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Introduction

Let Q be a bounded domain in Rn with smooth boundary BQ. In this paper
we consider the parabolic initial-boundary value problem

(0.1) (a(u}\ =Au+ f(u) in fix (0,r),

(0.2) Bu(xj) = 0 on BQ x (0,T),

(0.3) w(jc,0) = MO(JC) in Q

with the boundary operator

u(x,f) (Dirichlet) or
Bu(x,i) = \ 3vu(x,i) (Neumann) or

(dv + o(x)}u(x,t) (Robin).

Here v= (Vi(jt),. . .,vn(jc)) is the outer unit normal to BQ, dv=v-V=
11 d
2 vy-(jt) — and o(x) (^ 0) is a nonnegative ^-function on BQ.

j=\ dXj

Throughout this paper we assume the following conditions.

/'(§) > 0 for §> 0, where ' = dld^\
(A2) /ofl"1 is locally Lipschitz continuous on [a(0),^°).
(A3) UQ(X) E Lx(£2)\ UQ(X) > 0 in Q\ the support of MO(JC) contains an open
nonempty subset of Q.

These conditions guarantee the unique existence of local (in time) solution
u(x,t)>Q which satisfies (0.1) ~ (0.3) in a weak sense (cf. e.g., [1],[2],[12] and
[13]). In the following we do not enter into this existence problem. The definition
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of "weak" solutions will be given below in §1.
Equation (0.1) arises e.g., in the study of thermal diffusion phenomena with

heat source. In this case u(x,i) represents a temperature, and there may be
several situations which force its maximal value to increase indefinitely in a finite
time. The object of this paper is to obtain conditions which ensure the blow-up
of solutions. In addition we shall study some behaviours of solutions at the blow-
up time.

In semilinear cases a(t~) = £, these problems have been studied by many
authors: see e.g., [3],[5],[6],[8] and [11]. However, there are not so many studies
in the above quasilinear cases. We reffer [4],[7],[9] and [10]. Among them in
Itaya [9],[10] is treated the initial-boundary value problem for

ut = b(u)uxx+f(u).

Assuming fe(£)>0 and &'(l)-® f°r aU £ — ® , he discussed how the coefficient
&(£) affects the blow-up and nonblow-up properties of solutions.

In §1 we shall summarize Itaya's results under slightly weaker conditions on
coefficients. Let (s(jt),A) be the principal eigen-solution of —A in Q with boundary
condition (0.2) (s is normalized: s>0 and $Qs(x)dx= 1). Put

(0.4) J(t) = I a(u(x,i))s(x)dx.
JQ

Then J(t) goes to infinity in a finite time if the following (A4) is satisfied
(Theorem 1.1).

(A4) There exist a function g(£) and a £0 > 0 such that

(0.5) g(£) =£/(!)-A£ in

(0.6) r= gofl"1 is convex in (a(0),=o);

(0.7) g(%) > 0 and f ° , , < °° if £> £o;
J$ £(*?)

(0.8) /(0)>fl(£0).

Note that these conditions are almost necessary to raise the blow-up. More
precisely, the following (A5) or (A6) enables us to obtain apriori estimates
(Theorem 1.5) which, with some additional conditions, may imply the global
existence of solutions.

(A5) There exist constants a, /3>0 such that

(0.9) /(£)£< aA(^) + ft in £^0, where A(® =

(A6) (Dirichlet or Robin problem) There exist constants /J>0, 0< y< A,
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_!_ 1

sufficiently small d > 0 and 1 < g < —— (1 < g < » if n = 1,2) such that
/i ^

r^ r£2 6£*(0.10) F(£)- /(^,<0 + ]|- + -JL^ in £>0.
J0 2 q + l

In §2 we shall employ methods of Friedman-McLeod [5] (cf. also Chen-
Matano [3] and Fujita-Chen [6]) to obtain several properties of solutions near
the blow-up time, say t=T.

