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An Extension of Deligne-Grothendieck-
MacPherson's Theory C* of Chern Classes for

Singular Algebraic Varieties

By

Shoji YOKURA*

Introduction

Let T be the category of compact complex algebraic varieties and sib be the
category of abelian groups. Let 3*:(V-*dlb be the correspondence assigning to
any ^eObj(T) the abelian group &(X) of Z-valued constructible functions
on X. If we define the pushforward /*: = §F(/) for any morphism f:X-+ Y by
f * ( l w ) ( y ) : — ' X , ( f ~ l ( y ) ^ W ) , where W is any subvariety of X and lw is the
characteristic function of X (lw(x) = 1 for x E W and lw(x) = 0 for x £ W), then
the correspondence ^ becomes a covariant functor with this "topologically
defined" pushforward [6]. Let //*( ;Z):T->,s$fr be the usual Z-homology co-
variant functor. Then Deligne and Grothendieck conjectured and MacPherson
[6] proved that there exists a unique natural transformation C^iSF—>Jf?*(;Z)
satisfying the extra condition that C^(X}(1X) = c(TX)n[X] for any smooth
variety X, where c:/f—»//*(;Z) is the total Chern class of vector bundles. This Q
shall be called DGM-theory of Chern class.

The total Chern class c:=^,i^^Ci:K-^H*(\Z) is a special "value" of the
Chern polynomial ct: =*2i^Qtlci:K-+H*(',Z) <8>ZZ[(], i.e., "evaluating" cf at
t = 1 gives rise to c. As a matter of fact we can show that the above DGM-theory
QiSF—>//*( ;Z) is also a special "value" of a natural transformation C,+:SFr—»
H+( ;Z) ®zZ[f] such that "evaluating" C> at t= 1 gives rise to the DGM-theory
Q = Ci*. Here our new functor &* (which will be called "twisted" functor) is
such that &f(X) = 3F(X) ® z^W f°r anY variety X, i.e., «5 a correspondence F* is
simply a linear extension of the correspondence 3? with respect to the polynomial
ring Z[f], but as a functor it is not simply a linear extension of the functor 3%
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but it involves some kind of "twisting". Just like the DGM-theory Q, our
natural transformation Q+ is a unique natural transformation from the twisted
functor ^r to the functor H*( ;Z) ®zZ[t\ satisfying the extra condition that
Ct*(X)(lx) = ct(TX) H [X] for any smooth variety X. This natural transformation
Ct4. shall be called a twisted DGM-theory of Chern polynomial. It should be
remarked that if we take our functor SFr to be just a linear extension of 3F with
respect to Z[t], then there is no natural transformation r:$v-*//*( ;Z) ®Z^W
satisfying the extra condition that T(X)(lx) = ct(TX) fl [X] for any smooth
variety X (see [10]).

The organization of the paper is as follows. In §1 we define our twisted
functor 3F and construct our twisted DGM-theory C,*, in analogy with DGM-
theory Q. In §2 we give a certain characterization of the twisted DGM-theory
Cr+, and in §3 we give some results related to the twisted DGM-theory. In the
final section (§4) we just pose a more general question, motivated by the
formulation of DGM-theory Q, twisted DGM-theory Q+ and Baum-Fulton-
MacPherson's theory Td# of Todd class [1].

At the moment we do not have reasonable applications of our twisted
DGM-theory C^, but we just remark that Professor M. Kashiwara pointed out
that the idea of the twisted DGM-theory might be applicable to the ^-analogue
of the universal enveloping algebra, which remains to be seen.

I would like to thank Professors G. Kennedy, C. McCrory, K. Miyajima and
R. Varley for their useful comments and suggestions at the earlier stages of this
work. I would also like to thank Professor M. Kashiwara and the referee for their
useful advice.

§1. A Twisted Functor 3F a Twisted DGM-tfiieory Q* of Cherm Polynomial

Let ?£(X) be the (free) abelian group of algebraic cycles on X for any object
^EObj(T). Then obviously there is a trivial isomorphism: for any object

<3L(X) - > 9? (X)
(1) (!)

