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Integral Solutions of Trigonometric Knlzhnik-
Zamolodchikov Equations and Kac-Moody

Algebras

By

Ivan CHEREDNIK*

Abstract

We use Kac-Moody algebras to get some integral solutions for trigonometric r-matrix Knizhnik-
Zamolodchikov equations of type X^\ generalizing those in the case of Yang's r-matrix, where our
construction gives a new interpretation and a short proof of Schechtman, Varchenko theorem.

§0. Introduction

In papers by Dotsenko, Fateev, Aomoto, Christe, Flume and forgoing
papers [1,2,3,4] some hypergeometric-type integral solutions were found of the
Knizhnik-Zamolodchikov equation, which appeared as an equation for n-point
correlation functions of the so-called WZW-model [5]. These correlation functions
are determined in terms of primary fields (or vertex operators for Kac-Moody
algebras) by means of a certain operator formalism. The concrete formulas for
them (see e.g. [6,7]) are of integral type as well and should be connected with
the solutions of [1,2]. The latter is not clarified in full (especially for arbitrary
initial simple Lie algebras g).

There is another more direct interpretation of K—Z equations using Kac-
Moody algebras. It was shown in [8,9] that in some sense the so-called r-function
(the coinvariant) is a generic solution of the r-matrix K—Z equation, which is a
very particular case of the universal K—Z equation for arbitrary curves and
vector bundles. Unlike the most general one the r-matrix equation can be
written explicitly and does not draw in the moduli spaces of curves or bundles. It
is small wonder since roughly speaking classical r-matrices are just in one-to-one
correspondence with g ̂ bundles without moduli (the genus of the base curve is to
be 0 or 1 in this case). By the way the proof of the above property of r (see
Theorem 1) is not far from the physical deduction of the K—Z equation (see [5]).
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The purpose of this paper is to apply r-funetions to get some "natural" proof
and explanation of the results from [1,2] and to generalize them to rather
symmetric (perhaps non-unitary) classical r-matrices of type X$l\ We follow
short paper [9], where the simplest trigonometric r-matrix was considered and
the proof was outlined with the aid of Kac-Moody algebras and the Sugawara
embedding.

The author thanks V.V. Schechtman, A.N. Varchenko, T. Miwa for fruitful
discussions and Research Institute for Mathematical Sciences for the kind invi-
tation. The final version of this paper was prepared during my stay at this

institute. I am grateful to A. Tsuchiya for his kind interest in this work, to M.
Kashiwara for useful advice and discussions and to A. Matsuo, who helped me
to improve some places of this paper, which is based on my preprint RIMS-699
with the same title.

§1. The Sugawara Connection

Let g be a simple finite dimensional Lie algebra over C with the Killing form
( , ), {ga} an orthonormal bases relative to this form. We fix a quasiunitary
classical r-matrix, that is a function r(A) taking its values in g ® g, depending on
A from some domain OGE 17 CC and satisfying the following three conditions:

(a) r(A) - tX~l is regular for t =f

a

(b) [r13(A! - A3), r
12(Ax - A2) + r32(A3 - A2)] = [r12(Ax - A2), r

23(A2 - A3)],

(c) r12(A) 4- r21(-A) = 0, BOIBl = 0.

For S = Q we obtain unitary nondegenerated r-matrices from [10]. Here and
further we keep the notations

® ...01, etc for

rij = X C^gigi, where r = £ Cabga ® gb E g ® g.
a,b a,b

These x1, rij' are considered to be elements of I7(g) ® f/(g) ® . . . for the universal
enveloping algebra of g . We will identify elements of g x g x . . . with their
images in U(g x g x . . .) = [/(g) (g) [/(g) ® . . . (x x y x z x . . . =f {jc,^,z, . . . }

Given pairwise distinct A 1 ? . . . , A,z 6= £7, we choose the local parameters A, =
A —A/ in some (small) neighbourhoods of {A/} and put formally

,f, pE:Z, XkE. ,
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In fact, later on it is sufficient to assume, that A/ — A7- C C/D A — A/ for all indices,
but we prefer not to divert reader's attention with this detail.

FT " A
Let us introduce Lie algebras G = fl G1, G0 = FI G'0, G = G 0 Cc with the

/=! i=l

commutator

[* + £c, y + £c] - [f,y] 4- c ResA(af/3A,.y)dA,

where jf - f (A) - ft ^(A,), y = y(X) = ft /(A,-) E G5 [jc.j?]1' = [*',/], £,

= (o^'CAO/SA/) and ResA(jc,jOrfA = E Res
1=1

The writing f(A) does not mean that x is a function of A, but is rather convenient.

