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On Ground State Degeneracy of Z2

Symmetric Quantum Spin Models

By

Taku MATSUI*

Abstract

We consider a class of Z2 symmetric quantum spin Hamiltonians. Anisotropic spin 1/2
Heisenberg models are typical examples.
Proof of groound state degeneracy (Z2 symmetry breaking), construction of pure gournd states
are given in a systematic way.

§ 1. Introduction

In [9], we presented a method for study of ground state structures of cer-
tain quantum spin systems. The quantum spin system of [9] has the unique
ground state on the finite volume, but in the infinite volume limit, phase transi-
tions can occur by the same mechanism of classical spin systems. However,
the Hamiltonians considered in [9] do not have symmetry. Hence, it is inter-
esting to consider a class of quantum spin systems with symmetry which con-
tains several examples of physical interest by the methods developed in [9].
The aim of this paper is to investigate the ground state structure of certain
perturbation of classical Ising Hamiltonian. The typical example we have in our
mind is the spin 1/2 aniso tropic Heisenberg model on the regular lattice ZA.

H=- S {apjn+doMap + eapap} (1.1)
l/-/l=i

where d, e are real (small) parameters and the sum is taken over all nearest
neighbor pairs and <r£° (a=x, y, z) is the Pauli spin matrix on the site j in Zd.
The Hamiltonian has the Z2 symmetry. We will give sufficient conditions for
existence of long range order, mass gap and uniqueness of Z2 symmetric trans-
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lationally Invariant ground state. We also construct pure ground states. Our

conditions can be verified for e and d sufficiently small using expansions of

Jo Kirkwood and L. Thomas of [5],

As is the case in [9], the irreducible ground state representation (=GNS

representation of a pure ground state) can be realized on L2 space of a Gibbs

measure for dimensional classical spin system3 and the regularized Hamiltonian

is the selfadjoint extensions of the generator of certain Markov semigroup.

We again use £7* algebra approach and we will assume that readers are

familiar with basic results explained in [4] and [6].

The algebra of observables is the UHF C* algebra A

A = ®M2(C) (1.2)
zd

where by M2(C) we denote the set of all complex 2 by 2 matrices,

The Pauli spin matrix a^ (j in Z*9 a=x9 y, z) is an element of (1.2)
satisfying usual relations

oW =io<P (1.3V)

>f of] = ttfoW-apop = 0 if ]

Let AIOC be the set of strictly local elements in A, in another word, the polyno-

mials of d£y) (a=x3 y, z). We will also consider the abelian subalgebra B gene-

rated by cj£y) (j in Zd\ and we set

^ioc=A,cn^. (1.4)

For a finite subset C of Zd> we define

a^C) = II a™ for a = x, y, z. (1.5)

The Hamiltonian we consider is

H = - 23 nKK(Q- 23 »W (1-6)

where Ve(08) and Wj(ot) are in Sloc.

lolo (i) H of (1.6) w translationally invariant and of finite

range,

(ii) ^(aj a/irf Wj(ffg) are selfadjoint and

0 (1.7)
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for any finite C in Zd.

(iii) Ve(oM) =0 if \C\is odd (1.8a)

if \C\iseven (L8b)

if C = {i, j} with 1 1-7 | - 1 (1.8c)

w/zere | C | is the number of points in C.

Under the above situation, the Hamiltonian H gives rise to a 1 parameter
group of automorphisms of A.

Tt(Q) = eits Qe~itH for QinA. (1 .9)

See [4].
In the Heisenberg Hamiltonian (1.1), (1.8) follows from the identity (1.10)
provided \d\ <1

ai» a^+daW a^ = (1 ~da^ a^)o^ <#"> (1.10)

Tt(°) of (1.9) is the time evolution of observables. The ground state of rt is
a state 99 of the C* algebra A satisfying

<P(Q*[H,Q])^Q forQinA^. (1.11)

Let 9? be a ground state and {^(-X ^*>> H9\ be the associated G.N.S.
triple where ̂ (-) is the representation of A in the Hilbert space H9 and ^^ is
the cyclic vector implementing the state 9. Then there exists a self adjoint
operator H such that

