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Neighborhood of a Rational Curve
with a Node

By

Tetsuo UEDA*

§ 0. Introduction and Statement of the Result

Let C be an irreducible compact analytic set of dimension 1 in a complex
manifold of dimension 2. Let (C2) denote the self-intersection number of C.
It is well known that C has a strongly pseudoconvex neighborhood if and only
if (C2)<0; and that C has a fundamental system of strongly pseudoconcave
neighborhoods if (C2)>0. When (C2)=0, this topological condition alone is
insufficient to derive analytic conclusions. For a smooth curve C with (C2) =
0, we obtained some conditions for the existence of a fundamental system of
strongly pseudoconcave or pseudoflat neighborhoods in [8] (see also Neeman

[5]).
It will be natural to investigate such complex analytic properties in the case

where C has singularities. In the present paper we treat one of the simplest
cases of such C.

In the sequel, C will always stand for a rational curve with only one node
(ordinary double point). To state the result, we note first that the Picard
variety of C, i.e., the set of all topologically trivial line bundles over C, is iso-
morphic to H\C9 C*)^C* as multiplicative group (see Lemma 1).

Suppose that C is imbedded in a complex manifold S of dimension 2 and
(C2)=0. Let [C] denote the line bundle over S associated to the divisor C.
The normal bundle N of C is defined to be the restriction [C] | C of [C] to C.

By the assumption, N is a topologically trivial line bundle over C. Let aeC*
be the number corresponding to N by the above isomorphism. Let d(p) denote
the distance of p e S from the curve C with respect to some Riemannian metric
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on S. The main result of the present paper consists of the following theorems.

Theorem L Suppose \a\ 4=1. Then there exist a neighborhood V of C
and a strongly plurisubharmonic function 0 on V—C such that 0(jp)-» + oo as
p-*C. Moreover, for any real number A> 1, we can construct 0 so that

If 1 \2X

0(p) / 1 log - 1 is bounded.
l\ d(pd(p)/

Theorem 2. Suppose \a\ 4=1. Let Vf be a neighborhood of C and W(p)
If 1 Vx

a plurisubharmonic function on V ~ C such that W(p) /(log - ) is bounded
I \ d(p) I

for some real number ^<1. Then there is a neighborhood F0 of C such that

¥ | (F0— C) is constant.

These results correspond to Theorems 1 and 2 in [8] (for smooth curves of
finite type). We note that, in the present case, the neighborhood of C admits
plurisubharmonic functions with slower growth than in the case of [8],

Theorems 1 and 2 are proved in § 3, after some preliminaries in § 1 and
§ 2. We consider, in § 4, such curves in compact complex surfaces. Exam-
ples of surfaces of class VII0 and rational surfaces are given.
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§ 1. Topologicaly Trivial Line over C

Let C be a rational curve with only one node p0. Let P denote a smooth
rational curve (Riemann sphere) with inhomogeneous coordinate C and let
c: JP->C be a desingularization map of C such that *(0)=*(oo)=/?0. We
fix s with 0<e<l and define open subsets Ui (i=0, 1) of C by

where

and

Then {U09 U^ is an open covering of C. The intersection t/0n t/i consists of
two connected components
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U- = <({(!/*< |C| <oo}) .

Every holomorphic line bundle over C is represented by a multiplicative
1-coeycle with respect to the covering {£/,-}. We denote this 1-cocycle by a
pair (/+

5/~) of non-vanishing holomorphic functions /* on £7*.

Lemma 1. Every topologically trivial line bundle E over C is represented
by a pair (I, a) where a is a complex number =NO uniquely determined by E. In
other words, the Picard variety of C is isomorphic to H\C, C*)^C*.

Proof. Suppose that E is represented by a pair (/"*% /"). We regard f±

as functions of the variable C with 0< | C| O and l/e< (C| <oo, respectively.
Let

Then we can write

where ^+, g~ are holomorphic functions on C/+, C/". By Laurent expansion,
they are decomposed as follows :

with

^(0 = S fl*f * , ^(0 = 2 «rc* .
*>0 S<0

The power series gj, ^±, g+, g I define holomorphic functions for |C
0< |f | ̂  oo, | C |< oo, 1/e < | C | ̂  oo, respectively.

We define non-vanishing holomorphic functions /) on U{, z=0, 1, by

j expfei-gj) for | f |< e ,
J° for

/! = C~-+ exp (-of -g± -f +) for 0 < | f |< oo .