However, there is another striking non-trivial isomorphism ([6, Lemma 2]):
for any object ^eobj(T) the following is an isomorphism (called "Euler
isomorphism"):
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UJ UJ

where Euwis MacPherson's local Euler obstruction function, which is constructive.
The pushforward fc&(X)-+®(Y) for f:X-> Y is defined topologically by:

This pushforward satisfies the following property:

// g: W^> W is any resolution of singularities , then
Euw(x) = (g#Euw)(x) for any non-singular point x of W,

i.e., Supp(Euw — g*Euw) C Wsing, the singular part of W.

Let us call this property "resolution property" , abusing words. Then, using this
"resolution property", by induction of dimension of supports of constructible
functions and by the resolution of singularities (due to Hironaka) we can show
that for any subvariety W there exist finitely many smooth varieties AVs and
proper maps gi'.Xi-^> W and non-zero integers ra/'s such that

Therefore it is easy to see ([6, Prop. 2] or [3, Prop. 1.3]) that if there exists a
natural transformation r.SF— »//*( ;Z) satisfying the extra condition that T(X)(1X)
= c(TX) n[X] for any smooth variety X, then it is unique. (Namely, "resolution
property" of & and the extra condition satisfied by r imply the uniqueness of
such a r.)

Define a transformation C^SF -»//*( ;Z) by

A
where C(W) is the Chern-Mather class of W. Let us call this transformation C*
the "Chern-Mather" transformation, which obviously satisfies the extra condition
that C+(X)(lx) = c(TX) n[X] for any smooth variety X, because Eux =\x\iX
is smooth. R. MacPherson [6] proved by his graph construction method that this
"Chern-Mather" transformation Q is actually natural.

Let A be a commutative domain with unit. Let ^r/:3"G9P—^Ny be the
contravariant functor from the category 2TO^ of topological spaces to the category
r&Ny of sets, such that -#/<•/ (X) = the set of isomorphism classes of complex
vector bundles over X. Then a usual characteristic class cl (with coefficients in
A) of complex vector bundles is nothing but a natural transformation cl: ^<'•</—•>
H*(;Z)®ZA. If cl satisfies the Whitney product formula, i.e., cl(E®F) =
d(E)cl(F), then ^<~</ can be replaced by the Grothendieck contravariant
functor K. In our earlier paper [10], using "linear independence of Chern
numbers" ([8]), we proved the following "characterization" of DGM-theory Q:



748 SHOJI YOKURA

Theorem (1.1). ([10]) Let A be a commutative domain with unit and let
the functor 3*A be the linear extension of the functor 3F with respect to A. Let
cl: -7cr/— » H*( ;Z) ® z^ be a characteristic class of vector bundles. Then a necessary
and sufficient condition for the (unique) existence of a natural transformation r:
3?A-*#*(;Z)®ZA satisfying the extra that r(X)(lx) = cl(TX) H [X] for any
smooth variety X is that cl = Ac, a multiple of the total Chern class c by some
element A of A, and in which case T= A.Q, the multiple of DGM-theory Q by
the element A.

So, if we let A = Z[t], the polynomial ring, and consider the Chern poly-
nomial ct:=^i^tici:K-»H*( ;Z) <8>z£[r], then it follows from Theorem (1.1) that
there is no natural transformation r. (3^z^-^H^(\Z)®zZ[t\ satisfying the extra
condition that T(X)(1X) = ct(TX) n [X] for any smooth variety X. So, we want
to change the above functor 2PZM to another different functor 3FZ[,j by imposing
another functoriality on the "correspondence" 3Fz[t] so that we can get a unique
natural transformation T:<3f

Z{t}->H*(\Z}®zZ[t] satisfying the extra condition
that r(X}(lx} = ct(TX) n [X] for any smooth variety X. Let us denote simply ^r

for the "correspondence" 3Fz[t]-
Thanks to the fact (Euler isomorphism) that for any variety X &(X) is freely

generated by local Euler obstructions, i.e., 3F(X) = {ZwnwEuw\ W runs through
all sub varieties of X, nw^Z], we can impose another non-obvious functoriality
on the "correspondence" 3Ft: ^ "— > r^tf, :

Theorem (1.2). Let us define the "twisted" pushforward f
for any f°-%-^ Y and for any subvariety W of X as follows:

f*Euw:= l£snstdimW

provided that under DGM's pushforward /„. =

and extend it linearly with respect to Z\i\. Then (i) the "twisted" pushforward
satisfies "resolution property" and (ii) the correspondence 3% becomes a covariant
functor with this "twisted" pushforward. (Note: each S is a subvariety of f(W)
and so, dim W^dim S. ///=!, then the twisted pushforward f* is nothing but
the original pushforward /#.)

