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Neighborhood of a Rational Curve
with a Node

By

Tetsuo Uepa*

§0. Introduction and Statement of the Result

Let C be an irreducible compact analytic set of dimension 1 in a complex
manifold of dimension 2. Let (C?) denote the self-intersection number of C.
It is well known that C has a strongly pseudoconvex neighborhood if and only
if (C*<0; and that C has a fundamental system of strongly pseudoconcave
neighborhoods if (C*>0. When (C%=0, this topological condition alone is
insufficient to derive analytic conclusions. For a smooth curve C with (C%)=
0, we obtained some conditions for the existence of a fundamental system of
strongly pseudoconcave or pseudoflat neighborhoods in [8] (see also Neeman
[5D.

It will be natural to investigate such complex analytic properties in the case
where C has singularities. In the present paper we treat one of the simplest
cases of such C.

In the sequel, C will always stand for a rational curve with only one node
(ordinary double point). To state the result, we note first that the Picard
variety of C, i.e., the set of all topologically trivial line bundles over C, is iso-
morphic to HY(C, C*)==C* as multiplicative group (see Lemma 1).

Suppose that C is imbedded in a complex manifold S of dimension 2 and
(C»=0. Let [C] denote the line bundle over S associated to the divisor C.
The normal bundle N of C is defined to be the restriction [C]|C of [C] to C.
By the assumption, N is a topologically trivial line bundle over C. Let a=C*
be the number corresponding to N by the above isomorphism. Let d(p) denote
the distance of p& .S from the curve C with respect to some Riemannian metric
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on S. The main result of the present paper consists of the following theorems.

Theorem 1. Suppose |a|==1. Then there exist a neighborhood V of C
and a strongly plurisubharmonic function ® on V—C such that ®(p)—-+oco as
p—C. Moreover, for any real number 2> 1, we can construct ® so that

o(p) / (1og :l(ip;)” is bounded.

Theorem 2. Suppose |a|=£1. Let V' be a neighborhood of C and ¥(p)
2\
a plurisubharmonic function on V' —C such that ¥(p) / (log %)—) is bounded
P

for some real number 2<1. Then there is a neighborhood V, of C such that
¥ |(V,—C) is constant.

These results correspond to Theorems 1 and 2 in [8] (for smooth curves of
finite type). We note that, in the present case, the neighborhood of C admits
plurisubharmonic functions with slower growth than in the case of [8].

Theorems 1 and 2 are proved in § 3, after some preliminaries in § 1 and
§2. We consider, in § 4, such curves in compact complex surfaces. Exam-
ples of surfaces of class VII; and rational surfaces are given.
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§ 1. Topologically Trivial Line Bundles over C

Let C be a rational curve with only one node p,. Let P denote a smooth
rational curve (Riemann sphere) with inhomogeneous coordinate ¢ and let
t: P—C be a desingularization map of C such that ¢(0)=¢(c0)=p,, We
fix ¢ with 0<e<1 and define open subsets U; (=0, 1) of C by

U,=UsUUy
where
Us =«{l¢[<e}), Ug =d{l/e<[{|=00})
and
U = «({0< ¢ <eo}).

Then {U,, U;} is an open covering of C. The intersection U, U, consists of
two connected components
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Ut =({0<[¢]<e}), U™ =c({(1/e<|¢] <oo}).

Every holomorphic line bundle over C is represented by a multiplicative
1-cocycle with respect to the covering {U;}. We denote this 1-cocycle by a
pair (f*, f7) of non-vanishing holomorphic functions f* on U%*.