We will consider G1 as Lie subalgebras. . . x 0 x G1" x 0 x . . . of G. The
elements of G are called adeSes, G is the Kac-Moody one-dimensional central
extension of G (see [11]), G0 and G0 = G0 0 Cc are the Lie subalgebras of integer
(holomorphic) adeles. To make the picture full we need principal (rational)
adeles.

n

For x= n*''EG we set Gr = {x r,x E G} ,
/=i

XM = ResA(r(^ - A), JP(A))rfA d= S Res^/i - A, - A,-), ̂ '(A,)) A, (1)
/=!

Here Jcr(ju) is a 9 -valued function in /^eU (/i/ = // — A / E f / for !</<«),
r(]M — A) = r(;U — A/ — A/) is identified with the set of its expansions at A = Ai , . . . ,
A = An in terms of {A/}, (x®y,z) = (y,z)x for x,y,zEg. For any function /(A)
taking values in g let us denote by /' =fl(^i) its expansion with respect to the
parameter A/ at A = A/ or (depending on the context) the image of this formal
series in the i-th component of U(G) = U(Gl) <8> U(G2) ® ____ This agrees with
the above notations/1,/2, etc for the constant/. Identifying (after the substitution

n

\JL = A) xr(X) with H xl
r,

 we wiW always consider xr as elements of G and will
/=i

include Gr into G.

Properties (a) and (b) of r are equivalent to

(a') jc r-jcEG0 , .£r
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(b') Gr is a Lie subalgebra of G.

This statement is from [12], where the nonunitary parametric classical Yang-
Baxter equations were introduced. Let us prove in brief (b') and the quasiunitary
condition

(c') ResA(3f rldX,yr}dX = 0 for x,y e G,

when r satisfies (a— c). See [13,14] for some details.
" r °° ~ i -1

We put [x] = S M, S xktf = 2 Jt*(A- A/)*, xk eg. The latter is con-
/=! Lk=p J k=p

sidered as element of G after the corresponding expansions at A!,...^,,.
Then *r = [*] + Jt0, where Jc0 = ResM(^o(A — ju), x(^))dfjL for r0(A) = r — /A"1 (see
(2)). The l.h.s of (c') is equal to

ResA(d[f ]/3A + Sjco/SA, [y]

- ResA(3c/5A,j?0)dA

since (5[Jc]/5A, [j])^A is (the set of expansions of) a scalar rational differential
form in A e C U °c with the only possible poles at A l 5 . . . ,A,Z and obc0/5A,j/o are
holomorphic. One has:

= ResA(3c(A)/3A,

= - ResA(jc(A),

= - ResA(Jt(A), ResM(af0(M- A)/ 3^,

where rn(A) ̂ f r^A) (see (c)). The last term in its turn is equal to-

The latter proves (c;). We have changed the order of ResA and ResAt in the
above deductions without any comments because all the functions (series) are
holomorphic.

As for b'), we have to calculate
C = [xr,yr] = [ResA,(r(A - p), x (t$)dfr Resv(r(A - v), y(v))^v]

- ResAtResv([r
12(A - //), r13(A - v)], JC(JM) ® j?(v)] ^vJ/4,

where (jc®,y®z, a® b} = (y,a)(z,b)x. It results from (b) and from the in-
variance of ( , ) that

C = ResMResv ([r23^ - v), r12(A - M)]
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+ [r13(A- v), r32(v- p)], x(pi) ®y

= Res,Resv (-r
12(A- M), [(^- v),

+ ResMResv(r
13(A- v), [(^(v- M) ,*(//)), y(v)] dvdp.

Here r12, r23, r13 should be considered as formal series in the sense of (1) (e.g.
r13(A — v) is identified with the set of the expansions of r13(A — v/ — A/) at the
points VL = v— A/ = 0, 1 </<«). The function r32(v— //) is to be replaced by
the expansions of r32(v/ + A/ — //), which are equal to the corresponding expansions
of t23d(v — (U) — r32 (v— jS£- - jM/) for the formal 6-f unction <5(v- ju) = (5(vj — pt/) =

2 vTl~k $t because of the above order of the residues. After this substitution
fcez
of formal series instead of the corresponding r-matrices, one can interchange
Res^ and Resv and use (1). We arrive at the identity from [12,14]:

[xr,yr] + [x,y]r = [xr,y]r + [x Jr]r,

which gives (V).
Summarizing it up we obtain from (b1 ', c') that Gr is isotropic in the meaning

of [14], i.e. appears to be a Lie subalgebra of G. Condition (a) results in

£ = £00Gr, (2)

where the sum is direct in the sense of vector spaces. Notice that 5>Gr/<3AC Gr

by virtue of (1) because r depends only on the difference \JL — A.
n

Given some g-modules V1?. . .,F/n let us consider V= ® V/ to be a g" =

g x ... x g-module and hence a Go-module under the natural projection

GO 3 -f -» ^"(0). One has fv - *XO) v - ;c1(0)v1 ® v2 ® . . . ® vw + . . . +
/=! /=!