H^v = 0 (

Jttt**JQ)e-"tt* = ^(rt(Q)) for any QinA. (1.12c)

Htp plays the role of the regularized Hamiltonian.
We now consider the Z2 symmetry of the Hamiltonian (1.6). Let 0 be

the automorphism of A determined by

e(aW>) = -a^ for anyj in Zd . (1.13b)

Obviously we have

6>2 = identity (1.14)

©ort = TtoO . (1.15)
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If 9 is a ground state? so is <po®. In other words, the quantum spin
systems we consider have Z2 symmetry defined by O.

Our results of this paper are as follows. Under some conditions described
in § 4, any translationally invariant, O invariant, ground state <p restricted to
B is a Gibbs measure. <p has the long range order (as a state of A) even if the
corresponding Gibbs measure is extremal. The decomposition of the state <p

into pure ground states can be given explicitly. The construction of Hv will
also be given. By our construction, we see the regularized Hamiltonian H9

gives rise to the generator of a Markov semigroup on B. We will also give a
sufficient condition of existence of mass gap of H?.

The basic ideas are already given in [9], but we have some complications
due to Z2 symmetry. The positivity assumption (1.8) is essential in our ap-
proach. It is a subtle question whether we can obtain similar results without
the assumption (1.8) or not. C. Albanese got some interesting results for certain
Hamiltonians without our positivity. See [2].

Some results related to ours can be found in [1] and [5], however they
didn't describe pure ground states and in crucial parts they assume certain
high temperature condition for Gibbs measures. Spectral properties of Heisen-
berg models have been investigated in [5] but we believe our approach (use of
Markov semigroup) is interesting in itself.

The rest of this paper is as follows. In § 2 we consider the finite volume
ground state as a preliminary. § 3 is de- voted to representations of A on L2

space of a Gibbs measure. § 4 establishes the correspondence of the Gibbs
measure and translationally invariant ground states of quantum systems. We
discuss Markov semigroup and existence of mass gap in § 5. § 6 is devoted
to Heisenberg models as an example within the reach of our results.
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§ 2. Ground States on Finite Volume

In this section, we consider ground states on finite volumes. Let A be a
cube in Zd. Let HA be the Hamiltonian on A with the periodic boundary con-
dition.

EJL = - S *»,(C)- S ^Xff.) • (2-1)

We will always use the periodic boundary condition for finite systems in
this paper. We regard HA as a matrix acting on the finite dimensional Hilbert
space MA,

MA = ®C2. (2.2)
A

The ground state of HA is the eigenvector state for the smallest eigenvalue.
We fix a basis of the Hilbert space MA which diagonalizes the z component
of Pauli spin matrices in the following manner. Let XA be the classical spin
configuration space (with spin 1/2) on A,

XA = {1, -1}* . (2.3)

To each point a in XA, we assign the vector | a>in MA by the formula,

\o> =®e^. (2.4)
A3/

where a(/) is the jth coordinate of a and

*-(i) ••*-(?)•
Thus the vector f of MA is identified with a function <f (a) on XA via the iden-
tity,

(2-6)

We consider two subspaces ^±) of MA defined by

M^ = {ri in MA, cz(A)ri = +TJ} (2.7a)

MP = & in MA\ oz(A)n = -*} . (2.7b)

Due to the condition (1.8a), the Hamiltonian HA commutes with az(A),
and splits into two sectors.
Consider

HYins = - S 4y)4y/) (2.8)
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where we again Impose the periodic boundary condition.

Observation 1. Let \a> , \a/>beinJl^ with a, of in XA. For positive
ft, we have

<o\e^Ains\afy>Q. (2,9)

This is because we obtain |<y> by successive applications of <j£y)aiy/) to \a'>
and we have the formula

== 'M^} (2.10)
i/-/i=i

(2.9) Is true for «#<f >.

Observation 20 (2.9) is valid for HA in place ofHl£™s.