An interesting result is obtained for the Neumann problem. Let n = 1 and
assume that

(0.11) m = o(f) a s£^=c .

Then every solution u(x,i) blows up on the whole interval Qx {T} = {(x,T);
;cE[0,L]}, and we have

(0.12) Mm "fer)
 A - 1 for any

rf T® (l —t)

where
_oc

(0-13) <5>(l) = j -ftn)
(Theorem 2.2). This result is typical to our Neumann problem. Note that (0.11)
and (A4) contradicts each other provided the Dirichlet or Robin problem is
concerned with. In case of semilinear equations, the contradiction occurs even
for the Neumann problem.

In contrast with (0.11) if we assume

«"(£) ^ 0, fW > 0 and f f(r])~ddr] < *>, where 0 < 6 < 1,
J§

then the blow-up situation is completely changed. In this case, with some
additional conditions, the so-called single point blow-up occurs (Corollary 2.5)
as in the case of semilinear equations.

Finally, we note that the Cauchy problem for (0.1) is studied in the recent
work of Suzuki [14], where asymptotic behaviours of the free boundary is
discussed near the blow-up time.

§1. Blow-up and Nonblow-up Properties

By a solution of the initial-boundary value problem (0.1) ~ (0.3) we mean a
function u(xj) in Qx [0,T) such that

(i) u(x,t)
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(ii) u(xj) > 0 for each (*,/) E Q x [0, r),
(iii) u(x,t) satisfies

f ir = fl f'1 ra(u(xj))(p(xj)dx\ =\ {a(u)q>t + u
JQ l r = r ( , •'r,, Ji2

for any 0 < fn < fA < T and nonnegative <p E C2(Q x [0,7)) verifying the boundary
condition B<p(x,i) = 0 on d<Q x [0,T).

This "weak" solution is the limit of a monotone nonincreasing sequence of
classical solutions for regularized problems of (0.1) ~(0.3). So the usual com-
parison theorem holds. Moreover, if u0(x) > 0 in Q, the corresponding solution
is classical.

For each solution u(x,f) we define J(f) by (0.4). Then by (i) J(f) is continuous
in f >0, and by (iii)

(1.1) / ( f ) - / (0)=f f {-Xu(x,T)+f(u(x,T)}s(x}dxdT
Jo JQ

since 5- E C2(Q) and satisfies the boundary condition.

Theorem 1.1. We assume (A4). Then there exists a T>0 such that

(1.2) J(i) -^^ast^T.

Proof. Let g be as given in (A4). Then from (1.1)

/(f)^/(0)+ f f g(u(*,r)X*)dxrfr.
Jo JQ

Moreover, by (0.6), we can use the Jensen inequality to obtain

(1.3)

Note here I\p) >0 in p>a(§0)- Then (1.3) and the continuity of J(t) show that
a(t)>J(Q) and is increasing in £>0. Since T(p) is also increasing in
we obtain from (1.3) and (0.8)

or equivalently

Integrate the both sides over (0,f). Noting da(f) = F(J(f)}dt and (0.7), we have

_^ dp _
- - g(rj)

where ^ = a~1(/(0)) > £0- These inequalities lead to a contradiction unless
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rT

a(T)=J(0) + r(J(r))dr = ™ for some T>Q.

Thus, (1.2) in concluded. D

Example 1.2. Let

(1.4) a(%) = £1/m and /(£) = ̂ p/m, where p, ra, \i > 0.

(1) (Dirichlet or Robin problem) Assume p > max {l,m}. Then (A4) holds
if we choose

ml(p—m)

m

*o = (A/jM)m/(^-m) > 0 (the positive solution of /(£) - A£= 0) and /(O) > fl(g0) =

(2) (Dirichlet or Robin problem) Assume p = m > 1 and n> L Then (0.8)
is automatic, and (A4) holds if we choose

and gv = Q (cf., Example 1.7 (5) stated below).