Proof. It is easy to see (i).
/ g

(ii). It suffices to show that for any X-* Y^Z and for any subvariety W of X
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Let

fJEuw = snsEus and g*Eus =

Then, since & is a functor, we have

(1-2.1) (gof}^Euw

On the other hand, by the definition of the twisted pushforward /*, we have

f*Euw= ^snstdimW~dimSEus and g*Eus = ̂ Q nQtdimS-dimQEuQ.

Therefore

= (g°f)*Euw (by definition and (1.2.1))

Thus the "correspondence" 3<v equipped with the twisted pushforward is a co-
variant functor. Q.E.D.

Definition (1.3). Let us denote & r (using superscript) for the correspondence
&t equipped with the above twisted functorial pushforward and this new functor
shall be called the twisted functor.

With the above twisted functor SFr, we can show the following theorem
(announced in [9]):

Theorem (1.4). Let c,: =Zl-i>(/c/: K^ H *( ;Z) ® zZ[t] be the Chern poly-
nomial and let <3^t: Jl "— > r*Y# be the twisted functor defined above. Then there
exists a unique natural transformation C,-. :SF'-» HJ( ;Z) ® zZ[t] satisfying the extra
condition that Cti(X)(lx} = ct(TX} n [X] for any smooth variety X, such that if
t=l, then Cft is nothing but DGM-theory C#. (This Ct* shall be called a twisted
DGM-theory of the Chern polynomial ct.}

Proof. First, we observe that as in the proof of the uniqueness of DGM-
theory Q, the uniqueness of such a natural transformation Q*. follows from the
"resolution property" of 2F and the extra condition satisfied by Q+. Now, in
analogy with the transformation Q, we define the transformation Cf+iSF'— »
H*('9Z)[t] as follows:

For any J^eObj(^7) and any ^wpwEuw^^r(X), where pwEiZ[t],
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Here Ct(W) is defined to be ^i^tdimW-i
i(W). In other words, Ct(W) is

defined by the Nash blow-up in a similar manner to the definition of the Chern-
Mather C(W), i.e., Ct(W): = v*(ct(TW)n[W\), where v:W-*W is the Nash
blow-up of W and TW is the tautological Nash tangent bundle over W. (So,
Ct(W) could be named the crMather class of W.) Then we want to show that the
transformation Cr* is actually natural. For this, it suffices to show that for any
f:X-* Y and any subvariety W of X

By the definition of Ct+ and the definition of Ct(W),

,(W))

By DGM-theory, if fifEuw= ^snsEus, we have

whence

f*Q(W) = Es/isC/(S) for each i.

Therefore

= ^snst
dimW-dimSCt(S) (by the definition of t(S))

(by the definition of CH

Thus CV- is natural. And now it is clear that when t=l C^ is nothing but DGM-
theory Q. Q.E.D.

Remark (1.5). Before closing this section we want to remark a possible
connection with 2)-module theory. Let J/t be a holonomic ^-module on X. Then
the (total) Chern class C(M) of the holonomic 25-module M (see [2]) is defined
by C(M): = C*(Zama(-l)

codmZaEuZc), where ma is the multiplicity of T*Z&X in
the characteristic variety Ch(M) of M and Q is DGM-theory. This constructible
function involving "twisting" (-l)codlmZa was first considered by M. Kashiwara
[4] in his local index theorem for holonomic 25-module:

= lL«ma (-iy°d™z«Euz (x).



DELIGNE-GROTHENDIECK-MACPHERSON'S THEORY 751

At the moment it is not clear whether or not we can recapture XM v*a our twisted
DGM-theory C_x* of the "dual" total Chern class c-l = Zi^0(-l)

ici.

§2. A Characterization of the Twisted DGM-theory C,*

Throughout this section we assume that A is a commutative domain with
unit.

Suppose we are given the following three data:

Datum 1: Let ch J?ec/->H*( ;Z) ®zAbe a characteristic class of vector bundles.

Datum 2: Let SFA: Jl "-» en* be the "correspondence" such that &A(X) = ®(X)
®ZA.