It suffices to remark that

<a | e~^A | a'>>O I e-
x?HAisn | a'>+non negative number (2.11)

where x = Inf Spectrum Fc(aJ > 0 (2.1 2)

with c= {1,7} |/, 7 |=1.

(2.11) is a consequence of our Assumption 1.1 (iii). By the above observation,
we can apply the Perron Frobenlus theorem to —HA restricted to M^.
Thus we can conclude the following.

Lemma 2,1. (i) HA restricted to M^ has the unique positive (normalized)
ground state vectorwhere the positivity refers to the choice of the basis (2.4) and

(2.5).
(ii) The ground state eigenvalue (=the smallest eigenvalue) of HA is of multi-
plicity at most 2.

I f \ A \ is odd and

[ax(A)9 Vc(ag)] = 0 (2.13)

for any C, then the multiplicity of the ground state eigenvalue is 2.

The last statement follows from the commutativity,

KA HA] = 0 (2.14)

and the property that ox{A) is an isomorphism of M (
A

} and M^.

Using the notation (2.6), we fix ground state vectors $(±)

G) | a> (2.15a)
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0<->=S<->0<->(a)|*> (2.15b)

where the sum 2(+) (resp. 2(~}) is taken over spin configurations for which the
even number (resp. odd) of spin is up. Then Lemma 2.1 means

(2.16)

We now define

^(±)(ey) = —2 log £(±)(<r) (2.17)

and

_ f h%\<>) if | a> is in M(^ (2.18a)

^ = I hP(o) if | a> is in &£> (2.18b)

J2(±)(c7)(or /zi±}(^)) must satisfy eigenvalue equation

(2.19a)

HAQ™ = E^ti^ (2.19b)

where E^ are eigenvalues.

For each point a in XA and a subset D of ^1, we define aD as a point of
XA via the formula,

if j is in D (2.20a)

if 7 is not in D (2.20b)

where (ffp)(J) is the coordinate (aD) at the site 7" in A. Then (2.19) leads to the
following equation.

2 Pc(a) exp- W\o-)-hf\o)}- S ^-(a) = £<f) (2.21)

where Kc(a) - <a | Vc(az) \ a> (2.22a)

Wl(o)=<a\WJ(az)\ay. (2.22b)

We can go in the reverse direction. Suppose we find a function f(o) satisfying

-S ^Wexp
G

for some real E and any | o> in

Then the vector £ defined by

(2-23)
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is the ground state vector. This is due to the uniqueness of Perron Frobenius
positive vector. If we consider the expectation for the vector Q9

Q = £(+)+£(-> (2.24)

then

2 e'HA^a(B) . (2.25)

So we can interpret (2.25) as the integration by a Gibbs measure. In par-
ticular, if Ml is odd and (2. 13) is valid, E^=E£) and Q is a ground state
vector. Moreover we have another ground state vector S defined by

£ = £(+>_£(-> . (2.26)

We will consider the same situation in the infinite volume case.
As is shown in [1] and [5]9 in certain examples we have (without assuming (2.13))

lim | Ei+> -E£->| =0 (2.27)

hence even though & or S is not a ground state vector we can carry out the

analysis of [8] in the infinite volume.

§ 38 Representations of Observables and Gibbs Measures

We first recall some known facts about Gibbs measures on X,

*={!, -1}*'. (3.1)

By the product topology, X is a compact metrizable space. The set of conti-
nuous functions C(X) on X can be identified with B via the formula

a& = *<» (3.2)

where a(/) is the coordinate function of the site j in Zd.

Let f(a) be a polynomial given by

/(*) - S fAo(A) (3.3)
Zd=>A

a(A) = H *<» (3.4)
A=>i

where A is a finite subset of Zd &ndfA is zero except a finite number of A.

We introduce a norm for /(a) of (33) as follows.
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ll/lka^g^^V^'l/J (3.5)

where 6l9 d2 are positive numbers and dia(^4) is the diameter of the set A, \ A \

is the number of points in A.

