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New R Matrices Associated with
Cyclic Representations of

By

Etsuro DATE*, Michio JIMBO**, Kei MIKI***
and Tetsuji MIWA****

Abstract

New R matrices are constructed as intertwiners of JY-dimensional representations of
Sit qjf=l. Analogous construction for U9(A^) reproduces the chiral Potts model.

§ 1. Introduction

Let V be a finite dimensional vector space and R(£ , rj) a linear operator
acting on V®V with parameters f, y^S (to be called spectral parameters).
We call jR(f , TJ) an R matrix if the Yang-Baxter equation

)) (1.1)

holds.
A scheme of constructing R matrices is as follows [11]. Consider a Hopf

algebra U. Suppose that a family of representations (V, ^g)|es of U is given in
such a way that

(i) (V®V®V, 7T|® rc,®^) is indecomposable for generic f, 77, /I, i.e., if
FeEnd(F®F®F) satisfies [F, (fffi®s®2rA)(g)]=0 for any ge^7 then
F is a scalar,

(ii) there exists an intertwiner R: V® V^ V®V such that
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) fee C7)

for any <?,

(ill) *(£,£)=!•
Under these conditions jR(f , TJ) satisfies (1.1).

For example, take U=U9(A(^)9 V=C\ S=CX=C\{0}. Using £=x as a

coordinate of S9 we set

/O 0\ /O jc-J\ /r1

"w=t oj' *»-(o oj- *!('Ho

Here e^/i, ^ (z=03 1) are the Chevalley generators. By this choice the con-
ditions (i), (ii)5 (iii) are satisfied and R(E9 rj) gives the Boltzmann weights of the
6 vertex model.

Bazhanov and Stroganov [5] found that the Boltzmann weights of the
chiral Potts model [2], [4] are obtained by a certain algebraic procedure starting
from the R matrix of the 6 vertex model. In this paper we reformulate their
discovery in the above scheme by taking 17 to be a certain central extension of
Uq(A

(i}) with q a root of 1. This Hopf algebra is known as the quantum
double of a 'Borel' subalgebra of Uq(A^) [6]. Let us denote it by Uq(A^).
In [8] we have shown that the Fateev-Zamolodchikov model, the trigonometric
limit of the chiral Potts model, is obtained by the scheme (i)3 (ii), (iii) for U=

Uq(A[^). The central extension enables us to reproduce the whole of the
chiral Potts model.

The story goes as follows. If q is a primitive 7V-th root of 1, Uq{A-^) =
Uq(§l(29 C)) admits a 3 parameter family of JV-dimensional irreducible represen-
tations [12], [13]. (See [7], [9] for general results. See also [1], [3], [8].) It is
extended to a 6 parameter family of TV-dimensional irreducible representations
of Uq(AP). The requirement (ii) restricts the parameters f , rj to be on an
algebraic surface S. In fact, S factorizes essentially into two identical curves:
<S=CxC. Accordingly., R(E9 rj) factorizes into 4 pieces. They are the
Boltzmann weights of the chiral Potts model.

The main achievement of this paper is the construction of new R matrices
corresponding to the case A(

2
2\ as opposed to A{^ for the chiral Potts model.

(For generic q the intertwiner for Uq(A^) gives the Izergin-Korepin model [10],
[11] in the simplest case.) We again start from the TV-dimensional irreducible

representations of Uq(A^). In this case only those representations which send
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the Casimir element of Uq(A^ to zero can be extended to the representations of
Uq(A^). This restriction effects that the set <S is only a curve, given explicitly
by

CN+C~N = r&x+a-")

where F1 is a modulus. This is essentially the same curve as C for the chiral
Potts model. The R matrix is given in Theorem 3.4. Unlike the case A^\
however, we have not found a basis of V=CN for which the matrix elements of
R(S, 7]) factorize.

The plan of this paper is as follows. In Section 2 we construct a family of
representations of Uq(A^). In Section 3 we solve the equation for the inter-
twiner and give new R matrices. We show also the indecomposability of V®

V® V to prove the validity of the Yang-Baxter equation. The intertwiner for
and the chiral Potts model are discussed in Section 4.