VA ® . . . ® v,x_! ® ^"(OJv,, for f e G0, v = vi ® . . . ® vn E F. We define the
A

Veraia module M = My for crGEC as the universal G-module generated by V
with the above action of G0, where cv = ov for v^M (M = Ind^V if C= a
on F).

The colevariant (or the vector r-function) is the linear map n taking v E. M
to the element v G F C M such that v - v G G r M (see [14]). This JT depends
on the choice of Gr and hence on r, Al5 . . . ,A/7. The consistence of this defintion
follows from (2).

We introduce the Segawara elements of degree- 1 at each point A/ (1 < z < n)

They belong to a completion of U(G). All these L7 are pairwise commutative.
We put
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Ri= -2>''(Ay- *.')> 1 */*«. P = 2p« &e l/fo), (3)

where (tX~l -r(A))(A = 0) = E P«®g«- Given *'££' (e.g. 4 or gj,,*) and
a

1 < /<H one can define the elements

jc1" = (jcOr e Gr and x£J = (*'> E G', (4a)

i.e, the r-extension (1) of xl = 0 x ... x 0 x *' x 0 x ... x 0 and its /-component.
We will use some special notations for jcE g, k= — 1

x1 = xLl9 & = xl>J = x^i = ((xLtW. (4b)

Let us now assume the points {Al9 . . . ,A,,} to vary. To be more precise we fix
some C-algebra F=Fn of functions in A l 5 . . . , A w ensuring the inclusion GrC
G ® F. The latter means that we consider G as the Lie algebra with "constant"
generators [gl

a,k] and suppose all the coefficients of series g%k in A/ to be inside
g®F. The equivalent condition is that

- Ay) E (8®
n) ® F for any 1 < i ̂ ; < n. (5)

Later on, vGM®F. There is only one extension of the relations
= 0 for any indices, v e F and the natural action of 9/5Ay- on F to the differen-
tiation 5/SAy (1 </ < n) on Af ® F.*

Theorem 1 [8]. a) For c/ = a+ 1/2, * = jr(v), 1 < i < w

i + Llv) = (/?,- + p1) ^r +

Corollary 1. For any Al9 A2

[r12(Ai - A^^1] + [P
2/1(A2 - AO] - [r12(A! - A2), r

21(A2 - AX)]. (6)

In particular, [r12(Ax - A2), p
1 + p2] = 0 /or Ae unitary r (with 0 = 0).

Proof of the theorem. Setting v = v + 2/$v5, where /5 E Gr, v5 E M ® F,
s

v = JT(V) G F® F, we will prove a) separately for v and fsvs. One has

in notations (4). The Gr-invariance of n gives us the formula

7=1 / 7=1
(r(A; + A; - A,), jc)v, when v e V. Here b-t] is the Kronecker symbol.
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But 2g£ g«v = rj'l(hj — A/)v by definition. Since the derivatives on both sides of a)
a

for v = v are the same (JT(V) = v), we arrive at a).
As for/v (the indices s are omitted), we will use the Sugawara identity

[L',x] = -o'ar'/aA, x = ft Jt'(Ay) E G.
;=i

We obtain:

Ufv + a'^/vO/dA,- =/(LV + cr'dv/dA,-) + at(dfldXi -

Formula a) will be proved if we represent the r.h.s. of the last identity as/'w for
some /' G Gr and w E M ® F. It is necessary to examine its second term only.

One has the decomposition /= 2/; (see (4a) and r-matrix condition (a)). Here
y=i

/* is a function of A — A& = Ay + Ay — A^ because of formula (1).
Hence dfj'/3^=dfj^/dlh 3f^ld^= -Bf^ldlj for j±i and dfi-ildA,i = Q

| VEG' . We see that

Af- - S/VSA/ - E (^/aA/ - ^vaA/) +a/vaA/ -

3fi^l3i=-dfildX^Gr. D

Relation (6) follows from the theorem, a) for n = 2, v = vE.V and the
commutativity of L1 and L2. Really, we can choose arbitrary v, V. D

One can find some discussion of this theorem in author's report "Kac-
Moody algebras and Conformal Field Theory (r-matrix Knizhnik-Zamolodchikov
equations)", published in the Proceed of Arbeitstagung 1990.

Let us define the generalized r-matrix Knizhnlk-Zamolodchikov equation for
W(Al9 . . . ,A,Z) taking values in V and arbitrary fixed ATE C*

RiW, RL = Ri + pl + ̂ ', 1 < i < n, (7)

where #E (/(g) and [r12(Aa - A2), /] + [^2, r21(A2 - AI)] = 0. The last relation and
identities (1) ensure the consistence of (7) for any K (the cross-derivative
integrability conditions). The converse is true as well.