Datum 3: Let C/*: <3*A-^>H*( ;Z) ®ZA be the "c/-Mather" transformation
defined by:

For any variety X, the homomorphism Cl*(X}:(3p
A(X}-^H*(X\Z)®zA is

defined by

where Q(W): - vt(cl(TW) Pi [W]), the "d-Mather" homology class of W.

Then, motivated by the construction of the twisted DGM-theory C^, we
want to solve the problem: Endow the correspondence ^A with a reasonable
functorial pushforward satisfying "resolution property" so that the above "el-
Mather" transformation Cl% is natural. Note that if we can endow the cor-
respondence ^A with such a pushforward, then by the same reason as in DGM-
theory we can see that the above "c/-Mather" transformation is the unique
natural transformation satisfying the extra condition that Cl*(X)(lx) = d(TX) Pi
[X] for any smooth variety X. We call such a theory C/* a "DGM-type" theory
of a characteristic class cl. It seems hard (or perhaps impossible) to define a
certain reasonable functorial pushforward f^:^A(X)-^3^A(Y} for f:X— >Y
without appeal to topology or geometry or '"something" of the map /. So,
motivated by the twisted pushforward /$, in Theorem (1.2), we define the
following "twisted" pushforward

(2.1). fcjEuw: = ̂ snsasEuS} where as(E.A) depends on dim W
and dim 5, provided that under DGM's "topologically defined" pushforward

Here the twisting coefficients a$'s depend also on the given characteristic
class cl and we need to define o^'s so that the above pushforward is functorial
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and satisfies "resolution property". It turns out that without giving a precise
definition of the coefficients o^'s, we can show the following "characterization"
theorem of the twisted DGM- theory Ct*\

Theorem (2.2). With Definition (2.1), cl has a DGM-type theory Cl* if and
only if cl = ^(Z/^oA'c/) for some rj, A £= A.

Proof, "if part": The proof is basically the same as that of Theorem (1.4).
In this case, in Definition (2.1), we define

OTc' = /[dim W- dimS

Namely, we define the pushforward f£ as follows:

f*Euw: = %snsW™w-*™sEus,

provided that under DGM's "topologically defined" pushforward /* =

Then it is easy to see that this pushforward satisfies "resolution property" and by
the same argument as in the proof of Theorem (1.4) we can show that this
pushforward is functorial. The naturality of the "c/-Mather" transformation
Cl*.FA-*H*(\Z) ®ZA is also easy to see. Indeed,

(2.2.1) ftCl^Euw = ft(Cl(W)) (by the definition of Q)

"Only if": First we can prove the following lemma, whose proof is given later.

Lemma (2.3). Ifcl has a DGM-type theory Cl* with Definition (2.1), then the
characteristic class cl must be a linear form of individual Chern classes, i.e., cl =
2/^oA/c/, A/eA

Then the proof of the "only if" part goes as follows. Let Vk: = Pl x Pl x ... x Pl
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be the product of k copies of the 1-dimensional projective space Pl. Let m and n
be two arbitrary integers i? 1 and let m § n. Let n:Vm^V" be the projection to
the first n factors of V. Then by the definition of DGM's topological push-
forward JT* and by Definition (2.1), we have

jfjEuy,,, = 2'"-"av,,Euv,,.

Hence we have the following equality:

(2.2.2) Cl^EuVn, = Clif(2
m-"av,,EuVn).

= 2m-"av,:Cl(V")
= 2m-"ocv,,(XnC0(V") + A^CjtV") + . . . +A0C,,( V"))

On the other hand

(2.2.3)

(because x*(C(Vm)) = 2">-»C(V"))

Therefore, since jz^Cl^Euy,, = Cl^jt^lEuVn and our ring A is a domain, by looking
at the 0- and n-dimensional components of (2.2.2) and (2.2.3), respectively we get

(2.2.4) 2™-"AmC0(n ^ 2™-"afVa,ICo( V"), i.e., Am = av^

(2.2.5) 2"'-"Am_,A(n = 2fn-»av,,^Cn(V"), i.e., Am_,z - av-V

Thus it follows from (2.2.4) and (2.2.5) that if AQ = 0, then all the other coefficients
A/(/^l) are also zero. If A 0^0, then, from (2.2.4) and (2.2.5) we also get

(2.2.6) A0Am = Am_,zAn.