(3) (Neumann problem) Assume p>l. Then (A4) holds if we choose
g(£)=/(£) and £0 = 0 ((0-8) is also automatic).

Next we assume (A5) or (A6), and obtain apriori estimates which will play
an important role in the study of nonblow-up properties of solutions.

Proposition 1.3. Let u(x,t) be a classical solution of (0.1) ~ (0.3). Then we

have for any t$, ti E. (0,T),

(1.5) f A(u(x9t))dx\l = l\ -f ou2dSdt+ f {-\Vu\2 +f(u)u}dx\dt,
J& U, \ L JdQ JQ J

(1.6) Zpf a'(u)u}dxdt=\-l a(x)u(x,t)2dS
\ JQ L JdQ

+ f {- 1 Vu(x,t) 2 + 2F(u(xj)}dx\' r\
JQ Jr=r ( )

where A and F are as given in (0.9) and (0.10), respectively. The surface integrals
in the right hand sides vanish if the Dirichlet or Neumann problem is concerned
with.
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Proof. (1.5) is obtained if we multiply both sides of (0.1) by u(xj) and
integrate by parts over Q x (f0^i). (1.6) is similarly obtained if we multiply (0.1)
by 2ut(x,i). D

Lemma 1.4, Let u(x,t) be as in Proposition 1.3. We fix any 0 < r< T. Then
for any JE(ir,r),

(1.7) f \Vu(t)\2dx+f ou(t}2dS<CT+2\ F(u(t))dx\
JQ JdQ J&

(1.8) CT=T-l\l A(uv(x}}dx + \ \ f(u}udxdt\.
IJQ JQJQ J

Proof. The left side of (1.7) being continuous in tE. (0,T), we can choose
T0E(0,r) to satisfy

f | VU(TO) \2dx + f ou(T0)
2dS < T'1 f f f | Vu(t) \2dx + f au(t)2ds]dt < CT.

JQ JdQ JQ L^i2 JdQ J

Here for the last inequality we have used (1.5) with tQ = 0 and ^ = T. Substituting
the result into (1.6) with t0 = TO and ti = t, we obtain (1.7). D

Theorem l.So Suppose that the solution u(xyt) of (0.1) ~ (0.3) exists in the
interval (0,T). We fix any 0 < T< T.

(1) // we assume (A5), £/iera r&ere e^^5 a Ci(r,r)>0 such that

(1.9) f {^KO) + |^(0|V*+ f
Jo JJ3Q

for
(2) // we assume (A6), r/z^n ^Aer^ exists a C2(r) > 0 such that

(1.10) f {M(02+|Fa(0|2}<fc+f ^(02^S<C2(r)
J0 ^3Q

/or any f E(r,T).

Proof. We shall prove the assertions for classical solutions. In general
cases we can apply a limit procedure.

(1) It follows from (0.9) and (1.5) that

f A(u(xfi)dx<C3+\ \ {<xA(u(x&) + ftdxdr,
JQ J0 JQ

where C3 = $QA(uo(x))dx. Thus, by use of the Gronwall inequality
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(1.11) f A(u(xj))dx<(C3 + P\Q\la)e"t,
JQ

where \Q\ = $&dx. Next, since we have F(§) </(§)£, it follows from (0.9) and
(1.7) that

(1.12) f \Vu(t}\2dx+\ au(t)2dS<CT+f {aA(u(t}) +
JQ JBQ JQ

for any ^E(r,r). (1.11) and (1.12) prove (1.9).
(2) Put

(1.13) M(t)^\ \Vu(x,t)\2dx+f o(x)u(xj}2dS.
Jo J ao

Then since A>0 is the principal eigenvalue of — A with boundary condition on
3D, we have

(1.14) f u(x9t)
2dx<*TlM(t).