§2. Algebra Uq(A^) and its Cyclic Representations

Let us first recall the definition of the quantized enveloping algebra of type
A(

2
2). We consider only the case when the deformation parameter q is a root

of 1.

Throughout this paper we fix a positive odd integer N>3, and a primitive
N-th root of unity q. We set a)=q2.

/ 2 1\
Let (flf-y) =( J be the generalized Cartan matrix of type A^\ and

set q0=q4, qi=q. The quantized enveloping algebra Uq of type A^2) is a C-
algebra generated by e^f^ th tr1 (i=Q, 1), subject to the following defining
relations.

titT1 = t^ = 1 , titj = tjt; , (2.1fl)

-' = 0

Here we use the following notations.

_ [m]j — [m-n+l]j r , _ qf-q
r i rn ' *• •"'"
Wi —[!]* 0

—m
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For our purposes it is necessary to enlarge this algebra by adding 2 central
elements zt (i=Q, 1). Let us denote the enlarged algebra by Uq=Uq(A^).

This algebra can be endowed with a structure of a Hopf algebra. We shall
need only the comultiplication A\ Uq-* Uq®Uq defined by

(2.2d)

(2.26)

(2.2c)

Note that this comultiplication coincides with that of Uq if we set z$=l. As
in the case of Uq we form tensor products of representations via this comultipli-
cation.

Let us denote by Uq(A^ the subalgebra of Uq generated by el9 fl9 tl9 tT
1-

As qN=l9 the powers ef,/f, tfN belong to the center of Uq(A^. We consider
finite dimensional irreducible representations such that ef and /f are non zero
constants- We call such representations cyclic representations,

The cyclic representation of Uq(A^) is JV-dimensional and depend on 3 con-
tinuous parameters [12], [13]. This is described as follows. Let V be an TV-
dimensional vector space over C. Choose two linear operators X, Z on V
satisfying

ZX = o)XZ , XN = ZN = 1 .

Proposition 2.L An N-dimensional cyclic representation

^oW Uq(A,) -> End(F) (ob, a

is given as follows,

"(A

Casimir element

takes the value aQa1
Jr(a0a1)~

1 for this representation.

We will extend this representation to that of Uq.
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Proposition 2.2. Let naoaiXl be as in Proposition 2.1. There exists a repre-

sentation TU: Uq(A^)-*End(V) such that x\ugu1)=
7j:a0alXlifandonlyif(aQal)

2=

—1. In this case n is given by

la~lZ ~l)X-J , 7u(ei) = XlX, (2.30)
(*4-<r4)2

7t\jQ) == XQ •& 5 ^\Ji) == ~r~^\q@^i~T~q & *-* /•**• 9 \2*,juj
(n—n~ j

some CQ, cl9 ^0eCx, and a=qaJaQ.

Proof. From the requirements tQelt^
1=q~~iely [t0, ̂ =0, we have

where 6eCx is to be determined. The conditions t1fQtr1=q4lfQ,

#~8/o> [^i»/o]=0 ^ t^6 form of TT(/O) to be

where ^0eCx is some constant. From t1eQtr1=q~*eQ9 tQeQt^1=qBeQ we know

that n(eQ) has the following form

with some function <p. The condition [eQ9f0]= (tQ~t^l)I(q*—q~*) implies that <p

must have the form

where c^C is to be determined. Finally the requirement [^Oj^]=0 fixes the
constants b and c. Namely we have

^1^1=0,

The first relation means the Casimir element vanishes. By setting a=qa1/a0, we

have (2.3). The Serre relations (2.1c), (2.Id) can be checked by using the vani-

shing of the Casimir element and the fact that n(e0) and TT(/O) are proportional
to TC( fo2 and 7u(e^2. respectivelv. Flto x(fi)2 and xfa)2, respectively.
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Hereafter we consider only representations (2.3) such that x(tQti) = l. We

denote this representation by n% where f=(a, c09 cl5 xQ9 x1)e(Cx)5.

The following will be used In Section 3. Let us denote the representation
with a=c0=c1 = l and XQ=X±=X by icx.