Then we have

l on t/+

- on
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where m=m~—m+, a=exp(a^— a$). This shows that the line bundle E is

represented by the pair (1, «Cm).
Now9 since E is topologically triviala the pull-back c*(E) of Eby c: P->C

is also topologically trivial. c*(E) is represented by the 1-cocycle £ma with
respect to the covering {|C|<°o}5 {1/£<|C|^°°} of P, Hence we have
m=0. q.e.do

Remark 1 . This correspondence depends on the choice of the coordinate

C: If we replace C by 1/C, then a is replaced by I / a .

§ 20 Coordinate Systems on the Neighborhood of £7

Now suppose that C is imbedded in a complex manifold of dimension
2andthat(C2)=0.

We choose neighborhoods F03 Vl of UQ, C/j such that C fl V^ = Ui, and that
FQ n F! consists of two connected components F+

9 V~ with C n F+ = U+,
C n V~ = U~. Further we suppose that Vi are Stein open sets. This is possible
by a theorem of Siu [7]. In the following consideration, V0, Vl will be
replaced by smaller ones whenever it is necessary.

Lemma 20 Suppose that a is not a root of unity. Then, for any integer
v^l, there exist holomorphic functions wg- on Vi (/=0, 1) such that wi=Q are
defining equations of C in Vi and satisfying the conditions',

(i) Wj— w0 vanishes to order v+1 on U+,

(ii) Wt—awo vanishes to order v+1 on U~.

Proof. First we prove the lemma for v = \. Let iv,-, be any holomorphic
functions on Vi such that wg-=0 are defining equations of C in Vi (z=0, 1).
We want to modify wi and obtain wg- satisfying the conditions (i) and (ii). We
write w1=F+w0 on V+ and ^=^"1^0 on V~ with non- vanishing functions F±

on V±. Let /±=F±| U±. The pair (/+,/~) represents the complex normal
bundle TV of C. By Lemma 1, there exist non- vanishing holomorphic functions
/J on C/,- (f=0, 1) satisfying the equations (1), with m=0. We choose non-
vanishing holomorphic functions Fi on Vi such that Fi\Ui=fi and put iv,- =
Fg-\V| (f=0, 1). Then w03 Wj have the required properties for v = \ as easily
verified.

For y^25 we proceed by induction. Assume there are holomorphic fun-
ctions w{ as in the lemma for some integer v (^1). Then we can write
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on ,

Wi = a(w0+^"H'S+1) on F~;

with holomorphic functions H± on V±. Let h±=H±\U±. We want to
obtain holomorphic functions ht on Ui (i=Q, 1) satisfying the equations

J Ao-^ = A+

I A0— a^ = A"

on

A0— a^ = A" on

To solve (2) we decompose h± as follows :

where

C*, Al(C) = S bj£k.

The power series AJ, Ai, A+, Al define holomorphic functions for

0< |C| ̂ °°, |C| <°°, 1/e< |C| ̂ oo, respectively.
We define

on UQ

on C/5"

on U-,=

where 0̂

Then A0, A! satisfy the equations (2).
Now let HI be holomorphic functions on Vi such that £f,-| Ui=hi (/=0, 1).

We define

w0 — w0+^rowo+1 on F0;

ivj = Wj+f^wJ"1"1 on K! .

Then w0, wx satisfy the conditions (i), (ii) with v+l in place of if. In fact, on
V+, we have

Since H++H1—H0 vanishes on C/+ by the first equality of (2), wx— w0 vanishes
to order y+2 on t/+. On F", we have
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.

Since JJ"+^v^i~^o vanishes on U~~ by the second equality of (2), Wj— awQ

vanishes to order ^+2 on U". q.e.d,

Remark 2. We can extend the normal bundle N to a complex line bundle
F over F=K0U Pi by extending the 1-cocycle (1, a) to F+

9 F" as constant.
Then Lemma 2 implies that the bundles [C] and F coincide formally along the
curve C.

Now let C: C/j-^P denote the inverse of the biholomorphic map

Lemma 30 T/zere exist holomorphic functions zi on Vi (i=0, 1) satisfying

the following conditions:

(i) 2i|0i=f;
(ii) Zj^H+Zo o« V+, where B+ is a holomorphic function on V+ such that

B+\U+=l\
(ill) z1=B~z0/wQ on V", where B~ is a holomorphic function on F~ such

that B-\U~ is a constant 4=0.