Since A is a domain, we take the quotient field Q (A) of the domain A and
consider A in Q(A). Then, since m and n are arbitrary integers =1, by induction
we get

(2.2.7) ^ = Ao(A1/A0)w.

So, letting rj = A0 and A = Ai/Ao, we can get the "if part" of the theorem. Here we
remark that we require that A = A!/AO is in A, otherwise we have to extend the
coefficient ring A to a larger ring. Q.E.D.

Now it remains to prove Lemma (2.3). Since we apply "linear independence
of Chern numbers" (see [8]) to prove this lemma, before going to the proof of
the lemma we give some preliminary things (A good reference is [8]). Let
Ij(n)={ri,r29. . - ,ry-} be a partition of n and let I(n) denote the set of all distinct
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partitions of n and let p(n) = \I(n)\ be the number of all distinct partitions of n.
Given a partition Ij(n) = {r1?r2, . . . ,ry}, the /;(«)-Chern class c/^ is defined to be
cri,cr-j . . . ,cr . If X is a compact complex manifold of dimension m (m^ri), then
the 2(ra-rt)-dimensional homology class cIj(n}(X] n [X\: = (cri(TX).crJ(TX). . .
cr(TX)) H [X] is simply denoted by c/(n)[X], If m = n, then c/(n)[^f| is nothing
but the Ij(n)-th Chern number of the manifold X. A key fact to use for the
proof of Lemma (2.3) is the following fact:

Fact ([8, Theorem 16.7 and a remark right after it]): For any partition
Ij(n) = {ri,r2,. . . ,ry-}, the Ij(n)-projective space p/l(n) is defined to be Pri x Pn x
. . . XPrj. Then the following p(n) Xp(n) matrix Mn whose entries are /*(«)-

Chern numbers of Ij(n}-projective spaces P1^;

is a non-singular matrix.

Now we go on to

Proof of Lemma (2.3). Let cl: ^^/-> //*( ;Z) ®z^ be a characteristic class
of complex vector bundles. It is well-known (see [8]) that cl can be expressed as
A0Co + 2/I^1P,,(ci,C2, . . . ,c,j), where Pn(ci,C2> . . . ,c/z) is a homogeneous polynomial
of degree n with the weight of Q being i. In other words each polynomial
F/?(c1,c2,. . . ,c/z) is a linear combination of /y-(/i)-Chern class £/(„),

i.e. , P,,(ci,c2, . . . ,cw) = S/,(,,)e/(«) A^(n) C/A(/J), where A/A(,O G A.

What we want to claim is that each P'n(ci,c2, . . . ,cn) = Xncn for some Xn G A, i.e. ,
^/A(/0 = 0 f°r ^k(n)=f= {^}, where the partition {n} is n itself (hence c^=cn).
Thus c/ is a linear form of individual Chern classes. For this, we consider the
following complex smooth variety: (for any m^n)

p{m-njj(n)}. _ pm-n y^ p//(")
JL J . — JT S\ IT J ,

and we let jzIj(n}:P
{m~nJJ(")}^Pm~" be the projection to the first factor space.

For the sake of simplicity, we just denote JT/^ by nr Then it is not hard to see
the following equality (cf.[ll])

(2.3.1) jr,, (c,M[P^-nJi^]) = (c

for any partition Ik(n) G/(«).

Since n^Eupan-n v«)j = x(PIj^)Eupm-,,, if we denote the twisting coefficient
appearing in Definition (2.1) simply by a), then we have the following

(2.3.2) Jlfl EUp{,n-,, /,(»)) = X(P/j(fl)) <XjEUp,n-n.