JQ

Hence, it is enough to show the boundedness of M(f) in ^E (r,T). By means of
(0.10)

f y r & r

Thus, by (1.14) and the Sobolev embedding

f F(u(t))dx<p\Q\+— Af(0+
Jo 2A o +Q

This and (1.7) imply

T A q + 1

where CT= CT+2/J|fi|. Consider the function

N=Cr- ^

a 0,

' ^ + 1

of M>0. Since 6 is assumed very small, N becomes negative for certain values
of M>0. Let MT>0 be the smallest value of M where N vanishes. Since

M(0)<CT<— — MT<MT, by continuity of M(t) in t, M(t) is not larger than
A

MT. n



702 TAKASHI IMAI AND KIYOSHI MOCHIZUKI

Corollary 1Q60 Let n = 1 and assume (A5) or (A6). Then the solution of
(0.1) ~ (0.3) exists globally in time.

Proof. In case of the Dirichlet or Robin problem 5 the Sobolev embedding
shows that

(1.15) Sup «(*,*) =SC||7«(.,0||y.
xe£2

This and Theorem 1.5 (1) or (2) guarantee that u(x,t) is apriori bounded in
L°°(O). Thus, every local solution can be prolonged up to any time T>0,

In case of the Neumann problem, we have by Theorem 1.5 (1)

u(*,t) - lor1 1 M(jr,o^
JQ

Moreover, since $&A(u(x,t))dx< Ci(r,T), the mean value of solution, and
hence, u(x,t) itself are necessarily bounded in r < t < T. Thus, every local solution
is also prolonged up to any time T>0. D

Io7. Let 0(£), /(§) be as given in (1.4).
(4) Assume p<l . Then (A5) holds if we choose a=[i(m+p) and

m + 1
(5) Assume ^< A and l</? = m [ o r ^ > 0 and !</? < m]. Then (A6) holds

if we choose y = \JL and /? = d = 0 [or any 0 < y < A, /3 — — ( — 1

and 6 = 0].

(6) Assume 1< — < (1< —<oo if w = J52) and /i being sufficiently
m n — 2 m

small. Then (A6) holds if we choose /J= y= 0, 6= \JL and q =p/m.

§2* Beliavloers of Near the Blow-up Time

In this section we assume (A4) and consider solutions of (0.1) ~ (0.3) near
the blow-up time t=T, Here T is defined by

T— sup{r; u(x,t) exists for all (x,t) E Ox (0,r)}.

This implies Mm sup u(x,t) = oo. In this case by a blow-up point of u(xj) we
rf T x<=Q_

mean a point *GO such that there exists a sequence (xm,tm) G Ox (0,7)
satisfying

xm-»jic3 rm t 71 and w(xm,£OT)-»3o as m-^™.

We put
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(2.1) £/(/)= sup M(jc,r), V(r)= inf u(x,t)

and

(2.2) e(£) =

Obviously @(£) > 0 and decreases to 0 as £— > ™.

Theorem 2.1. (1) We have

(2.3) C/CO^e^r-O neart=T.

(2) Suppose that V(t) ->™ as t *\ T. Then we have

(2.4) v(o < e-^r-o n^r f - r.

Proof. Note that w(*,r) satisfies (0.1) in the classical sense at each point
(x,t) E Qx (0,T) where w(jc,^)>0. Thus, to show this theorem we can assume
u(x,t} is a classical solution.

(1) Let U(ti) = u(xhti), i = 1,2. Then since

a(U(t2)) - a(U(tJ) < a(u(x29t2)) - a(u(x2,td),

a(U(t2)) - a(U(tl)) > «(M(a:1,r2)) - a(u(xl9t,))9

it follows that a(U(t)) is Lipschitz continuous and

a(U(t2))-a(U(tl))
^2 ~ * 1

if t2>ti. Since Au(x2,t2) ^ 0, letting £1—^2? we obtain

«(I7(0)' ^/(t/(0) for a.e. t E (0,T),

or equivalently

l>fl(C/(0)'//(t/(0) for a.e. fE(0,r),

where ' = d/dt. Integrate the both sides over (f,J) and note that U(T)-^°° as
T t 71. Then

© being monotone decreasing, this shows (2.3).