Proposition 1. Given Rt:= — 2ry'(Ajr — A,-) ( l< / ^= /<« ) /or s-ome function
r(A) wtf/z ^/ze va/M^5 m g ® g, p' = p + x ^ U(g) assume (7) to be consistent for
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any ae and n = 2, 3. Then r12(A) + r21(— A) = const, p' satisfies relation (6) and r is
a solution of functional r-matrix equation (b). D

If r(A?/u) is not supposed to depend on the difference A — ̂ u, then the analog
of Proposition 1 gives a solution of the corresponding version of (b) satisfying
the relation <5>(r12(A,//))/dA= 5(r21(jU,A))/3jU, that is the general quasiunitary
condition. It is possible to extend the above considerations to this case as well.

The Sugawara connection {3/3A/— » c/3/<3A/- + L'}, !</<rc , is of constant

type, i.e. dLVdA; = 0 for any ij. Hence W=exp(- (Va'JL1)^ for anY

constant WfreM is its generic horisontal section. We see that W=jt(W) is a
generic solution of (7) for ae = — a', %=0. The problem is to give a meaning to
the resulting expression for W and to describe some transformation of (7) that
correspond to substitutions t%-»WoGM. The last question is connected with
the next considerations.

§2. The Reduction mod n (the Example)

Later on, §Cg is a Cartan subalgebra, A(A+) is the set of all (positive)
roots, ofi,. . . ,o/ (/ = rkg) are simple roots relative to some fixed ordering. We
will choose generators eaEiQa, fa^Q-a (a^A+) in the root spaces and ha =
[em faV(e<x,fa)- Then (ha,hp) = /3(Aa,) = (or,/J) for or,/JE A+, where the last form
on 5* is induced by the restriction of the Killing form onto §. Let us denote ea^

fa , ^ for 1 <p < / by ^, /p, A^. We fix such a function r?(af) = ±1 on A 3 or
such that ZlJ7^ {ore ,d, 77 (<v) = 1} determines some other ordering on A (a
certain element of the Weyl group of g takes A+ to A^\ AH= A\A%= — ̂ +),
?7(or) = 0 for arSA.

We put for wGC*, AeC, e= ±1

csff(A) - 2u eeuK(eliX - e'^)"1, c^£(A) = 0

and introduce for some linear map b:§^> §

(e,,,/,)-1 (8)

In all the formulas below u is not significant (it gives only some multipliers), but
the introduction of u is convenient to make clear the connection of our results
and [1]. Here and further dpq is the Kronecker symbol. We will identify $ and | *

/
and use the transpose b* of b ((bx,y) = (x,b*y) for x,y E *, X b(hp) ® hp
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Proposition 2. a) The function r satisfies r -matrix relations (a),(b),(c) from
§1 and is unitary for skew -symmetric b (if fo* + b = 0).

b) The Lie algebra Gr consists of all rational functions f(z) in z = e2"A with values

in g ® 9 normalized by the relations

where (x)^ is the ^-component o/JcEbl; the latter are the Borel subalgebras
corresponding to ATI.
c) For the above r and 8= T](O) we have

p = u(2pr]- X b(hp)hp), 2p^ =f ^ i\(oc)ha,
p = l cx^A+

'i = cs&j + Ay- - A^/4, e£ = cs-e(Ay + Ay - Af>4,

D

We will assume now that V^,. . . ,VW from §1 are highest weight g-modules
with the highest vectors vl9 . . . ,v/x of weights Al9 . . . ,A/Z relative to fc+ (for A+).
Let us add some new points A,I+1, . . . ,A/I+m (m > 0) to the old ones {A/} and set
Vn+j = Cv0, where g acts in the trivial manner. Further we will use Jt for n + m
points identifying vac d=f vx ® v2 ® . . . ® vn E F with vac' = vac ® v0 ® . . . ®

( m \
® V /7+/ and Fwith V" as well. Therefore JT will take its values

y=l V
in V. Let jc =£ 0.

We fix some ^e § and a set 1 ̂ p1,p2, . . . ,pm < /. Put A / I+/ = -orp , 1 </ < m
(these An+; have nothing to do with Vn+7-) and

n + m

where A = 2 A^p^ *s from Proposition 2, c). Let us define the F-valued
5=1

function in A1? . . . ,A;z+m

W= cojt(w), w = ® v/®/^+ 1Vo® . . . ®/'^+mVo. (9)
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To calculate w = jz(w) one should use the Gr-invariance of n and move
fp+J from its place to other places until all the components w
become free from {/}. For example, let us get rid of /J*1. Here and further
we will use the abbreviations

f=Pp *lj=*l(otj') for !</<m,

and the formula for 1 </ + k < m

a n+j,n+k\ fn+k.. — ̂ r?,/"! 3 \ \f f "!«+&..
/' ) J k' V0 - CSJ^An+k - An+j) [jj'Jk'1-l V0-

One has: JT(H>) = -;r(P(vac <8>

where (ffl)fjr = 1 by definition.