Here we note that this twisting coefficient 07 is the same for any partition
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Ij(ri), since the twisting coefficient in Definition (2.1) depends on dim W and
dim 5 and in the case which we now deal with w = P{m~"JJM} and S = Pm~n,
hence dim W=m and dim S = n for any partition //(«). So we can denote ory- just
by a for any partition //(«). Hence by the definition of the c/-Mather trans-
formation Cl* we have

(2.3.3) Cl

= x(p'i(")-)a{Xn[Pm~"} + homology classes of degree <2(m-n)}

On the other hand, by the above equality (2.3.1) we have

(2.3.4) jTyiC/,£Mpim-»./y(.i)i
= Xr{. . . + Pn(C!,C2, . . . ,CB)[P<m-"-'A"»] +...}

= 2/yt(,,)e/(,l)A//t(,j)(c//t(,,)[P
/X")])[P'"-"] + homology classes of degree <2(m-n)

Now, since Cl^nf^Eup^n-nj^} = n^Cl^Eup^n-nj^} and H#(Pm~n',Z) is torsion-
free, if we look at the top-degree components of this equality, from (2.3.3) and
(2.3.4) we have

(2.3.5) x(P'W) *A0 = 2/^)e/wA/^)(cWw)[l^»)]).

Since x(plj(n)) = cn[PIjW] = c{n}[P^(n\ where we emphatically denote {n}
instead of n (since n itself is a partition of n), by considering the projections jr;

for all partitions Ij(n) the equality (2.3.5) gives rise to the following system of
the p(ri) linear equations:

(2.3.6) 2 / J t e / n _ n l P 1 ^ ] ) + (A n - aao)c l f[FW")] = 0.

Since the p(n)xp(n) matrix Mn = (cIkM[P/jM]) is non-singular (see FACT
above), the above linear system (2.3.6) has only trivial solution, i.e., ̂ (/1) = 0
for Ik(ri)E.I(ri) — {n} and A^ — orAo = 0, i.e., A^ w j = oAo- Therefore each
Pn(ci,c2, . . . ,c/7) = A/?c,z for some A,, E A. Q.E.D.

Remark (2.4) . One might be tempted to conclude that the twisting coefficient
as in Definition (2.1) must be always equal to AdimW/"dim5 if d= 17(2/^0 A'c/),
but the only thing we can say about the twisting coefficients o^'s is sort of "ar$ =
AdimM/~dim5(modulo C/*)", namely
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Indeed, Cl^snsasEus) = Cl^'^Euw) (by the definhion of f*J
= fxCl^Euw (by the naturality of C4)
=/,(9(W)) (by the definition of C/J

^y ^ computation(2.2.1)).

§3. The Twisted Functor <&* and a Stratified Weighted Euler Characteristic yf

The definition of the twisted pushforward defined in Theorem (1.2) is
indirect, unlike DGM's "topologically defined" pushforward, which is defined
by taking topological Euler characteristic of each fiber. At the moment we do
not know a more direct definition of the twisted pushforward. In this section we
discuss a little about f*lWi instead of f*Euw.

Let /: X^ Y be a morphism and W be a subvariety of X. Let X(Y> resp.)
be a subvariety of X ( Y, resp.) such that WdX(f(W) CY, resp.) and /: X-^Y
be / restricted to X, then by the definition of DGM's pushforward we have

(3.1) /*lw = /»lw, and also

In particular, if f\W: W — » f(W) is / restricted to both W and the range
/(W), then we have

(3.2) /,liy=(/|W),lv* andalso

(3.2)# /*EMw,

It is then not hard to see that (3.1) and (3.2) also hold for the twisted push-
forward, i.e.,

(3.3) fjiw = f\\w, in particular

(3.4) f*lw

Therefore, as in DGM's pushforward, to compute /^lw, it suffices to consider
the surjection/l W: W — » f(W). So, let/:* — » Ybe a surjection. By the Euler
isomorphism (see §1) there exists a unique algebraic cycle ZwftwtW] (which is
called "MacPherson-Schwarz" cycle) such that lx = ̂ wnwEuw. Le and Teissier
[5] gave an inductive method of constructing such a cycle, for the details of
which refer to their paper [5]. It turns out that such varieties Ws are the closure
S's of the strata of a certain Whitney stratification y x — {$} of X (called a
"canonical" Whitney stratification in [5, Corollaire (6.1.7)]) with the top stratum
being the smooth part X of X and that the coefficient nw=ns is a certain
topologically defined integer 0(S,X) (called Dubson-Kashiwara integer) (see
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[4], [5] or [2,111]), i.e.,

(3.5) (Dubson's formula) \x = Eux + Z 0(S,X)Eus,

Remark (3.5.1). By Le-Teissier's inductive construction of the stratification
y x and the integers 0(S,X), we can also see the following: Let 5 be any Whitney
stratum of yx- Then

1$ = Eus + 2

where W<S means that dimW<dimS and WCS.