(2) Let V(ti) = u(xhtf)9 i = 1,2. Then we have similarly

'u(x2J2))' + o(l) = Au(x2,t2) +f(u(x2,12)) + o(
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if t2>ti. By assumption V(T)-»™ as r f T. Thus, starting from this inequality,
we can follow the above proof to get (2.4). D

Theorem 2.2. We consider the Neumann problem. Let n = l and assume in
addition to (A4) that

(A7) F(£)<{(££)2 + 0}/2L2 for some 0<e<l and £>0. Then u(x,t)
blows up at any point in Q= [0,L]. Moreover, for any E< E' < 1 there exists a
0<r<T such that

(2'5) l " £'-0U\T-t)-T^7for any (JM) e [0'L] x (T?r)-

Remark. For the Dirichlet or Robin problem, (A7) with e2 < XL2 gives a
nonblow-up condition.

Proof. Let V(i) = u(xtj). Then by (1.7)

f / r L \ 1/2

ux(y,t)dx< L-1 \ux(x,t)\2dx)
\ Jo /

Applying (A7) to the right, we have

u(x9t)-V(t)

where CT^ = (LCT+^)1/2. This implies

From Theorem 2.1 (1) it follows that F(f)-*°° as t | T, and hence tt(*,f) blows
up at any point ^E[0,L]. Moreover, since

(1 - e)U(t) - Crj*u(x,t) <

by use of Theorem 2.1 (1) and (2), we conclude (2.5). D

The above theorem asserts that u(x,i) blows up uniformly in Q:

(2.6) lim inf u(x,t) = <».
t f

It may be interesting to compare this with results on the so-called single point
blow-up.

In the following we restrict ourselves to the case n = l and Q= (0,L), and
follow the argument of [3], [5], [6] developed for semi-linear blow-up problems.
We require (A4) and
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(A8) There exists a ^ > 0 such that «"(£) < 0 in £> ^

Lemma 2.3. Lef 0 < r < T 0nd o>0 = (*o J>o) C (0,L). Suppose that

(2.7) «*(*>0 < 0 [or > 0] i/i 6% x [r,T).

// u(x,t) blows up at a point z £ w0? f^ew it blows up uniformly in each interval

Proof. We shall consider only the case

(2.7)' «*(*,*) < 0 in COQ x [r,T).

By definition there exist sequences {zm} and {tm} such that zm— >z, Jw f T and
am = w(zm^m)->°° as m->^o. We fix any y <*!<£. Without loss of generality,

we can assume {zm} G(*i,}>o). We put

(2.8) v(x,t) = r]m(t) sin - ( j r - ^0) in Qm =

where 6 = xi — x$ and

(2.9) J7m(0 = W-J W(am) - - ^m) with W(s) =

c,r) is a subsolution to (0.1) in Qm since ?7m(0>0 satisfies

— in f > ;m with rfm - am

and fl'(^m(0)^«'(K^O) by (A8) and (2.8). Noting (2.7);, we have

u(x,tm) >am> v(x,tm) in x e (jc0^i),

u(^.,0 >0 =ufo,0 in f E(rw,r) (i = 0,l).

Thus, by a comparison theorem

(2.10) u(xj) > ?jm(0 sin |-|(% - %0) j in (jc0,^) x (fm,r).