. 2o3o Assume N=tp3. Let (V , n') be a representation of Uq(A
(
2
2}),

and consider the equations for F(X)eEnd(T® V)

(i = o, i) ,
®*')('i) . (2.4)

Then for generic x any solution has the form F(x)=Zm®F'(x), where F'(x)^
End(F') satisfies

[xW,F'(x)]=Q (f = 0,l) ,

*'(W(x) = aTF'WM . (2.5)

Proof. Clearly Zm®F'(x) with F'(x) satisfying (2.5) is a solution of (2.4).
The coefficients of the linear equations (2.4) are polynomials In x. There-
fore it Is sufficient to prove the assertion for F(x) which are polynomials In x.
In terms of Z and X, the equations (2.4) are

[rf, F(x)] = 0 , (i = 1, 2) , (2.6a)

(Z®7uf(t1))F(x) = a>mF(x) (Z®*'('i)) , (2-66)
where

and

It follows from (2.6b) that F(̂ :) commutes with 1®^'^)^- Then using

T{ =

we find that F(x) commutes with

q+q-1
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and

Putting x=Q, F(0) commutes with Z®1, X®n'(t^ and

i 7(?— q )
The commutativity with the first two operators and (2.6b) show that F(0) is of
the form

F(0) = Zm®Ff ,

where FeEnd(F') satisfies

In the case TV 4= 3, Z"1 and Z2X~3 are linearly independent. From the com-
mutativity with the last operator, it then follows that Fr commutes with
7u'(f.) (1=0, 1). Therefore (F(x)—F(Q))/x satisfies (2.4). By repeating this we
have the conclusion. D

Proposition 2.4. Assume N=$=3. For generic xh z/FeEnd(F®w) satisfies

I = O (i = o, i) ,

F w a scalar. Moreover, ifm^Q mod JV then F=Q.

Proof. Thanks to the Lemma 2.3, the problem reduces to the case n=l.
In this case, the equations are

[X2, F]=[Y,F\=Q, ZF= Q)mFZ .

From this, the assertion follows. Q

We have also proved the following directly by using computer.

Lemma 2.5. Suppose that N=3 and consider the representation n$ such that
x0=x1=l, cQ=c~2 and cl=c. For generic a, c the tensor product (V®V®V,
rcg(g)7rg(g)7r0) is indecomposable.

§3. The Intertwiner for

Now we shall solve
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As a result we obtain a new R matrix whose spectral parameters live on a curve.
Firstly we derive necessary conditions for the existence of a solution. The

following will be used frequently.

Lemma 3oL Let e be a primitive N-th root of unity. If A, B are elememts

of a C-algebra satisfying AB=eBA, then we have (A+B)N=AN+BN.

For convenience we shall call an expression invariant if it remains the same

under the exchange of f and f .

i 3o20 Let a2N3=— 1 and set c=clf d=cQcl, For the existence

of an intertwiner (3.1), it is necessary that the following are invariants:

>. r,=l=, (3.20)

For generic values of the parameters, the Jacobian of the map G: (a, cf XQ> xlt d)

nonzero.

Proof, If ^(^®wf)(g) = (^|®^)(g)U(ge£^(^?))) and U is invertible,
then tr (2rg®wf)(g)=tr (^|®^)(g). Apply this to g=e?9 /f , ^0^f and /0/i

2.

Using (2.2) and Lemma 3.1, we obtain the following invariants n-

_
/ 6

The 71,- are obtained by setting /I
1 = l— r3r4, A^^ r3=T3, r4=^—TiT2 and

2. The Jacobian of the map G is found to be

N+a~NY cNdN

This completes the proof, D

In view of the above proposition, we must impose some condition on f

and f in order to obtain an R matrix depending continuously on them. Here-
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after we shall assume

2 •*

and denote the parameters (a, c, x0, .^^(C*)4 by the same letter f. This
choice makes F5 trivial and r4=(/11)

2. Now (3.2a) reduces to the following
invariants:

-N .. _ l__aNcN
r2N\ p L U L ,« ^
C ) •> J 3 — w • V-3"5/

This defines a family of algebraic curves Crd {£=(a, c, XQ, ̂ c1)e(Cx)4} param-
etrized by r=(rl9 rE, r3).

We shall show that (3.1) has a solution under (3.3). First we prepare

a lemma. Let e be a primitive 7V-th root of unity, and let S^s be the C-algebra

generated by z and x satisfying zx=sxz.