Thus, f*lx can be calculated as follows:

(3.6) ftlx = KEux+ S 0(S,X)
S^x

SCA'sing

In the rest of this section we give some calculations of f^lx f°r certain cases.
If f:X-^pt is a map to the singleton pt, then by definition f*lx = x(X),

which actually means x(X)lpt- On the other hand, in the case of the twisted
pushforward, the Euler characteristics of singularities are also involved:

Theorem (3.7). Let 5fx be such a Whitney stratification of X whose top
stratum is the smooth part X of X and let f:X-^pt be a map. Then we have

(3.7.1) Klx = t*

sing

where each Ps(f) is an integral polynomial of degree ^dim^f (see Remark (3.8)
below), divisible by t—l. To be more precise,

Ps(t)=
/^0

where 0(S,Sl9S2,.. .9SbX):= 0(5,5i)e(Si,52)... 0(Si^Si)0(Si,X)andSk<SJ

means that dimS& < dim5;- and Sk C S;.

Proof. Let S be any Whitney stratum. Then by induction (i.e., by going up
step by step from lowest dimensional strata), we can show:

(3.7.2)
= td'imSf*Eus (by the definition of /; and since f:X-*pt.)
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sk<sk+l<---<sk+i<

Proof of (3.7.2). Let n = dim X. Let yt(i - 0,1,... ,/z) be the subset of the
total set yx consisting of all strata of dimension /. (Note that some yL can be
empty.)
(i) S0 e yQ, then !SQ = Eu^ (by Remark (3.5.1))

(ii) SiESPi, then l^^^ + Sso^^oA)^ (by Remark (3.5.1)).
Therefore we have

(iii) 52GSP2, then l52 = ^%2 +
(by Remark (3.5.1)). Therefore we have

Then, by (i) and (ii) we get the following

(iii-1): EuS2 = 1S2 -

Continuing this procedure and by induction we can show the following (its
details are left for the reader):

Eus=ls+ 2 (-iy

Hence f+Eus = x($) + S (-l)i+lO(Sk,Sk+1, . . . ,

Thus by the definition of the twisted pushforward we get (3.7.2).

By (3.6) we have

f'*lx=f'ifEux+ 2 0(Sm,X}fifEuSm
sm^yx

5/rzCA'sing

Thus, by (3.7.2) we get
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(3.7.3)

Hence, if S(<X) is a Whitney stratum, say S = 5y for some /, and we look at the
coefficient Fs;(0 of #(5y) in the messy equality (3.7.3), then we get the following:

S (-iy+1fdin

Sj<sj+i<...<x^

which is equal to

y<Sy+1<.Si<S;+*L<...<X

Q.E.D.

Remark (3.8). The leading coefficient, denoted es, of the polynomial Ps(t)
is equal to

We have been unable to find an example such that es = Q for some 5. So we
conjecture that deg Ps(t) = dim^. Does this integer es have some interesting
properties as an invariant of singularities?

Definition (3.9), The stratified weighted Euler characteristic of X, denoted
by tf(X), is defined to be the right hand side of (3.7.1). (Hence Theorem (3.7)
reads that \tf:X-^>pt is a map, then f*lx = X*(X}, which is the "twisted version"
of DGM's f,lx = X(X). Note that X\X) = X(X).)

Remark (3.10). It is not hard to see, by a similar argument as above and
using the multiplicativity of local Euler obstruction (i.e., EuSxW = Eus x Euw),
that if Jt: Xx Y — » Y is the projection, then

(0 jri(l^xy) = ̂ (J01y, and
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therefore (ii) (multiplicativity of /) tf(X xY) = x*(X} j f ( Y ) .

In general, however, unlike DGM's pushforward /*, we cannot expect
(f*^x)(y] to be determined only by the fiber f~l(y}\ in particular, we cannot
expect that ( f ^ l x ) ( y ) — Xf(f~l(y))? as we see in some examples below.

Example (3.11) (suggested by K. Miyajima). Let f : S l — >» C be Kodaira's
elliptic surface with each singular fiber lying over XL E C. Then, since S is smooth
and a generic fiber is smooth and elliptic (so, its Euler characteristic is zero),

therefore, by definition, f^ls = ^it
2x(f~i(xi})EuXt.