Lemma 1. Every topologically trivial line bundle E over C is represented
by a pair (1, @) where a is a complex number ==0 uniquely determined by E. In
other words, the Picard variety of C is isomorphic to H(C, C*)=C*,

Proof. Suppose that E is represented by a pair (f*, f~). We regard f*
as functions of the variable ¢ with 0< [{| <e and 1/e < |{| < oo, respectively.
Let

o1 ? m .
1Z1=ef2 [T 2ri

m+_1S ar+ __15 df-

2w 2mi Wt £
Then we can write
[*=(""expg®,

where g*, g~ are holomorphic functions on U*, U~. By Laurent expansion,
they are decomposed as follows:

g =a7+gi+gl
g~ =ar+8i+g-
with
giQ) =X aic*, gX(0) =X ail%;
k>0 k< 0
gi(0) =X a¢*, gZ(0) =X apc*t.
>0 EZO
The power series gi, g%, g7, g= define holomorphic functions for |{]|<e,

0< ¢ Z oo, || Koo, 1/e<|{]| < o0, respectively.
We define non-vanishing holomorphic functions f; on U;, i=0, 1, by

_{ exp (g —g3) for |¢]<e,
exp(—gZ+g7) for 1/e< || Z oo,
fi =" exp(—ai —gt—g7) for 0<|{[<oo.

Then we have

M {f+f1/fo=1 on U*t={0<[{|<¢},

fAlfe=a¢®  on U={l/e<[¢] <oo},
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where m=m~—m"*, a=exp(ay —as). This shows that the line bundle E is
represented by the pair (1, @{™).

Now, since E is topologically trivial, the pull-back ¢*(E) of E by ¢: P—C
is also topologically trivial. ¢*(E) is represented by the 1-cocycle {"a with
respect to the covering {|¢| <o}, {l/e <|&| < oo} of P. Hence we have
m=0. g.e.d.

Remark 1. This correspondence depends on the choice of the coordinate

{: If we replace ¢ by 1/, then «a is replaced by 1/a.

§2. Coordinate Systems on the Neighborheod of C

Now suppose that C is imbedded in a complex manifold of dimension
2 and that (C?)=0.

We choose neighborhoods ¥V, V; of U, U such that C N V,=U;,, and that
VoNV; consists of two connected components V*, ¥~ with CNV*T*=U",
CNV~-=U-. Further we suppose that V; are Stein open sets. This is possible
by a theorem of Siu [7]. In the following consideration, V,, V; will be
replaced by smaller ones whenever it is necessary.

Lemma 2. Suppose that a is not a root of unity. Then, for any integer
v=1, there exist holomorphic functions w; on V; (i=0, 1) such that w;=0 are
defining equations of C in V; and satisfying the conditions:

(1) w,—w, vanishes to order v+1 on U™,

(i) wy—aw, vanishes to order v+1 on U~.

Proof. First we prove the lemma for y=1. Let w;, be any holomorphic
functions on ¥V; such that w;=0 are defining equations of C in V; (i=0, 1).
We want to modify w; and obtain w; satisfying the conditions (i) and (ii). We
write wy=F*w, on ¥+ and w,=F~w, on ¥~ with non-vanishing functions F*
on V* Let f£=F*|U*. The pair (f*, f~) represents the complex normal
bundle N of C. By Lemma 1, there exist non-vanishing holomorphic functions
f; on U; (i=0, 1) satisfying the equations (1), with m=0. We choose non-
vanishing holomorphic functions F; on V; such that F;| U;=f; and put w;=
Fyw; (i=0, 1). Then w,, W, have the required properties for v=1 as easily
verified.

For v=2, we proceed by induction. Assume there are holomorphic fun-
ctions w; as in the lemma for some integer v (=1). Then we can write
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w, = wy+H twpt! on VH+,
w, = a(we+H " wi*') on V-,
with holomorphic functions H* on V*. Let h*=H=*|U*. We want to
obtain holomorphic functions 4; on U; (i=0, 1) satisfying the equations

ho—h, = ht on U*t,
@ v - -
hy—a*hy, = h on U-.

To solve (2) we decompose A* as follows:
ht = by +hi+ht,
h™ = by+hi+hZ,
where
(9] =l§ bict, hi(0) :kg bi ¢k
hi(€) = ,§, bi¢*, h=(¢) = % br ¢k .
The power series A%, hZ, hy, h= define holomorphic functions for [{|<e,
0< [¢| <00, |€] Koo, 1/e<|{| < o0, respectively.