Next we can take away/ 2'+2 or [/r,/2']-"i2- Now the summation will be over
*,/ except / = 1,2, since gv0 = 0 by definition. Then one gets free the place n + 2,
can go to n + 3 and so on. This procedure (but not the result) depends on some
order of {!,... ,m}. Let us give the final formula.

A sequence c = (;l5 . . . ,/5;/) of pairwise distinct indices 1 </1? . . . Js < m and
1 < / < n will be called a chain with the origin ji and the end /. We put

*h = ^(^;;)' ^2 = r](aj{ + ofyi), . . . , »? , = fj(ary; + oryi + . . . + ory;).

The ordered set rf = {^i, . . . ,cr} is a diagram if each 1 </< m belongs to some
chain (or chains). Given c define

C = (- l)s csT (An+y2 - A;z+/i) csf- (An+y, - A/l+/2)

• • • C '̂"1 (An+yf - 4+y^) C52' (A; ~ An+yf )

and put D = CrCr_x . . . Ci for rf above.

Proposition 3» a) F^ some ordering (permutation) 0/{l, . . . ,ra} and consider
here and below only diagrams d with increasing origins of their chains (increasing
diagrams). Then

vac, where D corresponds to d. (10)
d

In particular w and W do not depend on a.

b) Given an unordered set y={j\,... jq} of pairwise distinct l<jk<m and some

<j '<n, we denote the sum Dvac by wt{y} (w/[j]), where d runs over the
d
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multitude 6/{j;} (or d^y]) of all increasing d such that y belongs to (coincides
with) the union of chains of d with i being the end. These functions do not
depend on the ordering.

The proof of a) was outlined before. To prove b) let us substitute

A* = A* + (dki 4- 8k,n+jl + . . . + 6^fl+jii)^ for A*, (11)

where /^GC, !</:<« 4- m. Then wf[y] will not alter (it depends only on the
differences Kk — Ar either for fc,rE {i,n + y} or k,r& [i,n +y}. But all other
terms in (10) will. To make use of this observation we turn to some equivalent
form of our r-matrix.

The element h = p^ (Proposition 2) satisfies the defining conditions

(h,a%) = 1 for all simple roots a% in A\..

Let us introduce the function

/=!

where e&N is more or equal to the Coxeter number of g. One has

Lemma 1. a) The function fl2(ki — A2) = //r12(Ax — A2)//~
! is a r-matrix;

f(£-> 0) = r(z-> 0) j = -r(§-> 3°) = -r(z-» 3°)$, w/zer^ z = ^ (see Proposition 2),

p=p-(2u/e) ^ rj(a)(h,a)ha.

_

b) The dement D=Y\ £&f } HDH~l has the same form as D but for

in place of cs^(cx\X). D

Obviously, cs^ is rational in § and tends to zero as £-^0 or ^— >°° for any

n+m

. Let us define w = Hw FI ^'AA) and Wj[y] by the same formula with

Wi[y] in place of w. We put

f = exp(2jj,u/e).

The above substitution (11) has the form
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respectively. The function wt[y} is the limit of w as £-^>0 (or t—*00). It proves
the independence of n>/[y], and hence of wi{y} = Zw/[y'], y' Dy. D

When u— >0 and r turns into Yang's r-matrix some equivalent variant of w
was constructed in [1] directly (the case of sl2 was considered in [2]).

§3. The Main Theorem

We preserve the notations of §2; RI = Rj + pl + yf (see (7)) are constructed
for r from (8) . Given 1 < / < m , omitting / £+' in (9) (or setting / n

p+* = 1 formally)
one gets some function w{j} in A l 5 . . . ,Aw+;-i, An+y+1,. . .,A,I+m. Let WiO'} =
M>/{y}<H, W{y'} = B> {/}&>, where o>is from (9), w/{/} was defined in Proposition 3.

Theorem 2. a) (icS/aA, -/?,-) W= -

« n+m

b) EAJ,W= 2 (A,,/
/=! A: = l

= (epjp)
Py=A»

Proof. First we will reduce a) to some pure algebraic identity. One has

/=!

Really, (a/aA/I+yi + . . . + a/aA/I+yt) c - ac/aAz-
for any chain c = {j\, . . . js\i}. Therefore 25D/(9A/z+y = dD/dXf for each diagram
d, where we take dldXn+J if dE 6/{y} (see Proposition 3). Using (10) we prove
the required formula, that makes it possible to rewrite a) in the following form.

Lemma 2* For cok = Kdlogo)ldXk

= 2 c^(Ay - A^) (A*, Ay) + (x+ 2uPll - ub*(A),Ak), 1 < A: < n + m,

Froo/. Let rn be the r-matrix (8) with b = 0, /?? = 2r{f (A,- - A^) (1 < / ̂  A: < n).