Let {hA} be a potential on X. We will often write

*(*)= S MW). (3.6)

We assume the following decay condition of h(a)

sup {52 e*!*-M>e»W | fA\} <oo (3.7)

where ^ and £2
 are positive. We also assume translational invariance of h(o)

or simplicity.
For a finite /i, we define a linear operator EA( ) on C(X)

"—W7) (3'8)

where

hA(o)= 2 ^^) (3.9)

and II da& is the product measure with uniform distribution, Z(oAc) is a
AS/

normalization constant determined by

= i . (3.10)
By definition, EA(f)(o) depends on the variables outside A. A measure dju,(a)

on X is a Gibbs measure if

. (3.11)

is a Gibbs measure, d#(<7) and d#(ffc) are equivalent as measures (oc is
defined in (2.20)) and

2 A^W)}. (3.12)
f J , G \0(\A\:odd

The converse is also true, namely, if dju(o) is a measure on X and (3.12) is valid

for any C={j} withy in ^d, then dv(o) is a Gibbs measure, see [10].

We will use the following variant of this characterization of Gibbs measures.
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3ol0 Let dfji,(a) be a measure on X such that dj^((Jc) and d/j,(a) are

equivalent for any edge C={i,j}, \i—j\ = 1 and (3.12) is valid for the same

case. Assume further the following cluster property. For any (?(er) in C(X)

there exists a constant CG and a sequence of points ijjc=09 1, 2""»} in Zd such

that

Mm ( F(a)Th(G)(a)dju(a) = { I F(o)dju(a)} x CG (3.13)
*-*•<» J * J

where z-j(-) is the (lattice) translation determined by,

r/ffW) = a<*-"> . (3.14)

Then dju(a) is a Gibbs measure.

Proof, By the remark given above; we have only to show

( F(aj)d^(a) = \ exp{2 2 hAo(A)}F(oj)dti(<,) . (315)
J J A3j

We set

rfXa) = exp{2SAX^)> (3-16a)
^sy

7ly(a) = exp

for any F(a) in C(JT).

We next consider the limitj-^oo in (3.17).

*) exp[-2 2 V(^)l - (
sy

Our assumption Implies (3.12) for any C={i,j}9 so

(3.17)

By (3.7), we have

I^D-1} =0. (3.18)
-

Hence we consider the following

lim ( Ilj(o)F(a)dja(G) = Mm ( di(o)dl(o)F(G)d/j.(o) . (3.19)
y->ea J /->oa J

By taking subsequence jft in (3.13) with G(o)=d0(a)9
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(3.19) = { J dfc)F(p)dt*!,)} CG . (3.20)

(Here we use the translational invariance of the potential h(a).)

If we set F(a)=l in (3.18) and (3.17)

for any /.

So we can set i=jk and take k=oo

C2
G = l, Ce = l. (3.21)

We also note that if F(a) is continuous

limF(a(u])=F(ai). (3.22)
y^oo

By (3.17) (3.19) (3.21) (3.20), we obtain (3.15). q.e.d.

Next we construct representations of observables on L2 space of a Gibbs
measure.

Let dv(o) be a Gibbs measure and L\dfj) be the Hilbert space of square
integrable functions of dju(a).

Define

n+(*P)F(a) = [dj(o)F*F(aj) (3.23a)

n+(o(zj})F(o) = a&F(a) for F(a) in L\dfj) . (3.23b)

In the same manner,

. (3.24b)

Let Gjt be the constant function 1 as a vector of L\dfj).

Proposition 3.2. (i) (3.23) gives rise to the representation TC+( ) of the C*
algebra A.
(ii) (3.24) gives rise to the representation n_( ) of A and ^-(0=^+(0(0)
/or g in A where © is defined in (1.13).
(iii) The representation ^±(e) are irreducible if and only if dp. is an extremal

Gibbs measure.

Proof, (i) and (ii) are straight forward, (iii) is equivalent to Corollary
3.8 of [6]. Note that
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L-(dfi) = x+(B)f/ = *-(*) , (3,25)

So the center of representations n±(A)/f f| ^±04)' is in L°°(d^)a q.e.d.