We define
N { cothi—a™hy  on Ug={|{|<¢},
| cg—a¥hr4hs on Ug={l/e< || < oo}
h = c,—h*—a™hy on U={0<|{|=Z oo},
a’b —by by —by
where cozaf—_l" , €= ;"—10 .

Then h,, h, satisfy the equations (2).
Now let H; be holomorphic functions on V; such that H;| U;=h; (i=0, 1).

We define

Wy = W+ Hywy ! on Vg

W = w+Hwt! on V.
Then W, W, satisfy the conditions (i), (ii) with v+1 in place of v. In fact, on
V*, we have

W—W, = H wo '+ Hywi ' — Howg !
= (Ht+H,—Hy)wo "'+ H, {(wo+H Twg ™)’ Tt —wgt1}.

Since H*-+H,—H, vanishes on U™ by the first equality of (2), w,—Ww, vanishes
to order v+2 on U*. On V™, we have



686 Tersuo UEDA

W —aw, = aH ~wy '+ Hwi ' —a Hwy !
= a(H~+a H,— Hwi '+ 7 H, {(we+ H ~wg ) 1 —wy 1} .

Since H~+a"H,—H, vanishes on U~ by the second equality of (2), Ww,—aw,
vanishes to order v+2 on U~. g.e.d.

Remark 2. We can extend the normal bundle N to a complex line bundle
F over V=V,UV; by extending the 1-cocycle (1, @) to ¥*, ¥~ as constant.
Then Lemma 2 implies that the bundles [C] and F coincide formally along the
curve C.

Now let {: U;— P denote the inverse of the biholomorphic map
‘I(P_{Os oo}): P—{Os OO}__)UI

Lemma 3. There exist holomorphic functions z; on V; (i=0, 1) satisfying
the following conditions:

O zlh=¢;

(ii) z;=B*z, on V™, where B* is a holomorphic function on V* such that
BT Ut=1;

(iii) z, =B zy/wy on V=, where B~ is a holomorphic function on V= such
that B~ | U~ is a constant 0.

Proof. We choose and fix as z, any holomorphic function on V; satisfy-
ing the condition (i). Let z, be a holomorphic function on ¥, which takes zero
of order 1 on Uy and such that zy| Uy =¢. Then z,, z satisfy the conditions
(i), (ii)). We wish to modify z, and obtain Z, so that the condition (iii) is also
satisfied by 2, z;.

Let Q=z,/w,. Then Q is a meromorphic function on ¥, which has simple
poles on Ug and has no other poles nor zeros. Let ¢g=0|U7 and r=g/¢.
Then r is extended to a non-vanishing holomorphic function on Ug. Let =
r(p,) denote the value of the function r at the node p,. Choose a non-vanish-
ing holomorphic function S on ¥; such that §|Ug§=1 and S| U7y=r/8.

We put Z,=z,/S. Then 2, z, satisfy the conditions of the lemma. In fact,
on ¥+, we have z,/2,=Sz,/z,, whose restriction to U* is identically equal to 1.
On V', we have z,wy/Z,=Sz,w,/z,—=S7,/Q, whose restriction to Uy is (r{)/(Bq)=
1/8. qg.e.d.

§3. Proofs of the Theorems

Let w; (i=0, 1) be as in Lemma 2, with v=4. Then we have w,=A%*w,
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on V* and wy=ad~w, on V-, where 4% are holomorphic functions on V'*
such that A*—1 vanishes to order 4 on C. Let z; (=0, 1) be as in Lemma 3.
Here we assume that B-|U~=1 in the condition (iii). This is possible since
we may multiply w; by a constant.

We define real-valued functions ¢; on ¥V;—U; by

(3 ¢ = (log|w;|)—log|e|log|w;| +2log|a|log|z;|, i=0,1.

The difference ¢,—¢, is extended to a function of CZ class on V,N ¥; which
vanishes on C NV N V.

In fact, we have wy,=A%*w,, zy=B%z, on V'* and
@1—po = 2log| 4™ |log|wy| +(log| 4*|)*—log|a|log| 4*| +2log|@|log| B¥|.