Thus, if x±xi9 (f'tls)(x) = 0(=tf(f-\x)) = tM-\X))), but

Examples (3.12). (i) Let C be a smooth plane curve of degree d(>l) and
X(CP3) be the projective cone over C, with v denoting the cone point of X. Let
f:X-*Xbe the blow-up of ̂ at the cone point v. Note that X is nonsingular and
the fiber f ~ l ( v ) of the cone point v is isomorphic to the curve C. Then f*lx =
Eux+dEuv, because Eux(v) = 2d-d2 (e.g., see [6]) and x(C} = M-d2,
Hence, by definition f^lx(=f^Eux) = Eux + t2dEuv. Thus (f*lx)(x) =
Xf(f~\x)) = 1 if x * v, but '(/;i^)(v) - 2d - d2 + t2d * tf(f-\v)) = t(3d - d2).
(ii) Let X be the union of distinct n lines in F2, intersecting at one point x and
f:X — » Pl be a non-generic projection such that f ( x ) = v and /~1(v) = one of
the n lines. Then f*lx= (n - l)Eupi + {t(4- n) - l}Euv. So (/il^)(v) =
t(4-n) + n-2=t=xf(r\v)) = xt(Pl) = 2t. (Note: if f:X— ^> 'F1 is a generic
projection, then f*\x

=f*^x = nEuPi — (n — l)Euv.)

Remark (3.13). At the moment we do not have a characterization of sur-

jections/:* — » Y such that ( f f
t l x ) ( y ) = X r ( f ~ l ( y ^

§4. A Naive Question

Before finishing this paper, we cite Baum-Fulton-MacPherson's theory Td*
of Todd class for singular varieties and we pose a more general and naive
question, which is motivated by MacPherson's survey article [7].

Let ^@(X) be the Grothendieck group of coherent sheaves on X. Then
<§: Jl '-^ crfl, becomes a covariant functor. Baum, Fulton and MacPherson [1] con-
structed a Riemann-Roch theorem for singular varieties, in which the total Todd
class theory of singular varieties is formulated as a unique natural transformation
Tdt:<3-*Ht( ;g) - //*( ;Z) ®ZQ satisfying the extra condition that Td^(X)(Ix) =
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td(TX) Pi [X] for any smooth variety X, where Ix is the trivial line bundle over X
and td:K-+H*( ;g) = H*( ;Z) ®Z8 is the classical Todd class of vector bundles.
This Td* shall be called BFM-theory of Todd class. Thus DGM-theory Q (and
now our twisted DGM-theory C,* also) and BFM-theory Td* are certain natural
transformations from certain covariant functors to the homology functor, and
respectively classical Chern and Todd (cohomology) classes are involved in these
extra conditions. It is safe to say that this is the content of R. MacPherson's
survey article "Characteristic classes for singular varieties" [7]. Since the above
extra conditions are about the Poincare dual of corresponding characteristic
classes of the tangent bundles of smooth varieties, let us call this extra condition
"smooth condition", abusing words. So, motivated by the formulations of these
three theories Q, C,* and Td^ or in line with [7], we pose the following general
question:

Question. Let c/:JC->//*( ;Z) <8>zA be a characteristic class of vector
bundles, where A is a commutative ring with unit. The question is whether or
not one could construct
(i) a certain covariant functor ^: ^"—» ^// (e.g., & in DGM-theory and ^ in
BFM-theory) and
(ii) a unique natural transformation C/*:^—>/f*(;Z) ®z-A satisfying "smooth
condition" that Cl*(X)(ex) = cl(TX) n [X] for any smooth variety X, where ex

is some distinguished element of ¥>(X) (e.g., \x in DGM-theory and lx in BFM-
theory).

In Grothendieck's formulation of Riemann-Roch theorem, the covariant
functor ^ is the ''universal" source and the quest is on the existence of a natural
transformation T from ^ into a certain covariant functor. In the above question,
the homology functor H*( ;Z) ®ZA is the "universal" target and the quest is on
the existence of a natural transformation rfrom a certain covariant functor to the
homology functor H*( ;Z) ®ZA, satisfying a certain extra condition, i.e., "smooth
condition." In this sense, the above question is also the quest for a Riemann-
Roch type theorem.
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