Let p£° and pjr0 be vector states of tip for x±;

^+)(0 = to., "+(00,0 (3.26a)
^(0 = (^9^(0^). (3.26b)

Obviously

9J+) = 9<->oe . (3.27)

Proposition 3.3. Let <p^ be a state defined by

+ - ) ) . (3-28)

The GNS representation of<pp is given as follows.

The Hilbert space is two copy ofL2(dju)

The representation is the direct sum n+@n.. and the GNS cyclic vector is
<pv has the long range order as a state of A.

The above statement looks like trivial, however it explain the reason why
quantum Ising models discussed in [5] have ground states with long range
order.

The existence of the potential h(a) will be discussed in § 4 and § 6,

§ 48 Regularized Hamiltonian

In this section, we relate the states constructed in § 3 to ground state
representations. We assume the following conditions.

Assumption 4.1. Let hA(o) be defined by (2.18).

For an edge b={i, j} ; \ i—j \ =13 we define

*/..(») =y {*»-*>.)>• (4-1)

We assume there is an increasing sequence of cubes Ak in Zd satisfying Akd.
,-, IM*=^, and
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(i) Jim \Efl-Etf \=0 (4.2)

(ii) the limit exists in the norm || ||8l>S2

KmA^(a)=*l(a) (4.3)

(iii) h\\Ak jOOHsj.Sa is bounded uniformly in k and b.

Remark 4.2. (i) (4.2) is automatic if \Ak \ is odd and (2.13) is valid.
(ii) For quantum Ising model with Hamiltonian,

H = - 2 a^a^-ff 2 ^ (4.4)
l/-/'l=l #d3*

*/*£ #Z>0ve assumption can be verified if e is small.
See §3 of {%.
The idea of [5] works for more general Hamiltonians if Ising terms are sufficiently
large. See also the examples of % 6 of this paper.

Lemma 43. Under the assumption 4.1 there exists a potential h(d)

h(a) = *hAa(A) (4.5)

such that h(a) is translationally invariant and for any edge b

**(*)= 2 hAa(A) (4.6)
\bf\A\=l

where the left hand side is defined by (4.3), and

2 I hA | esi'diam^> eV^i < oo (4.7)

Proof. Suppose ^A(ff) of Assumption 4.1 is given by

M") = S\X^) (4.8)

(4.3) implies the existence of the limit

= hA (4.9)t

The translational invariance of h(a) is due to the use of the periodic boundary
condition for finite systems. (4.6) is obvious.
We must check (4.7). We take a sequence {je} of point in Zd satisfying

Jo =7 > I Jo-Jk I = k , | A-A+i I = 1 7*=K/i if fe=N 1 -

Then we rewrite the sum (4.7) as
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2 = 2 + 2 +*"+ 2 + (4.10)
-43/0

In the & th part

2 1/zJeV

1

)||0.ai<oo (4.11)

where 6^ = {/& • yft+1} . Thus by translational invariance

(4,7)<CS e-^-^k)\\hb(o)\\^< oo a (412)
q.e.d.

Following [9] we define the regularized Hamiltonian as follows. Let A be a
cube. Then,

ff — V1 C% V (n \C (d 11\-"^l.reg 7^ -£j ^ C VC\QZ)^C \*m*3)

where

Q = {1— ox(C)} exp — S hAaz(A) . (4.14)

It is easy to see

[Q, Vc(az)} = 0 (4.15)

2 V^)] . (4.16)
1(7 n .41 odd

We can prove the following in the same manner of [9].

Lemma 4A For Q in ^4loc,

[H9Q]=lim[HAiTes,Q], (4.17)

Proposition 4.5, Let dfj,(o) be a Gibbs measure for (4.5).
(i) The states y^ and p£~} defined in (3.26) are ground states for (1.6). Fur-
thermore, we have

(4.18)

for any finite A.
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(ii) On Lz(dju), the following limits exist in the sense of strong resolvent con-
vergence, give rise to a positive selfadjoint operator Hp.