The term 2 log| 4™ |log|w,| is extended to a function of C? class by setting to
be 0 on C, since log|A*| vanishes to order 4 on U™; and the other terms are
real-analytic. This shows the assertion for V*. Now we write W,=aw,,
2y=z¢/w,. Then, by straightforward calculation we have

@0 = (log| Wo| y'—log| @ |log| | +2 log|e|log| | .

Noting that w;=A4"Wy, z;=B"%, on V~, we can verify the assertion similarly
for V-.

Now let ¥ be a neighborhood of the node p, which is relatively compact
in V,, and let o be a real-valued function of C* class on ¥,U V; such that
0=p(p)=<1, supp(p)CV,, and p|Vi=1. We define a function ¢ of C* class
on V—C by

? = p @t+(1—p)p; .

It is clear that ¢(p) tends to oo as p tends to the curve C. We will
prove the following assertions:

1. If 2>1, then there is a sufficiently small neighborhood ¥V of C such
that ¢* is strongly plurisubharmonic on V—C.

2. If 0<2<1, then there is a sufficiently small neighborhood ¥V of C
such that the complex Hessian of ¢* has one positive and one negative eigen-
values on V—C.

The assertion 1 implies Theorem 1. Theorem 2 is derived from the
assertion 2 in the same manner as in [8, § 3.4].

To prove the assertions, we denote
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wiw 'Hb'wi l’lpw I 2 3%3”-
wn =7l o=l ]
( ) zw 1)&:2 (1/,) 1#:"#12 h&a IZ

for a real-valued function y~(w, z). Then the complex Hessian H(gp") of ¢ is

H(g") = 29" X pH(p)+(A—1)G(9)) -
First we look at the neighborhood of U;=C—{p,}. We choose a suffi-

ciently small neighborhood V] of U, so that (w,, z;) is a coordinate system on
Vi. On V, ¢ has the form

¢ = (log|w,|)*—log|a|log|w;|+7,
where
7 = 2log|e|log|z | +o(py—ey) -

The function 7 is of C? class on ¥; and 7, =(log|«|)/z,%0, 7,,=0 on C.
From

—“—_I_ﬂwﬁﬂ Tz,

”llﬁ 1 77:15 1

(el )@to) PEL oy,
G(p) = ]lo lIWI
T 7 (1 o(1) 717

1

and ¢=(log|w, |Y(1+o(1)), we obtain

@) = oHE)+(—1G(e)
P

log| | log| |
() aroay @—nlelMly, oy

[wy

@—1z, 2 oy @Dl P(1Ho)

Here o(1) denotes the terms which tend to 0 as p—>C. The determinant of this
1-1) log|wy |
[w
negative according as A>1 or 2<1 everywhere on V;—C, if V; is sufficiently
small.
Now we look at the vicinity of the node p,. If V§’CV7y is a sufficiently
small neighborhood of p,, we can regard (w,/zy, z,) as a coordinate system on

matrix is of the form

2
) [7,,12(14+0(1)), and hence positive or
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V{’. Hence we can regard (w,, z,) as a coordinate system on V{’—C. Noting
that ¢=¢, on V{, we obtain from (3)

1
3 H(@Y) = eH(p)+(—1)G(p)
Aph?
e a—1 2 (A—=1)p,,e;
_ ZIWOIZ +( )l¢wo| ( )¢Wo¢lo ,
(1_1)5010?7%0 (2—1) I¢zo IZ
whose determinant 2l @ | ;@—1)o, |2 is positive or negative according as 4>1
Wo

or 2<1.
Thus the assertions are shown, and Theorems 1 and 2 are proved.

§ 4. Carves on Compact Surfaces

A complex manifold X is said to be 1-convex (or strongly pseudoconvex),
if there is an exhaustion function @: X—R which is strongly plurisubharmonic
except on a compact set in X. If X is non-compact and 1-convex, then there
are a compact analytic set 4, a Stein space Xand a proper holomorphic map-
ping z: X —X such that z(A) is a discrete set and #|X—A4 is a biholomorphic
mapping. By Narasimhan [4] we have Hz”‘l()lf, Z)=0if n=2. Since 4 is
at most real (2n—2)-dimensional, we obtain H**~(X, Z)=0.