Proof. We choose and fix as zl any holomorphic function on Vl satisfy-
ing the condition (i). Let z0 be a holomorphic function on F0 which takes zero
of order 1 on C/jT and such that ZQ\ UQ=£. Then z09 zl satisfy the conditions
(i), (ii). We wish to modify z0 and obtain zfl so that the condition (iii) is also
satisfied by z09 z^

Let Q=zQ/w0. Then Q is a meromorphic function on F0 which has simple
poles on UQ and has no other poles nor zeros. Let q = Q\U^ and r=q/C.

Then r is extended to a non- vanishing holomorphic function on UQ* Let p=
r(pQ) denote the value of the function r at the node pQ, Choose a non-vanish-
ing holomorphic function S on V0 such that S\Uo=l and S \ U^=r/j3e

We put ZO=ZQ/S. Then z09 z1 satisfy the conditions of the lemma. In fact,
on F+

5 we have z1/zQ=Sz1/z0, whose restriction to U+ Is identically equal to 1.

On F"9 we have z1wQ/zQ=Sz1wQ/z0=Sz1/Q9 whose restriction to £7jT is (rQ/(ftq)=
I/ft. q.e.d.

§ 30 Proofs of fte

Let wi (/=0, 1) be as In Lemma 23 with v=4. Then we have wl=A+wQ



RATIONAL CURVE WITH A NODE 687

on F+ and w1=aA~wQ on F~, where A± are holomorphic functions on V±

such that A±— I vanishes to order 4 on C. Let zf (z=0, 1) be as in Lemma 3.

Here we assume that B~\U~=1 in the condition (iii). This is possible since

we may multiply wf- by a constant.

We define real- valued functions <pi on Vi~Ui by

(3) ^-(log|w,|)2-log|a|log|w,|+21og|a|log|z,| , i = 0, 1 .

The difference <pl — $?0 is extended to a function of C2 class on F0n Fx which

vanishes on C fl FQ fl Fr

In fact, we have wl=A+w09 z1=B+zQ on F+ and

|^^^

The term 2 log | A+ \ log | w0 1 is extended to a function of C2 class by setting to
be 0 on C, since log|^4+| vanishes to order 4 on U+; and the other terms are

real-analytic. This shows the assertion for F+. Now we write wQ=awQ,

ZQ=ZQ/WO. Then, by straightforward calculation we have

Noting that Wi=A~wQ, z1=B~zQ on F~, we can verify the assertion similarly

for V.
Now let FQ be a neighborhood of the node pQ which is relatively compact

in F0, and let p be a real- valued function of C°° class on F0U Vl such that

Q^p(p)^l, supp(p)cF03 and p\ KJ = 1. We define a function 9 of C°° class

on F— Cby

9 =P^o+(l— P)9i-

It is clear that <p(p) tends to +c» as /? tends to the curve C. We will

prove the following assertions:

1. If /1>1, then there is a sufficiently small neighborhood F of C such

that <px is strongly plurisubharmonic on F— C.

2. If 0<^<1, then there is a sufficiently small neighborhood F of C

such that the complex Hessian of <px has one positive and one negative eigen-

values on F— C.

The assertion 1 implies Theorem 1. Theorem 2 is derived from the

assertion 2 in the same manner as in [8, § 3.4].

To prove the assertions, we denote
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for a real-valued function ^(M>, z). Then the complex Hessian H(<pK) of px is

First we look at the neighborhood of U1=C—{pQ}. We choose a suffi-

ciently small neighborhood Vl of U-^ so that (wl5 zx) is a coordinate system on

FP On F19 9 has the form

<p = (log\w1\)
2-log\a\log\w1\+7] ,

where

rj = 2 log I a | log | zl |

The function 37 is of C2 class on Vl and ^^(loglaD/Zj^O, tf^^O on C.

From

1

W

and ^=(log | w1 \ )
2(1 +^(1)), we obtain

Here 0(1) denotes the terms which tend to 0 as p-^C, The determinant of this

matrix is of the form (^zllf log Iw* \ V | g 12(1 + o (l)\ and hence positive or
2 \ |Wl| /

negative according as /1>1 or ^<1 everywhere on Fx—C, if Vl is sufficiently

small.

Now we look at the vicinity of the node p0. If V" C V'Q is a sufficiently

small neighborhood of pQ9 we can regard (w0/z03 z0) as a coordinate system on
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V". Hence we can regard (w0, z0) as a coordinate system on V"—C. Noting
that <p=<pQ on FQ, we obtain from (3)

.n\-2

whose determinant .^ I00* — l) |p« f t l
2 *s positive or negative according as2

or
Thus the assertions are shown, and Theorems 1 and 2 are proved.