Lemina 3.3. Let o be a representation of ^W^ on a vector space V such

that a(z)N=a, a(x)N=b, a, b(=C. Set Z=o(z) and X=o(x), Let a, ft, T, d be

complex numbers satisfying aNa+/3N=TNaJrdN. Then if we define P(Z) by

P(Z)=N-£PhZ», pk = fl («r-«'a) H1 (e'^-») , (3.4)
k=0 1=1 l=k+l

it satisfies

P(Z)(aZ+p)X = (TZ+d)XP(Z) . (3.5)

Let ^(Z)=Sfc)
1 pkZ* be P(Z} with a and r, and ft and d being interchanged.

Then

P(Z)P(Z) = p ,

with

p = aN- .
~d ad — fir

Proof. Without loss of generality we may assume that ab^pQ and that

a is an TV-dimensional irreducible representation. Then ZkXl (0<fc, l<N—l)

are linearly independent. Therefore (3.5) is equivalent to

e^a) (Q<k<N-2) , (3.6)

.

This recursion relation is satisfied by (3.4). Since P(Z)P(Z) satisfies (3.5) with
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a=r and fi=89 (3.6) implies that it is proportional to the identity. There-

fore, using the formula

*yj y = NyN

k=oskx—y xN~yN

we find P(Z)P(Z)=p with

P = k=i
N-l k N N-k &

=

Theorem 3.4. For generic values of the parameters % and £ satisfying

(3.3), the equation (3.1) has a unique invertible solution up to a scalar multiple.

It is explicitly given by

, c2 =
C3 =

C3 = (^

o' = i, 2, 3) ,
k N-l

pl = U (uWxt-aWxj) H
/=! I=k+l

k N-l
«2 __ T

Set

1=1 l=k+l
k N-l

Note that

and that
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We have the following commutation relations.

Qfij = G^C, , C282 = ^Q2C2 > C3®3 = G^sCs , (3.9a)

[C,., c,] = \ah a,] = [Q, a,] = o (i £/ *; <;2) , (3.96)
[C35 Cr+«/2CJ = 0 , [J93, CJ = [0,, CJ = 0 . (3.9c)

Thanks to Lemma 3.4 P'(Q) (/=!, 2, 3) satisfies

(3.10B)

(3.106)

(3.10c)

Now we shall show that R=R(£, f) given by (3.7) satisfies (3.1) for g=tt

(i—0,l~),fo and e^ In terms of Q and St (/'=!, 2), the equations become

They follow immediately from (3.9), (3.10a), (3.10b).
Next we shall turn to (3.1) for g=fi- It is sufficient to check (3.1) for

S=f\e^. After some calculations we obtain

(3.11)
C C '

Note that

P'CQP'CC^C, = QP1(C1)P
2(C2) . (3.12)

Using (3.9c), (3.10c), (3.11) and (3.12) we obtain

Finally we shall consider (3.1) for g=eQ. This equation can be checked
directly. In the case N 4= 3, it can be shown also by the following argument.
Let

D= JK.
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We can easily show that F satisfies (2.4) with m=—2. From Proposition 2.43

it vanishes. Therefore R satisfies (3,1) for g=eQ, Clearly R satisfies (3.1) for
g=z$ (i=09 1). This completes the proof. Q

Remark. If we set

K = a2Nx$+c2Nx$ = a2Nx$+52Nx$ ,

then «R(E9 £) is holomorphic on the curve Cr.

Remark. When rl = l and r2=F3 = 09 Cr degenerates to a rational
curve. Letting a, c->l we find that xQ/xl is an invariant. The R matrix
becomes a polynomial in the single variable x=x0xJxlxQ. We call this the
trigonometric case.