Lemma 4. Let S be a compact complex manifold of dimension n=2 and
C an analytic set in S. If the complement S—C is 1-convex, then the homomor-
phism H,(C, Z)—H,\(S, Z) is surjective.

Proof. We consider the exact sequence
H\(C, Z)— H\(S, Z)— H\(S, C; Z).

Since S—C is 1-convex we have H**"Y(S—C, Z)=0. Hence Hy(S, C; Z)=0
by duality. This implies the assertion.

Now suppose that S is a compact complex surface and C a rational curve
with a node on § satisfying the condition of Theorem 1. Then S—C is 1-con-
vex and hence, by Lemma 4, the first Betti number 5,(S) is either 0 or 1. We
will give examples of both cases:

Example 1. Surfaces of class VII;, (minimal compact complex surfaces
with b,(S)=1) containing divisors D=0 with (D*)=0 were determined by Enoki
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[11. By his result, if S is of class VII, and contains a rational curve C with a
node and with (C?=0, then S=S,,, (0<|e|<1, t€C). Itis easy to show
that the number corresponding to the normal bundle of C, by Lemma 1, is
a (or 1/a, see Remark 1). Hence, by Theorem 1, the complement S—C is
1-convex.

The complement S—C is described as follows [1]. Let g be the holomor-
phic automorphism of € X C* defined by

g: (z, w) = (wz+1, aw) .

Then S—C is biholomorphic to the quotient surface (C XC*)/Kg) of C xXC*
by g. We note that, in the case r=0, a plurisubharmonic function can be con-
structed explicity: Since

(log|w|)’—log|e|log|w|+2log|e|log|z],  (z, W ECXC*,
is invariant under g, this defines a function ¢ on S—C. The function ¢ is

2
plurisubharmonic and increases with the same order as <log —1——) , When

d(p)
p—C.

Example 2. Let C, be a cubic curve with a node p, in the projective
plane P2, Let ¢;: P—C, be a desingularization map of C,, We choose an
inhomogeneous coordinate { on 2 so that ¢,(0)=¢y(c0)=p, and that p,=¢y(1) is
one of the three inflexion points of C;,. Then the normal bundle of C, is
[C1Co=9[p,]. We choose nine distinct points ¢y, -++, {,EC* = P—{0, oo}
and let g;=¢(¢;). Blow up P? at the points g; so that we have a compact
surface S with z: S—P% Denote by C the proper transform of C,. Then

the normal bundle N of Cis [C]| C=9[ﬁ,]—~i [4;], where p,=z"'(p;) N C and
j=1

g;j=="Y(g;)NC. Since we have a(N)={¢, -+ {;, the complement S—C is
1-convex if {; are so chosen that |{;e«-{g| #=1.

Remark 3. Let F be the complex line bundle over ¥;U ¥; mentioned in
Remark 2, In Example 1, we can easily verify that F=[C]|V,U V;. But this
is not the case in general. We will show that, in Example 2, [C] and F do not
coincide on any small neighborhood of C. To show this, let CC S be as in Ex-
ample 2 and suppose [C]=F on some neighborhood of C. Then we have holo-
morphic functions w; on V; (i=0, 1) such that w;=w, on ¥+ and w,=aw,
on V~. Define a holomorphic 1-form on VU ¥;—C by w=dw;/w; on V;—U;
(i=0, 1). As shown in the Appendix, ® can be extended to a holomorphic
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1-form & on all of S—C. The restriction @|z~'(q;) has a pole with residue
1 at CNz""(g;) and holomorphic elsewhere. This contradiction shows the
assertion.

Appendix

Theorem 3. Let X be a 1-convex complex manifold of dimension 2, K a
compact set in X, and @ a closed holomorphic 1-form on X—K. Then ® can
be extended to a 1-form & holomorphic on all of X.

First we show the following

Lemma 5. Let E be a holomorphic vector bundle over X. Let K be a
compact set in X and s a holomorphic section of E over X—K. Then s can be
extended to a meromorphic section § over all of X. The set of poles of § is a
compact analytic set of dimension 1 in X.