Then p0 = 2uPr] and ^-- /??- pf, = ̂ "- w S b(hp)
k(hpY. The r.h.s. of thep p

: =

latter acts on each term D vac from (10) as the multiplication by 2 (z~
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Ai~ap), where j runs over all indices such that d ^ d - L { j } . This multiplier
coincides with the sum co/ - of- + 2 (wn+j ~ Q%+j) over the same j for co°k which

y
are denned for r0 and ^ = 0. Hence it is sufficient to prove the lemma setting
r = r$, #=0.

We remind that multitudes <5/{y}, <5/[y] from Proposition 3 depended on
some fixed ordering on {1, ... ,m}. For any 1 <; < m we can change the ordering
transposing ; and the maximal element among {!,. . .,m}. Let us denote by
<5{-{y}, djj[y] the corresponding multitudes. The main idea of the proof is to use
Theorem 1 for o' = a+ 1/2 = 0 (owing to Proposition 3 w does not depend on
a). It is convenient to set i = n (all / are on equal grounds).

We have

(Rn + fT)w = JT(V!® . . .® vn_! ® L"v/?

where n> is from (9). We omitted the terms f'^e'a of L", since e£v;i = 0 by
definition. Using the Gr-in variance of n we will remove e™ from its place to
other components. There is no need to move e™1 to the left, since e'£ is pro-
portional to el

a and annihilates v/ (see Proposition 2).

To calculate the contribution of e^ to the (n + fc)-th component for
1 < k < m one can use the formula

*r+*/r*v0 - [^"+*,/ riv0 (12)

= c^7^->(A/?+, - A;z) (K,/,-]!i^ + const. v0).

Here the term const. v0 emerges due to the action of the central element c of G
and is not equal to zero only as (^,/V) = # = 0 . In this case a= ak> and [ea,/f] =
hk'(ek'Jk')' K (ea,/^) = 0 ttien (12) is zero or prepositional to e~+kvQ for 5 =
or— or^- (o' has to be from A+, since ak- is a simple root, or=£ 0). We remind that
kr =pk for l<k<m.

The next step is to take away e~+k from its^component. We use (12) for
n + k, n + k, a instead of n, n 4- &, or, where Q<k±k. Note that at the second
and further steps e£+k can go to the n-th component, since we have already got
the term/>,7 there (after the first step). If k = Q then we obtain [e$+k>nj'*]vn

after the second step that is proportional to [^,/J"vn. The chain of transfor-
mations will end at that. We stop it as well if k> 1 and a= a^.

Thus we obtain the following three cases:

a) the above successive transformations are finished at some place n+j>n
and we keep only the term [ej'jj']-\J'vQ = (ej>Jj>)hf'+jv() from the last com-
mutator (12);
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a') it is stopped at the same place but we take the other term const. v0;

b) it is over at the n-th place.

The result of the whole procedure is the sum of the terms of type v = a,a' ,b, that
are in one-to-one correspondence with chains c = (j\,... js\n). Each term can be
written as follows.

For y being the support of C (i.e. the unordered set {j\,.. . ,/J) we intro-
duce w{y} and w{y} by formula (9), where /£+/ are omitted for ;Ey (cf. the
definition of w{j}). Put

<pc = (-lYcs^'fa+j, - A,,).. .cs-^(Xn+Ji - A;z+;-2) (13)

= cs% l(kn+J2 - A/l+/i)c,s22(4+A - A,x+/2).. .cs^(Xn - An+A),

fc = [[[//; J/;L//J,' •'»//,'] e 8-«e,*c = */; + ... + or,,.

We suppose that ac = a in cases a), a') and set Ca> = cpc,

Ca = <pc(e«Jcr
l HMM^], • • • ,/,-iK7"1 = (-I)''1 <pj<£h.

Here the last equality follows from the identity

(fc,ea)(afl,ar) = ([[[/y ; ,h^ftf , . . . ,/y;], ea)

Let Cb = qt'ccs-*"-^^ - A,?+AK^f for a- ac^A+, where v'c is defined like
cpc but for

'n's = TJ(<X), fj's-i = T](a — aj>), fJs_2
 = 7l(& — #/; ~ &j\_ ) , . . . .

Elsewhere Cv = 0.
Thus, when reducing e'i by the above procedure we obtain the sum over all c

of the terms (Ca + const. Ca' + const. Cb) (f"w{y}). The constants of Ca> and Cb

will not be significant later. Next we can get rid of the rest /^^(l<A:<m,
fc£y) by means of the construction of §2. We do it with respect to the initial
ordering upon the restriction to {!,.. .,m}\y.