\imx±(HA.I9J =£[,>. (4.19)
A"*"09

We also have the property

(4.20)
for Q in A

Hp£p = Q. (4.21)

Hp of (4.19) is the selfadjoint extension of the generator of Markov semigroup
studied in [6]. We can apply results (or ideas) of Chapter 1 and 4 of [6].
See also § 5 of this paper. We dont't give the proof of Proposition 4.5.

We next define J as the set of states satisfying (4.18).

» state of A such that <p(HAtIeg) = 0

for any finite A i

We also set
(y^ #: Gibbs measure]

G = the closed convex hull of \ > . (4.23)
( former) j '

Theorem 4,6* (i) I=G.
(ii) For any translationally invariant ground state <p of r^ there exists a Gibbs
measure jj, and a real number /I such that ^

^"). (4-24)

To prove Theorem 4.6 we use the following lemma.

Lemma 4.7. J is convex, closed, compact in the weak* topology. An
extremal point ofJ is a pure state of A.

Proof. The first claim is obvious. To prove the second claim, we consider
an extremal point of /, say, 9. If <p is not pure, we have states ^ 9?2 and X with
0^/1^1 satisfying

9> = M+(l-%2. (4.25)

As HAtIes is a positive operator9 we have

Pl(^,reg) = %(^,reg) = 0 (4.26)

hence 9^ and <p2 are in J. This is a contradiction. q.e.d.
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Proof of Theorem 4,6 (i). We must show JdG. Let <p be a pure state

in J. The restriction of <p to B is a Gibbs measure d/j,(a) due to Lemma 3.1.

As <p is in J", for any edge b={i9 j}

0. (4.27)

This implies

2 M(*)] X a(^)<fc(«0 - (4-28)
n f t i = i

As any ,̂(-4) with | A \ even is a product of ax(b) (b edge of Zd\ we can show

<p(ax(A)az(B)) = \exp{ 2 *X<0}*z(*)*<(<0 (4.29)
J U n tflodd

if | A | is even.

Then if \A\ is odd, — (9+0p)fo(4)ffzGB))=0, so

JL {9+^o@} = lfo>F>+p<r>) (4.30)

where dp. is given by the restriction of <p to B.

We claim that dXff) is an extremal Gibbs measure if 9 is pure. This is because

purity implies

um {9(a^(e2))-9(ei)9(^(e2))} (4.31)
*->o»

for Ql Q2 in A and rk lattice translation.

So if Ql Q2 are in I?5 the observables at infinity wich respect to dju(a) are
trivial. (See [4]).

Thus states 9, <p<>9, <pl?\ 9?^~) are pure. 99 and <p°@ are not equivalent

because if they are equivalent, the left-hand side of (4.30) is a factor state,

however

lim - (9+?°©)(ai0) <#>) - lim <p£\c™)<p£\o^) > e2
 (4 32)->•<» *~ v^-7^2

where we used (4.30), (3.17), (3.18) and

= exp { 2 M(5)} *•(")> exp{ 2 I A* I } = ". (4.33)
J £3/ J33/

(Note that e is dependent of j due to translational invariance of h(o).)
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The left-hand side of (4.32) is zero if — {9+9?° &} is a factor state, so we

have a contradiction.
The pure state <p is disjoint from 90©. In view of (4.30), we can conclude

9=<P(^ or 9{r}.
As a consequence all the extremal points of J are in G. This completes the proof
of (i). q.e.d.

Proof of Theorem 4.6 (n). Let 9? be a translationally invariant ground
state. We have only to show that 9 is in J. Note the following identities.

= S 9 c (4.34)
(730

\A\
= 0 (4.35)

(4.35) can be proved in the same way of Lemma 4.3 of [9].
By a result of [2], we have (due to (4.2))

(4.36)
Ml

If we combine (4.36) (4.35) (4.34), we can prove

This implies 9 is in J. q.e.d.