§ 4 . Curves on Compact Surfaces

A complex manifold JT is said to be 1 -convex (or strongly pseudoconvex),
if there is an exhaustion function 0 : X->R which is strongly plurisubharmonic
except on a compact set in X. If X is non-compact and 1 -convex, then there
are a compact analytic set A, a Stein space X and a proper holomorphic map-
ping TC: X->X such that n(A) is a discrete set and n\X— A is a biholomorphic
mapping. By Narasimhan [4] we have H2n~\X, Z)=Q if n^2. Since A is
at most real (2n— 2)-dimensional, we obtain H2tt~\X, Z)=Q.

Lemma 4» Let S be a compact complex manifold of dimension n^.2 and
C an analytic set in S. If the complement S—C is l-convex, then the homomor-
phism H^C, Z^H^S, Z) is surjective.

Proof. We consider the exact sequence

, Z) - fli(S, Z) -> fli(S, C; Z) .

Since S-C is 1-convex we have H2n~\S-C, Z)=Q. Hence H^S, C; Z)=Q
by duality. This implies the assertion.

Now suppose that S is a compact complex surface and C a rational curve
with a node on S satisfying the condition of Theorem 1. Then S—C is 1-con-
vex and hence, by Lemma 4, the first Betti number b^S) is either 0 or 1. We
will give examples of both cases :

Example 1. Surfaces of class VII0 (minimal compact complex surfaces
with ^(5) = !) containing divisors D^O with (D2)=0 were determined by Enoki
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[1]. By his result, if S is of class VII0 and contains a rational curve C with a
node and with (C2)=0, then S=Slt06st (0< | a\ <1, t eC). It is easy to show
that the number corresponding to the normal bundle of C, by Lemma 1, is
a (or I/a, see Remark 1). Hence9 by Theorem 1, the complement S— C is
1 -convex.

The complement S— C is described as follows [1]. Let g be the holomor-
phic automorphism of C x C* defined by

g: (z, w) -> (wz+£, aw) ,

Then 5— C is biholomorphic to the quotient surface (CxC*)/<g> of CxC*
by g. We note that, in the case /=0, a plurisubharmonic function can be con-
structed explicity: Since

(log|w|)2-log|a|log|w|+21og|a|log|z|? (z,

is invariant under g, this defines a function <p on &— C. The function <p is
/ 1 Vplurisubharmonic and increases with the same order as [ log - 1 , when
\ d(p) I

Example 20 Let C0 be a cubic curve with a node p0 in the projective
plane P2, Let *0: P-*CQ be a desingularization map of C0. We choose an

inhomogeneous coordinate C on -P so that ^o(0)='o(00)=/7o an^ that/?1=r0(l) is
one of the three inflexion points of C0. Then the normal bundle of C0 is

[Cr
fl]|C0=9[A]. We choose nine distinct points Cl5 — , C9eC*=-P— {0, 00}

and let #/='o(£/)- Blow up I32 at the points #y so that we have a compact
surface S with *r: S-^P2. Denote by C the proper transform of Q. Then

the normal bundle N of C is [C] | C=9[A]— S [^J, where A=W"I(A) 0 C and
y=i

^ = 7r"1(^y)nC. Since we have a(N) = £l ••• C9, the complement 5— C is
1-convex if C/ are so chosen that | Ci— C9 1 =J= 1.

Remark 3. Let F be the complex line bundle over F0U Pi mentioned in
Remark 2. In Example 1, we can easily verify that F=[C]| F0U Vv But this
is not the case in general. We will show that, in Example 2, [C] and F do not
coincide on any small neighborhood of C. To show this, let CcS be as in Ex-
ample 2 and suppose [C] =F on some neighborhood of C. Then we have holo-

morphic functions wf- on Vi (/=0, 1) such that wl=wQ on F+ and W^OLWQ

on V~. Define a holomorphic 1-form on F0U Fi— C by o)=dwi/wi on Vi—Ui

(i=Q9 1). As shown in the Appendix, a) can be extended to a holomorphic



RATIONAL CURVE WITH A NODE 691

1-form o} on all of S— C. The restriction &\n~l(qj) has a pole with residue
1 at C n n~l(qj) and holomorphic elsewhere. This contradiction shows the
assertion.