Let us take n of the above sum and change —A/;4"7'1 in Ca by
n+m

Wn+jt = S ctu(Xk - Xn+j)(Ak,An+j) + ctu(Xn - Xn+j)(An - a,An+j),

where k±n, k&n+y (we use the Gr-invariance of JT). By repeating the
procedure of §2 one gets the formula

(Rn + pT -con)w=Z (Da + Da' + Dfr)(/»vac),
/=! rf

where d = (ci,.. .,cr) runs over all diagrams from 6J
n{j}, Dv= Cr.. .C2C\, the
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multitudes d j
n { y } , 6j

n[y] for any y were defined above. Combining formulas (13)
for (pcJc,C

a we see that £)"(/£ vac) is proportional to Dvac from (10), where the
multiplier is equal to cOjl+n. This observation is the central point in our proof of
the lemma.

Finally, one comes to the identity

Rflw + pnw - o)nw = Z 2 (Wn+jSiy + Qiy), y C {1, . . . ,m}, (14)
y j^y

where Sj
y = ̂ Dvac, dE.6j

n[y]', each Qj
y depends either on the differences

d

A& — A, for A:, re [n,n + y} or on those for k,t£{n,n + y} and corresponds to
some contribution of £>"', Db, con+j — (o,l+j. The sum for SJ

y does not depend on /
(it does not depend on the initial ordering because of Proposition 3, b)).
Therefore

( \ m

X o)n+j}wn[y] = 2 Q>n+jWn{j}.
, , -s . j^y ' 7=1

The latter coincides with the r.h.s. of the required identity and the only thing

left is to prove that the remainder 0 = 22 Q{ equals zero identically. We will
y j^y

use the same trick as when proving Proposition 3.
Given y = {/!, . . . ,jq] let us make substitution (11) for / = n and use the con-

jugation of Lemma 1 (i.e. replace r,D,wfl[y] by f,D,wn[y] etc). It was shown
that wn[y} does not depend on £ and w— > wn[y] as £-n»0 or £— >*>. By virtue of
Lemma 1, a) the corresponding limits for Rn are some constants with the sum
equal to zero. The latter holds good for

m
lim (Rnw + pnw - o)nw - S o)n+jwn{]})
- ° °

because cok(£= 0) +(ok(£=<x>) = 2(p,Ak) for every k. Here we have used the
following formula:

Every term of Qj
y- is either from the sum ^Db(fcL vac) over dE. dj

n[y'] or
d

has the form ^w/z[y] where ft is a linear combination of functions 1, ctu(kk —
AlH.y), k + n+j, A:E {n,n + y'}. In any case Qiy> -^0 as £— >0,°° if y' ^y, since it

is so for H>;l[X] (see the proof of Proposition 3). Thus 2(£^0,°°)= 2 G{;»
'

where Qj
y does not depend on £. One has: lim 0 + lim 2 = 222^- However, it

- -
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was checked that this sum is to be equal to zero. Hence 2 Qj
y = 0 for any y and

/ey
Q = O. n

The first of the two statements b) can be easily verified directly owing to the
proportionality of /£* to/£ for any indices (see Proposition 2 and formula (10)).
It is not difficult to check the other by writing everything out. We will use the
way that is close to the proof of Lemma 2. Given p set e= rj(ocp).

Let us choose the infinite point Xx such that z = e^u^ is equal to 0 or oo for
8 = 1,8= —1 respectively (ze(Aoo) = 0). We add Aoo to {Aw+1,. . . ,A,z+m} and put

One must extend the old Gr to the new one by adjoining g[[z~£]] 0 tt-
("rational" functions with the only pole at o°), where n ± = [ B ± , I > ± ] is the radical
of the Borel subalgebra &±. Starting with the free Bi-module Voo = f/(B+)v0 we
set /£ ^if ep and Aoo = 0 by definition.

Note that the value of a rational function jc(A) e Gr or an adele jt' G G x GO
at Aoo belongs to the Lie algebra goo = GO/Z£GQ = b+® z£n - mod z£. Let us con-
sider Vac as GO -module with respect to the projection GO ^6+ and define JT'
for {A1?. . . ,A,I+m,Aoo} taking values in V® Vx modulo the diagonal action of n\,
i.e. in V® VQ = V. As a mater of fact z£ = 0 is a point of bad reduction for the
bundle of Lie algebras, connected with r, since g^ is not semisimple (see [13,14]
for details). But all the above constructions hold good and we get functions vP',
wr and W (for the same CD).

n

Let us verify that wr = — 2 ^w- In accordance with the procedure of §2 we
~ __ i= ^

cancel /^1,...,/^ from

w' - ;r'(vac ® / J+1 v0 ® . . . <8> /'^mv0 ® e-v0)

using the invariance of JT' . It is unnecessary to move any / £+y" to the infinite
place, since [/^+/'°°,^] ^z£g[[z£]] acts trivially on Vx. Hence W' = TC'(W®

n

ZP vo) = — 2 ^w. On the other hand we can first get rid of e™ by means of the
/"=!