§ 5. Markov Semigroups

In this section, we discuss the relation of quantum Spin Hamiltonian con-
sidered in § 4 and Markov processes of X. For simplicity of exposition, we
consider the Hamiltonian

H= - 2 F,(*ZK(6)- S Wj(az) (5.1)
b :edge Zd^3

where the sum for b is taken in all the edges b={i,j} \i-~j \ = l (nearest
neighbor and we assume (1.7), translational invariance and finite range property
in (5.1).

Recall that the abelian C* algebra B generated by a(f (j in Zd) is the set
of continuous functions C(X) on X={1,—\}z .

By our Assumption 4.1, we have the potential h(o) on X
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/*(*) = SMG4). (5-2)

For any edge b, we define df(b) for/(o) In C(X) by

(5.3)

Then we introduce D(X)

D(X) = {/(a) ; 2 40) < °°> (5.4a)
i

= S ^X*) forfinlW. (5.4b)
b

The Markov (pre) generator L we will consider is

LF(ff) = 2 <4(a){/(<rs)-/(<0} (5.5)

db(o) = F4(<7) exp { 2 MC4)} (5-6)
l & n ^ i = i

for F(a) in

In (5.5) the sum is taken in all edges of Zd and Vb(a) is the element Vb(az) of
BlQC regarded as an element of C(X).
As we have the decay of potential specified in (3.7) (due to Assumption 4.1), the
closure r of L in C(X) generates a 1 parameter semigroup S(t).
S(t) is a Markov semigroup (positivity preserving with S(t) 1 = 1). The proof
of this fact can be done precisely in the same line of § 3 of Chapter 1 of [6].

We don't repeat the argument given in [6], but we point out that the fol-
lowing inequality is crucial in the proof.

Lemma 5oL Set

I 0bl9 b2) = <
OKK2)-A(

ifb2 = b1 (5.8a)
A i» 2) = 1,, , , x T , xll iff)l=b2 (5agb)

where b, 6X and b2 are edges of Zd.
Suppose F is in D(X) and F—ALF=g for some ^Z0= Then for any edge b in
Zd we have

Mb)x(l+le)<^g(b)+X 2 r(x, b)AF(x) . (5.9)
*edge
x±»

The following theorem corresponds to Theorem 3.9 of Chapter 1 in [6]. See

[6] for the proof.



GROUND STATE OF QUANTUM SPIN 675

Theorem 5.2. Let M be a finite constant determined by

M = sup (2 r(jc, &))< oo (5.10)
* b

(a) The closure T of L is a Markov generator of a Markov semigroup S(t).
(b) D(^) is a core for r.
(c) IfF is in D(X\ so is S(t) F for t>0and

\\\S(t)F\\\ ^exp((M-0)|||F|||. (5.11)

It is possible to show that any Gibbs measure is a reversible measure for S(f).
The converse statement is also valid.

Theorem 5.3. Suppose M <e in Theorem 5.2. Then S(t) has the unique
invariant measure. In particular, the Gibbs measure for h(o) is unique. We
have for g(a) in D(X)

J (5.12)
e—M

where dju(a) is the unique Gibbs measure.

If we fix Vb(a) in the following way. Theorem 5.3 implies Theorem 5.4.

2 *X^))+exp(- S hAo(A)}}^ (5.13)
\Anb\-i

(5.14)

Theorem 5.4, (i) If the following inequality is valid

sup { 2 sup 1 4(*)-4(<V) I } < 1 (5.15)
6 6X o-

»'*»

then the Gibbs measure for h(o) is unique.
(ii) The following condition implies (5.15)

sup{ 23 (I^Ue-l)|/*J}< (5.16)
b A.

| dA | edge /5 the number of edges 1 such that A fl 1 =N 0 flflrf ̂ tc n 1 4= 0.

For the proof of Theorem 5.3 and 5.4, see Theorems 3.9 and 4.1 of Chapter 1
and Theorem 3.1 of Chapter 4 in [6].