Proof. Let A be the maximal nowhere discrete compact analytic set in

X. Let A= L"JA‘ be the decomposition of A into irreducible components. By

i=1
blowing up, we assume that the singularities of 4 are normal crossings and
that the components 4; are non-singular. We can choose positive integers p;

(i=1, «--,n) so that the restriction of the line bundie [D]=é pild;] to A4 is
i=1
negative. Hence, for sufficiently large m, we have HY(X, O(KQE'Q[D]™™))
=0, by Ohsawa [6].
Now we consider the exact sequence

H(Y, OE®IDI) > HA(X, O(ERID)") — Hi(X, OESIDI)

where the subscript oo indicates the cohomology at infinity and * indicates the
cohomology with compact support. We have H (X, O(E ®[D]"))=0, since it
is dual to H¥(X, O(KQE'Q[D]™™)) by Serre duality. Hence the mapping «

is surjective.
This shows that every holomorphic section s of E over X—K can be ex-
tended to a meromorphic section § over X, whose set of poles is contained in A.
q.e.d.

Proof of the theorem. By the lemma, ® can be extended to a meromor-
phic 1 form @ on X. Let A’ denote the set of poles of @. We will show that
A’ is empty.
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k
Suppose that A’ is non-empty. Let 4’=U 4; be the decomposition of A’
i=1
into irreducible components. Let (r;;)=(4;-4;) be the intersection matrix of
k
U4;. Since 4’ is an exceptional set, the matrix (r;;) is negative definite, by a
i=1

theorem of Grauert [2].

Let @; denote the 1-cycle which goes around A; in the positive sense
(=1, ---, k). When regarded as elements in H,(X—A, Z), the 1-cycles a; are
all torsion elements, since the relations

érgjaj=0, i=1,“',k,
i=1
hold by Mumford [3]. Hence we have
@ § =0, i=1-k.
L3

We choose a finite number of simply connected open sets W, in X such
that 4’C U W,. By (4) there are meromorphic functions f, on W, such that
dfy=&. On W,N W,, we have f,—fu=cw (constant). Let m; (>>0) be the

k
order of poles of f, on 4;, and define the divisor D=>] m;A;. Let [D] be the
i=1

line bundle associated to D and let s&I'(X, O[D])) be the canonical section:
(s)=D. The sections s,=f,sI'(W,—A’', O([D])) are extended to holomorphic
sections $,&I'(W,, O[D])). Since 5, —Su=cus on Wy Wy, we can define a
holomorphic section §&I'(4’, O[D]|A4’)) by setting $=s, on A’NW, The
section § does not vanish on any component of 4’ and

0=<deg(§|4) = D-A; = Sirym;, (=1, k).
i=1

k
Hence >3 r;;m;m; =0, which contradicts the fact that (r;;) is negative definite.
i,7=1

Thus the theorem is proved.

References

[1] Enoki, I., Surfaces of class VII, with curves. Téhoku Math. J., 33 (1981), 453-492.

[2] Grauert, H.,, Uber Modifikationen und exzeptionelle analytische Mengen, Math. Ann.,
146 (1962), 331-368.

[3] Mumford, D., The topology of normal singularities of algebraic surfaces and a criterion
for simplicity, Publ. Math. I.H.E.S., 9 (1961), 5-22.

[4] Narasimhan, R., On the homology groups of Stein spaces, Invent. Math., 2 (1967), 377-
385.

[5] Neeman, A., Ueda Theory: Theorems and problems, AMS Memoires, 415 (1989).



RATIONAL CURVE WITH A NODE 693

[6] Ohsawa, T., Vanishing theorems on complete Kihler manifolds, Publ. RIMS, Kyoto
Univ., 20 (1984), 21-38.

[7]1 Siu, Y.T., Every Stein subvariety admits a Stein neighborhood, Invent. Math., 38 (1976),
89-100.

[8] Ueda, T., On the neighborhood of a compact complex curve with topologically trivial
normal bundle, J. Math. Kyoto Univ., 22 (1983), 583-607.