30§0 The obtained R matrices satisfy the following inversion
relation

, £)*(£, £) = *(£, f)

c2xQ— c2xQ xl—xl acxQ+acxQ

\ acxi—acxl I xQXi—xQx2

Proof. Let P* be P* with f and f being interchanged. Thanks to
Lemma 3.3, P'(Q)^'(Q) O'^l? 29 3) are proportional to the identity. There-
fore? noting [Cl9 CJ=0, we find

Using (3.8) and Lemma 3.3 we obtain the expression for p(£9 £). Q

In order to show that the R satisfies the Yang-Baxter equation,, it
to prove the indecomposability of the tensor products of three cyclic represen-
tations of C/eC42)). Let qp= \JrCrxCrxCrciC*

306o For generic (F, £, y, ^)eq^, if F<=End(V®V®V)
commutes with (n^ ®^-n®^(g)for any ge Uq, then F is a scalar operator.

Proof. Since Cr is irreducible for generic F9 the variety Q? is irreducible.
Therefore we can show the assertion by specialization argument. This is
already done in Proposition 2.4 and Lemma 2.5. D
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Remark. From the R matrix of Theorem 3.4, one can get a local Hamil-

tonian Sy HJJ+I by a standard procedure. More precisely, set

where f =f(e)->f as e->0. As usual let Zy, Zy be the operators acting as X,
Z on the 7-th component in the tensor product of V®L, and similarly for
Up to a scalar multiple and a term proportional to the identity,we have

where

Cj = X j Z j + i X j + i y C2 = ZjXj Xj+l ,

c3 -

§4 Intertwlners for ^(^i^) and the CMral Potts Model

In this section Uq means the algebra Uq(A
(^). It is defined by the same

( 2 _ 2\
1 and q0=q!=q. As in Section 2

we shall consider TV-dimensional representations obtained as the extensions of
Proposition 2.1 for Uq(A^9 the subalgebra generated by el9/i and tf1. We find
it more convenient to make the change of variables

x =
q-q

Here rN=alN—l, so that X'N=l and ZX'=o)XfZ. Dropping primes we thus
have TU: Uq-*End(V) (V=CN), where

q—q~ q—q~
1 /72 Z -1 11 V ^ /'\ f - \-l ts-lUQ Zs 1- X , w^/J =
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The six parameters £ =(a09 al9 cQ9 cl9 *0, ;q)e(Cx)6 entering K will be exhibited
as tfg.

Given e, <fe(Cx)6 we now look for an intertwiner R: V® F~ V® V such
that

, 0(*«®*f X*) = (*| ®K£(g)R(t , ) fee £?€) . (4.1)

By a similar reasoning as given in Section 3, we have

Proposition 4.1. Assume a}N* 1, (a<A)24= -1, a?"=t= 1, (5^4= -1. For an
intertwiner to exist it is necessary that the following quantities are invariants:

_ 1-cJW~

CL\ — 1

;

For generic £ the Jacobian of the map f H*(ri) w nonzero.

Hereafter we shall assume

This makes (4.2c) trivial, and riTz=T2T^ Eqs. (4.2a)? (4.2b) then define a
surface S=S^^B written in the coordinates (aQ9 al9 c0? xQ9 Xj). As it turns out,
<S is essentially a product of two curves. To see this, consider the curve Ck in
the coordinates (x9y, #)e(Cx)3 [4]

Here the parameter A: is a modulus and fe2+A:/2— 1. Set

Then the following gives an algebraic correspondence :

^ViVs "*" * ^k^^k

(a0, al9 c03 ̂ 0, xj K> (x, ̂ , JM, ̂ ', j
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Hereafter we shall use the letter r=(xr, yr, jur) to denote a point on Ck*

To describe the intertwiners, define matrices

srs ="2 wrs

—

Here r, s^Ck9 and the coefficients Wrs(d) and Wrs(a) are defined via the recur-
sion relations

Wrs(a-l)

= r
r s

_

wrs(a-l) ys-yr<»a

Note also that Wrs(l)=^^ Wrs(a)a>-al are given by

Wrs(d) __ yr ys-xro)a

Wrs(a~l) vs yr-xsa>* '

These are the Boltzmann weights of the chiral Potts model [4].