We now return to Quantum Spin Hamiltonians H of (5.1).
By our construction of HAtTes we have
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lim x±(HAtIes)F(a) = LF(a) (517)

for F(a) in D(X)

Proposition 5.5. Let dju(a) be a Gibbs measure. The selfadjoint extension
of L is Hp, and

e-^?r±(F(<yz))^ = S(t)F(az) (5.18)

far F(o)=F(az) in B=C(X),

We have the sufficient condition of existence of mass gap due to Theorem 5.4.

Theorem 5,6, Suppose assumptions of Theorem 5.3 is valid. Then the
spectrum of Hft has a gap.

Spectrum H* 0 (05 d) = 0 (5.19)

where

d=(e -M) inf inf ( %&} > 0 (520)
b <r \Vb(a)l

23 MG4))+exp(- S hAo(A))]-1 . (5.21)
\AC\b\=l \A(\b\=l

(See Chapter 45 § 4, of [5])

§ 6. Heisenberg Models

In this section, we consider Heisenberg models of !spin — as examples.

First we consider the Hamiltonian

23 <#} (6-1)
Zd3j

where 0^ | d \ < 1 ft real and

e(d, ft = 5(cosh y9)2-(sinh ft)2 (6.2)

We now give the explicit form of the regularized Hamiltonian.

(6.1) and (6.3) differ in the infinite constant

23 {(cosh ft)2-d(sinh ft)2} . (6.4)
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For the edge b = {j, ./"} the operator Cb of § 4 is

C,=(l-*«>a<V*''0) + 0"'>). (6-5)

The proof of Theorem 4.6 implies that the translationally invariant ground
state vector Q satisfies

*(<#> ay>)a = *(e^ +"«'"V (6.6)

where n( ) is the representation of A associated to &.

The (classical) potential h(o) is determined by (6.6)

h(o) = ft 2] a<» . (6.7)
Z*3j

Thus its Gibbs measure is unique.

Theorem 6.1. For the Hamiltonian (6.1) with ft real \d\ <1, fAere ejv/s/s
f wo translationally invariant ground states W^\ such that

Wft = Wft*e (6.8)

= exp [/9 2 a^]o(B)dV,(a) (6.9)

dV$(p) is the translationally invariant product measure of ^={1, -\}z

such that

a) = -tanh ft . (6.10)

Any translationally invariant ground state is a convex combination of W(^ a"id

wft.
Next we consider the following Hamiltonian

ffi^)} . (6.11)

Theorem 6.2. There exists A0 = ^0 (5, e) such that for X with 2 1 < ^0.
Assumption 4.1 a.'it/ assumptions of Theorem 5.6 are satisfied for (6.11).

Sketch of Proof. The proof can be done by expansion of § 3 of [5],
(2.13) is valid for \A\ odd. So we have only to solve the equation

r>st\ /A i^\(I — ̂ ff(6))+^ecj(6)] — E(X) (6. 12)
A^6

where ^W = -^+) = -^-), b is the edge.
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Note that periodic boundary condition is used and a is any configuration in
{1, -lp in (6.12).

We expand all the quantities in (6.12) by the power of X.

E(X) = l£Ekl
k (6.13)

k = Q

*.(«) = -J- Wf) -%»)} = 23 x?W . (6. 14)2 *-o

Then by (6.12), we have

. (6.15a)

S *i"(o) -(5 - e) 2 B0) = £i (6. 1 5b)
6 b

4°> = 0 (6.15c)

where P^fo •••**-!) is defined by

exp(S
k=0

(6. 15) yields

iCll^lloo-O (6.17)

where || ||00 is the norm (3.5) with ̂ =^=0.

Let F(fy be defined implicity

(l+*\d\)(erM-l)-2F(X)+\d-e\* = 0 (6.18)

then, F(X) is analytic if U | <*0(e , 3) and

We can show H^^'Hoo^ J* by induction.
Thus if Ul^oO, 5)

(6-19)
A = l

(6.19) implies the convergence of the above expansion in || ||00.
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If we look carefully (6.15), the range of potential Jp} grows linearly in k and
we can prove

L. (6-20)

This implies Assumption 4.1 and Theorem 5.6. q.e.d.
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