same invariance. The contribution to the components !,...,« and those with
indices {n+j,pj + p} equals zero (n+v/ = 0 for !</<«, [e/?,/<7] = 0 for p + q).
As for py- = p, one has e£'/I+; = -^ and

Next we substitute /i^+/'°° + 2 A£+M for -A^+;" and replace the last sum by
k=/=n+J

—Kdloga}/d}ifl+j. The action of /x^+;> = u(shp + &(Ap))°° on H>{/} (8) v0 coincides
n+m

modulo JT' with the action of —u 2 (£hD + b(hD}}k on w{/} and is the multi-
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plication by u(shp 4- b(hp),A + ap}. Hence we arrive at the second formula from
b). By the way the first one can be proved in the same way as well. D

The theorem makes it possible to get solutions of Knizhnik-Zamolodchikov
equation (7) for the above trigonometric RL. Let FnCFn+m be a pair of C-
algebras of functions in A l 5 . . . , A / 7 and in A 1 , . . . ,A / 2 + m respectively satisfying
condition (5). We suppose the existence of some map int from F® Fn+mco to a
certain F/ralgebra of functions in A l 9 . . .A/z taking values in V with the following
properties. It should be linear under the action of End V® Fn, commute with
dldXi ( l < z < n ) and vanish on the derivatives dWi{j}ldXn+j (!</<m).

Roughly speaking int is an integral J. .. J(-)a>dA7l+1. . .dA,I+m over some
relatively compact C-chain in Cm = {(A,I+1,.. . ,A/l+m)} with the boundary on the
affine hyperplanes {ctu(Xk - A5) = 0, 1 < k + s < n + ra} depending on A l 5 . .. ,An.
This integral can be viewed algebraically as a multi-dimensional residue. By all
means it results from Theorem 2 that given int the function int(W) is to be a
solution of (7). A more detailed discussion of this construction requires some
analysis beyond the framework of this paper (see e.g. [3]).

Concluding remarks, a) In the degenerated case u—»0 the above formulas
coincide with the integral formulas from [1]. But this passage does not exhaust
all the connections between the trigonometric and Yang's K— Z equations. If
one uses the variables zi = exp(2wA,) the resulting equation will be close to the
Yang one, but will have extra singularities (poles) at the hyperplanes {z/ = 0}.
The appearence of these poles has direct reference to the affine character of the
trigonometric r-matrix equations (see [15]). Varchenko found some mapping
from Yang's (n + l)-point equation to the trigonometric n-point one. This
observation makes it possible to apply the above trigonometric construction to
clarify some properties of the integral formulas for the usual K—Z equation.
b) In §2, 3 we have been considering the r-matrices that are nonunitary
generalizations of r-matrices from [10] of type X^ and with empty /\,r2 (see
Section 6.4). I hope that there is some straightforward version of the above
construction for general Fl5r2. As for X^s\s =t 1, there are some hopes as well.
But formula (9) should be of more complicates nature.
c) The natural generalization of Theorem 2 is as follows. One can consider
the algebra g(A) from [11] for some symmetrizable matrix A and use the
invariant form and the decomposition of Theorem 2.2 to define f E g(^4) ® g(/4)
and trigonometric r-matrices like those from Proposition 2. The r-matrix Kniznik-
Zamolodchikov equation, the coinvariant Jt and formula (10) for w are meaning-
ful for any A (cf.[l]). There are some difficulties when extending the proof of
Theorem 2 to the case of arbitrary A (the Lie algebra $(A) can be infinite
dimensional and one has to be precise with the definition of Ll and the above
calculations). However this theorem is valid in general and can be deduced from
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the particular case considered in §3. The idea is as follows. We must check that
the identity from Lemma 2 does not draw in the Chevalley-Serre relations
(adeiy~aiJej = Q = (adfl)

l~a'Jfj (see [11], §3.3). It can be established, since
A l 5 . . .,Afc, fPi,.. .,fPm and l=rkg are indeterminate. This means that we can
assume (A^,Ar), l<&,r<rc + m, to be independent variables and Lemma 2
is separated into several identities. Together they give the generalization of
Theorem 3 for any A. I hope one will manage to prove it without this reasoning
with the aid of the method of §3.

d) One can consider the elements of the Virasoro algebra of any degree
relative to the Sugawara embedding. Moreover there is a definition of analogical
elements for any initial Casimir operators of g instead of the quadratic one (due
to Malikov and Hayashi). It is not difficult to calculate the action of these
elements on v E V modulo n. For a' = 0 one gets a family of pairwise commuting
functions in A 1 ? . . . ,A , Z with their values in End V, V=Vl®...®Vn. It is
interesting to find their common eigenvectors by means of some Bethe equations
or any other methods.
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