As is easily seen, rjm(t) > r]m(T) in tm<t<T and it follows from (2.9) that
?7m(5r)-^00 as ra-»°°. This and (2.10) show the assertion. D

Let u(x,t) be a classical solution of (0.1) in a subdomain <w0 x (r,T) of Qx
(0,T). For sufficiently smooth p(*), ̂ £CL)O, and ^(^), §>0, we put

(2.11) /(jc,0 - M

By a direct calculation we see that this / satisfies the equation



706 TAKASHI IMAI AND KIYOSHI MOCHIZUKI

(2.12) [a'(u)J], - Jxx = A(x,t)Jx + B(x,t)J + C(x,f) + D(x,t)

in <w0
 x (t,T), where

-*^

C(x,t) = -p(X)f'(u)®(u) -f(u)0'(u) - 2p' (

2p'(x)a"(u)<P(u)2 p"

D(x,t) = -

We additionally assume the following
(A9) For a(£) and /(£) there exists a function <P(tj) such that

(2.13) *(§), 0'(^)>0 and 4>"(§)>0,

(2.15) /(§)*'(£> -/

for ^^^i, where c = c(t~i)>Q. Moreover, for any M>0 there exists a ^2
 =

> £i such that

(2.16) /'

Remark (cf.,[6j). Suppose that

(2.17) *"(£)< 0 and /"(£)^0,

(2.18) (l-5)/(^/"(?) s=/'(§)2 and {«'(§)/(§)}' ̂ =0

In |>§i, where 0<c5<l and y>0. Then (A9) Is satisfied by the function

*(§) =m6 if we choose c(^} = -2ffa)i-*m

Theorem 2040 We assume (A4), (A8) anrf (A9). Let T>Q be the blow-up
time of u(x,t). Suppose that (2.7) is satisfied for some 0<T<T and co0 =
(xfoyo) C (0,L). Then there are no blow-up points of u(x,t) in a)0.
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Proof. We shall show this theorem in the case (2.7)'. Contrary to the
conclusion, assume that z G co0 is a blow-up point of u(x,t). Then by Lemma 2.3
we have

(2.19) lim inf u(x,t) = ̂  for any a) = (x,y) CC (jt0,z).
ft Tx^a)

We put in (2.11)

(2.20) p(x) ^p£(x) = esin-j(x-x), €=y-x,

where £>0 is a parameter. We choose M = 2(jtl€)2 in (A9) and £Q = &(£i)/4jr.
By (2.19) there exists r< r < T such that

M(jc , f )^£ 2 in f l>x(F, r ) .

Thus, as remarked in the beginning of §1, u(x,t) is classical in cox (r,T). Since
p"(x} 9p(x) > 0, |p'(*)l < 8jr/€ and ——- = —(nlf) in a;, this and the above conditions
p(x)

(A8), (A9) imply

C£(x,t) < 0 and De(*,0 < 0 in <H x ( r ,T)

for any 0 < £< EQ. Thus, 7 = 7£ with 0 < £< £Q satisfies

(2.21) [a'(w)7]r-7A,r<A£(jc,07r + 5e(A:,07 in cyx(r,r) .

We fix 0 < £ < £b to satisfy

maxMY(jc,r) 4- e max jp(w(jc,r)) < 0.

Then it follows that

(2.22) 7(*,r)<0 in co.

Moreover, by (2.7)'

(2.21) ~ (2.23) and a maximum principle for heat equations imply

7(jt,£)<0 ino)X(r , r ) ,

or equivalently,

Integrate the both sides over (x,y). Then noting (2.14), we have
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L,w*C
ux(xj)dx

for any rE(f,r). However, this contradicts to (2.19). D

Corollary 2.5. We assume (A4),(A8) and (A9) and consider the Neumann
problem in Q= (0,L). // we assume further that

(2.24) uh(x) < 0 in Q, uQ(L) > 0 and u'Q(G) = u'^L) = 0,

the corresponding solution u(x,t) blows up at a single point x = 0.

Proof. The function v = ux satisfies the initial-boundary value problem

[a'(u)v]t= vxx+f(u}v in (0,L) x (0,7)
in (0,T)
in

Thus, by means of the above-cited maximum principle we have

v(*,0 = ux(x,t) < 0 in (0,L) x (0,7),

and the above theorem applies with cw = (0,L). D
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