Appendix

Theorem 3. Let X be a l-convex complex manifold of dimension 2, K a
compact set in X, and co a closed holomorphic l-form on X—K. Then CD can
be extended to a l-form co holomorphic on all of X.

First we show the following

Lemma 5. Let E be a holomorphic vector bundle over X. Let K be a
compact set in X and s a holomorphic section of E over X~K. Then s can be
extended to a meromorphic section s over all of X, The set of poles of s is a
compact analytic set of dimension 1 in X.

Proof. Let A be the maximal nowhere discrete compact analytic set in
n

X. Let A= U AI be the decomposition of A into irreducible components. By
1=1

blowing up, we assume that the singularities of A are normal crossings and
that the components A{ are non-singular. We can choose positive integers /?,•

«
(f=l, "-9n) so that the restriction of the line bundle [£>]=SPiIXi] to A is

«=i
negative. Hence, for sufficiently large m, we have H\X, O(K®E~l®[D]-m)}
=0, by Ohsawa [6].

Now we consider the exact sequence

H\X, 0(E®[D}m)) ^ Hl(X, 0(E®[D])m) - H^X, O(E®[D}m))

where the subscript oo indicates the cohomology at infinity and * indicates the
cohomology with compact support. We have H%(X9 0(E®[D]m))=Q, since it
is dual to H\X9 O(K®E-1®[D]~mJ) by Serre duality. Hence the mapping n
is surjective.

This shows that every holomorphic section s of E over X—K can be ex-
tended to a meromorphic section s over X9 whose set of poles is contained in A.

q.e.d.

Proof of the theorem. By the lemma, CD can be extended to a meromor-
phic 1 form co on X. Let A1 denote the set of poles of to. We will show that
A' is empty.
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k
Suppose that A' is non-empty,, Let A'= {jAi be the decomposition of A'

i=1

into irreducible components. Let (rif)=(At»Aj) be the intersection matrix of
k
\JAS. Since A' is an exceptional set, the matrix (rg7) is negative definite, by a

1=1
theorem of Grauert [2],

Let ag denote the 1-cycle which goes around Af in the positive sense
(i=l, •••, K), When regarded as elements in Hl(X—A9 Z), the 1-cycles ai are
all torsion elements, since the relations

k
JZruaj =°5 i = l, — , f c ,
8=1

hold by Mumford [3]. Hence we have

(4) fs = 0, / = !,...,*.
Jtf;

We choose a finite number of simply connected open sets W^ in X such
that ,4'c U Wx. By (4) there are meromorphic functions f^ on J^A such that
dfi=G). On FPknfFi f t , we have / A — f ^ = c^ (constant). Let mt (>0) be the

A
order of poles of/A on Ai9 and define the divisor D^S wgv4f-. Let [D] be the

1=1
line bundle associated to D and let se/XJ, 0[D])) be the canonical section:
0) =D. The sections ^A =fxs e r( FFA —^', (?([/)])) are extended to holomorphic
sections s^F(W^ O[D]J). Since sx—s^=cxtits on PFAn W7^, we can define a
holomorphic section s^F(A\ O[D]\A')) by setting s=s^ on ^ ' n ^ x - The
section s does not vanish on any component of A' and

y=i

Hence S riimimj^Q9 which contradicts the fact that (r^-) is negative definite.

Thus the theorem is proved.

References

[ 1 ] Enoki, I., Surfaces of class VII0 with curves. Tdhoku Math. /., 33 (1981), 453-492.
[ 2 ] Grauert, EL, Uber Modifikationen und exzeptionelle analytische Mengen, Math. Ann.,

146 (1962), 331-368.
[ 3 ] Mumford, D., The topology of normal singularities of algebraic surfaces and a criterion

for simplicity, Publ. Math. I.H.E.S., 9 (1961), 5-22.
[ 4 ] Narasimhan, R., On the homology groups of Stein spaces, Invent. Math., 2 (1967), 377-

385.
[ 5 ] Neeman, A., Ueda Theory: Theorems and problems, AMS Memoires, 415 (1989).



RATIONAL CURVE WITH A NODE 693

[6] Ohsawa, T., Vanishing theorems on complete Kahler manifolds, PubL RIMS, Kyoto
Univ., 20 (1984), 21-38.

[ 7 ] Sin, Y.T., Every Stein subvariety admits a Stein neighborhood, Invent. Math., 38 (1976),
89-100.

[ 8 ] Ueda, T., On the neighborhood of a compact complex curve with topologically trivial
normal bundle, /. Math. Kyoto Univ., 22 (1983), 583-607.




