : 3
Hjjpy = Hjju1+HGje17Hjje

a
J.1+1_202N21 co‘“‘( wz)c

c

N-1
Hijr = (14a¥e") 33 jwk (—wac)Ch,

(—w)*Ct,

N-1
H?j+1 — (aZN+CZN) 2 o
k=1 1—w

where
Cl —XZZfHXJH, CZ :ZjX'j_lXi_H,
3 = (X,-—}—acZ,-XjH)Z(aZX?-Z?-H-l—ch§+1)”1 .

§4. Intertwiners for qu(Aﬁl’) and the Chiral Potts Model
In this section U, means the algebra Uy(4{"). It is defined by the same
formulas (2.1), (2.2), wherein (a,-,-)z( 22 —22) and ¢,=¢,=q. As in Section 2

we shall consider N-dimensional representations obtained as the extensions of
Proposition 2.1 for U,(4,), the subalgebra generated by e, f; and #i1. We find
it more convenient to make the change of variables

X=rYadZz—DX', x=—"_xi.
9—q

Here 7¥=a?"—1, so that X’N=1 and ZX'=wX'Z. Dropping primes we thus
have z: U,— End (V) (V=C¥), where

27-1__ 27
mle) = xpX T REZL gy — By
q9—q 9—4q
25 271
") = @ax) AL X, ) = (B
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a(t) =221, at) =987, az)=c,, nz)=c,.
qa 20

The six parameters &=(ay, a,, ¢,, €1, Xg, X;) E(C*)® entering = will be exhibited
as 7e.

Given &, g &(C*)® we now look for an intertwiner R: V'@ VS VYV such
that

RE, H(m:@77)(g) = 3 Qm)(@RE, &) (2T, 4.1
By a similar reasoning as given in Section 3, we have

Proposition 4.1. Assume a?" =1, (@@’ =+ —1, 33" +1, (3,8,)*+ —1. Foran
intertwiner to exist it is necessary that the following quantities are invariants:

1—clalar® l—ciay ar aFNa{V 4.2
=-_Chd 2a
1 xd (@ —1) 2= xN(a -1’ @20
N(y=N N__.— N, —N__ —N
re= (aya,xy) a(lao—iiN &™) , Te= (@ xy) a(g;{)v iz—ll ) ,  (4.2p)
1 "‘Cocl xoxl(l ——co_lcl_l)
o lmaa L xox(—ciler?) 4.2¢)
" oan(@ar+)” T 1)

For generic & the Jacobian of the map E—(r;) is nonzero.
Hereafter we shall assume
COCI = 1 .

This makes (4.2c) trivial, and 7,7;=7r,r,. Eqgs. (4.2a), (4.2b) then define a
surface $=Cyy,y, Written in the coordinates (ay, ay, ¢y, Xp, X;).  As it turns out,
& is essentially a product of two curves. To see this, consider the curve C; in
the coordinates (x, y, #)=(C*)® [4]

K 1—kpN

C.: XNV = k(1 NyNy N —
B Xy A+x"%), =y ="

@.3)

Here the parameter k is a modulus and &?+-k"2=1. Set
K= —rrs, & =—klri, & =—klr,.
Then the following gives an algebraic correspondence:

8117273 <> Ck Xck
(o> @1, Co» X X)) > (X, 3, 2, X', Y, 1)
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’ ?
Xo =KX , X3=8BY,

Y a§=x——'u:u, cna,,a1=l,)£,
y
Hereafter we shall use the letter r=(x,, y,, #,) to denote a point on C,.
To describe the intertwiners, define matrices

N

= W @xexy,

-1
S"S
=0
-1 ___ a
T, rs = go n(a)Z .
Here r, s&(,, and the coefficients V/I>,s(a) and W,(a) are defined via the recur-
sion relations

A
Wrs(a) — Msyr_/“ryswa-l
W,(a—1)  #x—ux0"

2

_W,,(a) _—— x,0—x,0° '
W,s(a—l) ys_yra)a

Note also that W, (I)=>V=¢ V’I\/,s(a)w‘“’ are given by

Wrs(a) — H Vs _xrwa .
Wr.s (a_ 1) Mg Yy —xswa

These are the Boltzmann weights of the chiral Potts model [4].

Theorem 4.2. Consider & =(r, r'), &'=(F, )& CyXC; where C; is given
by (4.3). Then up to a scalar multiple the intertwiner (4.1) is given by

RE, &) = Sy7(Ty7/@T,7)Syz- .

Proof. Set K=Q(k, k'). Let ®@,(q) be the N-th cyclotomic polynomial
in g where ¢ is an indeterminate variable. Set K=K[q]/K®y(gq). Let A=
K[x, x™, y,y™%, u, #7Y] be the coordinate ring of C, over K, and B=AQ®zA
the coordinate ring of C,xC,. We consider a B-algebra 9 generated by Z
and X with the defining relations ZX = 0XZ (w=q¢%), Z" =X"=1. We may
regard

9=9"" (2, @z )(ey)
L1

= X 0 ZX Q1 —p X Q1 +4-x7 ttrttyrttz 851 ZQZX—y7 100,100 Z QX

as an element of YWRz9Y, and (4.1) for g=e,; as an equation in YRz .
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This equation is shown by using the following and similar identities in F¥ (see

Lemma 3.3).
S, (7X@ X)—wx,)(ZR1) = ff(y,(x-l®X)—wxs)(Z®1)s,s ,

Tls(lurﬂsxsz —Y r)X = (aur/‘tsxrz - s)X T, rs °

In order to prove the case g=e, we can use the following K-linear anti-

involution # of G

-1
x;‘k=yrs /":'k=:ur 5 s = Vs

Z¥ =2z, X*=X"1,

We have
— -1
(7 @mme ) = L1 @)

& £

1

We also have
Srs((ys(X ‘1®X)—wx,) (Z ® 1))* = %(yr(X_l®X) _c"xs)(Z@ 1))*Srs ) (444)

T, rs(('ur'usxsz -y r)X )* = ((u,,usx,Z -Y s)X )* T, s * (44b)

Therefore we obtain (4.1) for g=e,.
For g=f;, f;, we use another anti-involution / of 9Y:

1 A q 'ar — __gx, ,

5&1 = s Ve = 2
qx, Yy Yy

As = L j;s = q H /2s = _qxs'us s
gxs Vs Vs

Then we have

2
(mocoly(me @ )N = —— L (m:@7z) (tiey) ,
£CeCo

1 " €€y -1

(£ memn) = —2Pm@mute).
CaCo 1

The identities (4.4) with * replaced by ” are also valid. Therefore we obtain

4.1) for g=fo, /1 [
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