Theorem 4.2. Consider £ =(r, r'), f'=(f, ?)<=CkxCk where Ck is given
by (4.3). Then up to a scalar multiple the inter twiner (4.1) is given by

Proof, Set K=Q(k, k'). Let ®N(q) be the JV-th cyclotomic polynomial
in q where q is an indeterminate variable. Set K=K[q]/K@N(q). Let A==
K[x, x~l,y,y~l,tJ,9 t*,~l] be the coordinate ring of Ck over K, and B=A®RA
the coordinate ring of CkxCk. We consider a 5-algebra ^W generated by Z
and X with the defining relations ZX = vXZ (o)=q2), ZN=XN=L We may

regard

as an element of CW®K(W, and (4.1) for g=^ as an equation in
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This equation is shown by using the following and similar identities in *W (see
Lemma 3.3),

In order to prove the case g=eQ we can use the following ^-linear anti-
involution * of cffl :

We have

We also have

^(W*-1®^-®*^ (4-4«)
N^r /

Trs((wBxsZ-yr}X)* = ((vr»sxrZ-ys)X)*Trs . (4.4b)

Therefore we obtain (4.1) for g=eQ,
For ^=/o5 ̂ 5 we use another anti-involution A of *W:

qxr yr yr

* _ J_ * _ _£_ -> _ _iv<
•^S 9 y$ 5 ^S

2*5 J* 7.
/\ XV

Z i—f **r T/"—1 A

= Z 3 Jf = X 9 q = q .

Then we have

C0C0

The identities (4.4) with * replaced by A are also valid. Therefore we obtain

(4.1) for ̂ /o,/!- D

Acknowledgement

The authors would like to thank M. Kashiwara, B. M. McCoy and



R MATRIX FOR A%* 655

N. Yu. Reshetikhin for discussions. K.M. is supported in part by the Grant-
In-aid for Scientific Research from the Ministry of Education, Science and
Culture of Japan No. 01790204.

Referemees

[ 1 ] Arnaudon, D., Periodic and flat irreducible representations of SU(3)9, Comm. Math.
Phys., 134 (1990), 523-537.

[ 2 ] Au-Yang, H., McCoy, B.M., Perk, J.H.H., Tang, S. and Yan, M.-L., Commuting trans-
fer matrices in the chiral Potts models: Solutions of star-triangle equations with genus
>1, Phys. Lett. A., 123 (1987), 219-223.

[ 3 ] Bazhanov, V.V. and Kashaev, R.M., Cyclic L operators related with 3-state ^-matrix,
Comm. Math. Phys., 136 (1990), 607-624.

[4] Baxter, R.J., Perk, J.H.H. and Au-Yang, H., New solutions of the star-triangle rela-
tions for the chiral Potts model, Phys. Lett. A., 128 (1988), 138-142.

[ 5 ] Bazhanov, V.V. and Stroganov, Yu. G., Chiral Potts models as a descendant of the
six-vertex models, /. Stat. Phys., 51 (1990), 799-817.

[ 6 ] Drinfeld, V.G., Quantum groups, Proc. ICM Berkeley (1987), 798-820.
[ 7 ] Date, E., Jimbo, M., Mild, K. and Miwa, T., Cyclic representations of Uq(3t(n+l, Q)

at q*=l, Publ. RIMS Kyoto Univ., 27 (1991), 347-366.
[8] , .R-matrix for cyclic representations of Uq(si(3, Q) at q*=l, Phys. Lett. A.

148 (1990), 45-49.
[9] De Concini, C. and Kac, V.G., Representations of quantum groups at roots of 1,

in 'Operator Algebras, Unitary Representation, Enveloping algebras and Invariant
Theory', Actes du Colloque en Fhonneur de Jacques Dixmier, eds. A. Connes, M. Duflo,
A. Joseph and R. Rentschler, Prog in Math., 92 Birkhauser, (1990), 471-506.

[10] Izergin, A.G. and Korepin, V.E., The inverse scattering method approach to the quan-
tum Shabat-Mikhailov model, Comm. Math. Phys., 79 (1981), 303-316.

[11] Jimbo, M., Quantum R matrix for the generalized Toda system, Comm. Math. Phys.,
102 (1986), 537-547.

[12] Roche, P. and Arnaudon, D., Irreducible representations of the quantum analogue
of SU (2), Lett. Math. Phys., 17 (1989), 295-300.

[13] Sklyanin, E.K., Some algebraic structures connected with the Yang-Baxter equation.
Representations of quantum algebras, Fund. Anal. Appl., 17 (1984), 273-284.




